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Annual U.S. production of bioethanol, primarily produced from corn starch in the
U.S. Midwest, rose to 57 billion liters in 2021, which fulfilled the required
conventional biofuel target set forth by the Energy Independence and Security
Act (EISA) of 2007. At the same time, the U.S. fell short of the cellulosic or advanced
biofuel target of 79 billion liters. The growth of bioenergy grasses (e.g., Miscanthus
and switchgrass) across the Central and Eastern U.S. has the potential to feed
enhanced cellulosic bioethanol production and, if successful, increase renewable
fuel volumes. However, water consumption and climate change and its extremes
are critical concerns in corn and bioenergy grass productivity. These concerns are
compounded by the demands on potentially productive land areas and water
devoted to producing biofuels. This is a fundamental Food-Energy-Water System
(FEWS) nexus challenge. We apply a computational framework to estimate
potential bioenergy yield and conversion to bioethanol yield across the U.S,,
based on crop field studies and conversion technology analysis for three
crops—corn, Miscanthus, and two cultivars of switchgrass (Cave-in-Rock and
Alamo). The current study identifies regions where each crop has its highest yield
across the Center and Eastern U.S. While growing bioenergy grasses requires more
water than corn, one advantage they have as a source of bioethanol is that they
control nitrogen leaching relative to corn. Bioenergy grasses also maintain steadily
high productivity under extreme climate conditions, such as drought and
heatwaves in the year 2012 over the U.S. Midwest, because the perennial
growing season and the deeper and denser roots can ameliorate the soil water
stress. While the potential ethanol yield could be enhanced using energy grasses,
their practical success in becoming a potential source of ethanol yield remains
limited by socio-economic and operational constraints and concerns regarding
competition with food production.
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1 Introduction

Biomass can be converted directly into liquid fuels, also called
biofuels, that are primarily used for transportation because of their
portability and energy density. Worldwide demand for liquid fuels,
primarily petroleum-based, is projected to grow (IEA, 2015).
Bioethanol is a common type of biofuel in use today that can
potentially have low life-cycle greenhouse gas emissions
depending on how it is produced (Searchinger et al., 2015; Wang
et al,, 2015). Bioethanol produced from crops via fermentation is
currently the most prevalent liquid fuel sourced from biomass.
Currently, the United States is the largest bioethanol producer of
any country, primarily producing its bioethanol from corn grain-,
converting starch to sugar, and then to bioethanol via fermentation
(RFA, 2022). Brazil is the second largest producer, driving its
bioethanol from the sugar in sugar cane (Chum et al, 2011).
Bioethanol is thus a potential option to supply transportation
fuels in a low-carbon future. However, bioethanol production
from sugar and starch is land-use intensive—i.e., the area of land
used to grow feedstock crops per unit of bioethanol produced is large
(Melillo et al., 2009; Zhuang et al., 2013; Song et al., 2016).

The production of bioethanol from cellulosic feedstocks,
which are non-food based and include crop residues, wood
residues, dedicated energy crops, and industrial and other
wastes (rather than just from simple sugars and starch), has
the potential to decrease bioethanol’s land-use intensity. In the
recent decade, the number of cellulosic bioethanol plants in the
U.S. has increased (Brown et al., 2015), rising from 76 kL in
2012 to 38 x 10° kL in 2017 and after that decreasing to about
7.8 x 10° kL in 2020 (EPA, 2022). In 2021, bioethanol production
further decreased to 2.2 x 10° kL (RFA, 2022). The overall U. S.
ethanol production by corn grain starch accounts for 93.8%,
cellulosic biomass accounts for 3.9%, and beverages, food waste,
non-corn grain starch, and sugar account for the rest 2.3% (RFA,
2022). According to Energy Independence and Security Act
(EISA, 2007), the annual production of renewable fuels of
136 billion liters, including 79 billion liters of cellulosic or
advanced biofuels, is expected to be produced in the U.S. by
2022. The annual U.S. production of bioethanol, primarily
produced from corn starch in the U.S, rose to 57 billion liters
in 2021 (USDA, 2022) (Supplementary Figure S1), which fulfilled
the required conventional biofuel target set forth by the EISA
(2007). However, the U.S. fell short of the cellulosic or advanced
biofuel target of 79 billion liters. The U.S. to meet its goals would
depend on increased production of crop yields, such as of corn
(Zea mays), and the conversion efficiencies of cellulosic
feedstock, such as the perennial grasses Miscanthus
(Miscanthus x giganteus Greef et Deu), and two cultivars of
switchgrass (Panicum viragatum), namely, upland (Cave-in-
Rock) and lowland (Alamo), to bioethanol.

