Accelerating Random Forest Classification
on GPU and FPGA

Milan Shah
North Carolina State University
Raleigh, NC, USA
mkshah5@ncsu.edu

Marco Minutoli
Pacific Northwest National
Laboratory
Richland, WA, USA
marco.minutoli@pnnl.gov

ABSTRACT

Random Forests (RFs) are a commonly used machine learning
method for classification and regression tasks spanning a variety
of application domains, including bioinformatics, business ana-
lytics, and software optimization. While prior work has focused
primarily on improving performance of the training of RFs, many
applications, such as malware identification, cancer prediction, and
banking fraud detection, require fast RF classification.

In this work, we accelerate RF classification on GPU and FPGA.
In order to provide efficient support for large datasets, we propose
a hierarchical memory layout suitable to the GPU/FPGA memory
hierarchy. We design three RF classification code variants based on
that layout, and we investigate GPU- and FPGA-specific considera-
tions for these kernels. Our experimental evaluation, performed on
an Nvidia Xp GPU and on a Xilinx Alveo U250 FPGA accelerator
card using publicly available datasets on the scale of millions of sam-
ples and tens of features, covers various aspects. First, we evaluate
the performance benefits of our hierarchical data structure over the
standard compressed sparse row (CSR) format. Second, we compare
our GPU implementation with cuML, a machine learning library tar-
geting Nvidia GPUs. Third, we explore the performance/accuracy
tradeoff resulting from the use of different tree depths in the RF.
Finally, we perform a comparative performance analysis of our
GPU and FPGA implementations. Our evaluation shows that, while
reporting the best performance on GPU, our code variants outper-
form the CSR baseline both on GPU and FPGA. For high accuracy
targets, our GPU implementation yields a 5-9x speedup over CSR,
and up to a 2X speedup over Nvidia’s cuML library.

CCS CONCEPTS

« Computing methodologies — Massively parallel algorithms.

KEYWORDS
random forest classification, GPU, FPGA

ACM acknowledges that this contribution was authored or co-authored by an employee,
contractor, or affiliate of the United States government. As such, the United States
government retains a nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for government purposes only.

ICPP °22, August 29-September 1, 2022, Bordeaux, France

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9733-9/22/08...$15.00
https://doi.org/10.1145/3545008.3545067

Reece Neff
North Carolina State University
Raleigh, NC, USA
rwneff@ncsu.edu

Antonino Tumeo
Pacific Northwest National
Laboratory
Richland, WA, USA
Antonino.Tumeo@pnnl.gov

Hancheng Wu

North Carolina State University
Raleigh, NC, USA
hwulé6@ncsu.edu

Michela Becchi
North Carolina State University
Raleigh, NC, USA
mbecchi@ncsu.edu

ACM Reference Format:

Milan Shah, Reece Neff, Hancheng Wu, Marco Minutoli, Antonino Tumeo,
and Michela Becchi. 2022. Accelerating Random Forest Classification on
GPU and FPGA. In 51st International Conference on Parallel Processing (ICPP
'22), August 29-September 1, 2022, Bordeaux, France. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3545008.3545067

1 INTRODUCTION

Random Forests (RFs) are a popular machine learning method for
classification and regression and are widely used in various ap-
plication domains such as business analysis, advertising systems,
software optimization and bioinformatics [4, 11, 20]. RFs are an
ensemble method that uses a set of trained trees to perform a pre-
diction. Given an input query, the classification is done by first
fitting the query information to each tree in the forest, and then
performing a majority vote or averaging the prediction results over
the trees.

The use of RFs involves training using existing sampled data and
classification on future query data. Both steps exhibit parallelism
and are suitable for hardware acceleration. During the training step,
multiple decision trees can be trained in parallel. In the classification
step, the final decision for a query is determined by traversing all
decision trees and then averaging their individual classification
results. Since queries and tree traversals are independent of each
other, they can be processed in parallel. There have been several
previous works focusing on accelerating the training of RFs [4,
11, 15, 20]. While fast training is essential for developing highly
accurate RF models in a timely fashion, fast decision making is just
as important since quick classification results are expected in many
use cases. However, there exists only a few efforts targeting the
acceleration of RF classification [10, 14, 19]. In this work, we focus
on accelerating RF classification on GPU and FPGA.

An effective implementation of RF classification on GPU involves
several challenges. First, the training step can generate large and
sparse decision trees. Sparse trees require irregular data structures,
often a performance limiting factor on GPU. In addition, large deci-
sion trees may not fit in GPU shared memory, causing expensive
off-chip memory accesses during tree traversal. Second, each query
can follow a unique traversal path for each decision tree, leading
to thread divergence. Van Essen et al. [19] tried to mitigate these
problems by placing decision trees into GPU texture and shared
memory using a compact forest ensemble. To this end, they forced



ICPP °22, August 29-September 1, 2022, Bordeaux, France

Input:

Forest { treel , tree2, ..., tree N}
Queries { queryl , query2, ..., query M}
Query { featurel, feature2, ...}

1. for each query in queries:

2 for each tree in forest:

3. tmp += tree traverse(query,tree.root);
4 query.decision = tmp < N/2? A:B;

(a) Classification of many queries using random forest

6. tree traverse(query,node):

7. if (is_leaf(node)):

8. return node.value;

9. go_left = check path(query, node);

11. if (go_left):

12. tree traverse (query,node.left());
13. else:

14. tree_traverse (query,node.right());

(b) Decision tree traversal function

Figure 1: Pseudocode of RF classification

the decision trees to be small by limiting the maximum tree depth
to 6 during the training step. However, the tree depth affects classi-
fication accuracy.

In this work, we target general RF classification without impos-
ing limitations on the size and depth of the decision trees during the
training phase. We propose several optimizations to speed up RF
classification. First, we devise a hierarchical tree data structure that
trades off the space efficiency of the compressed sparse row (CSR)
format with the time efficiency of more regular array-based repre-
sentations. Specifically, we divide each decision tree into subtrees.
The maximum depth of the subtrees is a configurable and tunable
parameter. Each subtree is populated to a complete tree, allowing
subtrees to be represented through arrays of fixed size [2]. Given
the topological characteristics of complete subtrees, node accesses
within each subtree can be performed efficiently by indexing into
the corresponding array using an arithmetic formula, thus avoiding
indirect memory accesses. We then use the CSR format to repre-
sent connections between subtrees. Second, we propose three tree
traversal code variants that differ in the parallelization approach
and memory layout. Lastly, we evaluate the performance of our
methods on an Nvidia Xp GPU and a Xilinx Alveo U250 FPGA
board. We use publicly available datasets leading to large trees, and
we factor accuracy into our analysis. On GPU, our experimental
results show a 5-9x speedup over a CSR-based implementation
and up to a 2x speedup over Nvidia’s cuML library [17]. On FPGA,
our implementation achieves a 5.5X speedup over CSR with a sin-
gle compute unit, and up to a 109.5X speedup with compute unit
replication.

