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Abstract Nitrogen (N) is a key limiting nutrient in terrestrial ecosystems, but there remain critical gaps

in our ability to predict and model controls on soil N cycling. This may be in part due to lack of standardized
sampling across broad spatial-temporal scales. Here, we introduce a continentally distributed, publicly available
data set collected by the National Ecological Observatory Network (NEON) that can help fill these gaps. First,
we detail the sampling design and methods used to collect and analyze soil inorganic N pool and net flux rate
data from 47 terrestrial sites. We address methodological challenges in generating a standardized data set,

even for a network using uniform protocols. Then, we evaluate sources of variation within the sampling design
and compare measured net N mineralization to simulated fluxes from the Community Earth System Model 2
(CESM2). We observed wide spatiotemporal variation in inorganic N pool sizes and net transformation rates.
Site explained the most variation in NEON’s stratified sampling design, followed by plots within sites. Organic
horizons had larger pools and net N transformation rates than mineral horizons on a sample weight basis.

The majority of sites showed some degree of seasonality in N dynamics, but overall these temporal patterns
were not matched by CESM2, leading to poor correspondence between observed and modeled data. Looking
forward, these data can reveal new insights into controls on soil N cycling, especially in the context of other
environmental data sets provided by NEON, and should be leveraged to improve predictive modeling of the soil
N cycle.

Plain Language Summary Nitrogen (N) is not only a key limiting nutrient that often constrains
plant growth but also a major pollutant in places where supply exceeds demand. However, we lack the ability to
accurately predict and model rates of soil N cycling. This paper introduces a first of its kind, standardized and
publicly available data set of soil inorganic N pools and net transformation rates spanning the United States.
We describe the data set in detail, then examine spatiotemporal trends in N pools and fluxes and how those
measurements compare to predictions from an Earth system model.

1. Introduction

Nitrogen (N) is a critical element in the Earth system and acts as a limiting nutrient in many biomes (LeBauer
& Treseder, 2008), especially those located in higher latitudes (Du et al., 2020; P. Vitousek & Howarth, 1991).
In these ecosystems, N availability is likely to play a role in limiting carbon (C) uptake in the face of rising
atmospheric carbon dioxide (Craine et al., 2018; Feng et al., 2015; Groffman et al., 2018; Reich et al., 2006),
constraining the size of the land C sink (Wang & Houlton, 2009; Zaehle et al., 2015) and influencing Earth’s
climate. At the same time, industrial and agricultural activities have greatly increased the amount of reactive N
flowing through the biosphere (Gruber & Galloway, 2008; Sullivan et al., 2014); for certain ecosystems, this has
led to eutrophication, declines in biodiversity, and increased emissions of heat-trapping gasses such as nitrous
oxide (N,O; Bergstrom & Jansson, 2006; Davidson, 2009; Firestone & Davidson, 1989; Galloway et al., 2003;
Payne et al., 2017; Sutton et al., 2011; P. M. Vitousek et al., 1997). Understanding where there is insufficient N or
an excess compared to biological demand, what drives those trends, and the consequences for ecosystem structure
and function is relevant to a wide range of ecological and conservation issues.

Whether N is limiting or in excess depends on the balance between N supply and demand and how both are
influenced by environmental factors including variation in climate and growing seasons. In regions with seasonal
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snowpack, there is a strong positive influence of snow cover on N availability in spring (Brooks et al., 1998;
Duran et al., 2014), while in warmer ecosystems, temporal trends in N availability are often linked to seasonality
of rainfall (Austin et al., 2004; Davidson et al., 1990; Homyak et al., 2014). But many regions are experiencing
less snowpack and earlier growing season arrival, along with more variable rainfall and prolonged droughts
(Gergel et al., 2017; Kapnick & Hall, 2010). How will these changes influence seasonal patterns in N supply and
demand?

Along with seasonality, other factors such as vegetation cover and soil type are known to influence N avail-
ability. For instance, herbaceous cover tends to promote higher soil N availability compared to forests due to
higher-quality plant litter inputs (Chapman et al., 2006; Weintraub et al., 2017), highly weathered soils such as
those found in the humid tropics tend to be relatively N-rich (Brookshire et al., 2011; P. Vitousek & Matson, 1988),
and organic soils found in colder climates tend to have high N stocks and turnover rates compared to underlying
mineral horizons (Hart & Gunther, 1989). In the context of our rapidly changing climate and resulting alterations
in seasonality and vegetation phenology, we need a better understanding of the trajectory of seasonal N dynamics
and the relative importance of this compared to controls by vegetation composition, soil horizon type, and other
ecosystem factors.

Given the many variables that influence N availability, this property is difficult to predict and model across
scales. A common proxy for available N is net nitrogen mineralization, the net microbial production of inor-
ganic N from organic matter. Nitrogen mineralization provides a major N source for plant and microbial growth
in terrestrial ecosystems, although soluble organic N can be equally important in low N systems (Schimel &
Bennett, 2004). N release from plant litter is well predicted using initial litter chemical characteristics and site
climate (Parton et al., 2007). Yet we still lack the ability to predict broad-scale controls on the rates of N cycle
processes in soil, where mineralogy and mineral-organic matter interactions are likely to figure prominently
(Bingham & Cotrufo, 2016; Jilling et al., 2018). This holds true for N mineralization as well as nitrification, the
conversion of ammonium to nitrate with a byproduct of N,O and other N trace gasses. For instance, Colman and
Schimel (2013) measured rates of net N mineralization via laboratory incubations of continentally distributed
mineral soils under constant temperature and moisture and found that edaphic and site factors could only explain
~33% of the observed variation. Using data synthesis, Li et al. (2020) found increasing rates of net nitrification
with decreasing latitude and increasing temperature, and a positive relationship with N,O production and net
nitrification rate. However, they observed wide variation in nitrification rates within biomes and low explana-
tory power overall. Soils display high spatial heterogeneity from local to regional and continental scales, with
land use history contributing to variation in N dynamics. Explicitly capturing this cross-scale variance may be
key to improved understanding and modeling of ecosystem function and response to global change (Bradford
et al., 2021). Indeed, N cycle processes have proved challenging to represent in Earth system models (ESMs;
Davies-Barnard et al., 2020; Thomas et al., 2015), and this makes it difficult to predict N availability and related
carbon cycle processes, now and in the future.

A suite of standardized, broadly distributed measurements of soil inorganic N pools and net transformation
rates could shed new insights into controls on N cycling in soils. The National Ecological Observatory Network
(NEON) provides a community resource to deliver such measurements, along with a rich set of ancillary bioge-
ochemical, ecological, and climatic variables. To our knowledge, there has been no other effort of this type to
collect standardized data on soil N pools and transformation rates at sites distributed strategically across the U.S.,
with stratified within-site sampling across land-cover types, intra-annual sampling to capture seasonal dynamics,
and plans for repeated sampling every 5 years for several decades. The spatial and temporal axes covered by this
sampling should allow for new understanding and improve our ability to understand and model the forces shaping
soil N availability in response to global change.

The aim of this paper is to introduce the NEON soil inorganic N data set to the biogeochemistry research commu-
nity and illustrate how a unified data set such as this can address important research questions. First, we describe
the spatial and temporal sampling design along with analytical approaches and challenges in generating a robust
inorganic N data set, even for a project with highly standardized protocols. After exploring solutions to overcome
the challenges, we use the data to investigate sources of variation in the context of the NEON sampling design, to
probe whether NEON measurements are capturing heterogeneity in N cycling along dimensions of seasonality,
soil horizon type, vegetation cover, and across spatial scales. Additionally, we compare NEON soil N measure-
ments with outputs from an ESM (Community Earth System Model version 2, CESM2) to evaluate the degree
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Figure 1. Nested scales of the National Ecological Observatory Network soil sampling design. (a) Forty-seven terrestrial sites (colored circles) are distributed across
20 eco-climatic domains. (b) Within each site, 10 plots are used for soil sampling (brown boxes), with a random-stratified distribution across dominant land-cover types.
(c) Each plot is divided into four subplots, three of which are sampled in any given bout at random, preselected locations (brown circles). (d) At each subplot location,
an initial core is collected and an incubated core is installed for in situ, net N transformation rate measurements.

of agreement between the two. Finally, we discuss the many opportunities to leverage these data, pairing them
with other NEON data sets, additional measurements, and modeling efforts to yield new insights into terrestrial
N availability.

2. Materials and Methods
2.1. NEON Sampling and Data

The NEON is a U.S. based monitoring networking that provides open ecological data at a continental scale (www.
neonscience.org). The NEON provides 182 data products that deliver standardized measurements of biodiver-
sity, biogeochemistry, micrometeorology, disease ecology, and other environmental variables. The observatory
is composed of 47 terrestrial and 34 aquatic sites, distributed across 20 eco-climatic domains (Figure 1). Sensor
infrastructure and observational sampling are used to observe ecosystems on the scale of minutes to years and
from microns to kilometers (Balch et al., 2020; Keller et al., 2008).

