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mmWave Networking and Edge Computing for

Scalable 360◦ Video Multi-User Virtual Reality

Sabyasachi Gupta , Jacob Chakareski , Senior Member, IEEE, and Petar Popovski , Fellow, IEEE

AbstractÐ We investigate a novel multi-user mobile Virtual
Reality (VR) arcade system for streaming scalable 8K 360◦ video
with low interactive latency, while providing high remote scene
immersion fidelity and application reliability. This is achieved
through the integration of embedded multi-layer 360◦ tiling, edge
computing, and wireless multi-connectivity that comprises sub-
6 GHz and mmWave (millimeter wave) links. The sub-6 GHz
band is used for broadcast of the base layer of the entire 360◦

panorama to all users, while the directed mmWave links are
used for high-rate transmission of VR-enhancement layers that
are specific to the viewports of the individual users. The viewport-
specific enhancements can comprise compressed and raw 360◦

tiles, decoded first at the edge server. We aim to maximize the
smallest immersion fidelity for the delivered 360 content across
all VR users, given rate, latency and computing constraints.
We characterize analytically the rate-distortion trade-offs across
the spatiotemporal 360◦ panorama and the computing power
required to decompress 360◦ tiles. The proposed solution consists
of geometric programming algorithms and an intermediate step
of graph-theoretic VR user to mmWave access point assignment.
The results reveal a significant improvement (8 − 10 dB) in
delivered VR user immersion fidelity and spatial resolution
(8K vs. 4K) compared to a state-of-the-art method based on
sub-6 GHz transmission only. We also show that an increasing
number of raw 360◦ tiles are sent, as the mmWave network
link data rate or the edge server/user computing power increase.
Finally, we demonstrate that in order to hypothetically deliver
the same immersion fidelity, the reference method would incur
a much higher (2.5-4.5x) system latency.

Index TermsÐ Multi-user virtual reality, scalable 360◦ video,
mmWave, edge computing, resource allocation.

I. INTRODUCTION

V
IRTUAL reality (VR) technologies are becoming increas-

ingly popular in entertainment and gaming, education

and training, healthcare, advertising, and social media. It is
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expected that VR technology will represent a 120 billion

market by 2022 [1]. 360◦ video is an integral part of virtual

reality systems and can enable remote scene immersion for

a VR user experiencing it. Relative to traditional video

streaming, VR based 360◦ video streaming has the following

challenging requirements: ultra high data rate, ultra low

response latency, and intensive computing. Thus, at present,

only low-quality and low-resolution 360◦ videos can be

streamed, and only over wired networks [2], [3]. The quality

of experience is even worse over mobile devices, due to the

much lower wireless bandwidth and computing capabilities of

the user’s mobile device to which the VR headset is attached.

On the other hand, seamless untethered VR applications

integrating high-fidelity real remote scene 360◦ content are

expected to have the highest societal impact, advancing quality

of life, the global economy, and energy conservation [4].

Enabling such applications is the objective we pursue within

the present paper.

The latency in 360◦ video streaming systems comprises

communication and computing delays that need to be

constrained to 10-20 milliseconds end-to-end [5]. Relative

to traditional 2D video, 360◦ video has a much higher

resolution and temporal frame rate, and thus requires much

more bandwidth to deliver the entire 3D 360◦ look-around

remote scene it represents. High quality 360◦ video of frame

rate of 100 frames per second and spatial resolution of 12K,

as recommended by MPEG, can easily consume bandwidth of

multiple Gigabits-per-second (Gbps) [6].

A. Proposed Framework and Contributions

We explore a novel streaming system for next-generation

untethered VR that enables high immersion fidelity and

low interactive latency, illustrated in Figure 1. It integrates

synergistically, for the first time, high fidelity 8K scalable

360◦ video, edge computing, and wireless millimeter wave

(mmWave) transmission. Firstly, using statistical characteriza-

tion of user viewport navigation, we identify the subset of

all tiles of the 360◦ content that have a high likelihood of

being navigated by the user. Next, leveraging high computing

capability at the network edge and using mmWave technology,

our system enables transmitting a subset of viewport specific

tiles as decompressed (therefore, reducing decoding delay at

a user) and the rest of the viewport specific tiles as encoded

at high data rates via mmWave. Moreover, to augment the

system’s reliability, and compensate for prospective mmWave

link uncertainty and viewport prediction error, the base layer
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Fig. 1. A next generation mobile VR arcade with integrated edge computing and millimeter wave capability.

of the entire 360◦ panorama is broadcast over sub-6 GHz to all

the users. These advances result in a significant improvement

in VR user immersion fidelity.

The major technical contributions of this paper are the

following:
• We propose a novel next generation mobile VR system

with integrated edge computing and millimeter wave

capability, 8K space-time scalable 360◦ multi-layer

tiling, and multi-connectivity based one sub-6 GHz and

mmWave links, and investigate the benefits of raw

360◦ tile mmWave transmission and the induced trade-

offs between communication and computing latency.

Viewport-adaptive scalable 360◦ tiling is integrated for

efficient resource utilization.

• Joint optimization of raw 360◦ tile selection for mmWave

transmission, allocation of remaining mmWave link data

rate across the rest of the compressed 360◦ tiles, and

allocation of edge server and user device computing

resources. The objective is to maximize the delivered

immersion fidelity, subject to end-to-end delay and

transmission/computing constraints.

• We investigate the computing requirements of 360◦

tiles and formulate an accurate analytical polyno-

mial model that captures the dependence between

the number of CPU computing cycles required to

decompress a tile and the transmission data rate assigned

to it.

• To overcome the mixed-integer programming nature

of the problem formulation, we formulate a lower-

complexity solution that comprises multiple geometric

programming algorithms and an intermediate step of

graph-theoretic VR user to mmWave access point

assignment. We rigorously characterize the computational

complexity of our solution.

• Our experimental results demonstrate that the proposed

360◦ VR streaming system enables for the first time

streaming high-fidelity 8K 360◦ videos to mobile VR

clients. Significant performance gains in delivered immer-

sion fidelity and interactive latency are demonstrated

over a state-of-the-art reference method that relies on

sub-6 GHz transmission.

B. Organization of the Paper

In Section II, we first discuss related work. Formulation

of our system models is carried out in Section III.

We present the problem formulation in Section IV and

the respective optimization solution in Section V. We carry

out comprehensive simulation experiments to assess the

performance of our framework in Section VI. Finally,

we conclude in Section VII.

II. RELATED WORK

Tiling-based viewport-adaptive streaming [7], [8], [9], [10]

is a popular scheme to efficiently utilize communication

resources. In this approach, each frame of the 360◦ video

is spatially divided into a number of rectangular regions

called tiles, as illustrated in Figure 2. Each tile is encoded

independently at a fixed data rate. At any time, a VR user

experiencing the streaming content can only watch a limited

spatial portion of the wide 360◦ panorama on its head-mounted

display (HMD), known as the viewport. The streaming server,

anticipating the user’s viewing direction, sends then a smaller

subset of the video tiles that overlap with the user’s viewport

over short periods of time (1-2s) into the future. Once the

compressed tiles are received, they need to be decoded and

rendered at the processing unit of the VR device. PC-based

VR devices, e.g., Oculus Rift [2] and HTC Vive [3], are

tethered to a powerful gaming computer and perform decoding

locally on the computer/console. Hence, they lack mobility

and present potential tripping hazzard. On the other hand,

mobile VR solutions such as Samsung Gear VR [11] and

Google Daydream [12] are attached to a mobile device, with

limited computing capabilities and wireless bandwidth, which

adversely impact the quality of experience.