2 BACKGROUND

2.1 Classification with Random Forests

Random forests (RFs) generally lead to more accurate classification
than single decision trees, since a single decision tree can easily
overfit the training dataset. In Fig. 1a we show the operation of

Milan Shah, Reece Neff, Hancheng Wu, Marco Minutoli, Antonino Tumeo, and Michela Becchi

RF classification. The code assumes that M queries must be clas-
sified into two classes — A and B — using a trained forest with N
decision trees. To achieve this, for every query (line 1), the code
invokes a tree traversal function on each decision tree in the forest
(lines 2-3). The decisions made by the different trees are accumu-
lated in a temporary variable (tmp). The final classification of the
query is acquired by performing a majority vote over the results
of individual decision trees. If we assume that the tree_traverse
function returns value 0 for class A and value 1 for class B, this
can be accomplished by comparing the value of variable tmp with
N/2 (line 4). Fig. 1b shows the tree traversal pseudocode. We illus-
trate its operation on the simple decision tree shown in Fig. 2a.
During traversal, inner nodes are used to perform the comparison
that guides the traversal (visit left or right child), while leaf nodes
return a classification value. As can be seen, root node 0 includes
the comparison “f[1] < 2.5” which checks whether the value of
feature 1 is less than 2.5 (line 9). If the comparison is true, the left
child is visited next (lines 11-12), otherwise the right child is visited
next (line 13-14). If we assume that feature 1 of the query has value
1.25, the traversal goes left and reaches leaf node 1 (line 7-8). Since
node 1 returns 0, the sample query is classified as class A (line 4).

fl1]<25

(a) Example decision tree

node_id 0 1 2134 |5]|6 718
children arr idx 0 2 (2|4|6|8|8]8])8
| T ~. e~
N N NN
4 b NN, TSN a
children arr l 1 2 3 I 8 | 4 l 7 l 5 I 6 I |
= -J
(b) Tree structure with CSR
node_id 0 1 2 3 4 5 6 7 8

feature id 1 -1 4 8 20 -1 -1 -1 -1

value 25 0 05| 54|88 1 0 0 1

(c) Node attributes with CSR

Figure 2: Decision tree with representation in CSR format

2.2 High Level Synthesis for FPGA

Traditionally, programming FPGAs has required logic design exper-
tise and the mastering of hardware description languages (HDLs),
such as VHDL and Verilog. This has added a barrier to the adoption
of FPGAs. To increase ease of programming and reduce develop-
ment time, both industry and academia have been involved in
efforts focused on providing high-level synthesis (HLS) capabilities.



Accelerating Random Forest Classification
on GPU and FPGA

HLS tools convert code written using popular programming lan-
guages and standards (such as C, C++ and OpenCL) into an HDL
specification that can be synthesized to an FPGA bitstream.

In this work, we use the Xilinx Vitis HLS tool to convert C++
kernels into FPGA bitstreams and the OpenCL host API to han-
dle data transfer and task enqueueing. Vitis HLS breaks the C++
kernel up into various pipeline stages, taking the target frequency
and initiation interval (IT) into consideration. The II is the smallest
number of cycles that can pass before another work-item can be
entered into the pipeline. Ideally, in working with Vitis HLS, the
resulting architecture will have a deep pipeline with a low initia-
tion interval to take advantage of the pipeline parallelism unique
to FPGAs compared to CPUs and GPUs. To achieve greater par-
allelism, each execution pipeline (also called “compute unit”) can
be replicated. The Xilinx Alveo U250 FPGA card used in this work
has four super logic regions (SLRs), an SLR being a single chip
containing lookup tables (LUTs), registers, digital signal processors
(DSPs), block RAMs (BRAMs), and UltraRAMs (URAMs). There is
interconnect logic between all SLRs to allow resource sharing, and
each SLR has its own external memory to access large data that
may not fit on the BRAM and URAM. Compute unit replication can
be done both within and across SLRs. Typically, data transferred
from the host CPU to the FPGA are stored in the FPGA’s external
memory and accessed from it.

2.3 CSR Tree Traversal and Its Bottlenecks

CSR Tree Representation A trained RF contains many decision
trees that represent different decision strategies and are indepen-
dent of each other. Without loss of generality, we discuss how a
single decision tree can be laid out in memory. A decision tree rep-
resentation needs to store two types of information: the attributes
associated with the nodes of the tree and the tree topology. For inner
nodes, the attributes are the feature identifier and the value used in
the comparison; for leaf nodes, they correspond to the associated
return value. Node attributes can be stored in arrays and directly
indexed using the corresponding node identifier. One common ap-
proach to store the tree structure on CPU is through pointer-based
representations. Pointer-based data structures, however, are not
GPU-friendly, as pointer-chasing leads to poor performance on
GPU [12]. A better approach to represent the tree topology on GPU
is using the Compressed Sparse Row (CSR) format [3]. In this paper,
we use the CSR format as the baseline representation.

Fig. 2b illustrates the CSR representation of the topology of
the decision tree in Fig. 2a. For each node, array children_arr
stores the identifiers of its children, while array children_arr_idx
stores the starting index of the children within array children_arr.
For example, node 4 has two children (nodes 5 and 6), and their
identifiers 5 and 6 are stored in children_arr[6:7]. Thus, we set
children_arr_idx[4] to 6 to indicate the children of node 4 begin
at children_arr[6]. These indirect accesses to child nodes are
indicated by dotted arrows in the figure. Arrays feature_id and
value in Fig. 2c store the node attributes, and are directly indexed
by node identifier. For inner nodes, feature_id stores the feature
number n and value stores the value val used in the comparison
“f[n] < val”. For leaf nodes, feature_id is set to default value —1
and value stores the return value.

ICPP ’22, August 29-September 1, 2022, Bordeaux, France

Performance Bottlenecks on GPU In this work we use Nvidia
GPUs and the CUDA programming model. Streaming multiproces-
sors (SMs) of a GPU share an L2 cache and an off-chip memory
(called global or device memory), while cores on the same SM share
fast, on-chip memory (used as L1 cache or shared memory). Two im-
portant factors affect GPU performance. First, since threads within
a warp (32 threads executing in lock-step) are forced to execute the
same instruction, control flow divergence within a warp leads to
thread serialization and core underutilization. Second, since global
memory is accessed in 128-byte transactions, the memory band-
width is best utilized when threads within a warp access consecutive
128 bytes memory, allowing memory accesses issued by the warp
to be coalesced into a single transaction. On the contrary, if threads
within a warp access memory irregularly and the accesses span
across several 128-byte chunks, one transaction must be issued for
each chunk, leading to underutilization of memory bandwidth.

Fig. 1b shows RF classification requires executing multiple queries
against the set of trees in the forest (lines 1-2). Assuming M queries
and N trees, the tree traversal function (line 3) will be executed
M*N times, once for each query-tree pair. Note these tree traversals
are independent of each other and can be performed in parallel.
When we assign GPU threads to handle different traversals, threads
in a warp can follow different paths, leading to irregular memory
accesses to all four arrays that represent a tree, harming perfor-
mance.

Performance Bottlenecks on FPGA Previous works on ac-
celerating binary tree traversal on FPGA either loaded the entire
tree into the FPGA’s on-chip memory (i.e., BRAM or URAM) and
then performed the tree traversal there [13, 14], or implemented
the tree itself into the synthesizable logic (e.g., LUTs) [10]. How-
ever, the first approach limits the maximum tree depth supported,
while the second limits the number of trees that can be traversed
in parallel before having to reprogram the FPGA with other trees.
A tree of depth 30, for example, would require 4.2GB of on-chip
memory. The Xilinx Alveo U250 FPGA card used in this work only
supports 13.5MB per SLR. In practice, this FPGA would only be
able to support storing a tree up to a tree depth of around 18 or
19 depending on additional resource utilization within the kernel,
which is insufficient for this work as tested trees can scale up to a
depth of 35. In addition, the number of queries processed (up to 1.5
million or more) in this work also prevents storing all query data
in on-chip memory and instead requires the data to be stored in
external memory along with the tree data structures. To be able to
process such a large amount of trees and queries, we need to design
an FPGA implementation that can process any size tree and any
number of queries as long as they can fit in the FPGA’s 16GB of ex-
ternal memory. Splitting each tree into subtrees helps in producing
a faster design than the baseline CSR version as it results in fewer
external memory accesses to the trees, but memory accesses for all
other data structures must be considered when analyzing trade-offs
between subtree buffering, pipeline depth/initiation interval, and
memory access latency as discussed in Section 3.2.



ICPP ’22, August 29-September 1, 2022, Bordeaux, France

Subtree 0

Subtree 2

Subtree 1

(a) Tree hierarchy

subtree_id 0 1 2

Node 5 in subtree 0 connects to subtree | and 2.