Multiple studies point to Miscanthus’s high maximum
biomass yield compared to switchgrasses and corn (Jain et al,
2010; Song et al, 2016). Observation-based estimates for
Miscanthus were on average 22 Mg/ha/yr compared to 10 Mg/
ha/yr for switchgrass (Heaton et al., 2008; Myers etal., 2012). One
study which reports side-by-side trial results in central Illinois
showed that Miscanthus produced 60 percent more biomass than
corn (Dohleman and Long, 2009). Several crop productivity

Frontiers in Energy Research

10.3389/fenrg.2023.1070186

modeling studies have estimated the spatial variations for
bioenergy feedstock for Miscanthus and switchgrasses in the
United States. Using the process-based crop-growth land
surface model employed here (see Section 2.1), Song et al.
(2015, 2016) estimated the average annual yield ranges
between 2-25Mg/ha/yr for Miscanthus, 2-15 Mg/ha/yr for
Cave-in-Rock (which has high yields over the same land
region as Miscanthus), and 4-17 Mg/ha/yr for Alamo. Most
other modeling studies estimated the highest yield values for
these bioenergy crops consistent with these estimates (Thomson
et al.,, 2009; Jager et al., 2010; Behrman et al.,, 2013; Zhuang et al.,
2013), but there were a few exceptions. For example, model-based
values reported by Miguez et al. (2011) and VanLoocke et al.
(2012) were as high as 40.5 Mg/ha/yr and 36 Mg/ha/yr for
Miscanthus, and 20 Mg/ha/yr and 16 Mg/ha/yr for switchgrass,
respectively.

Few published studies compared the bioethanol yields produced
from bioenergy crops’ biomass with bioethanol yields produced
from corn grain and stover in the United States. Zhuang et al. (2013)
compared modeled potential bioethanol yield of corn, switchgrass
and Miscanthus limited to regions where corn is currently grown
and found that Miscanthus had higher bioethanol yield.

The aim of this study is twofold: 1) to calculate the spatial
distribution of the potential bioethanol yield (per unit land area) of
cellulosic bioethanol plants, with feedstocks including corn grain
and stover, and perennial bioenergy grasses, including Miscanthus,
Cave-in-Rock, and Alamo, across the Central and Eastern U.S; and
2) to calculate the effects of growing corn and perennial bioenergy
grasses on surface hydrological components and the impacts of
extreme drought and heat on bioethanol yield. To accomplishes
these aims, the calculations are performed using a crop growth land
surface model, Integrated Science Assessment Model (ISAM) along
with estimates of harvest fractions and biomass-to-bioethanol
conversion factors. This study is part of a larger study on the
Climate-induced Extremes on the Food, Energy, Water Systems
(C-FEWS) and the Role of Engineered and Natural Infrastructure
(Vorosmarty et al,, 2022) that examines food and bioenergy crop
yields in the U.S. Midwest and Northeast for a range of different
model simulations and outcomes.

2 Methods, data, and assumptions
2.1 Crop yield model description

Potential crop yield estimates for this study are generated using the
Integrated Science Assessment Model (ISAM) at 0.1° x 0.1° spatial
resolution. The model is a coupled biogeochemical and biophysical
model (Jain et al., 2009; Song et al., 2013; Barman et al., 2014a; Barman
et al., 2014b; Song, 2015; Song et al., 2015; Song et al., 2016). It accounts
for natural plant function types and specific food/bioenergy crops,
including corn, Miscanthus, and two cultivars of switchgrass, upland
(Cave-in-Rock), and lowland (Alamo) ecotypes. ISAM’s biophysical
component consists of carbon assimilation, energy balance, and
hydrological cycle processes, which are fully coupled through a
coupled leaf temperature-photosynthesis-stomatal —conductance
scheme (Barman et al, 2014a; Barman et al. 2014b). ISAM’s
biogeochemical component consists of a dynamic vegetative carbon,
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FIGURE 1

Conceptual diagram of coupled biogeophysics and biogeochemistry ISAM land model.

nitrogen, structure (leaf area, canopy height, and root depth) growth
scheme, and a crop-specific phenology scheme (Song et al., 2013; Song,
2015; Song et al., 2015; Song et al., 2016; Gahlot et al., 2020; Lin et al,,
2021), and coupled soil C and N dynamics (Yang et al., 2009) (Figure 1).