Resource allocation for scalable 360◦ video transmission

in sub-6 GHz networks has been investigated recently [13]

and [14]. Sun et al. [13] proposed a two layer system for
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Fig. 2. Spatiotemporal tiling and Group of Pictures (GOP) of a 360◦ video.

360 video streaming, which can dynamically adapt the bitrates

of the base layer and the enhancement layer according to

the network throughput variations and viewport prediction

errors. In [14], the authors proposed a cooperative streaming

scheme of scalable viewport specific 360◦ content in which

base station multicasts viewport specific 360◦ content to all

users and users locally share part of the received viewport

specific 360◦ content using mobile ad hoc network. Aerial

360◦ video streaming for remote scene immersion in next

generation UAV-IoT applications has been explored in [4].

Cooperative mobile-edge multi-user 360◦ video delivery in 5G

small-cell cellular networks has been investigated in [15].

In [16], a terahertz network with multiple reconfigurable

intelligent surfaces (RISs) and users, and a single transmitter

is considered for VR applications, and the problem of RIS to

user association is investigated with the aim of optimizing the

rate and reliability of the network. Chen et al. [17] propose a

federated learning based user to base station (BS) association

strategy with the aim of minimizing ªbreaks in presenceº

in VR, where the content is transmitted from the BSs to

the users using mmWave communication. However, bitrate

allocation for the transmitted VR content is not considered

in this study. Moreover, efficient signal processing techniques

such as scalable video coding and 360◦ video tiling are not

considered. Therefore, the above strategy may be sub-optimal

for maximizing the VR users’ experienced immersion fidelity.

The role of edge computing and caching for wireless

VR has been discussed recently [18], [19], [20], [21], and

[22]. In particular, the study in [18] discusses the possibility

of improving the overall system delay by the use of edge

computing for VR gaming. Similarly, for 360◦ video delivery

and VR gaming, the work in [19] examines the data rate and

latency requirement for enabling wireless VR with the help of

edge computing. Similarly, [23] has shown that high data rate

mmWave link can support uncompressed video transmission.

Sukhmani et al. [20] shown that the distributed cache can

improve the service performance of VR applications. The users

can cache and share their local content resources between

neighbors which can greatly shorten the service latency. [21]

proposes an efficient VR framework in which selection of

device for rendering and caching of the viewport content for

each user is made based on available computation and cache

availability at the users and the edge server. In [22], the authors

investigate the communication resource allocation and base

station selection to optimize VR video delivery delay and

tracking accuracy in an orthogonal frequency division multiple

access (OFDMA) network. Uplink and downlink resources are

used to transmit cellular user’s tracking information and VR

scenes, respectively. Edge computing helps to generate VR

scenes when erroneous tracking information is received due

to poor uplink wireless channel.

The integration of mmWave and edge computing for mobile

VR has been considered in [19], [24], and [25], however, with

limited contributions. [19] studies a user clustering strategy to

maximize the user field-of-view frame request admission. [25]

studies proactive computing and caching of synthesized

interactive VR video frames, to minimize the traffic volume

of VR gaming. [24] introduces a parallel rendering and

streaming mechanism to reduce the addon streaming latency,

by pipelining the rendering, encoding, transmission and

decoding procedures. The strategies considered in [19] and

[25] are heuristic and do not necessarily enable higher VR

immersion fidelity for the user. Similarly, only low-quality

low-resolution (4K) 360◦ content has been considered. Both of

this shortcomings considerably penalize the delivered quality

of experience. On the other hand, we considerably advance the

state-of-the-art by a rigorous end-to-end system analysis and

optimization that aim to maximize the delivered immersion

fidelity subject to various system constraints. Moreover,

we synergistically integrate raw 360◦ tile transmission, 8K

scalable 360◦ multi-layer tiling, and dual sub-6 GHz and

mmWave transmission, and provide rigorous analysis of the

enabled benefits and induced performance trade-offs. Our

experimental results demonstrate the considerable performance

advances enabled by our framework.

The present work is based on our preliminary studies in

[26] and [27]. In [26], we investigated the joint optimization

of mmWave access point to user assignment, the allocation

of mmWave data rate for a given set of viewport-specific

enhancement tiles, and allocation of computing resources

at the edge server and user devices for the proposed

streaming system. In this work and [27], along with the

above mentioned design variables, we jointly decide the

choice of viewport-specific enhancement tiles to be transmitted

decompressed to provide a complete analysis of our proposed

system. Compared to our previous work in [27], the major

improvements in this present study are as follows: (i) Complete

mathematical analysis of the proposed optimization problem

is provided, (ii) Complexity of the proposed solution is

investigated, and (iii) New analysis of the dependency CPU

computing cycles versus data rate is obtained.

III. VR ARCADE SYSTEM MODELS

A. General Aspects

In our VR arcade system, illustrated in Figure 1, there are

M users receiving the 360◦ video content through wireless

VR headsets. There are N mmWave APs and a sub-6 GHz

router interlinked with a collocated edge server, where the

compressed content resides. A user is assigned to a mmWave

access point (AP) and viewport-specific enhancement layers of
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TABLE I

MAJOR NOTATION USED IN THE PAPER

the scalable 360◦ content are sent to this user using mmWave

transmission, comprising both raw and compressed tiles.

Furthermore, the base layer of the entire 360◦ panorama is

broadcast over sub-6 GHz to all the users. Table I summarizes

the main notation used throughout the development of

our system models, problem formulation, and optimization

techniques, over the following three sections of the paper.

B. Sub-6 GHz and mmWave Communication Model

Here, we describe the two transmission media used

in our system. The bandwidth allocated for sub-6 GHz

communication is Bw. Therefore the sub-6 GHz rate is

r ′ = Bw log(1 + γbr ) where γbr is the broadcast SNR using

sub-6 GHz.

The mmWave channel is based on measurement results

of line of sight (LoS) or non-line of sight (NLoS) paths

for the 60-GHz indoor channels, and includes both pathloss

attenuation lau and small scale Nakagami fading with

coefficient gau [28]. The channel gain hau from AP a to user

u is thus given by |hau |2 = lau |gau |2. The corresponding

Nakagami shape factor mau will take value mL for LoS

and m N for NLoS paths; it is further assumed that gau is

i.i.d. and not temporally correlated. The pathloss value is

lau = CLd−αL , if there is a LoS path between AP a and

user u. Otherwise, lau = CN d−αN . Here, CL and CN are

constants that depend on LoS or NLoS channel characteristics,

respectively.

The radiation pattern of actual directional antennas is

approximated with a 2D sectored antenna model [29]. Let

gT x
au and gRx

au denote the transmission and reception antenna

gains from AP a to the user u. They are defined as g•
au =

2π−(2π−φa)gsl

φa
, if v•

au ≤ φa

2
, and g•

au = gsl , otherwise. Here,

• ∈ {T x, Rx}, v•
au stands for the angular deviation from the

boresight directions, and gsl is the constant sidelobe gain with

Fig. 3. Scalable multi-layer 360◦ tiling. Equirectangular projection is carried
out first.

gsl ≪ 1. Thus, the AP a to user u SNR is γau =
pa |hau |2gT x

au gRx
au

N0 B
,

where pa is the transmit power by the AP a, B is the

bandwidth for mmWave communication, and N0 is the noise

power spectral density. Therefore, the AP a to user u rate is

ra,u = B log(1+γau). We use the approximation that mmWave

interference among the user links is absent due to the directed

pencil-shaped mmWave beams between users and APs. Also,

the transmission rate ra,u, for each link between AP a ∈ A

and user u ∈ U is available at the centralized controller,

by continuous monitoring of the beam direction [30].