Measurements of soil inorganic N pools and net transformation rates are a key component of the terrestrial bioge-
ochemistry sampling design (Hinckley et al., 2016). These measurements are provided as part of NEON data
product DP1.10086.001, soil physical and chemical properties, periodic (https://data.neonscience.org/data-prod-
ucts/DP1.10086.001). At each NEON terrestrial site, ten 40 X 40-m plots are used for long-term soil sampling.
These plots are located using stratified random sampling to encompass the major vegetation/land-cover types
within each site, according to National Land Cover Database (NLCD) classification (Barnett et al., 2019). Each
plot is divided into quadrants, and soils are sampled from three of these four quadrants from a random, prese-
lected location during each field campaign, which in NEON terminology is a “bout” (Figure 1). Thus, at each site,
each of the 10 plots and 3 of the 4 subplots within each plot are resampled during each sampling bout, and the
exact location within each subplot rotates for each bout. Samples are collected from 0 to 30 cm depth (or refusal),
a standardized depth that was selected by NEON to facilitate within and across site comparisons and which
includes the highest rates of soil N cycling activity and the majority of fine root biomass in most ecosystems
(Binkley & Hart, 1989; Jackson et al., 1996), including NEON sites (Table S1 in Supporting Information S1).
Soils are generally sampled using 2 or 2¥ in. (5.1 or 5.7 cm) soil augers, but with some adjustments to accommo-
date difficult to sample soils (see Appendix table in the NEON soil protocol, Stanish, 2022). If a surficial organic
horizon is present, it is separated from mineral material and processed as a distinct sample.

Most NEON sites have three soil sampling bouts per year, except for the five sites located in Alaska that only
have one due to the short growing season. All sites are sampled during their period of peak greenness, and most

WEINTRAUB-LEFF ET AL.

3of 16

9SUDI suowwo)) aanear)) a[qedrdde oy £q pautaA03 e SIONIR Y (3N JO SN 10J AIRIQIT SUIUQ AI[IAY UO (SUONIPUOD-PUR-SULID)/ WO KI1M" AIeIqI[aut[uoy/:sd)y) SUONIPUO) pue SWId, A1 338 *[£207/S0/#0] U0 Areiqr auruQ AS[IA ‘#2Z€00492202/6201 01/10p/wod Ao[im  Kreiqiauijuosqndnde//:sdny woiy papeojumo( ‘S ‘€707 ‘LLIYSTET



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Earth’s Future 10.1029/2022EF003224

are also sampled during two seasonal transition periods, the timing of which differs between sites as a function of
climate. Seasonally cold sites are sampled during their respective spring and fall, while sites with milder temper-
ature with greenness driven by rainfall are sampled during rainy season onset and dry down. Inorganic N pools
and net transformation rates are measured during all bouts in a given sampling year, but each site only conducts
inorganic N analyses one out of every 5 years, with other years reserved for nonbiogeochemistry soil sampling.
This allows for the examination of seasonal trends in N dynamics, as well as how these dynamics may be chang-
ing over time at the continental scale.

Within 1 day of collection, field moist mineral horizon soils are sieved to 2 mm, and organic horizon soils are
hand-picked to remove roots, rocks, and other non-soil material. Then, inorganic N pools are measured using 2 M
potassium chloride (KCI) extractions with 10:1 solution to fresh soil weight ratio (Bremner & Keeney, 1966).
The NEON includes up to three procedural blanks for each day of extractions to account for any contaminant
N introduced in the procedure. Aliquots from “initial” soil samples are used to measure bacterial and fungal
community composition, microbial biomass, pH, and gravimetric soil moisture, as well as total organic C and
total N concentrations, C and N stable isotope ratios, and soil metagenomic content during peak greenness. To
measure net N transformation rates, covered cores (PVC cylinders with loose-fitting caps) are installed to 30 cm
depth (or refusal) when initial soil samples are taken. The exception is for wetland plots where buried bags are
used instead to prevent the water table from interfering with N accumulation (Hart et al., 1994). These covered
cores (or buried bags) are left to incubate in situ, then recovered 2—4 weeks later (depending on site and time of
year), and extracted with 2 M KCl, similar to the initial samples.

The KCI extracts are frozen following collection and shipped to a centralized facility contracted by NEON
(2017-2018, EcoCore Analytical Services at Colorado State University; 2019—present, University of Florida
Wetland Biogeochemistry Laboratory) for analysis of ammonium (NH,*) and nitrate + nitrite (NO,~ + NO,").
Ammonium is measured using the salicylate nitroferricyanide method, and NO,~ + NO,~ is measured using
cadmium reduction and sulfanilamide, both on an autoanalyzer. Due to resource constraints, NEON samples are
not run with and without the cadmium reduction step, thus all measurements for nitrate include nitrite. However,
nitrite is often a minor and short-lived constituent of natural soils (Hart et al., 1994); hereafter, we refer to
NO,~ + NO,™ as nitrate. Difference between final and initial inorganic N is net N mineralization, while differ-
ence in final versus initial nitrate is net nitrification. Data are reported as milligrams N per liter KCI (mg-N/L).
In order to blank-correct the data and then calculate milligrams N per kilogram dry soil (per day for net rates),
data must be combined from several tables that come in the data product download, followed by a series of basic
calculations. The NEON developed a simple R package to perform these calculations (https://github.com/NEON-
Science/NEON-Nitrogen-Transformations). Data are generally available within 6 months of sample collection on
the NEON data portal, along with field and laboratory metadata, sampling and analytical protocols, and other
documentation.

2.2. Challenges to Continental-Scale Inorganic N Sampling

To our knowledge, this is the first time a monitoring network has attempted repeated, standardized, continental-scale
soil inorganic N sampling, and it has not been without challenges. The NEON employs a large cohort of tech-
nicians every season, and while most have some experience with ecology or field work, rarely is this specific to
soils or biogeochemistry. The NEON has learned that all details required to ensure high-quality soil inorganic N
pool and flux data must be included explicitly in protocols and training materials. Examples of details that were
added over time include setting a minimum and maximum distance between the initial and incubated core, as well
as arequirement for similar depths (within 5 cm) and adding detailed instructions for laboratory equipment prepa-
ration and clean lab techniques. Moreover, the Domain Support Facility (DSF) laboratories where extractions
occur are set up for general ecological field work, not biogeochemistry per se, and the in-house water purification
systems only achieve Type II (1 MOhm) grade. This water was used in 2017 to create KCl solutions but, upon
examination of the first year of data, it was clear that certain DSF purification systems were not removing enough
NH,* or NO,~ and blanks were unacceptably high. To solve this, all DSFs began purchasing Type I (18.2 MOhm)
water to use for solution preparation and final equipment rinses starting in 2018.

Another issue involves “negative” sample concentrations after accounting for the inorganic N in analytical
blanks. After observing this in several sites, troubleshooting revealed the cause to be nitrite contamination (up
to 0.15 mg N/L) in certain batches of KCI used for extractions. In the presence of acidic soil, NO,~ is abiotically
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converted to nitrogen gasses and lost (chemodenitrified), but this process does not occur in blanks (Homyak
et al., 2015). This often leads to significant negative NO,~ 4+ NO,~ values upon blank-correction for highly
contaminated KCI batches and greatly reduces sensitivity of the method in low inorganic N concentration NEON
sites where nitrate-N tends to be <0.05 mg/kg, about one third of the total. NEON continues to troubleshoot
this issue. It has been difficult to source KCI powder that is consistently low in nitrite, so NEON has considered
options such as in-house purification of KCl or custom order of KCl free from contaminants—but these solutions
have proved challenging. For the 2022 field season, the workflow was to test each batch of KCl ordered from
standard vendors, then use only batches where nitrite concentrations were verified to be low (generally <0.02 mg
NO,™-N/L, although a few batches were used with up to 0.05 mg NO,-N/L due to supply chain issues). The plan
is to continue with this procedure unless or until an alternate solution can be implemented. Any sample values
that blank-correct negative beyond the level of background noise, which is considered less than —0.02 mg N/L
(more than twice the method detection limit of 0.01 mg/L), are flagged in the data with “blanks exceed sample
value.” Below, we discuss possible approaches to account for these values.

