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ABSTRACT

Random Forests (RFs) are a commonly used machine learning

method for classification and regression tasks spanning a variety

of application domains, including bioinformatics, business ana-

lytics, and software optimization. While prior work has focused

primarily on improving performance of the training of RFs, many

applications, such as malware identification, cancer prediction, and

banking fraud detection, require fast RF classification.

In this work, we accelerate RF classification on GPU and FPGA.

In order to provide efficient support for large datasets, we propose

a hierarchical memory layout suitable to the GPU/FPGA memory

hierarchy. We design three RF classification code variants based on

that layout, and we investigate GPU- and FPGA-specific considera-

tions for these kernels. Our experimental evaluation, performed on

an Nvidia Xp GPU and on a Xilinx Alveo U250 FPGA accelerator

card using publicly available datasets on the scale of millions of sam-

ples and tens of features, covers various aspects. First, we evaluate

the performance benefits of our hierarchical data structure over the

standard compressed sparse row (CSR) format. Second, we compare

our GPU implementation with cuML, a machine learning library tar-

geting Nvidia GPUs. Third, we explore the performance/accuracy

tradeoff resulting from the use of different tree depths in the RF.

Finally, we perform a comparative performance analysis of our

GPU and FPGA implementations. Our evaluation shows that, while

reporting the best performance on GPU, our code variants outper-

form the CSR baseline both on GPU and FPGA. For high accuracy

targets, our GPU implementation yields a 5-9× speedup over CSR,

and up to a 2× speedup over Nvidia’s cuML library.
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1 INTRODUCTION

Random Forests (RFs) are a popular machine learning method for

classification and regression and are widely used in various ap-

plication domains such as business analysis, advertising systems,

software optimization and bioinformatics [4, 11, 20]. RFs are an

ensemble method that uses a set of trained trees to perform a pre-

diction. Given an input query, the classification is done by first

fitting the query information to each tree in the forest, and then

performing a majority vote or averaging the prediction results over

the trees.

The use of RFs involves training using existing sampled data and

classification on future query data. Both steps exhibit parallelism

and are suitable for hardware acceleration. During the training step,

multiple decision trees can be trained in parallel. In the classification

step, the final decision for a query is determined by traversing all

decision trees and then averaging their individual classification

results. Since queries and tree traversals are independent of each

other, they can be processed in parallel. There have been several

previous works focusing on accelerating the training of RFs [4,

11, 15, 20]. While fast training is essential for developing highly

accurate RF models in a timely fashion, fast decision making is just

as important since quick classification results are expected in many

use cases. However, there exists only a few efforts targeting the

acceleration of RF classification [10, 14, 19]. In this work, we focus

on accelerating RF classification on GPU and FPGA.

An effective implementation of RF classification on GPU involves

several challenges. First, the training step can generate large and

sparse decision trees. Sparse trees require irregular data structures,

often a performance limiting factor on GPU. In addition, large deci-

sion trees may not fit in GPU shared memory, causing expensive

off-chip memory accesses during tree traversal. Second, each query

can follow a unique traversal path for each decision tree, leading

to thread divergence. Van Essen et al. [19] tried to mitigate these

problems by placing decision trees into GPU texture and shared

memory using a compact forest ensemble. To this end, they forced
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HLS tools convert code written using popular programming lan-

guages and standards (such as C, C++ and OpenCL) into an HDL

specification that can be synthesized to an FPGA bitstream.

In this work, we use the Xilinx Vitis HLS tool to convert C++

kernels into FPGA bitstreams and the OpenCL host API to han-

dle data transfer and task enqueueing. Vitis HLS breaks the C++

kernel up into various pipeline stages, taking the target frequency

and initiation interval (II) into consideration. The II is the smallest

number of cycles that can pass before another work-item can be

entered into the pipeline. Ideally, in working with Vitis HLS, the

resulting architecture will have a deep pipeline with a low initia-

tion interval to take advantage of the pipeline parallelism unique

to FPGAs compared to CPUs and GPUs. To achieve greater par-

allelism, each execution pipeline (also called łcompute unitž) can

be replicated. The Xilinx Alveo U250 FPGA card used in this work

has four super logic regions (SLRs), an SLR being a single chip

containing lookup tables (LUTs), registers, digital signal processors

(DSPs), block RAMs (BRAMs), and UltraRAMs (URAMs). There is

interconnect logic between all SLRs to allow resource sharing, and

each SLR has its own external memory to access large data that

may not fit on the BRAM and URAM. Compute unit replication can

be done both within and across SLRs. Typically, data transferred

from the host CPU to the FPGA are stored in the FPGA’s external

memory and accessed from it.