C. Scalable 360◦ Video Encoding and Decoding Model

We introduce a scalable 360◦ video representation method

that synergistically integrates with mmWave and sub-6 GHz

communication for efficient resource utilization. First, using

an equirectangular projection, the raw spherical video frames

are mapped to respective 2D panoramas, as illustrated in

Figure 3 below, to enable the application of state-of-the-art

video coding [31], [32]. Then, each panoramic 360◦ video

frame is partitioned into L H ×LV tiles. Finally, the tiled frames

are grouped temporally into blocks of subsequent frames,

each denoted as Group of Pictures (GOP) and compressed

separately. Here, we denote the sequence of tiles at the

same spatial location (h, v) in a GOP as a GOP-tile and

construct K scalable layers of increasing immersion fidelity

for each GOP-tile, as illustrated in Figure 3, by applying the

scalable extension of the latest video compression standard

denoted as SHVC [33] independently to each GOP-tile [33].

The first layer of a compressed GOP-tile is known as the

base layer, and the remaining K − 1 layers are denoted as

enhancement layers. The reconstruction fidelity of a GOP-tile

improves incrementally as more layers are being decoded

progressively starting from the base layer. Let L denote the set

of all GOP-tiles. Each GOP-tile l ∈ L exhibits an immersion

reconstruction distortion Dl related to the encoding data rate

Rl of the GOP-tile as Dl = al R
bl

l where al and bl are

constants [34].

For each user, a subset of GOP-tiles are decoded at the edge

server and rest of the GOP-tiles are decoded at the user. The

time required to decode a GOP-tile depends upon the data

rate of the GOP-tile, which in turn depends on the number of

scalable layers from which the tile is decoded/reconstructed.

To find the time delay induced by decoding GOP-tiles at

the edge server or a user, we analyze the number of CPU

computing cycles β required to decode a GOP-tile as a

function of its data rate R. Our empirical results shown in
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Fig. 4. # CPU computing cycles versus data rate dependency using
polynomial modeling.

Figure 4 demonstrate a polynomial relationship that we can

capture as β = cR3 − d R2 + eR + g, where c, d , e, and g are

positive constants. We indicate the values of these constants

in Figure 4. The computation delay of a GOP-tile can be

expressed as the ratio of required CPU cycles to decode and

CPU frequency of the equipment at which the tile is decoded.

D. Proposed Video Transmission Framework

The overall delivery process of the proposed 360◦ streaming

and associated delay is shown in Fig. 5. Multiple enhancement

layers of viewport-specific GOP-tiles are sent to the individual

users over mmWave links. Specifically, we leverage our

ongoing work on statistical characterization of user viewport

navigation [34], [35], to identify as the subset of 360◦ GOP-

tiles that overlap with the VR viewport of user u over that

GOP. Essentially, it comprises the GOP-tiles that exhibit a

non-zero likelihood of being navigated by the user during that

GOP of the 360◦ content. Let Lu denote the set of GoP-tiles

in expected viewport of user u. Enhancement layers of tiles

l ∈ Lu will be sent to user u using mmWave transmission

from one select AP, to augment the enabled immersion fidelity.

In particular, from the Lu set of GOP-tiles to be sent via

mmWave AP a, the Lu,r ⊆ Lu subset of GOP-tiles are sent

raw, while the remaining Lu,c = Lu \ Lu,r tiles are sent

compressed. When carried out at the edge server, GOP-tile

l ∈ Lu,r is decoded from the highest available data rate

(best quality) Rl,max of the GOP-tile. This corresponds to

reconstructing the tile from all K scalable layers into which

it has been encoded using our approach. Let data rate of

each encoded GOP-tile l ∈ Lu,c is Rl . To augment the

system’s reliability, and compensate for prospective mmWave

link uncertainty and viewport prediction error, the base layer

of every GOP-tile l ∈ L is broadcast over sub-6 GHz to all

users. Let the immersion distortion of each GOP-tile l ∈ L

which is sent over sub-6 GHz communication be Dµ and

the corresponding data rate of the GOP-tile be Rµ. Since

we construct/encode the 360◦ content in scalable manner, the

number of bits required to be sent for the enhancement layers

of each compressed GOP-tile l ∈ Lu,c is (Rl − Rµ). Therefore,

via mmWave channel, the GOP-tiles l ∈ Lu,c is transmitted to

the user in time τ 1
a,u , which is expressed as

τ 1
a,u =

∑

l∈Lu,c
(Rl − Rµ)

ra,u

(1)

Simultaneously, Lu,r GOP-tiles is decoded in time Tu,2, which

is expressed as

Tu,1 =

∑

l∈Lu,r
βl,kr

Fu

, (2)

where βl,kr = cR3
l,max − d R2

l,max + eRl,max + g is the number

of CPU cycles required to decode tile l ∈ Lu,r , Fu is the edge

server’s computing resource allocated to user u. Let the size of

each GOP-tile l ∈ Lu,r after decoding be br . After completion

of Lu,c GOP-tiles’ delivery and Lu,r GOP-tiles’ decoding in

time max(Tu,1, τ
1
a,u), the raw GOP-tileset is sent via mmWave.

The delay for transmitting this information is given by

τ 2
a,u =

Lu,r br

ra,u

(3)

where Lu,r = |Lu,r |. Therefore, overall delay associated

with decoding and transmission of Lu,r GoP tiles is

max(Tu,1, τ
1
a,u) + τ 2

a,u .

Let τc,1 denote the delay in transmitting the GOP-tiles

l ∈ Lu,c over sub-6 GHz to all users, i.e., τc,1 =
Lu,c Rµ

r ′ ,

where Lu,c = |Lu,c|. The Lu,c GoP-tiles can be decoded at

the user after the enhancement layer information as well as the

base layer information of all Lu,c GoP-tiles are received at the

user, i.e., after the delay of max(τ 1
a,u, τc,1). Let the processing

capability of the VR headset of user u be fu , and let fu,1

and fu,2 be the processing power allocated by the user to

decode the GOP-tiles received over sub-6 GHz and mmWave,

respectively, where fu,1+ fu,2 ≤ fu . Thus, the number of CPU

computing cycles required to decode the GOP-tiles l ∈ Lu,c

of data rate Rl at the user is (cR3
l − d R2

l + eRl + g). Hence,

the induced decoding delay can be formulated as:

Tu,2 =

∑

l∈Lu,c
cR3

l − d R2
l + eRl + g

fu,2
. (4)

Therefore, the overall delay associated with transmission and

decoding of Lu,c GoP tiles is max(τ 1
a,u, τc,1) + Tu,2.

Let the delay delay in transmitting all the GOP-tiles l ∈ L

over sub-6 GHz to all users be τc which can be expressed as

τc =
LRµ

r ′
(5)

where L = |L|. Therefore, we have τc > τc,1. After

delivery of the GOP-tiles l ∈ L in time τc over sub-6 GHz

communication, each user u can compute L \ Lu,c GoP-tiles

with processing power fu,1. The number of CPU computing

cycles required to decode the GOP-tiles l ∈ L \ Lu,c of data

rate Rµ at the user is (L − Lu,c)(cR3
µ − d R2

µ + eRµ + g).