A series of earlier published studies have carried out ISAM
model calibration and validation of various model processes and
fluxes for bioenergy and row crops at several sites. Specifically, we
evaluated ISAM’s ability to simulate spatial and temporal variability
in carbon assimilation rates, leaf area index, aboveground and
belowground biomasses, biomass vyield, evapotranspiration, soil
water content, nitrogen fertilization effect on biomass yield, and
nitrogen leaching. The site-level input data set and model evaluation
results can be found in Song et al. (2013), Song et al. (2015), Song
(2015), Song et al. (2016).

We use ISAM to estimate the growth of three bioenergy
grasses and corn at 0.1° x 0.1° spatial resolution covering the
Central and Eastern U.S., and specifically Midwestern U.S., a
predominant corn growing region. The growth depends on the
survival rates of these crops (under the assumption of no
irrigation), which depend upon the latitude of origin and their
varied adaptability to different environmental conditions, such as
winter hardiness, day length, and hot, dry and cold conditions,
and N fertilizer application rates (Song et al., 2013; Song et al.
2015; Song et al. 2016). The western United States, where
bioenergy grasses could not survive due to drier conditions
(Casler, 2012), is excluded from this study.

Frontiers in Energy Research

2.2 Key assumptions: Harvest fraction and
conversion factor

The potential bioethanol yield (liters (L) ethanol per hectare) was
estimated by multiplying the ISAM estimated aboveground dry biomass
density at harvest time averaged over 40 years (dry Mg/hectare), harvest
fractions (fraction of aboveground biomass), and the conversion factor
of corn biomass and cellulosic biomass (L ethanol/dry Mg), [i.e., (dry
Mg/hectare) x fraction x (L ethanol/dry Mg)], as summarized in
Table 1.It is important to note that while producing bioethanol from
corn grain has been in commercial practice for decades, producing it
from cellulosic matter is a less mature technology.

While the conversion factor for corn grain given in Table 1 is
derived from current commercial practice (EIA, 2015), the assumed
conversion factor for cellulosic bioethanol is drawn from a cellulosic
bioethanol conversion plant design (Humbird et al., 2011). The high
fraction of starch in corn grain, which can easily be converted to
sugar for fermentation to bioethanol, leads to a higher conversion
factor for corn grains than for corn stover or bioenergy grasses.

2.3 Definition of cases run

We performed four ISAM simulations over the period
1980-2019 by assuming that the existing unmanaged (e.g., forest,
grasses, including the marginal land) and managed (e.g., row crops
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TABLE 1 Key assumptions of harvest fractions and biomass-to-bioethanol conversion factors (i.e., the volume of bioethanol produced per unit biomass).

Factors Key assumptions

Harvest fractions

Switchgrasses 85% of aboveground biomass®
Miscanthus 94% of aboveground biomass”

Corn grain 100% of corn grain

Corn stover 30% of aboveground, non-grain biomass®

Biomass to the Bioethanol Conversion Factor
Corn grain 491 L ethanol per dry Mg grain®
Stover or energy grass 331 L ethanol per dry Mg biomass®

“Switchgrass height is estimated to be 3-5 feet (Ogle and Davidson, 2016). When harvesting switchgrass, it is recommended by Ogle and Davidson (2016) and Mitchell et al. (2012) to leave a
stubble height of 4-8 inches, therefore, harvesting 78%-93% of the estimated switchgrass height. We approximate the harvest fraction proportional to the central value of the height fraction of
the plant removed (i.e., 85%).

"Miscanthus height is estimated to be 1.5-4 m (NRCS, 2016). Recommended stubble height is 0.05-0.1 m (2-4 inches) (Hoque et al., 2014; USDA, 2016), harvesting 87%-99% of estimated
Miscanthus height.

Jin et al. (2014) have conducted studies on soil emission impacts of three corn stover removal levels: low removal (~0%), medium removal ranging from 15% to 40% (mean ~30%), and high
removal ranging from 40% to 75% (mean ~66%) and found that optimal stover removal rates will depend on site management and environmental conditions. To maintain soil health,
Environmental Protection Agency (EPA, 2010) has reported different aboveground biomass removal rates for corn stover harvesting depending on the agricultural practice: 0% for conventional
tillage, 35% for conservational tillage, and 50% for no-till. A harvest fraction of 30% is assumed consistent with Zhuang et al. (2013).

“Corresponds to the 2014 average U.S., conversion of 2.8 gallons of ethanol per bushel of corn (EIA, 2015).

“Corresponds to cellulosic ethanol conversion plant design of 79 gallons per dry short ton biomass (Humbird et al, 2011).