2.3 CSR Tree Traversal and Its Bottlenecks

CSR Tree Representation A trained RF contains many decision

trees that represent different decision strategies and are indepen-

dent of each other. Without loss of generality, we discuss how a

single decision tree can be laid out in memory. A decision tree rep-

resentation needs to store two types of information: the attributes

associated with the nodes of the tree and the tree topology. For inner

nodes, the attributes are the feature identifier and the value used in

the comparison; for leaf nodes, they correspond to the associated

return value. Node attributes can be stored in arrays and directly

indexed using the corresponding node identifier. One common ap-

proach to store the tree structure on CPU is through pointer-based

representations. Pointer-based data structures, however, are not

GPU-friendly, as pointer-chasing leads to poor performance on

GPU [12]. A better approach to represent the tree topology on GPU

is using the Compressed Sparse Row (CSR) format [3]. In this paper,

we use the CSR format as the baseline representation.

Fig. 2b illustrates the CSR representation of the topology of

the decision tree in Fig. 2a. For each node, array children_arr

stores the identifiers of its children, while array children_arr_idx

stores the starting index of the children within array children_arr.

For example, node 4 has two children (nodes 5 and 6), and their

identifiers 5 and 6 are stored in children_arr[6:7]. Thus, we set

children_arr_idx[4] to 6 to indicate the children of node 4 begin

at children_arr[6]. These indirect accesses to child nodes are

indicated by dotted arrows in the figure. Arrays feature_id and

value in Fig. 2c store the node attributes, and are directly indexed

by node identifier. For inner nodes, feature_id stores the feature

number n and value stores the value val used in the comparison

łf[n] < valž. For leaf nodes, feature_id is set to default value −1

and value stores the return value.

Performance Bottlenecks onGPU In this work we use Nvidia

GPUs and the CUDA programming model. Streaming multiproces-

sors (SMs) of a GPU share an L2 cache and an off-chip memory

(called global or device memory), while cores on the same SM share

fast, on-chip memory (used as L1 cache or shared memory). Two im-

portant factors affect GPU performance. First, since threads within

a warp (32 threads executing in lock-step) are forced to execute the

same instruction, control flow divergence within a warp leads to

thread serialization and core underutilization. Second, since global

memory is accessed in 128-byte transactions, the memory band-

width is best utilizedwhen threads within awarp access consecutive

128 bytes memory, allowing memory accesses issued by the warp

to be coalesced into a single transaction. On the contrary, if threads

within a warp access memory irregularly and the accesses span

across several 128-byte chunks, one transaction must be issued for

each chunk, leading to underutilization of memory bandwidth.

Fig. 1b shows RF classification requires executingmultiple queries

against the set of trees in the forest (lines 1-2). Assuming M queries

and N trees, the tree traversal function (line 3) will be executed

M*N times, once for each query-tree pair. Note these tree traversals

are independent of each other and can be performed in parallel.

When we assign GPU threads to handle different traversals, threads

in a warp can follow different paths, leading to irregular memory

accesses to all four arrays that represent a tree, harming perfor-

mance.

Performance Bottlenecks on FPGA Previous works on ac-

celerating binary tree traversal on FPGA either loaded the entire

tree into the FPGA’s on-chip memory (i.e., BRAM or URAM) and

then performed the tree traversal there [13, 14], or implemented

the tree itself into the synthesizable logic (e.g., LUTs) [10]. How-

ever, the first approach limits the maximum tree depth supported,

while the second limits the number of trees that can be traversed

in parallel before having to reprogram the FPGA with other trees.