2.3. Data Download and Blank-Corrections

To examine the inorganic N data, we downloaded DP1.10086.001 soil physical and chemical properties, peri-
odic from the NEON data portal on 9 June 2022 (NEON, 2022a) using the neonUtilities R package (Lunch
et al., 2022). We chose to download “RELEASE-2022" data that includes a static version of inorganic N meas-
urements from 2017 to 2020. More information about the sites included in the download along with relevant site
metadata are summarized in Table S1 in Supporting Information S1. This includes fine root biomass fraction in
the top 30 cm of soil, derived from DP1.10066.001 root biomass and chemistry, Megapit (NEON, 2022b). We
used the def.calc.ntrans function in the neonNTrans R package (Weintraub, 2017) to calculate blank-corrected
inorganic N concentrations and net N transformation rates on a per soil mass basis. Expressing pools and rates
per gram soil is common practice in the biogeochemical literature (Liu et al., 2017), should be reflective of what
plants and microbes “see” when competing for N, and is relevant to N losses to water and the atmosphere. Recent
work has linked soil C with variation in net N transformation rates (Gill et al., 2023; Liu et al., 2017), and it could
be interesting to examine rates per gram soil C. However, this would require assumptions and extrapolations, as
the peak green sampling bout is the only one where total soil C is measured on the NEON soil cores, thus this
would introduce more uncertainty (especially for organic horizons). We avoid this given our aim to assess sources
of variation in the context of the NEON sampling design but acknowledge this could be relevant for future studies.

Given the issues with high NO,~ blanks described above, we explored four possible ways to account for nega-
tive blank-corrected concentration data, as outlined in Table 1. Each has certain advantages, disadvantages, and
assumptions. In the end, we used Option 4 because it yields a larger data set with all sites and samples retained,
while avoiding substantial inflation with zeros (Figure S1 in Supporting Information S1). We suggest that the
combination of a quantile regression for nitrate to estimate and add back the NO,~ from KCl lost from samples
but not blanks, plus use of an empirical cutoff for blank values for NH,* (Figure S2 in Supporting Informa-
tion S1) produces a data set highly suitable for further analyses. However, we recognize that there are other ways
these data can (and will) be analyzed. Over time, these issues should become less prominent as NEON is now
paying attention to and remediating the nitrite contamination issue.

2.4. Mixed Model Analyses to Examine Sources of Variation

Taking the resulting data set generated from the Option 4 blank-correction procedure, we fit mixed-effects models
to test which aspects of the NEON sampling design were associated with variation in inorganic N dynamics.
We fit separate models for the following response variables, leading to four final models, one each for: net N
mineralization, net nitrification, and the initial concentrations of NH,* and NO,~ measured in the field. The net
N mineralization and net nitrification data were strongly skewed and included large positive and negative values,
so we used a “neglog” transformation to reduce skewness while preserving the sign of each value (Whittaker
et al., 2005). Positive values were summed with one prior to a natural log transformation, and negative values
were multiplied by negative one and summed with one prior to a natural log transformation, and were again
multiplied by negative one to preserve the negative sign of the original value (Whittaker et al., 2005). The NH,*
and NO,~ concentrations were natural log-transformed.

In each model, we included soil horizon type (organic or mineral), seasonal timing, and horizon by timing inter-
actions as candidate fixed effects along with candidate random effects to account for the spatial structure of the
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Table 1

Four Possible Ways to Adjust for Negative Blank-Corrected Concentration Data in National Ecological Observatory Network (NEON) Potassium Chloride Extraction

Samples

Option description

Mechanics

Pros and cons

Option 1: drop samples that blank-correct to less
than —0.02 mg N/L

Option 2: set blank-corrected negative values to
zero, no matter how negative they are

Option 3: exclude samples associated with high
blanks, then set remaining blank-corrected
negative values to zero

Option 4: for NO,~ 4+ NO, ", apply a quantile
regression to estimate and add back blank
concentrations; for NH,*, drop samples that
blank-correct to less than —0.06 mg N/L

Use def.calc.ntrans function with “drop flags”
parameters set to exclude samples flagged as
“blanks exceed sample value”

Use def.calc.ntrans without “drop flags” settings.
The default behavior of the function is to convert
all negative values to zero

Drop all samples associated with blanks that exceed
0.13 mg N/L for NO;~ + NO,~ and 0.1 for NH,*,
then use default behavior of def.calc.ntrans to set

negative values to zero

Correct for the systematic trend of increasingly
negative blank-corrected values with increasing
blank NO;~ + NO, ™~ concentrations (Figure S2
in Supporting Information S1). Estimate slope

Conservative with respect to removing values that
are negative, but liberal insofar as samples with
high blanks remain as long as the blank-corrected
value is positive

Most liberal approach as all data are retained, but
inflates the data set with many zeroes (Figure S1
in Supporting Information S1)

Leads to the smallest data set as certain sites are

removed completely given site-specific issues
with contaminated water or batches of KCl
(Figure S1 in Supporting Information S1)

Allows for the largest data set, all sites and majority
of samples retained, yet the data set is not
inflated with zeros

of the 1% quantile regression (—0.75), then add
this fraction of blank NO,™-N back to sample
values. For NH,*, use a threshold for discarding
negative values (—0.06 mg N/L), acknowledging
idiosyncratic analytical error (Figure S2 in
Supporting Information S1)

NEON sampling design. Subplot, plot, site, and domain were all coded as unique spatially explicit variables (i.e.,
there were observations from 1,328 subplots, 349 plots, 35 sites, and 19 domains). Given the NEON design of
random stratification of plots within sites across NLCD vegetation class, this parameter was also included as a
random effect with 10 levels: deciduous forest, pasture/hay, cultivated crops, shrub/scrub, evergreen forest, mixed
forest, grassland/herbaceous, woody wetlands, dwarf scrub, and sedge/herbaceous. NLCD class varies at the plot
scale, but not within plots. Because seasonal timing of sampling intentionally differed among sites as a function
of climate (e.g., rainfall transitions in some sites compared to spring and fall in others), we generated a timing
variable that was more comparable among sites. Specifically, seasonal timing was recoded from the initial five
levels (peak greenness, winter/spring transition, fall/winter transition, dry/wet, and wet/dry) to a simpler scheme,
where dry/wet and winter/spring were recoded as “ramp up” and wet/dry and fall/winter were recoded as “ramp
down,” and were then compared relative to “peak greenness.” In the initial phase of analysis, we explored adding
other fixed effects such as mean annual temperature, soil moisture, pH, and soil organic C concentration, but they
resulted in only weak increases in explanatory power of the statistical models (no more than a 0.1 increase in R?).
This was not pursued further in order to focus on evaluating components of the sampling design.

We fit the linear mixed models using the Imer function in the “Ilme4” package in R (Bates et al., 2015). Singu-
lar fits were obtained in some cases where a random effect had variance near zero, so models were refit after
removing that particular random effect. We assessed variable importance by plotting estimates of fixed effects
coefficients, the standard deviations of random effects, and approximate p-values of fixed effects using a Type
II Wald chi-square test with the ANOVA function in the “car” package (Fox & Weisberg, 2018). We report the
marginal and conditional R? values, which represent the approximate variance explained by fixed and fixed plus
random effects, respectively (Nakagawa et al., 2017). We evaluated model assumptions using plots of residual
versus predicted values and sample quantiles versus theoretical quantiles. Moderate heteroscedasticity and devi-
ations from normality were observed, so models should be treated with caution.

2.5. ESM Outputs and Data—Model Comparison

We used modeled monthly rates of net N mineralization from the CESM2, from simulations conducted as part
of the Coupled Model Intercomparison Project 6 (CMIP6; O’Neill et al., 2016). Specifically, we used output
from the Shared Socioeconomic Pathway (SSP) scenario 5, Representative Concentration Pathway (RCP) 8.5,
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which represents the high end of plausible future pathways in terms of radiative forcing (O’Neill et al., 2014).
Compared with CESM1, the land model used in CESM2 (Community Land Model version 5, CLMS5) includes
a more detailed and dynamic representation of the ecosystem N cycle (Lawrence et al., 2019). For example,
CLMS5 allows for flexible plant tissue stoichiometry, interactions between plant N and C, and more dynamic N
fixation responses. Observations were compared with the simulated variable “fNnetmin” (i.e., net N minerali-
zation) from soil and litter pools across the whole soil profile. Thus, modeled rates are not a perfect match with
the NEON observations, which were collected from soil to 30 cm depth. However, there is a wealth of data to
suggest that rates of N mineralization decline substantially with depth (Chen et al., 2019; Darby et al., 2020;
Dessureault-Rompré et al., 2016). Since it is reasonable to assume that surface soils are making a significant
contribution to modeled rates, the data—model comparison should prove useful. Moreover, temporal comparisons
are still quite relevant; if the model represents seasonal patterns in N mineralization correctly, the temporal trends
in data versus model should align, even if absolute magnitudes differ. Model data have a nominal 100 km spatial
resolution. Site-level net N mineralization data were extracted based on latitude and longitude for each CESM2
grid cell that contained a site. We used the “ncdf4” package v.1.17 in R to work with netCDF files (Pierce, 2021)
and the “raster” package v.3.4-5 (Hijmans, 2022) to match site locations to grid cells.