Miscanthus Cave-in-Rock

0.10.20.40.60.81.02.03.0 4.05.06.07.0
Bioethanol yield (Kiloliters/ha/yr)

FIGURE 2
The distribution of potential annual bioethanol yield for Miscanthus (A), Cave-in-Rock (B), Alamo (C), corn grain (D), corn stover (E), and corn grain
plus 30% stover (F). Irrigation is applied for corn in areas equipped for irrigation but not for bioenergy grasses.

and pasture) vegetation types at each model pixel in the Centraland ~ grasses for the current study are compiled based on previous
Eastern U.S. are completely replaced by each of the following  studies, which vary spatially from 20 to 60 kg N ha-1yr-1 for
bioenergy crops or their cultivars, one at a time: Miscanthus, — Miscanthus, 40-120 kg N ha'yr' for two switchgrass cultivars
switchgrass upland cultivar (Cave-in-Rock), switchgrass lowland  as described in Song et al. (2016). The N fertilizer application
cultivar (Alamo) and corn. Each model simulation is driven by  rates for corn are taken from the USDA-ERS (2021). Irrigation is
spatial and hourly temporal resolution data from the NLDAS-2 for  applied for corn in areas equipped for irrigation (Lin et al,
climate variables (Xia et al., 2012) and soil texture data from the  2021).
GSDE (Shangguan et al., 2014). Corn is planted yearly during the spring based on the crop
For all crops, nitrogen fertilizer is added to decrease nitrogen  progress report from the United States Department of Agriculture
limitation. The N fertilizer application rates for bioenergy = (USDA) National Agricultural Statistics Service (NASS) and
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FIGURE 3

The distribution of maximum potential bioethanol yield across

the modeled crops: Miscanthus, two switchgrass cultivars, upland
(Cave-in-Rock) and lowland (Alamo), and corn (grains plus 30% stover
harvested). The figure shows only the yield for crop or crop

cultivar studied here. The current major corn growing area (i.e., the
harvested area where corn is grown on over 500 ha in white) (See
Supplementary Figure S2) overlays some of the highest-yielding land
areas.

harvested when the crop becomes mature. We assume 30% of
aboveground biomass removal rates for corn stover consistent
with Zhuang et al. (2013); Jin et al. (2014) (Footnote “c” of Table 1)

Unlike corn, the three perennial bioenergy grasses (Miscanthus,
Cave-in-Rock, and Alamo) are planted in 1980, and a fraction
(see Table 1) of aboveground biomass is harvested each year in
late winter. The non-harvested aboveground biomass for each
bioenergy crop is returned to the soil as litter and decomposes

over time.
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The potential bioethanol yield for each bioenergy crop at each 0.1
°x 0.1 grid cell is reported in the next section as the arithmetic mean of
estimated bioethanol productivity over the study period (the 40 years
from 1980 through 2019) and includes in this period the establishment
of perennial grasses where yield is often lower over the first year or two
after planting, than later in the period. We also investigate the extreme
drought and heat impact on bioethanol yields based on the C-FEWS
framework. We draw on C-FEWS framework simulations of food,
energy, and water systems from Vorosmarty et al. (2022).

3 Results

The ISAM estimated potential annual bioethanol yield per
hectare is shown for the different crops across the Central and
Eastern U.S. landscape in Figure 2.

Despite the higher conversion factor of corn grain biomass
yield to bioethanol yield (Table 1), it has a comparable
bioethanol yield to that of the other energy crops because the
biomass yield of corn grain is generally smaller than the three
bioenergy crops studied here. Adding the assumed harvest of
30% of corn stover with an assumed bioethanol conversion factor
equal to that of other cellulosic feedstocks (see Table 1) increases the
overall bioethanol yield of corn (grain plus 30% of stover harvested,
Figure 2F).

The estimated maximum bioethanol yield, defined as the area of
a crop with the highest ethanol yield in a grid cell, is shown in
Figure 3. The potential bioethanol yield of each bioenergy peaks in
different locations from north to south, with Cave-in-Rock in parts
of northeast, followed by Miscanthus and corn, and Alamo furthest
south (Figure 3), overlapping parts of the current corn growing land
region (Figure 3).

