
1. Introduction

Nitrogen (N) is a critical element in the Earth system and acts as a limiting nutrient in many biomes (LeBauer 

& Treseder, 2008), especially those located in higher latitudes (Du et al., 2020; P. Vitousek & Howarth, 1991). 

In these ecosystems, N availability is likely to play a role in limiting carbon (C) uptake in the face of rising 

atmospheric carbon dioxide (Craine et al., 2018; Feng et al., 2015; Groffman et al., 2018; Reich et al., 2006), 

constraining the size of the land C sink (Wang & Houlton, 2009; Zaehle et al., 2015) and influencing Earth’s 

climate. At the same time, industrial and agricultural activities have greatly increased the amount of reactive N 

flowing through the biosphere (Gruber & Galloway, 2008; Sullivan et al., 2014); for certain ecosystems, this has 

led to eutrophication, declines in biodiversity, and increased emissions of heat-trapping gasses such as nitrous 

oxide (N2O; Bergström & Jansson, 2006; Davidson, 2009; Firestone & Davidson, 1989; Galloway et al., 2003; 

Payne et al., 2017; Sutton et al., 2011; P. M. Vitousek et al., 1997). Understanding where there is insufficient N or 

an excess compared to biological demand, what drives those trends, and the consequences for ecosystem structure 

and function is relevant to a wide range of ecological and conservation issues.

Whether N is limiting or in excess depends on the balance between N supply and demand and how both are 

influenced by environmental factors including variation in climate and growing seasons. In regions with seasonal 
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measurements compare to predictions from an Earth system model.

WEINTRAUB-LEFF ET AL.

© 2023 Battelle Memorial Institute, 

Oak Ridge National Laboratory and The 

Authors.

This is an open access article under 

the terms of the Creative Commons 

Attribution License, which permits use, 

distribution and reproduction in any 

medium, provided the original work is 

properly cited.

Standardized Data to Improve Understanding and Modeling of 

Soil Nitrogen at Continental Scale

Samantha R. Weintraub-Leff1  , Steven J. Hall2  , Matthew E. Craig3, Debjani Sihi4  , 

Zhuonan Wang4  , and Stephen C. Hart5 

1National Ecological Observatory Network, Battelle, Boulder, CO, USA, 2Department of Ecology, Evolution, and Organismal 

Biology, Iowa State University, Ames, IA, USA, 3Environmental Sciences Division and Climate Change Science Institute, 

Oak Ridge National Laboratory, Oak Ridge, TN, USA, 4Department of Environmental Sciences, Emory University, Atlanta, 

GA, USA, 5Department of Life and Environmental Sciences, Sierra Nevada Research Institute, University of California 

Merced, Merced, CA, USA

Key Points:

•  The National Ecological Observatory 

Network (NEON) measures soil 

inorganic nitrogen (N) pools and net 

flux rates at continental scale

•  The most N cycle variation is 

observed at the site level, followed by 

plots within sites. Organic horizons 

have high N pools and flux rates

•  The Community Earth System Model 

2 poorly predicts temporal trends in 

net N mineralization. NEON data can 

be used to improve predictive power

Supporting Information:

Supporting Information may be found in 

the online version of this article.

Correspondence to:

S. R. Weintraub-Leff,

sweintraub@battelleecology.org

Citation:

Weintraub-Leff, S. R., Hall, S. J., Craig, 

M. E., Sihi, D., Wang, Z., & Hart, S. C. 

(2023). Standardized data to improve 

understanding and modeling of soil 

nitrogen at continental scale. Earth's 

Future, 11, e2022EF003224. https://doi.

org/10.1029/2022EF003224

Received 21 SEP 2022

Accepted 30 MAR 2023

Author Contributions:

Conceptualization: Samantha R. 

Weintraub-Leff

Data curation: Samantha R. 

Weintraub-Leff

Formal analysis: Samantha R. 

Weintraub-Leff

Investigation: Samantha R. 

Weintraub-Leff

Visualization: Samantha R. 

Weintraub-Leff

Writing – original draft: Samantha R. 

Weintraub-Leff

10.1029/2022EF003224

RESEARCH ARTICLE

1 of 16



Earth’s Future

WEINTRAUB-LEFF ET AL.

10.1029/2022EF003224

2 of 16

snowpack, there is a strong positive influence of snow cover on N availability in spring (Brooks et al., 1998; 

Durán et al., 2014), while in warmer ecosystems, temporal trends in N availability are often linked to seasonality 

of rainfall (Austin et al., 2004; Davidson et al., 1990; Homyak et al., 2014). But many regions are experiencing 

less snowpack and earlier growing season arrival, along with more variable rainfall and prolonged droughts 

(Gergel et al., 2017; Kapnick & Hall, 2010). How will these changes influence seasonal patterns in N supply and 

demand?

Along with seasonality, other factors such as vegetation cover and soil type are known to influence N avail-

ability. For instance, herbaceous cover tends to promote higher soil N availability compared to forests due to 

higher-quality plant litter inputs (Chapman et al., 2006; Weintraub et al., 2017), highly weathered soils such as 

those found in the humid tropics tend to be relatively N-rich (Brookshire et al., 2011; P. Vitousek & Matson, 1988), 

and organic soils found in colder climates tend to have high N stocks and turnover rates compared to underlying 

mineral horizons (Hart & Gunther, 1989). In the context of our rapidly changing climate and resulting alterations 

in seasonality and vegetation phenology, we need a better understanding of the trajectory of seasonal N dynamics 

and the relative importance of this compared to controls by vegetation composition, soil horizon type, and other 

ecosystem factors.