In order for the data set of net N mineralization observations to be comparable to CESM2 outputs, measurements
were converted from a per-kg soil basis to per area fluxes, according to the following equation:

Nmin areal basis (gNm™day~") = Npin concentration (mg/kg) x bulk density (Mg/m®) W

X sample depth (m) X (1 — percent coarse fragments X 0.01)

This required bulk density and percent coarse fragments (particles >2 mm diameter) for each sample. For a subset
of plots used for periodic soil sampling, plot-level measurements of these variables were available by download-
ing DP1.10047.001 Soil physical and chemical properties, distributed initial characterization (NEON, 2022c).
This data product includes physical and geochemical properties from 8 to 26 soil pits, generally 1-m deep, dug
by the U.S. Department of Agriculture Natural Resource Conservation Service at each site to characterize the
diversity of local soils. For this effort, soils were sampled by pedogenic horizon; to convert these data to a fixed
depth interval (0-30 cm) to better match inorganic N measurements, data from each pit were separated into
“mineral” and “organic” horizons, then the “slab” function in the aqp package (Beaudette et al., 2022) was used
to estimate 0—30 cm values. Where periodic sampling and initial characterization data were measured in the same
plots, we assigned bulk density and coarse fragment data to all inorganic N concentration values from that plot.
For inorganic N samples from plots that lack these measurements, we estimated bulk density using a pedotransfer
function (Drew, 1973; Guevara et al., 2020):

Bulk density (Mg/m*) = 1/(0.6268 + 0.0361 X organic carbon (%) X 1.724) )

As percent coarse fragments cannot be estimated from a pedotransfer function, we instead calculated mean of
percent coarse fragments by horizon type (mineral vs. organic) and NLCD cover classes within each site, then
assigned these values to inorganic N data within the same site, horizon, and NLCD cover. Net N mineralization
rates were thus estimated for all organic and mineral horizon samples on an areal basis. Then, horizon values were
summed for each within-plot sampling location where both were present. Finally, we took the average and stand-
ard error for each site and temporal sampling bout (n = 89), assigned month to each bout of NEON sampling, and
assigned dominant NLCD class at the site level according to whichever cover class accounted for the greatest area
of the NEON soil plots.

First, we examined the seasonal time course of net N mineralization in observations compared to modeled results
from the same year to visually assess how well the two agreed. Then, we plotted average net N mineralization
by month and site in observation versus model data and examined the relationships between them using several
metrics: Spearman rank correlation, a linear model, and a mixed model with site as a random effect. We calcu-
lated the Nash-Sutcliffe efficiency of the data—model comparison using the NSE function in the “hydroGOF”
package (Zambrano-Bigiarini, 2020) and the root mean square error (RMSE) using the rmse function in the
“Metrics” package (Hamner & Frasco, 2018). Lastly, we extracted the residuals from the linear model and used
analysis of variance to see if residuals could be explained by dominant NLCD class or seasonal timing. All
analyses and data visualizations were performed using R Statistical Software (v 4.0.5; R Core Team, 2021) and
statistical tests were considered significant with p-values <0.05.
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Figure 2. Boxplots of inorganic nitrogen (N) pools and net transformation rates across National Ecological Observatory Network (NEON) sites, with colors for
dominant National Land Cover Database (NLCD) class. Diagonal lines within boxes denote data from surficial organic horizons. Net Nit, net nitrification; Net N Min,
net N mineralization. Note log scale of y axis. Sites are arranged in increasing order of mean annual temperature within each NLCD class. For more information on site
characteristics, see Table S1 in Supporting Information S1.

3. Results

The 35 NEON sites examined here displayed wide variation in rates of net N transformations and inorganic N
pool sizes (Figure 2). Overall, organic horizons showed higher rates and pool sizes compared to adjacent mineral
horizons when expressed on a weight basis. The largest portion of variance in soil extractable pools and net N
transformation rates was explained by site, except for net N mineralization where domain was slightly statistically
more important (Table 2 and Figure 3b). Plot explained the next largest fraction of variance for most variables,
followed by domain, with subplot and NLCD class contributing the least explanatory power. The fixed effects
did not explain a high proportion of the variation compared to the random effects, and each model had a substan-
tiation amount of variation in residuals. For the fixed effects, horizon was important for all four variables, with
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Table 2 higher levels in organic layers compared to mineral layers on a per mass basis

Variance Explained (%) at Each Level of the Linear Mixed Model for Each
of the Variables Classified as Random Effects, As Well As for All Random
Effects Combined (i.e., Subplot, Plot, Site, Domain, and NLCD Class) or All
Fixed Effects Variables Combined (i.e., Horizon Type, Sample Timing, and
Their Interaction)

NO,~ NH,* Net nit. ~ Net N min.
Subplot 5 4
Plot 12 15 14 6
Site 27 18 15 5
Domain 12 8 9 7
NLCD class 2 1 2
All random Effects 53 42 43 24
All fixed effects 4 16 0 1
Total 57 58 43 25
Residual 46 49 56 67

Note. A blank cell means a variable was not a significant predictor. Net nit.,
net nitrification; net N min., net N mineralization; NLCD, National Land
Cover Database; residual, unexplained variance in each model.

(Figure 3a). Soil NH,* concentrations and net mineralization rates were also
influenced by seasonality. Soil NH,* concentrations displayed lowest values
during peak greenness compared to the transition seasons (e.g., positive
coefficients for ramp up and ramp down when compared to peak greenness,
Figure 3a), while the net rates were higher during the ramp up and slower
during the ramp down compared to peak greenness—but only in organic
horizons.

Most NEON sites displayed some degree of seasonality in net N minerali-
zation rates, and whether temporal patterns aligned between measured and
modeled data depended on the site (Figure 4). In some cases, dynamics
observed in the field were captured reasonably well by CESM2, such as at the
sites STER, HARYV, and SCBI (see Table S1 in Supporting Information S1
for site names and metadata). For other sites, the temporal patterns did not
coincide, for example, in GUAN, DCSF, and WREF. There was no clear
visual indication that the model was better at capturing seasonality in certain
types of ecosystems.

The Spearman rank correlation between mean observed net N mineralization
and modeled net N mineralization in the same month was significant (p-value
<0.001, r = 0.38; Figure 5), as was the linear correlation between modeled
versus observed values (Nmin, = Nmin_, X 0.323 + 0.022, p = 0.003,

r? = 0.09), but the explanatory power was low. A higher fraction of the variation could be explained by using a
mixed model accounting for site as a random effect (p = 0.004, conditional 7> = 0.22). The RMSE of the data—
model comparison was 0.05 g N m~2 day~!, and the Nash-Sutcliffe efficiency was —0.51. Analysis of variance

a b
X - residual L A
O horizon 4 A
nlcdClass 4 -
ramp down - L
domain4 = A
-
ramp up - —a
site{ = A
. . i -
O horizon:ramp down model
NO3 ploty = T
4 NH4
= netnit.
. - .
O horizon:ramp up - net N min.
subplot4 =
0.0 0.4 0.8 0.25 0.50 0.75

Coefficient estimate

SD of random effects

Figure 3. Estimated coefficients of fixed effects (a) and standard deviations of random effects (b) in the four separate
mixed-effects models of soil net nitrogen mineralization (net N min.), net nitrification (net nit.), and initial ammonium (NH,)
and nitrate (NO,) concentrations measured in field samples. For the fixed effects (a), the row for O horizon reflects the
coefficient in relation to the mineral horizon, and ramp up or ramp down rows reflect coefficients during transition season
sampling in relation to the peak green period.
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Figure 4. Measured and simulated seasonal patterns of soil net nitrogen (N) mineralization (Net N Min) by site. Colored
circles are mean measured rates, color coded by dominant National Land Cover Database class, with vertical lines indicating
standard errors (n = 30 unless bouts had incomplete sampling). Black and gray circles are simulated values from the
Community Earth System Model 2 (CESM2) from 2015 to 2020 in years where measurements were and were not made,
respectively. Gray lines show the confidence interval of the simulated temporal trends. Sites are arranged in increasing order
of mean annual temperature within each land-cover class.

suggested that dominant NLCD cover was a significant predictor of data versus model residuals, but only for
the “Pasture Hay” class, which had larger residuals compared to other land-cover types (p = 0.006). The “ramp
down” period had marginally significantly lower residuals compared to peak greenness (p = 0.08), but overall this
statistical model had low explanatory power (r> = 0.11, p = 0.03).

4. Discussion

Despite the importance of N mineralization and nitrification for terrestrial N cycling, we have a poor understand-
ing of the controls on these processes at a continental scale. Data collected by NEON provide a potential oppor-
tunity to make progress in this area, and the standardized data sets can be useful for validating and improving
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Figure 5. Net nitrogen (N) mineralization rates measured by the National Ecological Observatory Network (NEON)
compared to simulated values from Community Earth System Model 2 (CESM2) at the same site, in the same month and
year. The 1:1 line is displayed for reference. Vertical lines are standard errors of measurements.

predictive models. The NEON measurements capture high spatiotemporal heterogeneity in inorganic N pools
and fluxes, some of which are predictable as a function of the spatial structure of sampling and core aspects of
the NEON design.