Hence, the induced decoding delay can be formulated as:

Tu,3 =
(L − Lu,c)(cR3

µ − d R2
µ + eRµ + g)

fu,1
. (6)

Therefore, the overall delay associated with transmission and

decoding of L \ Lu,c GoP-tiles is τc + Tu,3.
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Fig. 5. Operations at different devices for delivery of 360◦ video to user u.

Therefore, overall delay associated at the user u to receive

and decode base layer content of all GoP-tiles L and enhanced

layer content of GoP-tiles Lu is max(max(Tu,1, τ
1
a,u) +

τ 2
a,u, max(τ 1

a,u, τc,1) + Tu,2, τc + Tu,3)

IV. PROBLEM FORMULATION

Let 5 denotes the set of all possible AP to user assignments,

for the AP set A and user set U , such that every member

set π ∈ 5 features AP to user assignments comprising |U |

disjoint AP user pairs. For example, with A = {a1, a2} and

U = {u1, u2}, we have two different AP user assignments

partitions {(a1, u1), (a2, u2)}, and {(a1, u2), (a2, u1)} and 5 =

{{(a1, u1), (a2, u2)}, {(a1, u2), (a2, u1)}}. Furthermore, let Lu

be the power set of the set Lu which is the set of all subsets

of Lu , including the empty set and Lu itself.

Leveraging our recent advances in [34] and [36], we can

characterize the likelihood of every GOP-tile appearing in

the user viewport over that GOP and the expected immersion

distortion experienced by the user, given a data rate allocation

across the GOP-tiles. In particular, let pu
l , l ∈ Lu , denote

this navigation likelihood of GOP tile l ∈ Lu . Then, we can

formulate the expected immersion distortion experienced by

user u in our system as
∑

l∈Lu,r
pu

l al R
bl

l,max +
∑

l∈Lu,c
pu

l al R
bl

l .

Our aim is to minimize the maximum expected immersion

distortion over all users, for given system and application

constraints. Thus, the optimization problem of interest can be

expressed as:

min
Lu,r ∈Lu ,RLu,r ,

fu,1, fu,2,π∈5,F

max
u∈U

∑

l∈Lu,r

pu
l al R

bl

l,max +
∑

l∈Lu,c

pu
l al R

bl

l ,

s.t. max(Tu,1, τ
1
a,u) + τ 2

a,u ≤ τ u ∈ U,

s.t. max(τ 1
a,u, τc,1) + Tu,2 ≤ τ u ∈ U,

s.t. τc + Tu,3 ≤ τ u ∈ U,
∑

u∈U

Fu ≤ F, fu,1 + fu,2 ≤ fu, u ∈ U, (7)

where RLu,r is a set that contains all Rl , l ∈ Lu,c, for a

given choice of Lu,c ∈ Lu , F is the vector of all values of

Fu , u ∈ U , and τ is the maximum tolerable delay within

which each GOP needs to be sent such that users do not

experience any lag. The first constraint in (8) imposes that

the total delay of decoding and receiving GOP-tiles l ∈ Lu,r

at the user, be bounded by τ , the maximum tolerable end-to-

end delay. The second constraint imposes that the total delay

of receiving enhancement layer GOP-tiles l ∈ Lu,c at the user

and decoding these GOP-tiles be bounded by τ . Similarly,

the third constraint imposes that the total delay of receiving

and decoding base layer GOP-tiles l ∈ L at the user be

bounded by τ . The computation resource allocation at the

edge server is restricted by the total available computation

resource F , as shown in the fourth constraint. Similarly, the

restriction on computation resource allocation for each user

u ∈ U is given by the fifth constraint. We aim to select the

optimal Lu,r from Lu , find the set of optimal data rate RLu,r

for the selected tile set Lu,r , computing resource allocation,

and AP to user assignment to minimize immersion distortion

across all the users. Minimizing the immersion distortion is the

same as maximizing the immersion fidelity, due to the one-

to-one mapping between them [34]. The proposed statistical

characterization of user navigation captures as navigation

likelihoods the expected overlap of a tile with the user

viewport over a time duration and the factor that equatorial

tiles are more likely navigated than polar tiles. Therefore, our

expected viewport quality formulation can correspond to a tile-

level Weighted Spherical PSNR (WS-PSNR) [37].

Using (1), (2), (3), (4), (5), and (6), we can rewrite

problem (7) as follows

min
Lu,r ∈Lu ,RLu,r ,

fu,1, fu,2,π∈5,F

max
u∈U

∑

l∈Lu,r

pu
l al R

bl

l,max +
∑

l∈Lu,c

pu
l al R

bl

l ,

s.t.

∑

l∈Lu,r
βl,kr

Fu

≤ Vu,1,

∑

l∈Lu,c
(Rl − Rµ)

ra,u

≤ Vu,1 u ∈ U,
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s.t.

∑

l∈Lu,c
(Rl − Rµ)

ra,u

≤ Vu,2,
Lu,c Rµ

r ′

≤ Vu,2 u ∈ U,

s.t. Vu,1 +
Lu,r br

ra,u

≤ τ u ∈ U,

s.t. Vu,2 +

∑

l∈Lu,c
cR3

l − d R2
l + eRl + g

fu,2

≤ τ u ∈ U,

s.t.
LRµ

r ′
+

L′
u(cR3

µ − d R2
µ + eRµ + g)

fu,1

≤ τ u ∈ U,
∑

u∈U

Fu ≤ F, fu,1 + fu,2 ≤ fu, u ∈ U, (8)

where Vu,1, Vu,2, ∀u ∈ U, are slack variables, and L′
u =

(L − Lu,c), which has a non-negative value since L ≥ Lu,c.

V. OPTIMIZATION SOLUTION

A. Solution Discussion and Outline

The above optimization problem is mixed-integer program-

ming, which is hard to solve optimally in practice, due to its

complexity. Thus, we investigate a lower-complexity solution

framework that comprises three steps applied sequentially.

First, we fix the edge server’s computing resource allocation,

e.g., a uniform allocation across all mobile VR users, to be able

to tackle the integer variables in the optimization problem. For

a given edge server computing resource allocation, the problem

in (8) decomposes into a joint mmWave data rate allocation,

user computing resource allocation, and raw tile selection,

for each user u to AP a pairing in a given assignment.

We compute solutions to each of these independent problems,

for any prospective user to AP assignment π , in Section V-B.

These solutions will produce edge weights for any user u

to AP a prospective pairing, which we will then leverage in

Section V-C to compute the optimal user to AP assignment π∗

using a graph-theoretic solution. Finally, given this assignment,

and considering again F as variable, we resolve (8), to jointly

identify/update the optimal computing resource allocation

at the edge server and the users, and the mmWave data

rate allocation. This step is carried out in Section V-D and

completes our optimization strategy. Figure 6 illustrates our

optimization framework and its major steps.

B. Computing the Optimal Edge Weights for AP to User

Pairings

We set the edge server’s computing resource allocation to

be constant and uniform across all users, i.e., Fu = F/M .