Miscanthus and Alamo have the highest maximum potential
ethanol yield (about 8.5kL/ha/yr) when comparing yields in the
study region, but yields drop off more steeply than corn or Cave-in-
Rock (Figure 4), suggesting that a limited number of grids cells in the
study region can produce high bioethanol yeild from these two energy
crops. The calculated highest potential yield for Cave-in-rock is about
5.7 kL/ha/yr, but the spatial variation of Cave-in-rock yield across grid

Midwest T -T
8 = Rest T T =
oT i
2264
>2
L a4 T
g5 T
Q=
oX
2 -
o 'YPV! |
T T T T T
Corn Miscanthus Alamo Cave-in-Rock Maximum

Cumulative distribution of bioethanol yields grown on modeled land grid cells in Central and Eastern United States. Curves shown correspond to
bioethanol yield mapped for Miscanthus, Cave-in-Rock, Alamo, and corn (grain plus 30% of stover harvested) in Figures 2A—F.
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The 1980-2019 averages for (A) evapotranspiration, (B) runoff,

and (C) N leaching for corn (grain plus 30% of stover harvested), and
three bioenergy crops, Miscanthus, Alamo, and Cave-in-Rock. The
values are plotted for the Central and Eastern United States (All)

and the Midwest U.S. (Midwest). Error bars are one standard deviation
(S.D.) of all grid cell values of all and Midwest regions.

cells is relatively low. It has the potential to grow on 10%-15% more grid
cells than the two other bioenergy crops, particularly in the Northeast
and parts of the upper Midwest (Figure 2). Corn’s (grain plus 30% of
stover harvested) highest calculated maximum potential ethanol yield is
about 5.6 kL/ha/yr. Across grid cells, corn’s potential yield variations are
lower than the other crops, and corn can grow on more grid cells than
the other three bioenergy crops. It is estimated that corn produces less
bioethanol yield than any of the bioenergy grasses in 65% of grid cells in
the study region, implying that growing bioenergy grasses can enhance
the bioethanol yield in these areas.
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Yield is one fundamental factor influencing the desirability of
biofuels and associated crops, but it is not the only factor. Crops
differ in their consumption of water and the need for added N fertilizer
and associated N runoff (Heaton et al, 2008; Hickman et al., 2010;
Mclsaac et al.,, 2010; Smith et al., 2013; Zhuang et al., 2013; Song et al,,
2016). Growing bioenergy crops can also reduce the annual runoff and
N leaching due to higher evapotranspiration (Figure 5) than corn and
biological N fixation by Miscanthus (Song et al., 2016). In addition, it is
suggested energy crops require less fertilizer input than corn because
they recycle nutrients to belowground roots and rhizomes before the
dry shoots are harvested in late fall and early winter (Cadoux et al,
2012).

Figure

-

5 the distribution of 1980-2019 mean
evapotranspiration (ET), runoff (=Rgrface + Riub_surface Where
Ryurface Stands for surface and Ry, surfacer SUb-surface runoft), and N

leaching from simulations for corn (grain plus 30% of stover harvested)

shows

and three bioenergy crops. As a whole, corn’s ET is lower (average
around 700 mm/yr), whereas runoff is higher (305 mm/yr), than for
three bioenergy crops (ET: 740-800 mm/yr, runoff: 161-215 mm/yr).
This is because a longer growing season enables root systems to grow
deeper and accumulate more biomass than corn, suggesting that the
growing bioenergy crops can reduce regional water availability for
human use, such as thermoelectric production and irrigation. As for
nitrogen leaching, our study results show lower N leaching due to
growing bioenergy crops (0.88-2.80 g N/m’/yr) compared to corn
(2.58 g N/m?/yr), mainly due to modest amounts of N fertilizer for
Miscanthus and switchgrasses compared to corn (Song et al., 2016).

Climate change and extremes are also expected to impact crop
yields not only for food crops but also for bioenergy crops. The
extremely dry and hot weather conditions, for example, in the
2012 spring and summer led to devastating crop damage in much
of the Midwest (Elliott et al,, 2018). We investigate this extreme year’s
impact on bioethanol yield based on the aggregate metric from the
C-FEWS framework (Eq. (1), Vorosmarty et al., 2022) (Appendix A).