4.1. Variation in N Pool and Net Flux Rates Across Sites

Certain types of sites conformed to expectations. For example, those with greatest soil nitrate pools and high-
est net N transformation rates were either in the tropics (GUAN) or under agricultural management (KONA,
STER). Most forested sites outside the tropics had larger ammonium pools and very little nitrate, which is typi-
cal (although on its own, not diagnostic) for N-limited ecosystems. In contrast, some sites showed unexpected
patterns; for example, relatively large soil inorganic N pools and high net transformation rates in the Alaskan
tundra (TOOL) where we expected very low N availability, and low net N transformation rates and N pool sizes
in subtropical woody wetlands in the Everglades (DSNY). Sites with low inorganic N pools might have low rates
of N transformations, or alternatively, high plant N uptake, and this question could potentially be further investi-
gated using additional NEON data.

4.2. Sampling Design Captures Important Sources of Variation, But Still Much Is Unexplained

Given that this is a first of its kind effort, it is important to evaluate the NEON design to ensure key sources of
variation are being captured. According to the mixed model analysis, the nested components of the NEON design
(Figure 1) all have some explanatory power for inorganic N pools and processes, suggesting that the sampling
approach is generally robust. Sites tend to account for the most variation (Table 2), hence adding more sites
could yield more insight into soil N cycling compared to adding more plots within sites or subplots within plots.
While NEON is unlikely to make this expansion in the near future, and adding more sites is no assurance that
fundamental understanding will increase, if others use NEON’s standardized, publicly available protocols and
analysis methods, the community can assess whether new insight can be gained by filling in geographic, climatic,
and other kinds of gaps. The next most important source of variation is at the level of plots, which suggests that
NEON should preserve the existing number of plots even if it means sacrificing within-plot replication. This is
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helpful given budgetary and other logistical pressures and can help to focus efforts when sampling resources are
strained (e.g., during the COVID-19 pandemic). Not only are these insights useful for NEON, but also potentially
for researchers seeking to set up cross-site soil monitoring efforts or establish within-site sampling designs.

Surficial organic (O) horizons tended to have greater extractable inorganic N pools and higher mineralization
rates compared to mineral horizons on a per weight basis (Figures 2 and 3). This is consistent with findings from
previous studies, which tend to be limited to single sites or regions (Darby et al., 2020; Hart & Gunther, 1989)
and implies that the pattern holds when looking across a wide variety of ecosystems. Given higher N concentra-
tions and faster net mineralization rates per unit soil, organic horizons are likely to be “hotspots” for provision of
mineral N and it may be useful for investigators to separate organic and mineral layers, even if otherwise pursuing
fixed-depth sampling, to understand the contributions of the organic layer to soil nutrient availability. Moreover,
as the climate warms and dries, organic horizons are likely to be reduced in areal density due to increased decom-
position rates (Melillo et al., 2017), as their persistence is governed by temperature and moisture constraints
as opposed to physical protection of organic matter as in the mineral soil (Schmidt et al., 2011). Because these
organic horizons have high rates of microbial decomposition and inorganic N production, especially in the early
part of the growing season (Figure 3a, ramp up), their decline might exacerbate N limitation. On the other hand,
there could be counterbalancing forces in the kinds of ecosystems with thick organic horizons (e.g., high latitude
or altitude), such as longer growing seasons and an expansion of the active layer, that could yield higher N avail-
ability in mineral layers. The net effects on N availability will be important to assess going forward, and NEON
data can be leveraged for this.

There was a significant amount of unexplained variation in the statistical models used for predicting inorganic
N pools and net flux rates, similar to previous findings (Colman & Schimel, 2013; Li et al., 2020). Clearly,
understanding the sources of this unexplained variation in N dynamics remains a ripe area for research, and
the NEON samples provide a unique opportunity to integrate a suite of data sets collected at a variety of spati-
otemporal scales to assist in uncovering what drives these patterns. Our exploratory analyses suggested that
snapshots of soil moisture and temperature (i.e., measurements at the time of soil sampling) did not provide
additional statistical insight. However, NEON monitors soil moisture and temperature continuously via auto-
mated sensors, and these temporally resolved measurements might shed light on controls on N pool sizes and
transformation rates. Sensor data could be especially useful if paired with information on microbial community
abundance and composition, which NEON provides. We did not find NLCD class to be a strong driver of N cycle
variation, yet this is a very coarse metric of vegetation cover. Within the same NLCD class, various attributes
of plant communities can strongly influence N dynamics (e.g., mycorrhizal type, Phillips et al., 2013). Informa-
tion on plant biomass, composition, phenology, or chemistry, derived from on-the-ground measurements and/or
high-resolution airborne remote sensing, are also available from NEON and may provide new insights into how
vegetation influences soil N dynamics across diverse ecosystems.

4.3. Simulations Do Not Capture Observed Rates of Net N Mineralization

Overall, we observed a relatively poor fit between NEON measured and CESM2 modeled net N mineraliza-
tion, suggesting room for growth in our understanding of the soil N cycle and its representation in large-scale
models. There was a large RMSE and a negative Nash-Sutcliffe efficiency value suggesting that the process
model was worse for prediction than taking only the mean of the observed values. However, the Spearman rank
correlation was higher than linear model fits, suggesting that although prediction of the absolute values was
difficult, there was some correspondence in the general patterns observed. As noted earlier, there are limitations
in both the data and model side of the comparison. For observations, we had to make assumptions about bulk
density and coarse fragment content in some plots, and soils below 30 cm depth were not included. For the
modeled data, the observed climate during net N transformation measurements may have differed from the one
simulated in the CESM2 outputs. Nonetheless, it is likely that the way N cycling is mechanistically represented
in the model is not sufficient to capture spatial and temporal variation in N cycling processes. We were unable
to explain much of the residual in the observations versus simulations linear model with dominant NLCD class
or sample timing, but a next step would be to probe more systematically where and why the model does better
or worse and seek to improve the underlying process representation from there. Additionally, NEON’s standard-
ized, continental-scale data on soil inorganic N pools and fluxes can be used to evaluate process-based model
estimates of soil N,O emissions. Even without the N,O flux data, soil pools and net N transformation rates can

WEINTRAUB-LEFF ET AL.

12 of 16

9SUDI suowwo)) aanear)) a[qedrdde oy £q pautaA03 e SIONIR Y (3N JO SN 10J AIRIQIT SUIUQ AI[IAY UO (SUONIPUOD-PUR-SULID)/ WO KI1M" AIeIqI[aut[uoy/:sd)y) SUONIPUO) pue SWId, A1 338 *[£207/S0/#0] U0 Areiqr auruQ AS[IA ‘#2Z€00492202/6201 01/10p/wod Ao[im  Kreiqiauijuosqndnde//:sdny woiy papeojumo( ‘S ‘€707 ‘LLIYSTET



A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Earth’s Future 10.1029/2022EF003224

Acknowledgments

The National Ecological Observatory
Network is a program sponsored by the
National Science Foundation (NSF) and
operated under cooperative agreement by
Battelle. This material is based, in part,
on work supported by the NSF through
the NEON Program. SRW-L and SJTH
acknowledge support from NSF Grant
1802745 and SRW-L, DS, and ZW
acknowledge support from NSF Grant
2106137. MEC acknowledges support
from the Next Generation Ecosystem
Experiments-Tropics, funded by the U.S.
Department of Energy, Office of Science,
Office of Biological and Environmental
Research. Oak Ridge National Laboratory
is managed by UT-Battelle, LLC, for the
U.S. DOE under contract DE-AC05-1008
000R22725.

serve as standardized benchmarks and play important roles in the N,O Model Intercomparison Project (NMIP,
Tian et al., 2018; Xu et al., 2021).

4.4. Opportunities for Future Research and Engagement

It is critical to understand how cycling of a key limiting nutrient—N—will respond to increasing climatic and
other ecological stressors. The NEON data provide a baseline for monitoring changes in soil N cycling going
forward. Changes in the timing and magnitude of N pools and process rates will be mediated by complex,
cross-scale interactions among different ecosystem components. NEON helps meet this challenge by monitoring
many ecosystem dynamics at the same time. Nonetheless, there remain some obvious information gaps. This is
where individual researchers can propose to collaborate with NEON (SanClements et al., 2020) to uncover new,
continental-scale insights. For instance, we now recognize that minerals play an important role in soil N availa-
bility (Bingham & Cotrufo, 2016; Jilling et al., 2018). There is potential to not only leverage existing NEON data
on soil mineralogy, geochemistry, and N cycle metrics but also propose new collaborative projects at NEON sites.
Our ability to benchmark models and upscale measured rates would be improved by having estimates of bulk
density and coarse fragments in all NEON soil plots. This is not part of the baseline NEON design, but could be
added through an initiative driven by the scientific community.