Due to the fixed allocation, (8) decouples into the following

subproblems:

min
Lu,r ∈Lu ,RLu,r ,

fu,1, fu,2

∑

l∈Lu,r

pu
l al R

bl

l,max +
∑

l∈Lu\Lu,r

pu
l al R

bl

l ,

s.t.

∑

l∈Lu,r
βl,kr

Fu

≤ Vu,1,

∑

l∈Lu,c
(Rl − Rµ)

ra,u

≤ Vu,1,

s.t.

∑

l∈Lu,c
(Rl − Rµ)

ra,u

≤ Vu,2,
Lu,c Rµ

r ′
≤ Vu,2,

s.t. Vu,1 +
Lu,r br

ra,u

≤ τ,

s.t. Vu,2 +

∑

l∈Lu,c
cR3

l − d R2
l + eRl + g

fu,2
≤ τ,

s.t.
LRµ

r ′
+

L′
u(cR3

µ − d R2
µ + eRµ + g)

fu,1
≤ τ,

fu,1 + fu,2 ≤ fu, (9)

for each user u and AP a pairing in an assignment π . To solve

(9), we first consider a fixed set of raw enhancement GOP-

tiles Lu,r , and formulate an optimization strategy to solve the

allocation of mmWave data rate and user computing resource.

We then show how to integrate the selection of Lu,r into our

optimization strategy, by reformulating (9) accordingly.

1) Fixed Set of Raw GOP-Tiles: We first solve (9), for

a given Lu,r ∈ Lu . We can show that this problem is not

convex. It can be reformulated into geometric programming

(GP) via the single condensation method [38]. According to

this method, for a constraint which is a ratio of posynomials,

the denominator posynomial (say f(x)) can be approximated

into a monomial using the following inequality:

f(x) =
∑

ℓ

fℓ(x) ≥ f̂(x) =
∏

ℓ

[

fℓ(x)

δℓ

]δℓ

, (10)

where δℓ > 0 and
∑

ℓ δℓ = 1. Then, for δℓ =

fℓ(x̂)/f(x̂), f̂(x̂) is the best monomial approximation of f(x)

near x = x̂.

We formulate an iterative technique to optimally solve

(9) in this case. In particular, at each iteration t , the

second constraint in (9) is converted into a posynomial

using (10) as:

∑

l∈Lu,c

Rl(t)

(

Lu,c Rµ

δ1(t)

)−δ1(t)
(

Vu,1(t)ra,u

δ2(t)

)−δ2(t)

(11)

where δ1(t), and δ2(t), are obtained from the solution at the

(t − 1)-th iteration as: δ1(t) =
Lu,c Rµ

Lu,c Rµ+Vu,1(t−1)ra,u
δ2(t) =

Vu,1(t−1)ra,u

Lu,c Rµ+Vu,1(t−1)ra,u
. Similarly, at every iteration t , we can

convert the third, sixth and seventh constraints in (9) into a

posynomial using (10) as:

∑

l∈Lu,c

Rl(t)

(

Lu,c Rµ

δ3(t)

)−δ3(t)
(

Vu,2(t)ra,u

δ4(t)

)−δ4(t)

≤ 1 (12)

(Vu,2 fu,2 +
∑

l∈Lu,c

(cR3
l + eRl + g))

∏

l∈Lu,c

(

d Rl(t)
2

δ5l(t)

)−δ5l (t)

·

(
∑

l∈Lu,c
τ fu,2(t)

δ6(t)

)−δ6(t)

≤ 1 (13)

(

τr ′ fu,1(t)

δ7(t)

)−δ7(t)
(

r ′L′
ud R2

µ

δ8(t)

)−δ8(t)

·
(

r ′
L

′
u(cR3

µ + eRµ + g) + fu,1(t)LRµ

)

≤ 1, (14)

where δ3(t), δ4(t), δ5l(t), δ6(t) δ7(t) and δ8(t) are

obtained from the solution at the (t − 1)-th iteration
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Fig. 6. Optimization framework for resource allocation in our next generation multi-user mobile VR system.

Algorithm 1 GP Based Solution for (9), for a Given Lu,r

as: δ3(t) =
Lu,c Rµ

Lu,c Rµ+Vu,2(t−1)ra,u
δ4(t) =

Vu,2(t−1)ra,u

Lu,c Rµ+Vu,2(t−1)ra,u

δ5l(t) = d Rl (t−1)2
∑

l∈Lu,c
d Rl (t−1)2+τ fu,2(t−1)

δ6(t) =

τ fu,2(t−1)
∑

l∈Lu,c
d Rl (t−1)2+τ fu,2(t−1)

, δ7(t) =
τr ′ fu,1(t−1)

τr ′ fu,1(t−1)+r ′L′
ud R2

µ
,

δ8(t) =
r ′L′

ud R2
µ

τr ′ fu,1(t−1)+r ′L′
ud R2

µ
.

Let D(t) =
∑

l∈Lu,r
pu

l al R
bl

l,max +
∑

l∈Lu\Lu,r
pu

l al Rl(t)
bl .

Then, the overall optimization to be solved at iteration t is

min
RLu,r (t), fu,1(t), fu,2

(t) D(t)

s.t. (12), , (13), (14), , fu,1(t) + fu,2(t) ≤ fu .

s.t.

∑

l∈Lu,r
βl,kr

Fu

≤ Vu,1,
Lu,c Rµ

r ′
≤ Vu,2,

s.t. Vu,1 +
Lu,r br

ra,u

≤ τ, (15)

The above optimization problem is GP and can be solved

optimally. The iterative optimization is carried out until

|D(t) − D(t − 1)| ≤ ϵ with 0 ≤ ϵ ≪ 1. An algorithmic

implementation is included in Algorithm 1, which converges

to the global solution [38].

Let the optimal expected immersion distortion obtained by

Algorithm 1 be Da,u(Lu,r ) = D(t), which depends on of Lu,r .

Next, we consider integrating the optimal selection of Lu,r .

2) Raw GOP-Tile Selection: The optimization problem in

(9) can be solved optimally in the following manner: In an

inner loop, for each possible tile set Lu,r in Lu , find the

mmWave data rate optimization and user computing resource

allocation using the procedure described in Section V-B.1, and

then in an outer loop, find the best tile set Lu,r for which

the expected immersion distortion of viewport is smallest.

However, this scheme requires to search over 2|Lu | possible tile

sets. To solve (9) with low complexity, first, we reformulate

our problem as follows: Let xl be an indicator function that

denotes whether a tile is sent as encoded or raw, where

xl = 1, if tile l is sent as raw, and xl = 0, if the tile is

sent as encoded. Thus, the optimization problem in (9) can be

reformulated as

min
xl ,Rl ,l∈Lu

fu,1, fu,2

∑

l∈Lu

xl pu
l al R

bl

l,max +
∑

l∈Lu

(1 − xl)pu
l al R

bl

l ,

s.t.

∑

l∈Lu
xlβl,kr

Fu

≤ Vu,1,

∑

l∈Lu
(1 − xl)(Rl − Rµ)

ra,u

≤ Vu,1,

s.t.