It’s the third node at the bottom level of subtree 0,

connection_offset [ SUURSICNY IO thus subtree IDs 1 and 2 are put at indices 4 and 5

v
subtree_connection | null | null | null | null

subtree_id 0 1 2 3
The subtree node offset array stores the
offsets to feature id and value arrays,
marking the node 0 of cach subtree

subtree_node_offset | 0 7 10 11

Y~
I
/
/

—a = =

feature_id 1 -1 4 | null | nul| 8 -1 20 -1 -1 -1 JI

value 2.8 0 0.5 | null | null | 5.4 1 8.8 1 0 0 :

-

subtree_node_id 0 1 2 3 4 B 6 0 1 2 0 :

-

old node_id 0 1 2 n/a | nfa 3 8 4 5 6 7 J|
(b) Extended CSR format

Figure 3: Hierarchical tree representation for the tree in
Fig. 2a (maximum subtree depth set to 3)

3 HIERARCHICAL RANDOM FOREST
CLASSIFICATION

We propose a hierarchical decision tree traversal approach aimed to
improve classification speed by limiting irregular memory accesses
and improving data locality within each traversal. To this end, we
first propose a hierarchical tree format aimed to overcome the
shortcomings of the CSR layout. Then, we introduce three RF clas-
sification code variants that use the proposed tree layout and differ
in their traversal approach and their way to map decision trees to
on-chip and off-chip memory. Finally, we implement the proposed
code variants on GPU and FPGA, and we discuss platform-specific
considerations.

3.1 Hierarchical Decision Tree Layout

We recall that, when the tree topology is encoded using the CSR
format, calculating the identifiers of the children of a node in-
volves indirect indexing into array children_arr through array
children_arr_idx, leading to two memory accesses, both poten-
tially irregular, per child node. In our design, each decision tree
is divided into triangle-shaped subtrees. The maximum depth of
the subtrees is defined as a tuning parameter. We split the tree into
subtrees recursively starting from the root node; for each subtree,
we stop when either the maximum subtree depth is reached or there
is no node at the next depth to be included. We enforce each subtree

Milan Shah, Reece Neff, Hancheng Wu, Marco Minutoli, Antonino Tumeo, and Michela Becchi

to be a complete binary tree, where all levels, except the last, are
completely filled, and the last level has all its nodes to the left side.
As complete binary trees, subtrees can be represented through ar-
rays of fixed size [2]. In some cases, this constraint requires adding
unused nodes with null values. In Fig. 3a we show the hierarchical
structure corresponding to the decision tree in Fig. 2a, assuming a
maximum subtree depth of 3. As can be seen, subtree 0 has been
expanded with two nodes — nodes 3 and 4 (dotted) — to become a
complete binary tree. Since subtree 0 has reached the maximum
subtree depth, two subtrees are spawned from the children of its
leaf nodes. The use of complete binary tree is key to the design, as it
enables the indirect addressing-free array-based layout for subtrees
described below. For indexing purposes, the nodes in each subtree
are relabeled in breadth first order (starting from node identifier 0).

Fig. 3b shows the memory layout of the transformed hierar-
chical tree. In the figure, we highlight array elements belonging
to different subtrees in different colors (subtree 0: green, subtree
1: blue, subtree 2: orange). We illustrate our proposed memory
layout from bottom to top. The feature_id and value, which
store the node attributes, are indexed through the node identifiers
within the subtrees (subtree_node_id). As a reference, in the fig-
ure we also show the original node identifiers from Fig. 2b (old
node_id). We note that the added nodes 3 and 4 of subtree 0 have
been associated null attributes. Array subtree_node_offset al-
lows indexing into the above arrays. Specifically, it has an entry
per subtree, each storing the offset to root node 0 of that sub-
tree within the feature_id and value arrays (in the figure, those
offsets are also highlighted using dashed arrows). Finally, arrays
connection_offset and subtree_connection store the intercon-
nections among subtrees. Specifically, subtree_connection has
two entries for each leaf node of a subtree, storing the identifiers
of the left and right subtrees that node is connected to (if any). For
example, subtree 0 has 4 leaf nodes (note that entries for leaf node
6 can be omitted). The connection_offset array has an entry per
subtree, each pointing to the first leaf node of the subtree within
the subtree_connection array (again, in the figure those offsets
are also highlighted through dashed arrows).

We note that this approach to store subtree interconnections
is similar to the CSR format, and it leads to irregular memory
accesses as well. However, accesses to arrays connection_offset
and subtree_connection are only necessary when the traversal
moves from a subtree to another, significantly reducing the irregular
memory accesses compared with the CSR encoding. If a node n
is an inner node of a subtree, its left and right child identifiers
are 2n + 1 and 2n + 2, respectively. On the other hand, leaf nodes
of subtrees connect to the root nodes of different subtrees down
the path. For example, node 5 in subtree 0 connects to the root
nodes of subtrees 1 and 2. In this case, determining the children of
node 5 of subtree 0 requires accessing the connection_offset and
subtree_connection arrays to acquire topological information.
The selection of the maximum subtree depth involves a space-
time tradeoff: deeper subtrees can potentially require more extra
nodes to be made complete, but they lead to fewer indirect indexing
operations. We study this tradeoff in the evaluation section.



Accelerating Random Forest Classification
on GPU and FPGA

Collaborative

Independent

/
AA*

forall queries Q;

forall trees T;

nextSTy = STy
while (nextST;!=NULL)

ql,q2,93

forall trees T;
nextSTy=ST;g
forall subtree batches Bj,
load Bj; on-chip
forall ST;, in Bjy
forall queries Q;
if (nextST4==STy;)
n xt S =
e (STip, Qy)
Hybrid
forall trees T;

load ST;, on-chip
forall queries Q;

Off-chip: Blue
On-chip: Green

traverse (STiq, Q1) ;
/ while(nextSTj!=NULL)

AA~” —

q2
Figure 4: Hierarchical RF classification: independent, collab-
orative, and hybrid code variants

3.2 REF Classification Code Variants

We recall that, given M queries and N trees, the tree_traverse
function shown in Fig. 1b needs to be executed M * N times. Since
these tree traversals are independent of each other, they can be
performed in parallel. In this section, we propose three code vari-
ants differing in the mapping of decision trees to memory and in
the traversal approach. The proposed kernels are based on the hi-
erarchical tree layout described above and vary in their ability to
leverage the GPU and FPGA platforms. Fig. 4 illustrates the traver-
sal method, memory mapping, and pseudocode of the three kernels:
independent, collaborative, and hybrid code variants. In the figure,
each tree is composed of its subtrees, with blue subtrees accessed
from off-chip memory and green subtrees accessed from on-chip
memory. Across all variants, traversal within a single subtree re-
mains the same: 1. Begin at node 0 of the subtree 2. Check query’s
feature value against node feature value to determine if next node is
left or right child 3. If next node is a subtree leaf, fetch next subtree.
If next node is a tree leaf, write result 4. If next node is not a leaf,
repeat steps 2-3 for next node. For memory access estimates, g = #
queries, s = subtree depth, d = tree depth, and ¢t = # trees.
Independent code variant The independent code variant (first
in Fig. 4) processes subtrees belonging to the same tree in an itera-
tive fashion. Each query of the test set is mapped to a single thread
(or work-item) and threads independently traverse each tree for
their assigned query. The trees, in the form of their subtree nodes
and subtree connections, are located on off-chip memory. Fig. 4
highlights how three threads, each assigned one query (q1, q2, or
q3), traverse a tree. Threads that reach the leaf node of a subtree (or

ICPP °22, August 29-September 1, 2022, Bordeaux, France

tree) can progress to traverse their next subtree. This variant can
lead to a high degree of divergence among threads, with control
flow varying greatly depending on a query’s feature values. Since
query traversals between subtrees are undetermined, the opportu-
nity for data-reuse is limited. Query data can be stored on either
off-chip or on-chip memory. The independent code variant per-
forms roughly gtd (worst case scenario) irregular global memory
accesses.