There are several ways for researchers to engage with the NEON data sets described in this paper. This ranges
from simply downloading and using data from the NEON portal, to taking NEON data tutorials, contributing code
resources to the NEON code hub, or proposing collaborations to conduct additional research (Nagy et al., 2021;
SanClements et al., 2020). To fully utilize these large, integrated, publicly available data sets, techniques such
as machine learning, deep learning, information theory, and others will be needed to uncover previously hidden
connections between N cycling and ecological dynamics. Moreover, the biogeochemistry research community
will derive the most benefit by wholly embracing the FAIR data principles (Wilkinson et al., 2016), to ensure
all derived data sets, code, and analyses are findable, reproducible, and enable new insights to build on the most
recent contributions. By leveraging these unique data sets and opportunities, we can unlock new insights into the
controls on soil N cycling.

Data Availability Statement

Measurements of inorganic N pools, fine root biomass by depth interval, and bulk density analyzed in this study
are available by downloading “RELEASE-2022" of DP1.10086.001, DP1.10066, and DP1.10047, respectively,
using the NEON data portal or NEON’s application programming interface (API). Simulated net N minerali-
zation rates from CESM2 can be found at https://doi.org/10.22033/ESGF/CMIP6.7768 (Danabasoglu, 2019).
Derived data sets and all code used for data analysis and visualization are available at https://doi.org/10.6073/
pasta/ec9e2e7c1fa40f2b61c2e930bd5adad] (Weintraub-Leff et al., 2023).

References

Austin, A. T., Yahdjian, L., Stark, J. M., Belnap, J., Porporato, A., Norton, U., et al. (2004). Water pulses and biogeochemical cycles in arid and
semiarid ecosystems. Oecologia, 141(2), 221-235. https://doi.org/10.1007/S00442-004-1519-1

Balch, J. K., Nagy, R. C., & Halpern, B. S. (2020). NEON is seeding the next revolution in ecology. Frontiers in Ecology and the Environment,
18(1), 3. https://doi.org/10.1002/FEE.2152

Barnett, D. T., Duffy, P. A, Schimel, D. S., Krauss, R. E., Irvine, K. M., Davis, F. W., et al. (2019). The terrestrial organism and biogeochemis-
try spatial sampling design for the National Ecological Observatory Network. Ecosphere, 10(2), €02540. https://doi.org/10.1002/ECS2.2540

Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1),
1-48. https://doi.org/10.18637/js5.v067.i01

Beaudette, D., Roudier, P., & Brown, A. (2022). agp: Algorithms for Quantitative Pedology. R package version 1.42. Retrieved from https://
CRAN.R-project.org/package=aqp

Bergstrom, A. K., & Jansson, M. (2006). Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the
northern hemisphere. Global Change Biology, 12(4), 635-643. https://doi.org/10.1111/J.1365-2486.2006.01129.X

Bingham, A. H., & Cotrufo, M. F. (2016). Organic nitrogen storage in mineral soil: Implications for policy and management. Science of the Total
Environment, 551-552, 116-126. https://doi.org/10.1016/j.scitotenv.2016.02.020

Binkley, D., & Hart, S. (1989). The components of nitrogen availability assessments in forest soils. In Advances in soil science (pp. 57-112).
Springer.

Bradford, M. A., Wood, S. A., Addicott, E. T., Fenichel, E. P., Fields, N., Gonzélez-Rivero, J., et al. (2021). Quantifying microbial control of soil
organic matter dynamics at macrosystem scales. Biogeochemistry, 156(1), 19-40. https://doi.org/10.1007/S10533-021-00789-5

Bremner, J. M., & Keeney, D. R. (1966). Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3. Exchangeable ammo-
nium, nitrate, and nitrite by extraction—distillation methods. Soil Science Society of America Journal, 30(5), 577-582. https://doi.org/10.2136/
SSSAJ1966.03615995003000050015X

WEINTRAUB-LEFF ET AL.

13 0f 16

9SUDI suowwo)) aanear)) a[qedrdde oy £q pautaA03 e SIONIR Y (3N JO SN 10J AIRIQIT SUIUQ AI[IAY UO (SUONIPUOD-PUR-SULID)/ WO KI1M" AIeIqI[aut[uoy/:sd)y) SUONIPUO) pue SWId, A1 338 *[£207/S0/#0] U0 Areiqr auruQ AS[IA ‘#2Z€00492202/6201 01/10p/wod Ao[im  Kreiqiauijuosqndnde//:sdny woiy papeojumo( ‘S ‘€707 ‘LLIYSTET



A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Earth’s Future 10.1029/2022EF003224

Brooks, P. D., Williams, M. W., & Schmidt, S. K. (1998). Inorganic nitrogen and microbial biomass dynamics before and during spring snowmelt.
Biogeochemistry, 43(1), 1-15. https://doi.org/10.1023/A:1005947511910

Brookshire, E. N. J., Gerber, S., Menge, D. N. L., & Hedin, L. O. (2011). Large losses of inorganic nitrogen from tropical rainforests suggest a
lack of nitrogen limitation. Ecology Letters, 15(1), 9—16. https://doi.org/10.1111/j.1461-0248.2011.01701.x

Chapman, S. K., Langley, J. A., Hart, S. C., & Koch, G. W. (2006). Plants actively control nitrogen cycling: Uncorking the microbial bottleneck.
New Phytologist, 169(1), 27-34. https://doi.org/10.1111/j.1469-8137.2005.01571.x

Chen, D., Saleem, M., Cheng, J., Mi, J., Chu, P., Tuvshintogtokh, I., et al. (2019). Effects of aridity on soil microbial communities and functions
across soil depths on the Mongolian Plateau. Functional Ecology, 33(8), 1561-1571. https://doi.org/10.1111/1365-2435.13359

Colman, B. P, & Schimel, J. P. (2013). Drivers of microbial respiration and net N mineralization at the continental scale. Soil Biology and
Biochemistry, 60, 65-76. https://doi.org/10.1016/J.SOILBIO.2013.01.003

Craine, J. M., Elmore, A. J., Wang, L., Aranibar, J., Bauters, M., Boeckx, P., et al. (2018). Isotopic evidence for oligotrophication of terrestrial
ecosystems. Nature Ecology & Evolution, 2(11), 1735-1744. https://doi.org/10.1038/s41559-018-0694-0

Danabasoglu, G. (2019). NCAR CESM2 model output prepared for CMIP6 ScenarioMIP ssp585. Version 20220420. Earth System Grid Federa-
tion. https://doi.org/10.22033/ESGF/CMIP6.7768

Darby, B. A., Goodale, C. L., Chin, N. A,, Fuss, C. B., Lang, A. K., Ollinger, S. V., & Lovett, G. M. (2020). Depth patterns and connections
between gross nitrogen cycling and soil exoenzyme activities in three northern hardwood forests. Soil Biology and Biochemistry, 147, 107836.
https://doi.org/10.1016/J.SOILBIO.2020.107836

Davidson, E. A. (2009). The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. Nature Geoscience, 2(9),
659—662. https://doi.org/10.1038/ngeo608

Davidson, E. A., Stark, J. M., & Firestone, M. K. (1990). Microbial production and consumption of nitrate in an annual grassland. Ecology, 71(5),
1968-1975. https://doi.org/10.2307/1937605

Davies-Barnard, T., Meyerholt, J., Zaehle, S., Friedlingstein, P., Brovkin, V., Fan, Y., et al. (2020). Nitrogen cycling in CMIP6 land surface
models: Progress and limitations. Biogeosciences, 17(20), 5129-5148. https://doi.org/10.5194/BG-17-5129-2020

Dessureault-Rompré, J., Zebarth, B. J., Burton, D. L., & Grant, C. A. (2016). Depth distribution of mineralizable nitrogen pools in contrasting
soils in a semi-arid climate. Canadian Journal of Soil Science, 96(1), 1-11. https://doi.org/10.1139/cjss-2015-0048

Drew, L. A. (1973). Bulk density estimation based on organic matter content of some Minnesota soils, Minnesota Forestry Research Notes, 243.
Retrieved from http://conservancy.umn.edu/handle/11299/58293

Du, E,, Terrer, C., Pellegrini, A. F. A., Ahlstrom, A., van Lissa, C. J., Zhao, X., et al. (2020). Global patterns of terrestrial nitrogen and phosphorus
limitation. Nature Geoscience, 13(3), 221-226. https://doi.org/10.1038/s41561-019-0530-4

Durén, J., Morse, J. L., Groffman, P. M., Campbell, J. L., Christenson, L. M., Driscoll, C. T., et al. (2014). Winter climate change affects
growing-season soil microbial biomass and activity in northern hardwood forests. Global Change Biology, 20(11), 3568-3577. https://doi.
org/10.1111/gcb.12624

Feng, Z., Riitting, T., Pleijel, H., Wallin, G., Reich, P. B., Kammann, C. L, et al. (2015). Constraints to nitrogen acquisition of terrestrial plants
under elevated CO,. Global Change Biology, 21(8), 3152-3168. https://doi.org/10.1111/GCB.12938

Firestone, M., & Davidson, E. (1989). Microbiological basis of NO and N,O production and consumption in soils. In M. Andreae & D. Schimel
(Eds.), Exchanges of trace gases between terrestrial ecosystems and the atmosphere. John Wiley & Sons.