∑

l∈Lu
(1 − xl)(Rl − Rµ)

ra,u

≤ Vu,2,

s.t.
Rµ

∑

l∈Lu
(1 − xl)

r ′
≤ Vu,2, Vu,1

+

∑

l∈Lu
xlbr

ra,u

≤ τ,

s.t. Vu,2 +

∑

l∈Lu
(1 − xl)(cR3

l − d R2
l + eRl + g)

fu,2

≤ τ,

s.t.
LRµ

r ′

+
(L −

∑

l∈Lu
(1 − xl))(cR3

µ − d R2
µ + eRµ + g)

fu,1

≤ τ,

fu,1 + fu,2 ≤ fu, xl ∈ {0, 1}, l ∈ Lu . (16)

To solve the above problem efficiently, we first replace

the binary constraints above with continuous equivalents
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xl ∈ [0, 1], l ∈ Lu . Furthermore, we introduce v0 as a slack

variable such that v0 ≥
∑

l∈Lu
xl pu

l al R
bl

l,max +
∑

l∈Lu
(1 −

xl)pu
l al R

bl

l . Then, we can reformulate (16) as:

min
xl ,Rl ,l∈Lu

fu,1, fu,2

v0,

s.t.

∑

l∈Lu
xl pu

l al R
bl

l,max +
∑

l∈Lu
pu

l al R
bl

l

v0 +
∑

l∈Lu
xl pu

l al R
bl

l

≤ 1,

s.t.

∑

l∈Lu
xlβl,kr

Fu

≤ Vu,1,

∑

l∈Lu
(1 − xl)(Rl − Rµ)

ra,u

≤ Vu,1,

s.t.

∑

l∈Lu
(1 − xl)(Rl − Rµ)

ra,u

≤ Vu,2,

s.t.
Rµ

∑

l∈Lu
(1 − xl)

r ′
≤ Vu,2, Vu,1 +

∑

l∈Lu
xlbr

ra,u

≤ τ,

s.t. Vu,2 +

∑

l∈Lu
(1 − xl)(cR3

l − d R2
l + eRl + g)

fu,2

≤ τ,

s.t.
LRµ

r ′

+
(L −

∑

l∈Lu
(1 − xl))(cR3

µ − d R2
µ + eRµ + g)

fu,1

≤ τ,

fu,1 + fu,2 ≤ fu, xl ∈ [0, 1], l ∈ Lu . (17)

The above optimization problem can be solved iteratively

using a GP method similar to Algorithm 1. It can be shown

that the iterative solution method converges to the global

solution [38]. The detailed solution process (17) is omitted

due to the limited space.

The obtained optimal solution for xl is continuous. To find

the desired raw GOP-tile selection, we pursue the following

rounding strategy. We first initialize Lu,r as empty. Then,

at each step: (i) We find the tile l∗ with the biggest value

of xl among the available tile set Lu,c, and (ii) If the expected

immersion distortion reduces, we add l∗ to the raw tile set

Lu,r . We continue this process as long as the immersion

distortion reduces further, and finally we produce the desired

tile set L∗
u,r , at the end. Then, the allocation of mmWave

data rate and user computing resource can be obtained by

solving (9), for the given L∗
u,r . Let D∗

a,u denote the optimal

expected immersion distortion experienced by user u, i.e., the

value of the objective function in (9), enabled by the thereby

produced optimal solution. We compute this quantity for every

prospective pairing AP a to user u, in order to solve for the

optimal AP to user assignment, as explained next. Algorithm 2

summarizes formally our optimization procedure described

herein.We assume block fading to model the mmWave and

sub-6 GHz channels, i.e., channel gain of each link does not

change within the time length of a GoP tile delivery, i.e.,

in time τ , but may vary from time to time. Therefore, the

optimization scheme requires to be executed only after the

duration of time τ , if channel gain of any link changes.

Algorithm 2 Optimal Solution of (9), Including a Selection

of Lu,r

Complexity of Algorithm 2: Here, we analyze the

computational complexity of proposed Algorithm 2. CVX is

used to solve the GP problems with the interior point method

in steps 2 and 5. The number of required iterations to solve

(17) is
log(Lu+9/t0,1ϵ)

log ξ
where Lu + 9 is the total number of

constraints, t0,1 is the initial point to approximate the accuracy

of interior point method for solving (17) using GP, 0 < ϵ < 1

is the stopping criterion for interior point method, and ξ is

used for updating the accuracy of interior point method [40].

Furthermore, it can be shown that for each iteration, the

number of computations required to convert the non-convex

constraints into convex is on the order of Lu . Therefore, the

total number of computations required to solve (17) is on the

order of Lu ×
log(Lu+9/t0,1ϵ)

log ξ
. The total number of constraints in

(15) is 7 and the number of computations required to compute

(13) is on the order of Lu at each iteration. Therefore, it can

be observed that the total number of computations required

to solve (15) is on the order of Lu ×
log(7/t0,2ϵ)

log ξ
where t0,2

is the initial point to approximate the accuracy of interior

point method for (15). The step 5 is repeated for a maximum

of Lu times, for which the computation requirement is on

the order of L2
u ×

log(7/t0,2ϵ)

log ξ
. Therefore, the total number of

computations required for Algorithm 2 is on the order of

Lu ×
log(Lu+9/t0,1ϵ)

log ξ
+ L2

u ×
log(7/t0,2ϵ)

log ξ
.

C. Optimal user-to-Access Point Assignment

The optimal user to AP assignment can be identified by

searching over all possible assignments 5. However, this

requires searching over (M+N )!/M ! prospective assignments,

where M = |U | is the number of users and N = |A| is the

number of APs. We explore a lower-complexity alternative

solution that leverages graph-theoretic concepts.

We begin by reviewing some concepts of bipartite graph

theory matching [41], [42]. A graph G comprising a vertex

set V and an edge set E is bipartite, if V can be partitioned

into V1 and V2 (the bipartition), such that every edge in E

connects a vertex in V1 to one in V2. Figure 7(b) shows
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Fig. 7. Example of a weighted bipartite graph for the network with two APs
and two users.

an example of a bipartite graph with two sets of vertices,

V1 = {v1
a, v2

a} and V2 = {v1
u, v2

u}, and an edge set

E =
{

(v1
a, v1

u), (v1
a, v2

u), (v2
a, v1

u), (v2
a, v2

u)
}

that correspond to

a user to AP assignment problem illustrated in Figure 7(a).

A matching in G is a subset of E such that every vertex

v ∈ V is incident to at most one edge of the matching.

A maximum matching in G contains the largest possible

number of edges. For the bipartite graph in Figure 7(b), the

two possible maximum matchings are {(v1
a, v1

u), (v2
a, v2

u)} and

{(v1
a, v2

u), (v2
a, v1

u)}.

To solve the AP to user assignment, first the network is

represented as a weighted bipartite graph in which each AP

a ∈ {1, .., N } and each user u ∈ {1, .., M} are represented by

vertices v1
a ∈ V1 and v2

u ∈ V2, respectively, and the weight of

the edges (v1
a, v2

u) is expressed as ω(v1
a ,v2

u) = D∗
a,u . This is the

minimum expected immersion distortion experienced by user u

when assigned to AP a. In Section V-B, we describe how each

D∗
a,u can be obtained. Thus, we can construct the respective

bipartite graph for the actual problem under consideration.1

Leveraging the development heretofore, we formulate the

user to AP assignment subproblem from (8) as a bottleneck

matching (BM) problem for the graph defined by the

maximum matching whose largest edge weight is as small as

possible, i.e., minφ∈8 max(v1
a ,v2

u)∈φ ω(v1
a ,v2

u), where 8 contains

all possible maximum matchings. Note that 8 is directly

related to 5 such that each maximum matching φ ∈ 8

corresponds to an user to AP assignment in 5.