Given the many variables that influence N availability, this property is difficult to predict and model across 

scales. A common proxy for available N is net nitrogen mineralization, the net microbial production of inor-

ganic N from organic matter. Nitrogen mineralization provides a major N source for plant and microbial growth 

in terrestrial ecosystems, although soluble organic N can be equally important in low N systems (Schimel & 

Bennett, 2004). N release from plant litter is well predicted using initial litter chemical characteristics and site 

climate (Parton et al., 2007). Yet we still lack the ability to predict broad-scale controls on the rates of N cycle 

processes in soil, where mineralogy and mineral–organic matter interactions are likely to figure prominently 

(Bingham & Cotrufo, 2016; Jilling et al., 2018). This holds true for N mineralization as well as nitrification, the 

conversion of ammonium to nitrate with a byproduct of N2O and other N trace gasses. For instance, Colman and 

Schimel (2013) measured rates of net N mineralization via laboratory incubations of continentally distributed 

mineral soils under constant temperature and moisture and found that edaphic and site factors could only explain 

∼33% of the observed variation. Using data synthesis, Li et al. (2020) found increasing rates of net nitrification 

with decreasing latitude and increasing temperature, and a positive relationship with N2O production and net 

nitrification rate. However, they observed wide variation in nitrification rates within biomes and low explana-

tory power overall. Soils display high spatial heterogeneity from local to regional and continental scales, with 

land use history contributing to variation in N dynamics. Explicitly capturing this cross-scale variance may be 

key to improved understanding and modeling of ecosystem function and response to global change (Bradford 

et al., 2021). Indeed, N cycle processes have proved challenging to represent in Earth system models (ESMs; 

Davies-Barnard et al., 2020; Thomas et al., 2015), and this makes it difficult to predict N availability and related 

carbon cycle processes, now and in the future.

A suite of standardized, broadly distributed measurements of soil inorganic N pools and net transformation 

rates could shed new insights into controls on N cycling in soils. The National Ecological Observatory Network 

(NEON) provides a community resource to deliver such measurements, along with a rich set of ancillary bioge-

ochemical, ecological, and climatic variables. To our knowledge, there has been no other effort of this type to 

collect standardized data on soil N pools and transformation rates at sites distributed strategically across the U.S., 

with stratified within-site sampling across land-cover types, intra-annual sampling to capture seasonal dynamics, 

and plans for repeated sampling every 5 years for several decades. The spatial and temporal axes covered by this 

sampling should allow for new understanding and improve our ability to understand and model the forces shaping 

soil N availability in response to global change.

The aim of this paper is to introduce the NEON soil inorganic N data set to the biogeochemistry research commu-

nity and illustrate how a unified data set such as this can address important research questions. First, we describe 

the spatial and temporal sampling design along with analytical approaches and challenges in generating a robust 

inorganic N data set, even for a project with highly standardized protocols. After exploring solutions to overcome 

the challenges, we use the data to investigate sources of variation in the context of the NEON sampling design, to 

probe whether NEON measurements are capturing heterogeneity in N cycling along dimensions of seasonality, 

soil horizon type, vegetation cover, and across spatial scales. Additionally, we compare NEON soil N measure-

ments with outputs from an ESM (Community Earth System Model version 2, CESM2) to evaluate the degree 
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of agreement between the two. Finally, we discuss the many opportunities to leverage these data, pairing them 

with other NEON data sets, additional measurements, and modeling efforts to yield new insights into terrestrial 

N availability.

2. Materials and Methods

2.1. NEON Sampling and Data

The NEON is a U.S. based monitoring networking that provides open ecological data at a continental scale (www.

neonscience.org). The NEON provides 182 data products that deliver standardized measurements of biodiver-

sity, biogeochemistry, micrometeorology, disease ecology, and other environmental variables. The observatory 

is composed of 47 terrestrial and 34 aquatic sites, distributed across 20 eco-climatic domains (Figure 1). Sensor 

infrastructure and observational sampling are used to observe ecosystems on the scale of minutes to years and 

from microns to kilometers (Balch et al., 2020; Keller et al., 2008).

Measurements of soil inorganic N pools and net transformation rates are a key component of the terrestrial bioge-

ochemistry sampling design (Hinckley et al., 2016). These measurements are provided as part of NEON data 

product DP1.10086.001, soil physical and chemical properties, periodic (https://data.neonscience.org/data-prod-

ucts/DP1.10086.001). At each NEON terrestrial site, ten 40 × 40-m plots are used for long-term soil sampling. 

These plots are located using stratified random sampling to encompass the major vegetation/land-cover types 

within each site, according to National Land Cover Database (NLCD) classification (Barnett et al., 2019). Each 

plot is divided into quadrants, and soils are sampled from three of these four quadrants from a random, prese-

lected location during each field campaign, which in NEON terminology is a “bout” (Figure 1). Thus, at each site, 

each of the 10 plots and 3 of the 4 subplots within each plot are resampled during each sampling bout, and the 

exact location within each subplot rotates for each bout. Samples are collected from 0 to 30 cm depth (or refusal), 

a standardized depth that was selected by NEON to facilitate within and across site comparisons and which 

includes the highest rates of soil N cycling activity and the majority of fine root biomass in most ecosystems 

(Binkley & Hart, 1989; Jackson et al., 1996), including NEON sites (Table S1 in Supporting Information S1). 

Soils are generally sampled using 2 or 2¼ in. (5.1 or 5.7 cm) soil augers, but with some adjustments to accommo-

date difficult to sample soils (see Appendix table in the NEON soil protocol, Stanish, 2022). If a surficial organic 

horizon is present, it is separated from mineral material and processed as a distinct sample.