Fox, J., & Weisberg, S. (2018). An R companion to applied regression (3rd ed.). SAGE Publications, Inc. Retrieved from http://socserv.socsci.
mcmaster.ca/jfox/Books/Companion

Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., & Cosby, B. J. (2003). The nitrogen cascade.
BioScience, 53(4), 341-356. https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2

Gergel, D. R., Nijssen, B., Abatzoglou, J. T., Lettenmaier, D. P., & Stumbaugh, M. R. (2017). Effects of climate change on snowpack and fire
potential in the western USA. Climatic Change, 141(2), 287-299. https://doi.org/10.1007/s10584-017-1899-y

Gill, A. L., Grinder, R. M., See, C. R., Chapin, F. S., DeLancey, L. C., Fisk, M. C., et al. (2023). Soil carbon availability decouples net nitrogen
mineralization and net nitrification across United States Long Term Ecological Research sites. Biogeochemistry, 162(1), 13-24. https://doi.
org/10.1007/S10533-022-01011-w

Groffman, P. M., Driscoll, C. T., Duran, J., Campbell, J. L., Christenson, L. M., Fahey, T. JI., et al. (2018). Nitrogen oligotrophication in northern
hardwood forests. Biogeochemistry, 141(3), 523-539. https://doi.org/10.1007/s10533-018-0445-y

Gruber, N., & Galloway, J. N. (2008). An Earth-system perspective of the global nitrogen cycle. Nature, 451(7176), 293-296. https://doi.
org/10.1038/nature06592

Guevara, M., Arroyo, C., Brunsell, N., Cruz, C. O., Domke, G., Equihua, J., et al. (2020). Soil organic carbon across Mexico and the Contermi-
nous United States (1991-2010). Global Biogeochemical Cycles, 34, e2019GB006219. https://doi.org/10.1029/2019GB006219

Hamner, B., & Frasco, M. (2018). Metrics: Evaluation metrics for machine learning. R package version 0.1.4. Retrieved from https://CRAN.R-pro-
ject.org/package=Metrics

Hart, S., & Gunther, A. (1989). In situ estimates of annual net nitrogen mineralization and nitrification in a subarctic watershed. Oecologia, 80(2),
284-288. https://doi.org/10.1007/bf00380165

Hart, S., Stark, J., Davidson, E., & Firestone, M. (1994). Nitrogen mineralization and immobilization. In R. Weaver (Ed.), Methods of soil analy-
sis, Part 2: Microbiological and biochemical properties (pp. 985-1018). Soil Science Society of America.

Hijmans, R. J. (2022). raster: Geographic data analysis and modeling. R package version 3.5-15. Retrieved from https://CRAN.R-project.org/
package=raster

Hinckley, E. L. S., Bonan, G. B., Bowen, G. J., Colman, B. P., Duffy, P. A., Goodale, C. L., et al. (2016). The soil and plant biogeochemistry
sampling design for the National Ecological Observatory Network. Ecosphere, 7(3), e01234. https://doi.org/10.1002/ECS2.1234

Homyak, P. M., Sickman, J. O., Miller, A. E., Melack, J. M., Meixner, T., & Schimel, J. P. (2014). Assessing nitrogen-saturation in a season-
ally dry chaparral watershed: Limitations of traditional indicators of N-saturation. Ecosystems, 17(7), 1286—1305. https://doi.org/10.1007/
$10021-014-9792-2

Homyak, P. M., Vasquez, K. T., Sickman, J. O., Parker, D. R., & Schimel, J. P. (2015). Improving nitrite analysis in soils: Drawbacks of the
conventional 2 M KCl extraction. Soil Science Society of America Journal, 79(4), 1237-1242. https://doi.org/10.2136/SSSAJ2015.02.0061N

Jackson, R., Canadell, J., Ehleringer, J., Mooney, H., Sala, O., & Schulze, E. (1996). A global analysis of root distributions for terrestrial biomes.
Oecologia, 108(3), 389-411. https://doi.org/10.1007/bf00333714

Jilling, A., Keiluweit, M., Contosta, A. R., Frey, S., Schimel, J., Schnecker, J., et al. (2018). Minerals in the rhizosphere: Overlooked mediators of
soil nitrogen availability to plants and microbes. Biogeochemistry, 139(2), 103—122. https://doi.org/10.1007/s10533-018-0459-5

Kapnick, S., & Hall, A. (2010). Observed climate—snowpack relationships in California and their implications for the future. Journal of Climate,
23(13), 3446-3456. https://doi.org/10.1175/2010JCLI2903.1

WEINTRAUB-LEFF ET AL.

14 of 16

9SUDI suowwo)) aanear)) a[qedrdde oy £q pautaA03 e SIONIR Y (3N JO SN 10J AIRIQIT SUIUQ AI[IAY UO (SUONIPUOD-PUR-SULID)/ WO KI1M" AIeIqI[aut[uoy/:sd)y) SUONIPUO) pue SWId, A1 338 *[£207/S0/#0] U0 Areiqr auruQ AS[IA ‘#2Z€00492202/6201 01/10p/wod Ao[im  Kreiqiauijuosqndnde//:sdny woiy papeojumo( ‘S ‘€707 ‘LLIYSTET



A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Earth’s Future 10.1029/2022EF003224

Keller, M., Schimel, D., Hargrove, W., & Hoffman, F. (2008). A continental strategy for the National Ecological Observatory Network. Frontiers
in Ecology and the Environment, 6(5), 282-284. https://doi.org/10.1890/1540-9295(2008)6[282: ACSFTN]2.0.CO;2

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K. W., Swenson, S. C., Bonan, G., et al. (2019). The Community Land Model version 5:
Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11, 4245—
4287. https://doi.org/10.1029/2018MS001583

LeBauer, D., & Treseder, K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology,
89(2), 371-379. https://doi.org/10.1890/06-2057.1

Li,Z., Zeng, Z., Tian, D., Wang, J., Fu, Z., Zhang, F., et al. (2020). Global patterns and controlling factors of soil nitrification rate. Global Change
Biology, 26(7), 4147-4157. https://doi.org/10.1111/gcb.15119

Liu, Y., Wang, C., He, N., Wen, X., Gao, Y., Li, S., et al. (2017). A global synthesis of the rate and temperature sensitivity of soil nitrogen miner-
alization: Latitudinal patterns and mechanisms. Global Change Biology, 23(1), 455—464. https://doi.org/10.1111/GCB.13372

Lunch, C., Laney, C., Mietkiewicz, N., Sokol, E., & Cawley, K., & NEON (National Ecological Observatory Network). (2022). neonUtilities:
Utilities for working with NEON data. R package version 2.1.4. Retrieved from https://CRAN.R-project.org/package=neonUltilities

Melillo, J. M., Frey, S. D., DeAngelis, K. M., Werner, W. J., Bernard, M. J., Bowles, F. P., et al. (2017). Long-term pattern and magnitude of soil
carbon feedback to the climate system in a warming world. Science, 358(6359), 101-105. https://doi.org/10.1126/science.aan2874

Nagy, R. C., Balch, J. K., Bissell, E. K., Cattau, M. E., Glenn, N. F., Halpern, B. S., et al. (2021). Harnessing the NEON data revolution to advance
open environmental science with a diverse and data-capable community. Ecosphere, 12(12), €03833. https://doi.org/10.1002/ECS2.3833

Nakagawa, S., Johnson, P. C. D., & Schielzeth, H. (2017). The coefficient of determination R? and intra-class correlation coefficient from gener-
alized linear mixed-effects models revisited and expanded. Journal of the Royal Society Interface, 14(134),20170213. https://doi.org/10.1098/
RSIF.2017.0213

NEON (National Ecological Observatory Network). (2022a). Soil physical and chemical properties, periodic (DP1.10086.001), RELEASE-2022
[Dataset]. Retrieved from https://data.neonscience.org

NEON (National Ecological Observatory Network). (2022b). Root biomass and chemistry, Megapit (DP1.10066.001), RELEASE-2022 [Data-
set]. Retrieved from https://data.neonscience.org

NEON (National Ecological Observatory Network). (2022c). Soil physical and chemical properties, distributed initial characterization
(DP1.10047.001), RELEASE-2022 [Dataset]. Retrieved from https://data.neonscience.org

O’Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., et al. (2014). A new scenario framework for climate change
research: The concept of shared socioeconomic pathways. Climatic Change, 122(3), 387-400. https://doi.org/10.1007/S10584-013-0905-2

O’Neill, B. C., Tebaldi, C., van Vuuren, D. P., Eyring, V., Friedlingstein, P., Hurtt, G., et al. (2016). The Scenario Model Intercomparison Project
(ScenarioMIP) for CMIP6. Geoscientific Model Development, 9(9), 3461-3482. https://doi.org/10.5194/GMD-9-3461-2016