For the graph in Figure 7(b), the bottleneck matching

is {(v1
a, v2

u), (v2
a, v1

u)} and thus the corresponding assignment

is: User 2 assigned to AP 1, and User 1 assigned to

AP 2. The constructed bipartite graph has M N edges and

N + M vertices. We solve the BM problem optimally

using the algorithm proposed in [42] with complexity

O
(

N 2.5
)

. Moreover, to construct a graph with M N edges

the induced time complexity is O
(

M N
)

. Therefore, the user

to AP assignment problem can be solved optimally with

complexity O
(

N 2.5
)

.

D. Joint Transmission and User/Edge Server Computing

Resources Allocation

In Section V-B, as part of the optimization carried

out therein, we identified the optimal enhancement GOP-

tile subset Lu,r that should be transmitted as raw data

1The edge weights shown in Figure 7(b) are produced in this fashion, for
the example network from Figure 7(a).

over the mmWave link of a given user and AP pairing

(u, a). In Section V-C, we identified the optimal user

to AP assignment π∗. Given these discrete optimization

developments, we can (re)solve jointly now the optimal

allocation of user and edge server computing resources, and

mmWave link data rate across the compressed enhancement

layer GOP-tile subset Lu \ L∗
u,r . Concretely, we investigate

the joint allocation of these three system resources by solving

(8), for given π∗ and L∗
u,r , ∀u.

We pursue a solution to this optimization problem by

reformulating it first as GP using the single condensation

method, analogously to the analytical steps carried out in

Section V-B.1. We then solve the problem reformulation via

an iterative optimization method that we design equivalently

to Algorithm 1. A high level illustration of our overall

optimization framework described throughout SectionV herein

is included in Figure 6.

VI. EXPERIMENTAL EVALUATION

We carry out a comprehensive experimental evaluation

to assess the performance of our system framework.

We measure the delivered VR immersion fidelity as

the inverse of the respective distortion quantity, using

10 log10(2552/
∑

l∈L pu
l Dl), commonly known as the Peak

Signal-to-Noise ratio (PSNR). We compare the performance

of the proposed strategy with the following techniques.
1) Reference: State-of-the-art method that integrates the

latest video streaming standard MPEG DASH [43], [44],

to deliver the 360◦ content over sub-6 GHz, given the

same system constraints.

2) Proposed-Rand: Here, mmWave and edge computing

technologies are used, but an AP is randomly assigned

to each user, and raw GoP tileset is randomly selected

for each user from its expected viewport tiles. The data

rate allocation for encoded enhancement layer tiles and

computation resource allocation at the users and the edge

server are obtained by solving an iterative GP algorithm

similar to Algorithm 1. Proposed-Rand can be regarded

as lower complexity implementation technique for our

proposed framework.
The immersion distortion modelling parameters of each

GoP tile of ’Runner’ and ’Basketball’ 360◦ video sequences

is experimentally calculated in our previous work [34]. The

viewpoint likelihood distribution was compiled based on traces

of VR user head movements that we collected [34], [36].

Oculus Rift VR headset was used and navigation actions

in real time was recorded using the OpenTrack software.

Modelling the relationship between CPU computing cycle to

tile data rate is conducted on an Intel Core i7 computer, and

modelling parameters c,d, e and g are obtained. All these

parameters are then used to evaluate our system framework

via numerical simulations. In our simulation experiments, five

users are uniformly distributed in a 5m ×5m square room VR

arcade. A sub-6 GHz router and five mmWave APs serve the

users. The mmWave APs and the sub-6 GHz router, linked

to an edge computing server, are placed vertically along the

room boundaries. For 360◦ content delivered to the mobile VR

users, we leveraged the ’Runner’ and ’Basketball’ 360◦ video
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TABLE II

MAJOR SIMULATION PARAMETERS

Fig. 8. PSNR performance versus edge server computing power.

sequences captured at 8K spatial resolution and 30 frames

per second temporal frame rate [45]. Our major simulation

parameters are summarized in Table II.

A. Delivered Immersion Fidelity Vs. Edge Server Computing

Resource

In Figure 8, we show the PSNR performance of the

proposed system when the edge server computing power

varies from 75 GHz to 175 GHz. The mmWave network

links in the system exhibit diverse data rates in the range

of 600 ± 800 Mbps. We can observe that as the edge

server’s computing power F increases and F ≤ 50 GHz,

more enhancement GOP-tiles can be decoded within a small

computing latency at the edge server and can be delivered

using mmWave communication, which in turn reduces the

computing latency at the user. Thus, the mmWave AP can

send a higher number of compressed enhancement GOP-tiles,

encoded at higher data rates, which improves the PSNR. If the

edge server’s computing power increases beyond 50 GHz,

the improvement in PSNR performance is negligible. The

reason is that the mmWave rate is a bottleneck for the system,

and it cannot support the delivery of more raw tiles while

also transmitting compressed enhancement GOP-tiles at high

rates. For F = 75 GHz, the proposed strategy achieves

8.8 and 10 dB PSNR improvement over the reference method

for the ’Runner’ and ’Basketball’ 360◦ video sequences,

respectively. Furthermore, our proposed scheme in which

all variables are jointly optimized provides 2 dB PSNR

improvement over Proposed-Rand method in which raw GOP-

tileset selection from expected viewport GOP-tiles and AP

Fig. 9. PSNR performance versus mmWave network link data rate for
F = 150 GHz.

to user assignment are random. The high-performance gain

of the proposed method compared to reference method stems

from the facts that scalable multi-layer tile-based 360◦ content

enables dual sub-6 GHz and mmWave transmission which

results in delivering high-quality VR content to the users and

also due to the synergistic integration edge computing along

with mmWave technology that allows minimizing computation

delay at the VR-headset, improving further immersion fidelity

at the user-end. These significant performance advances will

considerably enhance the remote scene immersion fidelity and

quality of experience delivered to the mobile users in our VR

arcade system.

B. Delivered Immersion Fidelity Vs. mmWave Transmission

Rate

Next, in Figure 9 we explore the PSNR performance of our

system, when the data rate of the mmWave network links in

the system is uniform, and is progressively increased from

400 Mbps to 1 Gbps. The edge server’s computing power has

been fixed to 150 GHz in these experiments. We can see that as

the mmWave transmission data rate increases, the PSNR of the

proposed system increases, as expected. In particular, as the

data rate increases, more raw enhancement GOP-tiles can be

transmitted. In consequence, this will reduce the computing

time at the user, which together with the higher mmWave

network link data rate, will enable transmitting the remaining

compressed enhancement GOP-tiles, encoded at higher data

rates. Both of these advances will augment the delivered

immersion fidelity for the VR user. Similarly to the earlier

results, we observe from Figure 9 a significant performance

improvement of 7 and 8 dB over the reference method, for the

’Runner’ and ‘Basketball’ 360◦ video sequences, respectively.

These performance gains considerably advance the state-of-

the-art.

C. Delivered Immersion Fidelity Vs. User Computing

Resource

In Figure 10, we explore the PSNR performance of our

system, when the computing power of the VR user’s mobile

device increases from 3 GHz to 7 GHz. We can observe
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Fig. 10. PSNR performance versus user computing power for F = 150 GHz.