Collaborative code variant In the independent code variant,
subtrees are accessed from off-chip memory and re-accessed for
each query. To alleviate this need, we introduce a code variant that
batch loads the subtrees into on-chip memory, and then lets the
queries traverse the batched subtrees. The subtree access pattern
and pseudocode are shown in Fig. 4. Note that all queries are con-
sidered in each subtree, even if the query is not “present” in the
subtree (i.e., the query does not need to traverse the subtree). The
if statement at the end of the pseudocode ensures the query is not
processed if it is not present in the current subtree. The maximum
subtree depth s that can be processed is s = log, %, where M is the
amount of on-chip memory available in bits and 48 is the required
number of bits to store a node’s attributes. While this ensures each
subtree is only accessed from off-chip memory once instead of sev-
eral times, going deeper into the tree results in fewer queries being
processed. This leads to wasted cycles checking on non-present
queries in the subtree. In the worst case, this variant will result

in approximately thS(L%J”) off-chip memory accesses; however,
these accesses are coalesced as the arrays containing subtree data
are contiguous.

Hybrid code variant To overcome the control divergence and
slow memory accesses of the independent code variant while reduc-
ing wasted work present in the collaborative variant, we propose
the hybrid code variant (third in Fig. 4). For each tree, this code
variant begins the traversal process by loading the first subtree, or
“root subtree”, into on-chip memory. We note that, for every tree,
every query must traverse the root subtree. As such, cooperatively
loading the root subtree into on-chip memory can lead to data-reuse
across queries. Threads traverse the root subtree in a synchronized
fashion and traverse subsequent subtrees in accordance with their
query’s path. Once all queries have traversed a tree, the root subtree
of the next tree is loaded into on-chip memory and traversal begins
again. When creating the hierarchical memory layout, we explored
the performance of the hybrid variant with larger root subtrees to
increase the portion of a tree that requires only on-chip memory
accesses. We note that decision trees tend to be denser closer to the
root node, thus larger root subtrees do not have to allocate as many
unused nodes to make the root subtree complete. Increasing the size
of the root subtree, as opposed to loading the first several subtree
levels, eliminates accessing the subtree connection arrays while
simultaneously enabling high bandwidth node accesses. The great-
est constraint on the size of the root subtree is the size of on-chip
memory. A root subtree with depth RSD has 2RSP — 1 nodes, each
with an associated value, feature ID, and label indicating if the node
is a leaf, while on-chip memory is typically small relative to off-chip
memory. The effects of increasing the depth of the root subtree are
explored in the experimental evaluation section. The hybrid code
variant, in the worst case, has approximately qt2° + qt(d — s) global



ICPP °22, August 29-September 1, 2022, Bordeaux, France

memory accesses across the two sections, with the first section’s
qt2° accesses coalesced and the second section’s gt(d — s) irregular.

3.2.1  GPU-specific considerations. In all GPU code variants, queries
are assigned to threads and processed independently.

Independent GPU kernel Threads run in lock-step with the
threads of their warp on GPU and for random forest classification,
independent traversal can lead to high degrees of branch divergence
within a warp. A thread may finish traversing a tree or subtree
with their assigned query before another thread in the same warp,
lowering SM utilization and data-reuse. A thread may request a
subtree previously accessed by another thread, but a cache eviction
could have occurred between the two accesses. Additionally, since
all nodes reside on global memory, threads must either access global
memory or rely on limited caching with a high number of cache
evictions due to irregular traversal across threads. However, the
independent GPU kernel does ensure that threads do not have to
load all subtrees into on-chip memory, a process that can be costly if
many subtrees are never visited. Upon evaluation of loading queries
in shared memory versus leaving queries in global memory, we
found no significant difference in performance since node accesses
remain the primary bottleneck.

Collaborative GPU kernel The collaborative kernel can bet-
ter leverage memory coalescing and shared memory resources
available on GPU compared to the independent kernel. Threads
cooperatively load subtrees into shared memory through accessing
adjacent data elements, leading to a coalesced access in a warp.
Threads also traverse the tree in lock-step and visit every subtree
in a tree across all queries, unless no threads in the warp need to
visit the subtree. To accommodate subtree batching, threads must
store the next subtree to visit for a query if the subtree is in the next
batch. Figure 4 indicates that all queries mapped to threads visit
each subtree and cannot advance until all threads in the block have
completed the tree. The greatest disadvantage of this variant is star-
vation that can occur if many threads in a warp must wait for a few
threads to finish subtree traversal. Queries may not visit a subtree
but still must load the subtree into shared memory. Evaluating the
collaborative GPU kernel on the three datasets yields a slowdown of
10 — 20X compared to the independent variant, thus we focus only
on independent and hybrid kernels in the experimental evaluation.

Hybrid GPU kernel The hybrid GPU kernel presents two sig-
nificant advantages over the independent and collaborative kernels:
1. leveraging memory coalescing and shared memory and 2. re-
ducing branch divergence. Loading the root subtree of a tree can
be done on a block-level, where adjacent threads access adjacent
elements of the root subtree to coalesce global memory requests,
allowing for better utilization of the available global memory band-
width. In addition, on GPU shared memory has significantly lower
latency compared to global memory. Furthermore, threads in a
warp traverse each tree together since they all rely on accessing
the root subtree nodes at the same time. For subsequent subtrees,
threads need not visit every subtree and only must wait until all
other threads have completed traversing the tree within a thread-
block. Larger root subtrees further increase the degree of memory
coalescing and shared memory accesses with the main limit being
the size of shared memory, 48 KB for the GPU used in the exper-
imental evaluation. In the experimental evaluation, the effects of

Milan Shah, Reece Neff, Hancheng Wu, Marco Minutoli, Antonino Tumeo, and Michela Becchi

using the hybrid kernel compared to the independent kernel are
reported with respect to global memory loads and branch efficiency
(ratio of uniform control flow decisions to all branches).

Other optimizations tested Several additional optimizations
have been tested, all yielding either no effect or slowdown of 2-10x
relative to the independent variant across three ML datasets. These
optimizations include: 1) using K-Means clustering to place trees
accessing similar features adjacent to each other in the memory
layout, 2) assigning each thread-block one tree to traverse for all
queries, and 3) modifying the collaborative variant so that each
thread is assigned a query first, then batches of subtrees are loaded
into shared memory for traversal. Optimization 1, aimed at promot-
ing data locality, did not yield any significant performance benefit
while Optimizations 2 and 3, aimed at promoting data re-use, re-
sulted in significant slowdown relative to the independent variant.

3.2.2  FPGA-specific considerations. In the FPGA kernels, queries
are processed sequentially, and parallelism is enabled through
pipelining. We recall that the pipeline efficiency is defined by the
initiation interval (IT), which indicates the number of clock cycles be-
tween two consecutive work-items entering the pipeline. Therefore,
while implementing similar iterative structures as the pseudocode
of Fig. 4, we focused on reorganizing the memory access patterns
to achieve a smaller initiation interval (II) on the innermost loop.
On the more efficient code variants (the independent and hybrid
ones), we implemented compute unit (CU) replication with multi-
ple SLRs in order to add a level of parallelism on top of pipelining
while fully utilizing the available external memory bandwidth. We
remind that CU replication creates multiple copies of the execution
pipeline on a single fabric (aka an SLR), and multi-SLR replicates
those copies across several SLRs. Each SLR has its own external
memory, so replicating across SLRs won’t impact external memory
contention the same way replicating within an SLR will where each
CU will have to compete for external memory transfers. In practice,
performing CU and SLR replication increases throughput as each
CU can manage their own set of work-items dispatched to it by the
host. Memory stalling from external memory contention and lower
frequency must also be considered when performing replication,
and the impacts are discussed more in depth in Section 4.4.