Parton, W., Silver, W. L., Burke, I. C., Grassens, L., Harmon, M. E., Currie, W. S, et al. (2007). Global-scale similarities in nitrogen release
patterns during long-term decomposition. Science, 315(5810), 361-364. https://doi.org/10.1126/science.1134853

Payne, R. J., Dise, N. B., Field, C. D., Dore, A. J., Caporn, S. J. M., & Stevens, C. J. (2017). Nitrogen deposition and plant biodiversity: Past,
present, and future. Frontiers in Ecology and the Environment, 15(8), 431-436. https://doi.org/10.1002/FEE.1528

Phillips, R. P., Brzostek, E., & Midgley, M. G. (2013). The mycorrhizal-associated nutrient economy: A new framework for predicting carbon—
nutrient couplings in temperate forests. New Phytologist, 199(1), 41-51. https://doi.org/10.1111/nph.12221

Pierce, D. (2021). ncdf4: Interface to Unidata netCDF (version 4 or earlier) format data files. R package version 1.19. Retrieved from https://
CRAN.R-project.org/package=ncdf4

R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Retrieved from https://
www.r-project.org/

Reich, P. B., Hobbie, S. E., Lee, T., Ellsworth, D. S., West, J. B, Tilman, D., et al. (2006). Nitrogen limitation constrains sustainability of ecosys-
tem response to CO,. Nature, 440(7086), 922-925. https://doi.org/10.1038/nature04486

Sanclements, M., Lee, R. H., Ayres, E. D., Goodman, K., Jones, M., Durden, D., et al. (2020). Collaborating with NEON. BioScience, 70(2), 107.
https://doi.org/10.1093/BIOSCI/BIAA005

Schimel, J. P, & Bennett, J. (2004). Nitrogen mineralization: Challenges of a changing paradigm. Ecology, 85(3), 591-602. https://doi.
org/10.1890/03-8002

Schmidt, M. W. L., Torn, M. S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I. A., et al. (2011). Persistence of soil organic matter as an
ecosystem property. Nature, 478(7367), 49-56. https://doi.org/10.1038/nature 10386

Stanish, L. (2022). TOS protocol and procedure: SLS—Soil biogeochemical and microbial sampling. NEON.DOC.014048vO.
NEON (National Ecological Observatory Network).

Sullivan, B., Smith, W., Townsend, A., Nasto, M., Reed, S., Chazdon, R., & Cleveland, C. (2014). Spatially robust estimates of biological nitrogen
(N) fixation imply substantial human alteration of the tropical N cycle. Proceedings of the National Academy of Science of the United States
of America, 111(22), 8101-8106. https://doi.org/10.1073/pnas.1320646111

Sutton, M. A., Oenema, O., Erisman, J. W., Leip, A., van Grinsven, H., & Winiwarter, W. (2011). Too much of a good thing. Nature, 472(7342),
159-161. https://doi.org/10.1038/472159a

Thomas, R. Q., Brookshire, E. N. J., & Gerber, S. (2015). Nitrogen limitation on land: How can it occur in Earth system models? Global Change
Biology, 21(5), 1777-1793. https://doi.org/10.1111/GCB.12813

Tian, H., Yang, J., Lu, C., Xu, R., Canadell, J. G., Jackson, R. B., et al. (2018). The global N,O Model Intercomparison Project. Bulletin of the
American Meteorological Society, 99(6), 1231-1251. https://doi.org/10.1175/BAMS-D-17-0212.1

Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., et al. (1997). Human alteration of the global
nitrogen cycle: Sources and consequences. Ecological Applications, 7(3), 737-750. https://doi.org/10.1890/1051-0761(1997)007[073
7:HAOTGN]2.0.CO;2

Vitousek, P., & Howarth, R. (1991). Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry, 13(2), 87-115. https://doi.
org/10.1007/bf00002772

Vitousek, P., & Matson, P. (1988). Nitrogen transformations in a range of tropical forest soils. Soil Biology and Biochemistry, 20(3), 361-367.
https://doi.org/10.1016/0038-0717(88)90017-x

Wang, Y. P., & Houlton, B. Z. (2009). Nitrogen constraints on terrestrial carbon uptake: Implications for the global carbon-climate feedback.
Geophysical Research Letters, 36, 1.24403. https://doi.org/10.1029/2009GL041009

Weintraub, S. R. (2017). neonNTrans: NEON nitrogen transformations. R package version 0.2.0.

Weintraub, S. R., Brooks, P. D., & Bowen, G. J. (2017). Interactive effects of vegetation type and topographic position on nitrogen availability and
loss in a temperate montane ecosystem. Ecosystems, 20(6), 1073—1088. https://doi.org/10.1007/s10021-016-0094-8

WEINTRAUB-LEFF ET AL.

15 of 16

9SUDI suowwo)) aanear)) a[qedrdde oy £q pautaA03 e SIONIR Y (3N JO SN 10J AIRIQIT SUIUQ AI[IAY UO (SUONIPUOD-PUR-SULID)/ WO KI1M" AIeIqI[aut[uoy/:sd)y) SUONIPUO) pue SWId, A1 338 *[£207/S0/#0] U0 Areiqr auruQ AS[IA ‘#2Z€00492202/6201 01/10p/wod Ao[im  Kreiqiauijuosqndnde//:sdny woiy papeojumo( ‘S ‘€707 ‘LLIYSTET



A7t |
NI
ADVANCING EARTH
AND SPACE SCIENCE

Earth’s Future 10.1029/2022EF003224

Weintraub-Leff, S. R., Hall, S.J., & Craig, M. (2023). NEON soil inorganic nitrogen measurements 2017-2020, derived data and code for Earth’s
Future manuscript ver 2. Environmental Data Initiative. https://doi.org/10.6073/pasta/ec9e2e7c1fa40f2b61c2e930bd5adad 1

Whittaker, J., Whitehead, C., & Somers, M. (2005). The neglog transformation and quantile regression for the analysis of a large credit scoring data-
base. Journal of the Royal Statistical Society: Series C (Applied Statistics), 54(5), 863-878. https://doi.org/10.1111/J.1467-9876.2005.00520.X

Wilkinson, M. D., Dumontier, M., Aalbersberg, 1. J. J., Appleton, G., Axton, M., Baak, A., et al. (2016). The FAIR guiding principles for scientific
data management and stewardship. Scientific Data, 3(1), 160018. https://doi.org/10.1038/sdata.2016.18

Xu, R., Tian, H., Pan, N., Thompson, R. L., Canadell, J. G., Davidson, E. A., et al. (2021). Magnitude and uncertainty of nitrous oxide emissions
from North America based on bottom-up and top-down approaches: Informing future research and national inventories. Geophysical Research
Letters, 48, €2021GL095264. https://doi.org/10.1029/2021GL095264

Zacehle, S., Jones, C. D., Houlton, B., Lamarque, J. F., & Robertson, E. (2015). Nitrogen availability reduces CMIPS5 projections of twenty-first-cen-
tury land carbon uptake. Journal of Climate, 28(6), 2494-2511. https://doi.org/10.1175/JCLI-D-13-00776.1

Zambrano-Bigiarini, M. (2020). hydroGOF: Goodness-of-fit functions for comparison of simulated and observed hydrological time series. R
package version 0.4-0. https://doi.org/10.5281/zenodo.839854

WEINTRAUB-LEFF ET AL.

16 of 16

9SUDI suowwo)) aanear)) a[qedrdde oy £q pautaA03 e SIONIR Y (3N JO SN 10J AIRIQIT SUIUQ AI[IAY UO (SUONIPUOD-PUR-SULID)/ WO KI1M" AIeIqI[aut[uoy/:sd)y) SUONIPUO) pue SWId, A1 338 *[£207/S0/#0] U0 Areiqr auruQ AS[IA ‘#2Z€00492202/6201 01/10p/wod Ao[im  Kreiqiauijuosqndnde//:sdny woiy papeojumo( ‘S ‘€707 ‘LLIYSTET



	Standardized Data to Improve Understanding and Modeling of Soil Nitrogen at Continental Scale
	Abstract
	Plain Language Summary
	1. Introduction
	2. Materials and Methods
	2.1. NEON Sampling and Data
	2.2. Challenges to Continental-Scale Inorganic N Sampling
	2.3. Data Download and Blank-Corrections
	2.4. Mixed Model Analyses to Examine Sources of Variation
	2.5. ESM Outputs and Data–Model Comparison

	3. Results
	4. Discussion
	4.1. Variation in N Pool and Net Flux Rates Across Sites
	4.2. Sampling Design Captures Important Sources of Variation, But Still Much Is Unexplained
	4.3. Simulations Do Not Capture Observed Rates of Net N Mineralization
	4.4. Opportunities for Future Research and Engagement

	Data Availability Statement
	References