Most NEON sites have three soil sampling bouts per year, except for the five sites located in Alaska that only 

have one due to the short growing season. All sites are sampled during their period of peak greenness, and most 

Figure 1. Nested scales of the National Ecological Observatory Network soil sampling design. (a) Forty-seven terrestrial sites (colored circles) are distributed across 

20 eco-climatic domains. (b) Within each site, 10 plots are used for soil sampling (brown boxes), with a random-stratified distribution across dominant land-cover types. 

(c) Each plot is divided into four subplots, three of which are sampled in any given bout at random, preselected locations (brown circles). (d) At each subplot location, 

an initial core is collected and an incubated core is installed for in situ, net N transformation rate measurements.
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are also sampled during two seasonal transition periods, the timing of which differs between sites as a function of 

climate. Seasonally cold sites are sampled during their respective spring and fall, while sites with milder temper-

ature with greenness driven by rainfall are sampled during rainy season onset and dry down. Inorganic N pools 

and net transformation rates are measured during all bouts in a given sampling year, but each site only conducts 

inorganic N analyses one out of every 5 years, with other years reserved for nonbiogeochemistry soil sampling. 

This allows for the examination of seasonal trends in N dynamics, as well as how these dynamics may be chang-

ing over time at the continental scale.

Within 1 day of collection, field moist mineral horizon soils are sieved to 2 mm, and organic horizon soils are 

hand-picked to remove roots, rocks, and other non-soil material. Then, inorganic N pools are measured using 2 M 

potassium chloride (KCl) extractions with 10:1 solution to fresh soil weight ratio (Bremner & Keeney, 1966). 

The NEON includes up to three procedural blanks for each day of extractions to account for any contaminant 

N introduced in the procedure. Aliquots from “initial” soil samples are used to measure bacterial and fungal 

community composition, microbial biomass, pH, and gravimetric soil moisture, as well as total organic C and 

total N concentrations, C and N stable isotope ratios, and soil metagenomic content during peak greenness. To 

measure net N transformation rates, covered cores (PVC cylinders with loose-fitting caps) are installed to 30 cm 

depth (or refusal) when initial soil samples are taken. The exception is for wetland plots where buried bags are 

used instead to prevent the water table from interfering with N accumulation (Hart et al., 1994). These covered 

cores (or buried bags) are left to incubate in situ, then recovered 2–4 weeks later (depending on site and time of 

year), and extracted with 2 M KCl, similar to the initial samples.

The KCl extracts are frozen following collection and shipped to a centralized facility contracted by NEON 

(2017–2018, EcoCore Analytical Services at Colorado State University; 2019–present, University of Florida 

Wetland Biogeochemistry Laboratory) for analysis of ammonium (NH4 
+) and nitrate + nitrite (NO3 

− + NO2 
−). 

Ammonium is measured using the salicylate nitroferricyanide method, and NO3 
− + NO2 

− is measured using 

cadmium reduction and sulfanilamide, both on an autoanalyzer. Due to resource constraints, NEON samples are 

not run with and without the cadmium reduction step, thus all measurements for nitrate include nitrite. However, 

nitrite is often a minor and short-lived constituent of natural soils (Hart et  al.,  1994); hereafter, we refer to 

NO3 
− + NO2 

− as nitrate. Difference between final and initial inorganic N is net N mineralization, while differ-

ence in final versus initial nitrate is net nitrification. Data are reported as milligrams N per liter KCl (mg-N/L). 

In order to blank-correct the data and then calculate milligrams N per kilogram dry soil (per day for net rates), 

data must be combined from several tables that come in the data product download, followed by a series of basic 

calculations. The NEON developed a simple R package to perform these calculations (https://github.com/NEON-

Science/NEON-Nitrogen-Transformations). Data are generally available within 6 months of sample collection on 

the NEON data portal, along with field and laboratory metadata, sampling and analytical protocols, and other 

documentation.

2.2. Challenges to Continental-Scale Inorganic N Sampling

To our knowledge, this is the first time a monitoring network has attempted repeated, standardized, continental-scale 

soil inorganic N sampling, and it has not been without challenges. The NEON employs a large cohort of tech-

nicians every season, and while most have some experience with ecology or field work, rarely is this specific to 

soils or biogeochemistry. The NEON has learned that all details required to ensure high-quality soil inorganic N 

pool and flux data must be included explicitly in protocols and training materials. Examples of details that were 

added over time include setting a minimum and maximum distance between the initial and incubated core, as well 

as a requirement for similar depths (within 5 cm) and adding detailed instructions for laboratory equipment prepa-

ration and clean lab techniques. Moreover, the Domain Support Facility (DSF) laboratories where extractions 

occur are set up for general ecological field work, not biogeochemistry per se, and the in-house water purification 

systems only achieve Type II (1 MOhm) grade. This water was used in 2017 to create KCl solutions but, upon 

examination of the first year of data, it was clear that certain DSF purification systems were not removing enough 

NH4 
+ or NO3 

− and blanks were unacceptably high. To solve this, all DSFs began purchasing Type I (18.2 MOhm) 

water to use for solution preparation and final equipment rinses starting in 2018.

Another issue involves “negative” sample concentrations after accounting for the inorganic N in analytical 

blanks. After observing this in several sites, troubleshooting revealed the cause to be nitrite contamination (up 

to 0.15 mg N/L) in certain batches of KCl used for extractions. In the presence of acidic soil, NO2 
− is abiotically 
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converted to nitrogen gasses and lost (chemodenitrified), but this process does not occur in blanks (Homyak 

et  al.,  2015). This often leads to significant negative NO3 
−  +  NO2 

− values upon blank-correction for highly 

contaminated KCl batches and greatly reduces sensitivity of the method in low inorganic N concentration NEON 

sites where nitrate-N tends to be <0.05 mg/kg, about one third of the total. NEON continues to troubleshoot 

this issue. It has been difficult to source KCl powder that is consistently low in nitrite, so NEON has considered 

options such as in-house purification of KCl or custom order of KCl free from contaminants—but these solutions 

have proved challenging. For the 2022 field season, the workflow was to test each batch of KCl ordered from 

standard vendors, then use only batches where nitrite concentrations were verified to be low (generally <0.02 mg 

NO2 
−-N/L, although a few batches were used with up to 0.05 mg NO2 

−-N/L due to supply chain issues). The plan 

is to continue with this procedure unless or until an alternate solution can be implemented. Any sample values 

that blank-correct negative beyond the level of background noise, which is considered less than −0.02 mg N/L 

(more than twice the method detection limit of 0.01 mg/L), are flagged in the data with “blanks exceed sample 

value.” Below, we discuss possible approaches to account for these values.