Independent kernel The high latency of the off-chip memory
where the tree data structures are located leads to memory stalls,
which, in turn, translate into a high II (the minimum number of
cycles a new work-item can enter the pipeline) and low pipeline
efficiency. To alleviate this problem, we stored the query features
into BRAM. This reduced the II of the subtree traversal loop from
147 cycles to 76 cycles. However, the II cannot be reduced any
further due to a RAW dependency on the variable tracking the
current node.

Collaborative kernel In this implementation, each subtree is
burst loaded into low latency on-chip memory (BRAM and URAM)
and processed on all queries before the next subtree is accessed.
Because the burst version loads most of the data structures into
low-latency BRAM/URAM (except for query data such as its current
subtree, node, and features), we were able to achieve an Il of 3 cycles
for the subtree traversal loop. We recall that each query has to be
sent through the subtree pipeline even if it does not traverse the
current subtree, leaving empty pipeline stages. This leads to reduced



Accelerating Random Forest Classification
on GPU and FPGA

Table 1: Machine Learning Datasets

Dataset Num Samples Num Features Source
Covertype 581,012 54 UCI
Susy 3,000,000 18 UCI
Higgs 2,750,000 28 UCI

efficiency, and the efficiency decreases when moving deeper in the
tree. In addition, subtree batching adds the startup overhead of
loading each subtree before processing all queries. Thus, despite
the deep tree traversal pipeline with low II, the collaborative code
variant resulted to be the least efficient.

Hybrid kernel The hybrid design consists of two stages: (1)
processing the root subtree stored in on-chip memory (BRAM and
URAM), and (2) processing the remaining subtrees stored in off-chip
memory. The design allows the pipeline to retain full utilization in
stage 1, as all queries are guaranteed to traverse the root subtree
stored in on-chip memory, while the utilization drops significantly
in stage 2. On average, utilization drops to 275, where s is the
subtree depth. As discussed previously, the hybrid version results
in around qt2° + qt(d — s) global memory accesses across the two
stages, with qt2°% at an I between 1 and 3 cycles and qt(d — s) at an
II of 76 cycles.

4 EXPERIMENTAL EVALUATION

We train the forests for each of the datasets outlined in Table 1
using the scikit-learn python library [16]. Susy and Higgs [1] come
from the domain of particle physics and Covertype is a binarized
form of a dataset containing cartographic information to predict
the covertype of a wilderness forest. All three datasets are from the
UCI Machine Learning Repository [5]. The input data sets are sliced
into training set and test set with a 1:1 ratio. We generated forests
of varying maximum tree depths and number of trees to determine
forest parameters meeting accuracy targets for each dataset.

We analyze the effects of varying the maximum subtree depth in
the hierarchical layout and compare the performance of indepen-
dent and hybrid kernel variants against a CSR-based code and the
implementation in Nvidia’s open-source cuML library. Additionally,
we select the best performing subtree depth and systematically
increase the size of the root subtree, comparing against CSR and
cuML again. We evaluate how varying parameters of the hierarchi-
cal format affects the memory usage. We also evaluate compare the
GPU and FPGA performance results.

We use CUDA 11 to compile our code and test the GPU traversal
kernels on a Pascal TITAN Xp GPU, a device with 128 cores per
streaming multiprocessor (SM), 30 SMs, and a shared memory size
of 48 KB per SM. For FPGA, we created C++ kernels and synthesized
them on a Xilinx Alveo U250 FPGA with 4x16GB 2400MHz DDR4
RAM. The Alveo U250 is equipped with four Super Logic Regions
(SLRs) with combined SLR resources totaling at 2,000 36Kb Block
RAMs (BRAMs), 1,280 288Kb UltraRAMs (URAMs), 1.7 million look
up tables (LUTs), 3.5 million registers/flip-flops (FFs), and 12,228
DSP slices. The algorithms were compiled and synthesized with
Xilinx Vitis Unified Software Platform 2020.2 [9].

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Number of Trees

Covertype
Yo 10 25 50 75 100 125 150
5| 71.4% 71.2% 70.7% 70.6% 71.4% 72.3% 72.4%
= 10| 78.5% 79.6% 80.0% 80.1% 80.1% 80.4% 80.7%
% 15 81.7% 82.8% 83.0% 83.1% 83.2% 83.3% 83.3%
e 20 84.4% 85.5% 85.8% 85.9% 86.0% 86.0% 86.0%
g
= 25| 86.1% 87.3% 87.6% 87.8% 87.8% 87.8% 87.8%
] 30 | 87.0% 88.2% 88.4% 88.7% 88.7% 88.6% 88.6%
E 35| 872% 88.4% 88.6% 88.9% 88.8% 88.8% 88.8%
E 40 | 87.2% 88.5% 88.7% 88.9% 88.9% 88.8% 88.8%
45 | 87.2% 88.5% 88.7% 88.9% 88.9% 88.8% 88.8%
50| 87.2% 88.5% 88.7% 88.9% 88.9% 88.8% 88.8%
Susy Number of Trees
10 25 50 75 100 125 150
5 77.3% 77.7% 77.8% 77.8% 77.8% 71.7% 71.7%
= 10 79.3% 79.4% 79.4% 79.5% 79.4% 79.4% 79.4%
‘é- 15 79.7% 79.9% 80.0% 80.0% 80.0% 80.0% 80.0%
E 20 | 79.6% 80.0% 80.1% 80.2% 80.2% 80.2% 80.2%
8
= 25 79.2% 79.8% 80.0% 80.1% 80.2% 80.2% 80.2%
] 30 [ 78.7% 79.6% 79.9% 80.0% 80.1% 80.1% 80.1%
E 35| 785% 79.5% 79.9% 80.0% 80.0% 80.1% 80.1%
E 40 78.5% 79.5% 79.8% 79.9% 80.0% 80.1% 80.1%
45 | 78.4% 79.5% 79.8% 79.9% 80.0% 80.1% 80.1%
50 78.4% 79.5% 79.8% 79.9% 80.0% 80.1% 80.1%
Higgs Number of Trees
10 25 50 75 100 125 150
5| 67.0% 67.7% 67.8% 68.1% 67.9% 68.0% 68.3%
= 10 | 70.5% 70.9% 71.0% 71.0% 71.1% 71.1% 71.1%
‘é- 15 72.0% 72.6% 72.7% 72.8% 72.8% 72.7% 72.8%
e, 20 71.8% 72.9% 73.3% 73.5% 73.5% 73.6% 73.6%
g
= 25 71.1% 72.7% 73.4% 73.6% 73.7% 73.8% 73.9%
E 30 [ 70.3% 72.6% 73.3% 73.6% 73.8% 73.9% 73.9%
E 35 70.1% 72.5% 73.2% 73.6% 73.8% 73.9% 74.0%
E 40 [ 70.2% 72.5% 73.3% 73.7% 73.8% 73.9% 74.0%
45 | 70.2% 72.4% 73.3% 73.6% 73.7% 73.9% 73.9%
50 70.1% 72.5% 73.3% 73.6% 73.8% 73.9% 73.9%

Figure 5: Accuracy Scores of Forests with Varying Tree
Depth and Number of Trees on ML Datasets

4.1 Accuracy-Guided Parameter Selection

The search space for parameters of the random forest algorithm
is immense, with many factors determining the shape of each tree
and computational complexity of the inference problem. The scikit-
learn API RandomForestClassifier trains forests based on tuning
parameters provided by the user including maximum tree depth,
number of trees, minimum samples to create a leaf node, and maxi-
mum number of leaf nodes. The values of parameters are typically
selected using accuracy scores of models with varying parameter
combinations on a validation dataset [7]. For this paper, we focus
on the maximum tree depth and the number of trees in the for-
est. To target practical applications, we train forests of tree depths
varying from 5 to 50 and number of trees ranging from 5 to 150
using all three machine learning datasets. The accuracy scores are
reported in the heat-maps of Fig. 5, where lower accuracy scores
are more red and high accuracy scores are more green. Accuracy
in RF classification is the percent of queries correctly classified by
the RF model.