A tree of depth 30, for example, would require 4.2GB of on-chip

memory. The Xilinx Alveo U250 FPGA card used in this work only

supports 13.5MB per SLR. In practice, this FPGA would only be

able to support storing a tree up to a tree depth of around 18 or

19 depending on additional resource utilization within the kernel,

which is insufficient for this work as tested trees can scale up to a

depth of 35. In addition, the number of queries processed (up to 1.5

million or more) in this work also prevents storing all query data

in on-chip memory and instead requires the data to be stored in

external memory along with the tree data structures. To be able to

process such a large amount of trees and queries, we need to design

an FPGA implementation that can process any size tree and any

number of queries as long as they can fit in the FPGA’s 16GB of ex-

ternal memory. Splitting each tree into subtrees helps in producing

a faster design than the baseline CSR version as it results in fewer

external memory accesses to the trees, but memory accesses for all

other data structures must be considered when analyzing trade-offs

between subtree buffering, pipeline depth/initiation interval, and

memory access latency as discussed in Section 3.2.
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memory accesses across the two sections, with the first section’s

qt2s accesses coalesced and the second section’s qt(d − s) irregular.

3.2.1 GPU-specific considerations. In all GPU code variants, queries

are assigned to threads and processed independently.

Independent GPU kernel Threads run in lock-step with the

threads of their warp on GPU and for random forest classification,

independent traversal can lead to high degrees of branch divergence

within a warp. A thread may finish traversing a tree or subtree

with their assigned query before another thread in the same warp,

lowering SM utilization and data-reuse. A thread may request a

subtree previously accessed by another thread, but a cache eviction

could have occurred between the two accesses. Additionally, since

all nodes reside on global memory, threads must either access global

memory or rely on limited caching with a high number of cache

evictions due to irregular traversal across threads. However, the

independent GPU kernel does ensure that threads do not have to

load all subtrees into on-chip memory, a process that can be costly if

many subtrees are never visited. Upon evaluation of loading queries

in shared memory versus leaving queries in global memory, we

found no significant difference in performance since node accesses

remain the primary bottleneck.

Collaborative GPU kernel The collaborative kernel can bet-

ter leverage memory coalescing and shared memory resources

available on GPU compared to the independent kernel. Threads

cooperatively load subtrees into shared memory through accessing

adjacent data elements, leading to a coalesced access in a warp.

Threads also traverse the tree in lock-step and visit every subtree

in a tree across all queries, unless no threads in the warp need to

visit the subtree. To accommodate subtree batching, threads must

store the next subtree to visit for a query if the subtree is in the next

batch. Figure 4 indicates that all queries mapped to threads visit

each subtree and cannot advance until all threads in the block have

completed the tree. The greatest disadvantage of this variant is star-

vation that can occur if many threads in a warp must wait for a few

threads to finish subtree traversal. Queries may not visit a subtree

but still must load the subtree into shared memory. Evaluating the

collaborative GPU kernel on the three datasets yields a slowdown of

10 − 20× compared to the independent variant, thus we focus only

on independent and hybrid kernels in the experimental evaluation.

Hybrid GPU kernel The hybrid GPU kernel presents two sig-

nificant advantages over the independent and collaborative kernels:

1. leveraging memory coalescing and shared memory and 2. re-

ducing branch divergence. Loading the root subtree of a tree can

be done on a block-level, where adjacent threads access adjacent

elements of the root subtree to coalesce global memory requests,

allowing for better utilization of the available global memory band-

width. In addition, on GPU shared memory has significantly lower

latency compared to global memory. Furthermore, threads in a

warp traverse each tree together since they all rely on accessing

the root subtree nodes at the same time. For subsequent subtrees,

threads need not visit every subtree and only must wait until all

other threads have completed traversing the tree within a thread-

block. Larger root subtrees further increase the degree of memory

coalescing and shared memory accesses with the main limit being

the size of shared memory, 48 KB for the GPU used in the exper-

imental evaluation. In the experimental evaluation, the effects of

using the hybrid kernel compared to the independent kernel are

reported with respect to global memory loads and branch efficiency

(ratio of uniform control flow decisions to all branches).