2.3. Data Download and Blank-Corrections

To examine the inorganic N data, we downloaded DP1.10086.001 soil physical and chemical properties, peri-

odic from the NEON data portal on 9 June 2022 (NEON,  2022a) using the neonUtilities R package (Lunch 

et al., 2022). We chose to download “RELEASE-2022” data that includes a static version of inorganic N meas-

urements from 2017 to 2020. More information about the sites included in the download along with relevant site 

metadata are summarized in Table S1 in Supporting Information S1. This includes fine root biomass fraction in 

the top 30 cm of soil, derived from DP1.10066.001 root biomass and chemistry, Megapit (NEON, 2022b). We 

used the def.calc.ntrans function in the neonNTrans R package (Weintraub, 2017) to calculate blank-corrected 

inorganic N concentrations and net N transformation rates on a per soil mass basis. Expressing pools and rates 

per gram soil is common practice in the biogeochemical literature (Liu et al., 2017), should be reflective of what 

plants and microbes “see” when competing for N, and is relevant to N losses to water and the atmosphere. Recent 

work has linked soil C with variation in net N transformation rates (Gill et al., 2023; Liu et al., 2017), and it could 

be interesting to examine rates per gram soil C. However, this would require assumptions and extrapolations, as 

the peak green sampling bout is the only one where total soil C is measured on the NEON soil cores, thus this 

would introduce more uncertainty (especially for organic horizons). We avoid this given our aim to assess sources 

of variation in the context of the NEON sampling design but acknowledge this could be relevant for future studies.

Given the issues with high NO2 
− blanks described above, we explored four possible ways to account for nega-

tive blank-corrected concentration data, as outlined in Table 1. Each has certain advantages, disadvantages, and 

assumptions. In the end, we used Option 4 because it yields a larger data set with all sites and samples retained, 

while avoiding substantial inflation with zeros (Figure S1 in Supporting Information S1). We suggest that the 

combination of a quantile regression for nitrate to estimate and add back the NO2 
− from KCl lost from samples 

but not blanks, plus use of an empirical cutoff for blank values for NH4 
+ (Figure S2 in Supporting Informa-

tion S1) produces a data set highly suitable for further analyses. However, we recognize that there are other ways 

these data can (and will) be analyzed. Over time, these issues should become less prominent as NEON is now 

paying attention to and remediating the nitrite contamination issue.

2.4. Mixed Model Analyses to Examine Sources of Variation

Taking the resulting data set generated from the Option 4 blank-correction procedure, we fit mixed-effects models 

to test which aspects of the NEON sampling design were associated with variation in inorganic N dynamics. 

We fit separate models for the following response variables, leading to four final models, one each for: net N 

mineralization, net nitrification, and the initial concentrations of NH4 
+ and NO3 

− measured in the field. The net 

N mineralization and net nitrification data were strongly skewed and included large positive and negative values, 

so we used a “neglog” transformation to reduce skewness while preserving the sign of each value (Whittaker 

et al., 2005). Positive values were summed with one prior to a natural log transformation, and negative values 

were multiplied by negative one and summed with one prior to a natural log transformation, and were again 

multiplied by negative one to preserve the negative sign of the original value (Whittaker et al., 2005). The NH4 
+ 

and NO3 
− concentrations were natural log-transformed.

In each model, we included soil horizon type (organic or mineral), seasonal timing, and horizon by timing inter-

actions as candidate fixed effects along with candidate random effects to account for the spatial structure of the 
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NEON sampling design. Subplot, plot, site, and domain were all coded as unique spatially explicit variables (i.e., 

there were observations from 1,328 subplots, 349 plots, 35 sites, and 19 domains). Given the NEON design of 

random stratification of plots within sites across NLCD vegetation class, this parameter was also included as a 

random effect with 10 levels: deciduous forest, pasture/hay, cultivated crops, shrub/scrub, evergreen forest, mixed 

forest, grassland/herbaceous, woody wetlands, dwarf scrub, and sedge/herbaceous. NLCD class varies at the plot 

scale, but not within plots. Because seasonal timing of sampling intentionally differed among sites as a function 

of climate (e.g., rainfall transitions in some sites compared to spring and fall in others), we generated a timing 

variable that was more comparable among sites. Specifically, seasonal timing was recoded from the initial five 

levels (peak greenness, winter/spring transition, fall/winter transition, dry/wet, and wet/dry) to a simpler scheme, 

where dry/wet and winter/spring were recoded as “ramp up” and wet/dry and fall/winter were recoded as “ramp 

down,” and were then compared relative to “peak greenness.” In the initial phase of analysis, we explored adding 

other fixed effects such as mean annual temperature, soil moisture, pH, and soil organic C concentration, but they 

resulted in only weak increases in explanatory power of the statistical models (no more than a 0.1 increase in R 2). 

This was not pursued further in order to focus on evaluating components of the sampling design.