Given the reported scores, we select tree depth values in the
green band of values for each dataset and use 100 trees to gener-
ate forests. Since the number of trees does not yield a significant
difference in accuracy as we visit values near 100 trees, this focal
point is sufficient in determining the effects of the hierarchical tree
format and kernels. CSR, cuML, and the kernel variants all scale
linearly in execution time with the number of trees, thus we do not
report speedup for varying number of trees. We chose the lowest
maximum tree depths that can support a sufficiently high accuracy
(~ 0.3% of the max reported accuracy) along with neighboring
values: 25-35 for Higgs, 15-25 for Susy, and 30-40 for Covertype.
Balancing computational complexity with accuracy reflects the
practical motivation of the experimental evaluation.



ICPP ’22, August 29-September 1, 2022, Bordeaux, France

Covertype
3 3

2
, IR 1
0
30 35 40
Maximum Tree Depth

2

. |
0

15

Ratio of Hierarchical
to CSR Footprint
to CSR Footprint

Ratio of Hierarchical

mSD=4

Maximum Tree Depth

Milan Shah, Reece Neff, Hancheng Wu, Marco Minutoli, Antonino Tumeo, and Michela Becchi

Higgs
3

2

, IR
0
25 30 35
Maximum Tree Depth

20 25

Ratio of Hierarchical
to CSR Footprint

6 mSD=8

Figure 6: Comparison of Hierarchical Representation Memory Footprint to CSR (Maximum Subtree Depth = SD)

4.2 CSR Memory Footprint Analysis

In this section, we report the memory footprint of the proposed
hierarchical tree representation. We vary the maximum subtree
depth with the values 4, 6, and 8. Note the maximum number of
nodes in a subtree is 25 — 1 where SD is the maximum subtree
depth. In Fig. 6, CSR and hierarchical representations are compared
with varying subtree depths using all datasets. The y-axis is the
ratio of hierarchical memory used to CSR memory used. The x-axis
is the maximum tree depth of each forest, trained using 100 trees.
SD indicates the max subtree depth value of the generated forest.

Results in Fig. 6 indicate that in terms of memory footprint,
lower maximum subtree depth values, such as subtree depth of 4
and 6, can occupy nearly the same memory space as the CSR format.
Larger subtrees tend to require more space than smaller subtree
forests since there are more likely to be empty nodes in a larger
subtree. The maximum number of nodes in a subtree being equal
to 250 — 1 implies an exponential relationship between depth and
nodes in a subtree, thus a large increase in memory footprint is
seen between SD = 6 and SD = 8. Fig. 6 further suggests relative
memory usage as trees grow vertically (i.e. deeper trees) since the
deeper trees of the Covertype forests have a larger footprint than
the shallower trees of the Susy forests. Memory footprint can relate
to the composition of the tree, specifically the ratio of leaves to
total nodes. A greater proportion of leaves in levels of the tree
higher than the lowest level can lead to more memory usage in
the hierarchical format since empty nodes are allocated to fill a
subtree to be complete. The following sections will explore how
the hierarchical layout performs on both GPU and FPGA, with
kernels targeting platform strengths. The speedup from using the
hierarchical layout will be shown to greatly offset the memory
benefits of the CSR format.

4.3 GPU Timing Analysis

In this section, we report GPU performance results of random forest
classification under different parameters settings. In all cases, we
report the speedup over CSR-based traversal of the independent
variant, the hybrid variant, and NVIDIA’s cuML forest inference. On
random forests of 100 trees and ranges of tree depths chosen from
the above parameter selection, the execution time of CSR-based RF
classification varies as follows: 0.4 s to 0.6 s for Covertype, 1.4 s
to 3.2 s for Susy, and 4.3 s to 5.2 s for Higgs. The number of queries
is the size of the test set for each dataset, or half of the number of
samples listed in Table 1. We omit showing the results achieved by
the collaborative code variant, which is consistently 10-20x slower
than the independent code variant.

Maximum Subtree Depth: Fig. 7 reports results from tree
depths that met the accuracy scores outlined in Fig. 5 for each
of the datasets labeled. The maximum subtree depth, SD, is selected
with values 4, 6, and 8. As can be seen, the hybrid kernel consis-
tently outperforms the independent kernel across all subtree depth
values tested. Speedup against CSR ranges from approximately
2.5% to 4x for the independent and from 4.5% to 9x for the hybrid
code variants. Fig. 8 reports differences in global memory loads
and warp divergence for the two kernels. The hybrid kernel allows
for offloading of global memory loads to shared memory and less
branch divergence as the root subtree of each tree is traversed by all
threads. As the maximum subtree depth increases, the proportion
of global loads between the hybrid and the independent variants
decreases substantially, since a larger fraction of the loads is ser-
viced by shared memory. Nodes from subsequent subtrees will also
be less likely to be evicted from the L1 cache since all queries un-
dergoing traversal visit the same tree. In the independent variant,
threads mapped to a query can finish traversing a tree before others
in the same thread-block, leading to greater warp divergence and
requests for node data not already present in the L1 cache.

The hybrid kernel generally performs better than cuML, espe-
cially for larger maximum subtree depth values. cuML speedup over
the CSR code ranges from approximately 4X to 5X. Large maximum
subtree depths enable less indirect memory accesses to traverse
from subtree to subtree and more arithmetic indexing to access
node values. SD = 4 for the hybrid variant approximately matches
or outperforms cuML for Susy and Higgs datasets and is slightly
outperformed for the deeper tree depths present in the Covertype
forests. Across all datasets, deeper subtrees generally lead to better
performance compared to shallower subtrees. Performance changes
as a result of increasing tree depth reflect how well a particular
traversal method can scale with the exponentially growing compu-
tational complexity of deeper trees. Speedup of the various traversal
methods remain consistent when tree depth is fixed and number of
trees changes. This occurs due to a linear scaling of execution time
with the number of trees. Since the number of nodes in a forest
scales linearly with the number of trees, speedup remains relatively
constant.

Root Subtree Depth: Table 2 reports the hybrid variant speedup
against CSR for forests generated with maximum root subtree depth,
RSD, varying from 8 to 12 and subsequent subtree depth fixed at
8 using the same datasets. Maximum tree depths are varied with
speedup reported in each of the GX columns.

Increasing the root subtree depth typically increases the speedup
of the hybrid variant as the overall maximum tree depth increases,



Accelerating Random Forest Classification
on GPU and FPGA

ICPP °22, August 29-September 1, 2022, Bordeaux, France

Covertype Susy Higgs
o 10 10 10
n o o
SA S 8 (]
Z a2 2
£ 6 % 6 £ 6
=" o0 ru%
o 4 I I I S o4 © 4
: =, nlikl i s |
ST | LT (T 3, N il ul 2, ol AN
@ [ o
& 30 35 40 e 15 20 25 & 25 30 35
Tree Depth Tree Depth Tree Depth
® Independent: SD=4  Independent: SD=6 mindependent: SD=8 W Hybrid: SD=4

Hybrid: SD=6 Hybrid: SD=8

cuML

Figure 7: Effects of Tree Depth and Subtree Depth (SD) on GPU Variant Speedup over CSR (Num Trees = 100)

Table 2: Effects of Root Subtree Depth (RSD) on GPU Hybrid
and FPGA Independent Variants. GX and FX denote GPU (in
speedup) and FPGA (in seconds) runs with a RSD of X, re-
spectively. d is tree depth.