Figure 6 shows the expected negative impact of the 2012 drought on
corn-based ethanol yields in the Midwest. In current corn-harvested
areas (Supplementary Figure 52), growing bioenergy crops attenuates
the negative responses to the 2012 drought and heat impact, revealing
bioenergy grasses are more resistant to climate variability than corn,
because bioenergy grasses being grown perennially and their deep roots
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The impact 2012 Midwest drought and heat on (A) bioethanol yield for corn (grain plus 30% of stover harvested) and three bioenergy crops
(Miscanthus, Alamo, and Cave-in-Rock) from 2007 to 2016. (B) Drought impact metrics in 2012 (Eq. 1 Vorésmarty et al., 2022, and also see Appendix A)

are expressed as bar graphs.
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can extract water from the deeper moist soil layers and dampen the
extreme drought and heat impacts. However, in general, growing
bioenergy grasses in current corn-harvested areas over Midwest
results in lower bioethanol yields than corn because bioenergy crops
are not adapted to winter hardiness in the upper Midwest
(i.e., Wisconsin, Minnesota, and west, north, and northeast Iowa),
bioenergy grasses were damaged by extreme cold conditions, frost
killing or/and over-winter injury (Figure 2).

Yield is one fundamental factor influencing the desirability of
biofuels and associated crops, but it is not the only factor. The cost
of growing and converting crops to bioethanol also differs between crops
(NRC, 2011). While the conversion of corn to bioethanol would divert
potential food stocks to ethanol, greater demand for corn could also
result in greater production of feed by-products (e.g., distiller’s grains and
solids). In contrast, the energy grasses might compete for high-
productivity agricultural land (Searchinger et al, 2015). Bioethanol is
one potential pathway to lower greenhouse gas emissions from
transportation. However, the growth of crops and conversion to
bioethanol can result in life-cycle greenhouse gas emissions which
differ between crops (Searchinger et al, 2015; Song et al, 2015;
Wang et al, 2015), conversion technologies (Edwards et al, 2014),
and the potential use of carbon capture and storage for process emissions
(Kheshgi and Prince, 2005; Luckow et al, 2010). Finally, the analysis
provided here assumes current estimates of crop growth and conversion;
future advances in crop and conversion technology could improve the
prospects for bioethanol from each of the crops (Edmonds et al., 1996;
NRC, 2011), and future climate change can also affect the growth of each
crop and its consequent bioethanol yield in different ways.

4 Conclusion and discussion

The prospect of producing bioethanol, particularly from high-yield
energy grasses, has motivated both a broad set of studies of biofuel’s role
in addressing climate change as well as regulations to encourage their
use. That prospect is better informed by estimates of the potential
bioethanol yield from the energy crops being envisioned—the objective
of this study—than by estimates of biomass yield. This study examines
the potential bioethanol yield of corn and three energy crops
(Miscanthus, Alamo, and Cave-in-Rock switchgrass) in the Central
and Eastern United States. To accomplish this, a state-of-the-art crop
growth model is used to estimate the biomass yield for the period
1980-2019, which is then coupled with estimates of crop-to-bioethanol
conversion efficiency from recent practice and bioethanol plant design
to find the following key conclusions: Each of crop considered has
regions where that crop has the highest potential bioethanol yield which
is mapped in Figure 3. The high-bioethanol yield regions, particularly in
the southern and eastern States of the Midwest, quantified in this study
tend to be where corn is currently grown well. The two energy crops
cannot grow in the western parts of the Great Plains due to extremely
low precipitation and poor soil texture, and in the upper part of the
Midwest, north central, northeastern, and northern New England due
to extreme cold conditions (Figure 2). In other regions of the study area,
the bioenergy crop yields are in between the high-yielding and zero-
yielding yield values. Although most bioenergy crops have the
maximum potential bioethanol yields across the Midwest region,
their harvest areas for high-bioethanol yields are limited, resulting in
lower bioethanol yields than corn in the region. A choice to move
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towards energy crops (as opposed to corn alone) would likely be
motivated by a balance of other factors, including economics, life-
cycle emissions, competition with food production, and land use, water
and climate extremes, N runoff, and the pace of crop and technology
improvement into the future. We find that growing bioenergy crops
improve the water quality by reducing N leaching but exacerbate water
stress by reducing runoff (Figure 5). In addition, bioenergy grasses
maintain stably high productivity under drought and heatwaves in the
year 2012 over the Midwest. Estimating other factors is beyond the
scope of this study, but their estimates would, nevertheless, be partly
dependent on potential bioethanol yield.
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Appendix A

We compute a Aq sensitivity metric for bioethanol yield for each
crop to assess the impact of the climate event. We estimate the impact
of the extreme year relative to the non-extreme years spanning the
event (2 years before and 2 years after) for the period 2007-2016. Thus,
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_ (ch - (Yo + YaZ)/z)
(ch + (Yo + YaZ)/z)

Ad (1)

where Y is any assessment model output variable, the subscript cd is
the climate drought year, b2 and a2 are the 2-year before and after
values. This yields the climate extreme effect.
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