We fit the linear mixed models using the lmer function in the “lme4” package in R (Bates et al., 2015). Singu-

lar fits were obtained in some cases where a random effect had variance near zero, so models were refit after 

removing that particular random effect. We assessed variable importance by plotting estimates of fixed effects 

coefficients, the standard deviations of random effects, and approximate p-values of fixed effects using a Type 

II Wald chi-square test with the ANOVA function in the “car” package (Fox & Weisberg, 2018). We report the 

marginal and conditional R 2 values, which represent the approximate variance explained by fixed and fixed plus 

random effects, respectively (Nakagawa et al., 2017). We evaluated model assumptions using plots of residual 

versus predicted values and sample quantiles versus theoretical quantiles. Moderate heteroscedasticity and devi-

ations from normality were observed, so models should be treated with caution.

2.5. ESM Outputs and Data–Model Comparison

We used modeled monthly rates of net N mineralization from the CESM2, from simulations conducted as part 

of the Coupled Model Intercomparison Project 6 (CMIP6; O’Neill et al., 2016). Specifically, we used output 

from the Shared Socioeconomic Pathway (SSP) scenario 5, Representative Concentration Pathway (RCP) 8.5, 

Table 1 

Four Possible Ways to Adjust for Negative Blank-Corrected Concentration Data in National Ecological Observatory Network (NEON) Potassium Chloride Extraction 

Samples

Option description Mechanics Pros and cons

Option 1: drop samples that blank-correct to less 

than −0.02 mg N/L

Use def.calc.ntrans function with “drop flags” 

parameters set to exclude samples flagged as 

“blanks exceed sample value”

Conservative with respect to removing values that 

are negative, but liberal insofar as samples with 

high blanks remain as long as the blank-corrected 

value is positive

Option 2: set blank-corrected negative values to 

zero, no matter how negative they are

Use def.calc.ntrans without “drop flags” settings. 

The default behavior of the function is to convert 

all negative values to zero

Most liberal approach as all data are retained, but 

inflates the data set with many zeroes (Figure S1 

in Supporting Information S1)

Option 3: exclude samples associated with high 

blanks, then set remaining blank-corrected 

negative values to zero

Drop all samples associated with blanks that exceed 

0.13 mg N/L for NO3 
− + NO2 

− and 0.1 for NH4 
+, 

then use default behavior of def.calc.ntrans to set 

negative values to zero

Leads to the smallest data set as certain sites are 

removed completely given site-specific issues 

with contaminated water or batches of KCl 

(Figure S1 in Supporting Information S1)

Option 4: for NO3 
− + NO2 

−, apply a quantile 

regression to estimate and add back blank 

concentrations; for NH4 
+, drop samples that 

blank-correct to less than −0.06 mg N/L

Correct for the systematic trend of increasingly 

negative blank-corrected values with increasing 

blank NO3 
− + NO2 

− concentrations (Figure S2 

in Supporting Information S1). Estimate slope 

of the 1% quantile regression (−0.75), then add 

this fraction of blank NO2 
−-N back to sample 

values. For NH4 
+, use a threshold for discarding 

negative values (−0.06 mg N/L), acknowledging 

idiosyncratic analytical error (Figure S2 in 

Supporting Information S1)

Allows for the largest data set, all sites and majority 

of samples retained, yet the data set is not 

inflated with zeros
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which represents the high end of plausible future pathways in terms of radiative forcing (O’Neill et al., 2014). 

Compared with CESM1, the land model used in CESM2 (Community Land Model version 5, CLM5) includes 

a more detailed and dynamic representation of the ecosystem N cycle (Lawrence et  al.,  2019). For example, 

CLM5 allows for flexible plant tissue stoichiometry, interactions between plant N and C, and more dynamic N 

fixation responses. Observations were compared with the simulated variable “fNnetmin” (i.e., net N minerali-

zation) from soil and litter pools across the whole soil profile. Thus, modeled rates are not a perfect match with 

the NEON observations, which were collected from soil to 30 cm depth. However, there is a wealth of data to 

suggest that rates of N mineralization decline substantially with depth (Chen et al., 2019; Darby et al., 2020; 

Dessureault-Rompré et al., 2016). Since it is reasonable to assume that surface soils are making a significant 

contribution to modeled rates, the data–model comparison should prove useful. Moreover, temporal comparisons 

are still quite relevant; if the model represents seasonal patterns in N mineralization correctly, the temporal trends 

in data versus model should align, even if absolute magnitudes differ. Model data have a nominal 100 km spatial 

resolution. Site-level net N mineralization data were extracted based on latitude and longitude for each CESM2 

grid cell that contained a site. We used the “ncdf4” package v.1.17 in R to work with netCDF files (Pierce, 2021) 

and the “raster” package v.3.4–5 (Hijmans, 2022) to match site locations to grid cells.

In order for the data set of net N mineralization observations to be comparable to CESM2 outputs, measurements 

were converted from a per-kg soil basis to per area fluxes, according to the following equation:

Nmin areal basis
(

gNm−2 day−1
)

= Nmin concentration (mg∕kg) × bulk density
(

Mg∕m3
)

× sample depth (m) × (1 − percent coarse fragments × 0.01)
 (1)

This required bulk density and percent coarse fragments (particles >2 mm diameter) for each sample. For a subset 

of plots used for periodic soil sampling, plot-level measurements of these variables were available by download-

ing DP1.10047.001 Soil physical and chemical properties, distributed initial characterization (NEON, 2022c). 

This data product includes physical and geochemical properties from 8 to 26 soil pits, generally 1-m deep, dug 

by the U.S. Department of Agriculture Natural Resource Conservation Service at each site to characterize the 

diversity of local soils. For this effort, soils were sampled by pedogenic horizon; to convert these data to a fixed 

depth interval (0–30  cm) to better match inorganic N measurements, data from each pit were separated into 

“mineral” and “organic” horizons, then the “slab” function in the aqp package (Beaudette et al., 2022) was used 

to estimate 0–30 cm values. Where periodic sampling and initial characterization data were measured in the same 

plots, we assigned bulk density and coarse fragment data to all inorganic N concentration values from that plot. 