Dataset d G8 G10 G12 F8 F10 Fi12
30 53 5.4 5.5 6.2 6.2 6.0

Covtype 35 54 5.5 5.8 6.5 6.3 6.1
40 5.2 5.4 5.6 6.5 6.3 6.2

15 64 7.2 8.1 225 227 227

Susy 20 9.3 9.4 9.1 30.0 299 296
25 6.5 7.9 83 353 334 331

25 6.0 6.3 6.5 323 31.0 30.7

Higgs 30 5.9 6.5 7.1 33.8 325 31.6
35 6.9 6.9 7.0 328 323 323

with the exception of the forest generated with tree depth of 20 and
100 trees in the Susy results. Larger root subtrees result in more
nodes stored in shared memory, increasing high bandwidth memory
accesses and a greater proportion of coalesced memory requests
to total memory requests, in line with the data presented in Fig. 8.
Fig. 8 indicates larger subtrees reduce global memory accesses thus
larger root subtrees can further reduce global memory accesses.
Speedup can increase from 6X to nearly 8X as seen in the Susy
forest of tree depth 15 and number of trees 100 when root subtree
depth increases from 8 to 12. In all, larger root subtrees make the
hierarchical layout more cache-friendly and can provide additional
performance gain to the hybrid kernel variant.

sD=4

SD=6 mmmmSD=8 Branch Efficiency

08
07 -
0.6
0.5
0.4
03
0.2
01
o
15 20 £5

Maximum Tree Depth

PRy

£

Branch Efficiency of Hybrid Less
Independent

Ratio of Hybrid Global Loads to
Independent Global Loads

)

Figure 8: Comparison of Global Load Requests and Branch
Efficiency for Hybrid and Independent Variants for Susy
Dataset (Maximum Subtree Depth = SD)

Table 3: Comparison of FPGA versions with a synthetic
dataset (d = 15,s = 10,t = 40,q = 250k). Unless otherwise
noted, the version contains a single CU. Frequency (f) is in
MHz and Il is in cycles. xSyC = x SLRs with y CUs in each.

Version Time (s) Stall% vsCSR f I
Baseline (CSR) 162.47 10.97%  1.00 300 292
Independent 54.59 10.76%  2.98 300 76
Collaborative 1957.80 90.68%  0.08 300 3
Hybrid 29.76 25.09% 5.46 300 3/76
Independent 4512C  1.48 30.39% 109.48 300 76
Hybrid 4512C 2.44 79.80%  66.58 300 3/76
Hybrid Split 4510C  2.23 - 72.92 245 3/76

4.4 FPGA Timing Analysis

Code Variants Comparison: Table 3 reports the execution time
of all the FPGA code variants on a synthetic dataset with 250k
queries (g), 40 trees (¢) with depth 15 (d), and a maximum subtree
depth of 10 (s). We show the results of implementations with a
single and multiple compute units (CU). In the latter case, we use
4 super logic regions. As can be seen, all versions based on our
hierarchical decision tree layout achieve a speedup over CSR except
for the collaborative version due to the massive query workload
starvation on child subtrees not making up for the subtree burst
overhead. The speedup over CSR can be attributed to fewer external
memory accesses per pass and the buffering of data structures
resulting in a much lower II. Looking only at single CU versions, the
hybrid variant has the best speedup followed by the independent
variant. When looking at parallel scalability (i.e., multiple CUs),
however, the independent kernel is the most scalable, providing
the best performance over replicating the hybrid compute units.
We believe that replicating stage one of the hybrid version was
causing too much external memory stalling at 70% (as replicating
the collaborative version resulted in slow down due to memory
contention), so we created a split version where there was a single
stage one compute unit for each SLR, and stage two was then
replicated as usual. While we did see speedup over the non-split
version, kernel complexity limited the amount of compute units
we could replicate (10 per SLR instead of 12), and also resulted
in lower frequency (245MHz vs 300MHz). Comparing this to the
replicated independent version, we see stage one took around 1.3
seconds, and stage two took 0.8 seconds compared to independent’s



ICPP ’22, August 29-September 1, 2022, Bordeaux, France

Milan Shah, Reece Neff, Hancheng Wu, Marco Minutoli, Antonino Tumeo, and Michela Becchi

Covertype Susy Higgs
__ 55000 __ 55000 55000
£ 45000 £ 45000 2 45000
»é 35000 :E; 35000 E 35000
’; 25000 'E 25000 ||II i 25000
-g 15000 S 15000 .0 15000
S soo0 MEmm.. HEmm.. Hemsm 3 s000 g, 5000
oS 30 35 40 o 15 20 25 S 25 30 35
Tree Depth Tree Depth Tree Depth
W Hybrid: SD=4 m Hybrid: SD=6 W Hybrid: SD=8

M Independent: SD=4 m Independent: SD=6

Independent: SD=8

Figure 9: Effects of Tree Depth and Subtree Depth (SD) on FPGA Variant Runtime (Num Trees = 100)

1.48 seconds total. This shows the non-scalable stage (stage one)
takes up the majority of the execution time and, while faster on a
single compute unit, the independent version ended up being more
scalable and able to take advantage of more parallelism.

Tree Configuration Analysis: Figure 9 shows the results re-
ported when varying the maximum subtree depth (SD) with both
the independent and collaborative code variants. As for the syn-
thetic dataset, the independent code variant outperforms the hybrid
code variant in almost all configurations with the same SD, showing
the stage one size in the hybrid version is not enough to offset the
scalability trade-off. Due to the large execution time of the CSR ver-
sion, we were unable to collect its data for datasets as large as these,
and instead included comparisons with a smaller synthetic dataset
in Table 3. Similarly to GPU, deeper subtrees result in lower exe-
cution times for both versions as shown in Table 2, and execution
time rises with the number of trees in the dataset.

4.5 FPGA vs GPU

Figure 10 indicates GPU massively outperforms FPGA. This large
gap in performance is due to its much faster clock frequency, higher
peak memory bandwidth, and parallelism (thousands of cores vs
FPGA’s 40-48). FPGAs typically make up for this by utilizing hard-
ware level pipelining, but the high II in the independent version
due to a RAW dependency inhibits one of the FPGA’s main feature
as an accelerator. The lower theoretical peak memory bandwidth
(= 77 GB/s on the Alveo U250 vs ~ 547.5 GB/s on the Titan Xp)
in the collaborative version also inhibits it from performing more
similarly.

5 RELATED WORK

GPU work: There exist several attempts to accelerate general re-
cursive tree traversal algorithms on GPUs. First, Karras [8] proposed
using an explicit stack to keep the order in which the children nodes
are visited, eliminating the cost of recursion from general tree tra-
versal algorithms and leading to more effective GPU deployment.

mindep D=4 .
15 20

Susy: Maximum Tree Depth

D=6 ep D=8

GPU Speedup Over FPGA

25

Figure 10: GPU vs FPGA on SUSY (Max Subtree Depth = SD)

This method does not apply to our work on decision tree traversal
which inherently follows a top-down path [18]. As only one child
node is selected to be visited at each node, RF classification does
not require the use of stacks to track the order of other child nodes.
Second, Goldfarb et al. [6] accelerated general recursive tree traver-
sal by introducing lockstep execution to the explicit stack method
above, together with sorting of queries as a preprocessing step
[18]. Although they have not reported the cost of presorting, their
results show that lockstep execution, together with the presorting,
significantly boosts performance of general recursive tree traversal
on GPUs. As similar queries are grouped together, lockstep tra-
versal reduces warp divergence and provokes coalesced memory
accesses. Although their method for general tree traversals can
be used on decision tree traversals, our work differs in two ways.
With our collaborative GPU kernel similarly employing lockstep
execution, we do not consider presorting as a preprocessing step. As
ML datasets often are high-dimensional and can use non-numeric
features, presorting the queries would lead to an extra cost that
cannot be amortized. In addition, with the proposed hierarchical
tree representation, our hybrid GPU kernel can fit sets of subtrees
into shared memory, leading to faster tree accesses. Lastly, Wu and
Becchi [21] target different general recursive tree traversal patterns
and propose a greedy tree traversal variant for binary search tree,
which allows a GPU thread to immediately fetch and start another
query when the current assigned query finishes. According to their
profiling data, this greedy variant helps reduce thread divergence
(preventing idle threads), but increases the chance of uncoalesced
memory accesses, leading to performance degradation. Thus, we
do not consider applying this variant to our work on decision trees.