Other optimizations tested Several additional optimizations

have been tested, all yielding either no effect or slowdown of 2-10×

relative to the independent variant across three ML datasets. These

optimizations include: 1) using K-Means clustering to place trees

accessing similar features adjacent to each other in the memory

layout, 2) assigning each thread-block one tree to traverse for all

queries, and 3) modifying the collaborative variant so that each

thread is assigned a query first, then batches of subtrees are loaded

into shared memory for traversal. Optimization 1, aimed at promot-

ing data locality, did not yield any significant performance benefit

while Optimizations 2 and 3, aimed at promoting data re-use, re-

sulted in significant slowdown relative to the independent variant.

3.2.2 FPGA-specific considerations. In the FPGA kernels, queries

are processed sequentially, and parallelism is enabled through

pipelining. We recall that the pipeline efficiency is defined by the

initiation interval (II), which indicates the number of clock cycles be-

tween two consecutive work-items entering the pipeline. Therefore,

while implementing similar iterative structures as the pseudocode

of Fig. 4, we focused on reorganizing the memory access patterns

to achieve a smaller initiation interval (II) on the innermost loop.

On the more efficient code variants (the independent and hybrid

ones), we implemented compute unit (CU) replication with multi-

ple SLRs in order to add a level of parallelism on top of pipelining

while fully utilizing the available external memory bandwidth. We

remind that CU replication creates multiple copies of the execution

pipeline on a single fabric (aka an SLR), and multi-SLR replicates

those copies across several SLRs. Each SLR has its own external

memory, so replicating across SLRs won’t impact external memory

contention the same way replicating within an SLR will where each

CU will have to compete for external memory transfers. In practice,

performing CU and SLR replication increases throughput as each

CU can manage their own set of work-items dispatched to it by the

host. Memory stalling from external memory contention and lower

frequency must also be considered when performing replication,

and the impacts are discussed more in depth in Section 4.4.

Independent kernel The high latency of the off-chip memory

where the tree data structures are located leads to memory stalls,

which, in turn, translate into a high II (the minimum number of

cycles a new work-item can enter the pipeline) and low pipeline

efficiency. To alleviate this problem, we stored the query features

into BRAM. This reduced the II of the subtree traversal loop from

147 cycles to 76 cycles. However, the II cannot be reduced any

further due to a RAW dependency on the variable tracking the

current node.

Collaborative kernel In this implementation, each subtree is

burst loaded into low latency on-chip memory (BRAM and URAM)

and processed on all queries before the next subtree is accessed.

Because the burst version loads most of the data structures into

low-latency BRAM/URAM (except for query data such as its current

subtree, node, and features), we were able to achieve an II of 3 cycles

for the subtree traversal loop. We recall that each query has to be

sent through the subtree pipeline even if it does not traverse the

current subtree, leaving empty pipeline stages. This leads to reduced
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10× higher than GPUs. For this work, the entire tree must fit within

the FPGA on-chip memory to provide such speedups.

These prior works require that entire trees fit in the relatively

small on-chip memory, a limitation that our work has aimed to

remove. The hierarchical representation still enables the use of fast

on-chip memory, however, the tree is partitioned into portions that

fit in this level of the memory hierarchy. As such, forests are able to

grow trees to be far deeper than the imposed limits of prior works

to meet high accuracy targets while improving performance.

6 CONCLUSION

In this work, we have proposed and evaluated a novel memory

layout for random forest inference across two platforms: GPU and

FPGA. We have designed and tested three kernels that leverage

the memory layout and accelerate random forest inference for

hundreds of thousands to millions of queries. For GPU, the hybrid

kernel variant outperformed CSR and cuML the greatest, especially

for larger subtree depths. Utilizing shared memory in the hybrid

version suits both the cache-friendly nature of the hierarchical

layout as well as the need for fast node value accesses. On FPGA,

the independent version was 109.5× faster than the CSR version

and outperformed the hybrid version when full scalability was

realized. Despite this, FPGA still trails GPU due to the nature of

the algorithm inhibiting deep pipelining at a low initiation interval

and GPU having a much higher bandwidth and clock frequency.

For both, increasing both subtree depth and root subtree depth

improved inference time.
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