For inorganic N samples from plots that lack these measurements, we estimated bulk density using a pedotransfer 

function (Drew, 1973; Guevara et al., 2020):

Bulk density
(

Mg∕m3
)

= 1∕(0.6268 + 0.0361 × organic carbon (%) × 1.724) (2)

As percent coarse fragments cannot be estimated from a pedotransfer function, we instead calculated mean of 

percent coarse fragments by horizon type (mineral vs. organic) and NLCD cover classes within each site, then 

assigned these values to inorganic N data within the same site, horizon, and NLCD cover. Net N mineralization 

rates were thus estimated for all organic and mineral horizon samples on an areal basis. Then, horizon values were 

summed for each within-plot sampling location where both were present. Finally, we took the average and stand-

ard error for each site and temporal sampling bout (n = 89), assigned month to each bout of NEON sampling, and 

assigned dominant NLCD class at the site level according to whichever cover class accounted for the greatest  area 

of the NEON soil plots.

First, we examined the seasonal time course of net N mineralization in observations compared to modeled results 

from the same year to visually assess how well the two agreed. Then, we plotted average net N mineralization 

by month and site in observation versus model data and examined the relationships between them using several 

metrics: Spearman rank correlation, a linear model, and a mixed model with site as a random effect. We calcu-

lated the Nash-Sutcliffe efficiency of the data–model comparison using the NSE function in the “hydroGOF” 

package (Zambrano-Bigiarini,  2020) and the root mean square error (RMSE) using the rmse function in the 

“Metrics” package (Hamner & Frasco, 2018). Lastly, we extracted the residuals from the linear model and used 

analysis of variance to see if residuals could be explained by dominant NLCD class or seasonal timing. All 

analyses and data visualizations were performed using R Statistical Software (v 4.0.5; R Core Team, 2021) and 

statistical tests were considered significant with p-values <0.05.
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3. Results

The 35 NEON sites examined here displayed wide variation in rates of net N transformations and inorganic N 

pool sizes (Figure 2). Overall, organic horizons showed higher rates and pool sizes compared to adjacent mineral 

horizons when expressed on a weight basis. The largest portion of variance in soil extractable pools and net N 

transformation rates was explained by site, except for net N mineralization where domain was slightly statistically 

more important (Table 2 and Figure 3b). Plot explained the next largest fraction of variance for most variables, 

followed by domain, with subplot and NLCD class contributing the least explanatory power. The fixed effects 

did not explain a high proportion of the variation compared to the random effects, and each model had a substan-

tiation amount of variation in residuals. For the fixed effects, horizon was important for all four variables, with 

Figure 2. Boxplots of inorganic nitrogen (N) pools and net transformation rates across National Ecological Observatory Network (NEON) sites, with colors for 

dominant National Land Cover Database (NLCD) class. Diagonal lines within boxes denote data from surficial organic horizons. Net Nit, net nitrification; Net N Min, 

net N mineralization. Note log scale of y axis. Sites are arranged in increasing order of mean annual temperature within each NLCD class. For more information on site 

characteristics, see Table S1 in Supporting Information S1.
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higher levels in organic layers compared to mineral layers on a per mass basis 

(Figure 3a). Soil NH4 
+ concentrations and net mineralization rates were also 

influenced by seasonality. Soil NH4 
+ concentrations displayed lowest values 

during peak greenness compared to the transition seasons (e.g., positive 

coefficients for ramp up and ramp down when compared to peak greenness, 

Figure 3a), while the net rates were higher during the ramp up and slower 

during the ramp down compared to peak greenness—but only in organic 

horizons.

Most NEON sites displayed some degree of seasonality in net N minerali-

zation rates, and whether temporal patterns aligned between measured and 

modeled data depended on the site (Figure  4). In some cases, dynamics 

observed in the field were captured reasonably well by CESM2, such as at the 

sites STER, HARV, and SCBI (see Table S1 in Supporting Information S1 

for site names and metadata). For other sites, the temporal patterns did not 

coincide, for example, in GUAN, DCSF, and WREF. There was no clear 

visual indication that the model was better at capturing seasonality in certain 

types of ecosystems.

The Spearman rank correlation between mean observed net N mineralization 

and modeled net N mineralization in the same month was significant (p-value 

<0.001, r = 0.38; Figure 5), as was the linear correlation between modeled 

versus observed values (Nminobs = Nminmod × 0.323 + 0.022, p = 0.003, 

r 2 = 0.09), but the explanatory power was low. A higher fraction of the variation could be explained by using a 

mixed model accounting for site as a random effect (p = 0.004, conditional r 2 = 0.22). The RMSE of the data–

model comparison was 0.05 g N m −2 day −1, and the Nash-Sutcliffe efficiency was −0.51. Analysis of variance 

Table 2 

Variance Explained (%) at Each Level of the Linear Mixed Model for Each 

of the Variables Classified as Random Effects, As Well As for All Random 

Effects Combined (i.e., Subplot, Plot, Site, Domain, and NLCD Class) or All 

Fixed Effects Variables Combined (i.e., Horizon Type, Sample Timing, and 

Their Interaction)

NO3 
− NH4 

+ Net nit. Net N min.

Subplot 5 4

Plot 12 15 14 6

Site 27 18 15 5

Domain 12 8 9 7

NLCD class 2 1 2

All random Effects 53 42 43 24

All fixed effects 4 16 0 1

Total 57 58 43 25

Residual 46 49 56 67

Note. A blank cell means a variable was not a significant predictor. Net nit., 

net nitrification; net N  min., net N mineralization; NLCD, National Land 

Cover Database; residual, unexplained variance in each model.