FPGA work: Lin et al. [10] implemented three random forest
architectures: memory-centric, with the tree stored in the on-chip
memory, comparator-centric, using LUTS to store tree parameters
and comparisons, and synthesis-centric, with the tree synthesized
as boolean functions in LUTs. Synthesis-centric uses the fewest
resources, but has the highest context switch time whereas memory-
centric has the fastest context switch time but uses the most re-
sources. Comparator-centric finds a middle ground between the
two in both area and context switching. For all three versions, the
entire tree (represented as the tree or boolean functions) must fit
in the FPGA. Nakahara et al. [14] accelerated random forest classi-
fication with Altera on OpenCL, applying burst memory transfer
optimization, utilizing fixed point bits instead of floating point bits,
and full pipelining to achieve a speedup 14X higher than CPUs and



Accelerating Random Forest Classification
on GPU and FPGA

10X higher than GPUs. For this work, the entire tree must fit within
the FPGA on-chip memory to provide such speedups.

These prior works require that entire trees fit in the relatively
small on-chip memory, a limitation that our work has aimed to
remove. The hierarchical representation still enables the use of fast
on-chip memory, however, the tree is partitioned into portions that
fit in this level of the memory hierarchy. As such, forests are able to
grow trees to be far deeper than the imposed limits of prior works
to meet high accuracy targets while improving performance.

6 CONCLUSION

In this work, we have proposed and evaluated a novel memory
layout for random forest inference across two platforms: GPU and
FPGA. We have designed and tested three kernels that leverage
the memory layout and accelerate random forest inference for
hundreds of thousands to millions of queries. For GPU, the hybrid
kernel variant outperformed CSR and cuML the greatest, especially
for larger subtree depths. Utilizing shared memory in the hybrid
version suits both the cache-friendly nature of the hierarchical
layout as well as the need for fast node value accesses. On FPGA,
the independent version was 109.5% faster than the CSR version
and outperformed the hybrid version when full scalability was
realized. Despite this, FPGA still trails GPU due to the nature of
the algorithm inhibiting deep pipelining at a low initiation interval
and GPU having a much higher bandwidth and clock frequency.
For both, increasing both subtree depth and root subtree depth
improved inference time.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation awards
CNS-1812727 and CCF-1741683 at North Carolina State University,
and by the U.S. DOE ExaGraph project and the ADOX-V project at
the Pacific Northwest National Laboratory (PNNL).

REFERENCES

[1] P.Baldi, P. Sadowski, and D. Whiteson. 2014. Searching for exotic particles in
high-energy physics with deep learning. Nature Communications 5, 1 (jul 2014).
https://doi.org/10.1038/ncomms5308

Paul E Black et al. 2020. Dads: The on-line dictionary of algorithms and data
structures. NIST: Gaithersburg, MD, USA (2020).

Aydin Bulug, Jeremy T Fineman, Matteo Frigo, John R Gilbert, and Charles E
Leiserson. 2009. Parallel sparse matrix-vector and matrix-transpose-vector multi-
plication using compressed sparse blocks. In Proceedings of the twenty-first annual

2

E

=

(1]

[12

[13

(14

[15

[16

=
=

(18

[19

[20

[
—

ICPP °22, August 29-September 1, 2022, Bordeaux, France

symposium on Parallelism in algorithms and architectures. 233-244.

Chuan Cheng and Christos-Savvas Bouganis. 2013. Accelerating Random For-
est training process using FPGA. In 2013 23rd International Conference on Field
programmable Logic and Applications.

Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni. 2013. General Transfor-
mations for GPU Execution of Tree Traversals. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis.
Trevor Hastie and Robert Tibshirani. 2009. The Elements of Statistical Learning:
Data Mining, Inference, and Prediction (2 ed.). Springer.

Tero Karras. 2012. Thinking Parallel, Part II: Tree Traversal on the GPU. https:
//developer.nvidia.com/blog/thinking-parallel-part-ii- tree- traversal-gpu/
Vinod Kathail. 2020. Xilinx Vitis Unified Software Platform. In Proceedings of the
2020 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays,
Stephen Neuendorffer and Lesley Shannon (Eds.).

Xiang Lin, R.D. Shawn Blanton, and Donald E. Thomas. 2017. Random Forest
Architectures on FPGA for Multiple Applications. In Proceedings of the on Great
Lakes Symposium on VLSI 2017.

Diego Marron, Albert Bifet, and Gianmarco De Francisci Morales. 2014. Random

Forests of Very Fast Decision Trees on GPU for Mining Evolving Big Data Streams.
In Proceedings of the Twenty-First European Conference on Artificial Intelligence.

Xinxin Mei and Xiaowen Chu. 2017. Dissecting GPU Memory Hierarchy Through
Microbenchmarking. IEEE Transactions on Parallel and Distributed Systems 28, 1
(2017), 72-86. https://doi.org/10.1109/TPDS.2016.2549523

Oyku Melikoglu, Oguz Ergin, Behzad Salami, Julian Pavon, Osman Unsal, and
Adrian Cristal. 2019. A Novel FPGA-Based High Throughput Accelerator For
Binary Search Trees. https://doi.org/10.48550/ARXIV.1912.01556

Hiroki Nakahara, Akira Jinguji, Tomonori Fujii, and Simpei Sato. 2016. An
acceleration of a random forest classification using Altera SDK for OpenCL. In
2016 International Conference on Field-Programmable Technology (FPT). 289-292.
https://doi.org/10.1109/FPT.2016.7929555

Oleksandr Pavlyk and Olivier Grisel. 2020. Accelerate Your scikit-learn Appli-
cations. (2020). https://medium.com/intel-analytics-software/accelerate-your-
scikit-learn-applications-a06cacf44912

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825-2830.
Sebastian Raschka, Joshua Patterson, and Corey Nolet. 2020. Machine Learning
in Python: Main developments and technology trends in data science, machine
learning, and artificial intelligence. arXiv preprint arXiv:2002.04803 (2020).

J.P. Singh, C. Holt, T. Totsuka, A. Gupta, and J. Hennessy. 1995. Load Balancing
and Data Locality in Adaptive Hierarchical N-Body Methods: Barnes-Hut, Fast
Multipole, and Radiosity. J. Parallel and Distrib. Comput. 27, 2 (1995), 118-141.
https://doi.org/10.1006/jpdc.1995.1077

Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger. 2012. Ac-
celerating a Random Forest Classifier: Multi-Core, GP-GPU, or FPGA?. In 2012
IEEE 20th International Symposium on Field-Programmable Custom Computing
Machines.

Zeyi Wen, Hanfeng Liu, Jiashuai Shi, Qinbin Li, Bingsheng He, and Jian Chen.
2020. ThunderGBM: Fast GBDTs and Random Forests on GPUs. j. Mach. Learn.
Res. 21, 108 (2020), 1-5.

Hancheng Wu and Michela Becchi. 2017. An Analytical Study of Recursive
Tree Traversal Patterns on Multi- and Many-Core Platforms. In 2017 IEEE 23rd
International Conference on Parallel and Distributed Systems (ICPADS). 586—-595.
https://doi.org/10.1109/ICPADS.2017.00082



	Abstract
	1 Introduction
	2 Background
	2.1 Classification with Random Forests
	2.2 High Level Synthesis for FPGA
	2.3 CSR Tree Traversal and Its Bottlenecks

	3 Hierarchical random forest classification
	3.1 Hierarchical Decision Tree Layout
	3.2 RF Classification Code Variants

	4 Experimental Evaluation
	4.1 Accuracy-Guided Parameter Selection
	4.2 CSR Memory Footprint Analysis
	4.3 GPU Timing Analysis
	4.4 FPGA Timing Analysis
	4.5 FPGA vs GPU

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