Figure 3. Estimated coefficients of fixed effects (a) and standard deviations of random effects (b) in the four separate 

mixed-effects models of soil net nitrogen mineralization (net N min.), net nitrification (net nit.), and initial ammonium (NH4) 

and nitrate (NO3) concentrations measured in field samples. For the fixed effects (a), the row for O horizon reflects the 

coefficient in relation to the mineral horizon, and ramp up or ramp down rows reflect coefficients during transition season 

sampling in relation to the peak green period.
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suggested that dominant NLCD cover was a significant predictor of data versus model residuals, but only for 

the “Pasture Hay” class, which had larger residuals compared to other land-cover types (p = 0.006). The “ramp 

down” period had marginally significantly lower residuals compared to peak greenness (p = 0.08), but overall this 

statistical model had low explanatory power (r 2 = 0.11, p = 0.03).

4. Discussion

Despite the importance of N mineralization and nitrification for terrestrial N cycling, we have a poor understand-

ing of the controls on these processes at a continental scale. Data collected by NEON provide a potential oppor-

tunity to make progress in this area, and the standardized data sets can be useful for validating and improving 

Figure 4. Measured and simulated seasonal patterns of soil net nitrogen (N) mineralization (Net N Min) by site. Colored 

circles are mean measured rates, color coded by dominant National Land Cover Database class, with vertical lines indicating 

standard errors (n = 30 unless bouts had incomplete sampling). Black and gray circles are simulated values from the 

Community Earth System Model 2 (CESM2) from 2015 to 2020 in years where measurements were and were not made, 

respectively. Gray lines show the confidence interval of the simulated temporal trends. Sites are arranged in increasing order 

of mean annual temperature within each land-cover class.
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predictive models. The NEON measurements capture high spatiotemporal heterogeneity in inorganic N pools 

and fluxes, some of which are predictable as a function of the spatial structure of sampling and core aspects of 

the NEON design.

4.1. Variation in N Pool and Net Flux Rates Across Sites

Certain types of sites conformed to expectations. For example, those with greatest soil nitrate pools and high-

est net N transformation rates were either in the tropics (GUAN) or under agricultural management (KONA, 

STER). Most forested sites outside the tropics had larger ammonium pools and very little nitrate, which is typi-

cal (although on its own, not diagnostic) for N-limited ecosystems. In contrast, some sites showed unexpected 

patterns; for example, relatively large soil inorganic N pools and high net transformation rates in the Alaskan 

tundra (TOOL) where we expected very low N availability, and low net N transformation rates and N pool sizes 

in subtropical woody wetlands in the Everglades (DSNY). Sites with low inorganic N pools might have low rates 

of N transformations, or alternatively, high plant N uptake, and this question could potentially be further investi-

gated using additional NEON data.

4.2. Sampling Design Captures Important Sources of Variation, But Still Much Is Unexplained

Given that this is a first of its kind effort, it is important to evaluate the NEON design to ensure key sources of 

variation are being captured. According to the mixed model analysis, the nested components of the NEON design 

(Figure 1) all have some explanatory power for inorganic N pools and processes, suggesting that the sampling 

approach is generally robust. Sites tend to account for the most variation (Table 2), hence adding more sites 

could yield more insight into soil N cycling compared to adding more plots within sites or subplots within plots. 

While NEON is unlikely to make this expansion in the near future, and adding more sites is no assurance that 

fundamental understanding will increase, if others use NEON’s standardized, publicly available protocols and 

analysis methods, the community can assess whether new insight can be gained by filling in geographic, climatic, 

and other kinds of gaps. The next most important source of variation is at the level of plots, which suggests that 

NEON should preserve the existing number of plots even if it means sacrificing within-plot replication. This is 

Figure 5. Net nitrogen (N) mineralization rates measured by the National Ecological Observatory Network (NEON) 

compared to simulated values from Community Earth System Model 2 (CESM2) at the same site, in the same month and 

year. The 1:1 line is displayed for reference. Vertical lines are standard errors of measurements.
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helpful given budgetary and other logistical pressures and can help to focus efforts when sampling resources are 

strained (e.g., during the COVID-19 pandemic). Not only are these insights useful for NEON, but also potentially 

for researchers seeking to set up cross-site soil monitoring efforts or establish within-site sampling designs.

Surficial organic (O) horizons tended to have greater extractable inorganic N pools and higher mineralization 

rates compared to mineral horizons on a per weight basis (Figures 2 and 3). This is consistent with findings from 

previous studies, which tend to be limited to single sites or regions (Darby et al., 2020; Hart & Gunther, 1989) 

and implies that the pattern holds when looking across a wide variety of ecosystems. Given higher N concentra-

tions and faster net mineralization rates per unit soil, organic horizons are likely to be “hotspots” for provision of 

mineral N and it may be useful for investigators to separate organic and mineral layers, even if otherwise pursuing 

fixed-depth sampling, to understand the contributions of the organic layer to soil nutrient availability. Moreover, 

as the climate warms and dries, organic horizons are likely to be reduced in areal density due to increased decom-

position rates (Melillo et  al.,  2017), as their persistence is governed by temperature and moisture constraints 

as opposed to physical protection of organic matter as in the mineral soil (Schmidt et al., 2011). Because these 

organic horizons have high rates of microbial decomposition and inorganic N production, especially in the early 

part of the growing season (Figure 3a, ramp up), their decline might exacerbate N limitation. On the other hand, 

there could be counterbalancing forces in the kinds of ecosystems with thick organic horizons (e.g., high latitude 

or altitude), such as longer growing seasons and an expansion of the active layer, that could yield higher N avail-

ability in mineral layers. The net effects on N availability will be important to assess going forward, and NEON 

data can be leveraged for this.

There was a significant amount of unexplained variation in the statistical models used for predicting inorganic 

N pools and net flux rates, similar to previous findings (Colman & Schimel, 2013; Li et  al.,  2020). Clearly, 

understanding the sources of this unexplained variation in N dynamics remains a ripe area for research, and 

the NEON samples provide a unique opportunity to integrate a suite of data sets collected at a variety of spati-

otemporal scales to assist in uncovering what drives these patterns. Our exploratory analyses suggested that 

snapshots of soil moisture and temperature (i.e., measurements at the time of soil sampling) did not provide 

additional statistical insight. However, NEON monitors soil moisture and temperature continuously via auto-

mated sensors, and these temporally resolved measurements might shed light on controls on N pool sizes and 

transformation rates. Sensor data could be especially useful if paired with information on microbial community 

abundance and composition, which NEON provides. We did not find NLCD class to be a strong driver of N cycle 

variation, yet this is a very coarse metric of vegetation cover. Within the same NLCD class, various attributes 

of plant communities can strongly influence N dynamics (e.g., mycorrhizal type, Phillips et al., 2013). Informa-

tion on plant biomass, composition, phenology, or chemistry, derived from on-the-ground measurements and/or 

high-resolution airborne remote sensing, are also available from NEON and may provide new insights into how 

vegetation influences soil N dynamics across diverse ecosystems.

4.3. Simulations Do Not Capture Observed Rates of Net N Mineralization

Overall, we observed a relatively poor fit between NEON measured and CESM2 modeled net N mineraliza-

tion, suggesting room for growth in our understanding of the soil N cycle and its representation in large-scale 

models. There was a large RMSE and a negative Nash-Sutcliffe efficiency value suggesting that the process 

model was worse for prediction than taking only the mean of the observed values. However, the Spearman rank 

correlation was higher than linear model fits, suggesting that although prediction of the absolute values was 

difficult, there  was some correspondence in the general patterns observed. As noted earlier, there are limitations 

in both  the data and model side of the comparison. For observations, we had to make assumptions about bulk 

density and coarse fragment content in some plots, and soils below 30 cm depth were not included. For the 

modeled data, the observed climate during net N transformation measurements may have differed from the one 

simulated in the CESM2 outputs. Nonetheless, it is likely that the way N cycling is mechanistically represented 

in the model is not sufficient to capture spatial and temporal variation in N cycling processes. We were unable 

to explain much of the residual in the observations versus simulations linear model with dominant NLCD class 

or sample timing, but a next step would be to probe more systematically where and why the model does better 

or worse and seek to improve the underlying process representation from there. Additionally, NEON’s standard-

ized, continental-scale data on soil inorganic N pools and fluxes can be used to evaluate process-based model 

estimates of soil N2O emissions. Even without the N2O flux data, soil pools and net N transformation rates can 
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serve as standardized benchmarks and play important roles in the N2O Model Intercomparison Project (NMIP, 

Tian et al., 2018; Xu et al., 2021).

4.4. Opportunities for Future Research and Engagement

It is critical to understand how cycling of a key limiting nutrient—N—will respond to increasing climatic and 

other ecological stressors. The NEON data provide a baseline for monitoring changes in soil N cycling going 

forward. Changes in the timing and magnitude of N pools and process rates will be mediated by complex, 

cross-scale interactions among different ecosystem components. NEON helps meet this challenge by monitoring 

many ecosystem dynamics at the same time. Nonetheless, there remain some obvious information gaps. This is 

where individual researchers can propose to collaborate with NEON (SanClements et al., 2020) to uncover new, 

continental-scale insights. For instance, we now recognize that minerals play an important role in soil N availa-

bility (Bingham & Cotrufo, 2016; Jilling et al., 2018). There is potential to not only leverage existing NEON data 

on soil mineralogy, geochemistry, and N cycle metrics but also propose new collaborative projects at NEON sites. 

Our ability to benchmark models and upscale measured rates would be improved by having estimates of bulk 

density and coarse fragments in all NEON soil plots. This is not part of the baseline NEON design, but could be 

added through an initiative driven by the scientific community.

There are several ways for researchers to engage with the NEON data sets described in this paper. This ranges 

from simply downloading and using data from the NEON portal, to taking NEON data tutorials, contributing code 

resources to the NEON code hub, or proposing collaborations to conduct additional research (Nagy et al., 2021; 

SanClements et al., 2020). To fully utilize these large, integrated, publicly available data sets, techniques such 

as machine learning, deep learning, information theory, and others will be needed to uncover previously hidden 

connections between N cycling and ecological dynamics. Moreover, the biogeochemistry research community 

will derive the most benefit by wholly embracing the FAIR data principles (Wilkinson et al., 2016), to ensure 

all derived data sets, code, and analyses are findable, reproducible, and enable new insights to build on the most 

recent contributions. By leveraging these unique data sets and opportunities, we can unlock new insights into the 

controls on soil N cycling.

Data Availability Statement

Measurements of inorganic N pools, fine root biomass by depth interval, and bulk density analyzed in this study 

are available by downloading “RELEASE-2022” of DP1.10086.001, DP1.10066, and DP1.10047, respectively, 

using the NEON data portal or NEON’s application programming interface (API). Simulated net N minerali-

zation rates from CESM2 can be found at https://doi.org/10.22033/ESGF/CMIP6.7768 (Danabasoglu,  2019). 

Derived data sets and all code used for data analysis and visualization are available at https://doi.org/10.6073/

pasta/ec9e2e7c1fa40f2b61c2e930bd5a4ad1 (Weintraub-Leff et al., 2023).
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