Fig. 11. End-to-end system delay vs. user computing power for F = 150 GHz
and same PSNR performance.

that as the user’s computing power increases, the time delay

for decoding GOP-tiles of the 360◦ content at the user

end decreases. Thus, higher encoding data rate compressed

enhancement GOP-tiles can be transmitted within the required

system latency constraints, and hence, in turn, the immersion

fidelity delivered to the mobile VR user increases.

D. Latency Performance Vs. User Computing Resource

In Figure 11, we investigate the end-to-end delay induced

by our system, when streaming the ’Runner’ 360◦ video, vs.

the available computing power at the user. We hypothetically

consider that the reference method can deliver the same

immersion fidelity, as our own system, and measure what

would be its induced end-to-end delay in that case.

In particular, towards this objective, we consider that the

reference method can hypothetically transmit all GOP-tiles

encoded at the same data rate as in the case of our system.

We can observe from Figure 11 that as the user computing

power increases from 3 GHz to 7 GHz, our system is

able to maintain the required system latency of 1 second,

while enabling increasingly higher immersion fidelity for

the mobile user, by facilitating its more plentiful computing

resource. On the other hand, due to the need to decompress

at the user all GOP-tiles that are transmitted encoded at

much higher data rate in this case, in order to provide

the same immersion fidelity as our system, the reference

TABLE III

EXPECTED NUMBER OF RAW ENHANCEMENT GOP-TILES SELECTED FOR

MMWAVE TRANSMISSION VS. EDGE SERVER COMPUTING POWER AND

MMWAVE TRANSMISSION DATA RATE. USER COMPUTING POWER

IS FIXED TO fu = 3 GHZ

method is struggling to maintain the required system latency.

As observed from Figure 11, its end-to-end latency becomes

thereby 2.5 - 4.5 times higher than the required constraint. This

in turn would dramatically penalize the immersion quality of

experience of the mobile VR user, as it would considerably

reduce the interactive nature of the VR application.

E. Expected Number of Raw Enhancement GOP-Tiles

Selected for Transmission

Finally, in Table III, Table IV, and Table V, we investigate

the expected number of raw enhancement GOP-tiles selected

for mmWave transmission in our system, in the case of the

’Runner’ 360◦ content. In particular, a positive non-integer

valued entry in Table III, associated with a given mmWave

transmission data rate and edge server computing power pair,

can be explained with the following examples.

(i) if F = 150 GHz and mmWave rate is 600 Mbps,

an expected number of transmitted raw tiles of 0.2 can occur

if for one of the five users, one enhancement GOP-tile is

transmitted as raw data. For the other users, all enhancement

GOP-tiles are transmitted compressed. (ii) if F = 200 GHz

and mmWave rate is 800 Mbps, an expected number of

transmitted raw tiles of 1.2 can occur if for one of the five

users, two enhancement GOP-tiles are transmitted as raw

data. For the other four users, one enhancement GOP-tile is

transmitted as raw data. Similar analogy can be drawn for the

alike valued entries in Table IV and Table V.

It can be observed from Table III that as the mmWave

transmission data rate and edge server computing power

increase, a higher number of raw enhancement GOP-tiles

are selected by our optimization framework, to augment

the delivered immersion fidelity. This is because with the

increase in mmWave data rate and edge server computing

power, a higher number of enhancement GOP-tiles can be

decompressed at the edge server and transmitted as raw

data over the mmWave link, within a short time interval.

In consequence, then only a smaller number of compressed

enhancement GOP-tiles, encoded at higher data rate, would

need to be delivered, which would lower the decoding latency

induced at the user. Both of these advances will contribute

to higher immersion fidelity delivered to the VR user, while

maintaining the required system latency.

We can observe from Table IV that a higher number

of raw enhancement GOP-tiles are likewise selected for

transmission, as the mmWave transmission data rate and user

computing power increase, again to augment the immersion

fidelity delivered to the user. This outcome stems from

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 23,2022 at 15:52:47 UTC from IEEE Xplore.  Restrictions apply. 



GUPTA et al.: mmWAVE NETWORKING AND EDGE COMPUTING FOR SCALABLE 360◦ VIDEO MULTI-USER VR 389

TABLE IV

EXPECTED NUMBER OF RAW ENHANCEMENT GOP-TILES SELECTED

FOR MMWAVE TRANSMISSION VS. USER COMPUTING POWER AND

MMWAVE TRANSMISSION DATA RATE. EDGE SERVER COMPUTING

POWER IS FIXED TO F = 150 GHZ

TABLE V

EXPECTED NUMBER OF RAW ENHANCEMENT GOP-TILES SELECTED FOR

MMWAVE TRANSMISSION VS. EDGE SERVER COMPUTING POWER AND

USER COMPUTING POWER. MMWAVE TRANSMISSION DATA RATE

IS FIXED TO 800 MBPS

reasons equivalent to those discussed earlier in the context

of the results presented in Table III. In particular, the higher

user computing power enables decoding faster compressed

enhancement GOP-tiles delivered to the user, i.e., with lower

induced delay. This in turn will leave more of the end-

to-end system delay constraint available to be consumed

by mmWave transmission, which coupled with the higher

mmWave transmission data rate, enables sending a higher

number of raw enhancement GOP-tiles.

Similarly, Table V informs that as the edge server computing

power and user computing power increase, again, a higher

number of raw enhancement GOP-tiles are selected for

mmWave transmission. This is because with an increase in

edge server computing power and user computing power,

the compressed enhancement GOP tiles can be decoded

faster, thereby allowing for a higher number of raw

enhancement GOP-tiles to be transmitted over the mmWave

links, within the maximum tolerable system delay. Finally,

it can be observed from Table III and Table IV that if the

mmWave transmission data rate is limited, our optimization

framework selects all enhancement GOP-tiles to be transmitted

compressed.

VII. CONCLUSION

We have investigated a novel multi-user mobile VR

system for streaming 8K scalable 360◦ video that enables

high reliability and immersion fidelity, and low interactive

latency, via the synergistic integration of embedded multi-

layer 360◦ tiling, dual millimeter wave (mmWave) and sub-6

GHz transmission, and edge computing capability. High rate

directed mmWave links were studied to send viewport-specific

enhancement layers of the 360◦ content to the individual

VR users, to augment the delivered remote scene immersion

fidelity. Sub-6 GHz broadcast of the base layer of the entire

360◦ panorama to all users is carried out, to augment the

application reliability. The viewport-specific enhancements

could comprise compressed and raw 360◦ tiles, decoded first

at the edge server. We explored the joint optimization of

the mmWave access point to user association, the choice of

360◦ tiles to be transmitted decompressed, the allocation of

mmWave data rate across the compressed tiles in a viewport-

specific enhancement, and the allocation of computing

resources at the edge server and user devices. Our aim was

to maximize the minimal delivered immersion fidelity across

all VR users, given transmission, latency, and computing

constraints. We have introduced analytical characterizations of

the rate-distortion trade-offs across the spatiotemporal 360◦

panorama and the computing power required to decompress

360◦ tiles, to facilitate our analysis and problem formulation.

We explored a solution that comprises multiple geometric

programming algorithms and an intermediate step of graph-

theoretic VR user to mmWave access point assignment. Our

results demonstrate that our framework can enable a significant

improvement in delivered VR user immersion fidelity (8 dB to

10 dB) and spatial resolution (8K vs. 4K), over a state-of-the-

art reference method that leverages sub-6 GHz transmission

only. The high-performance gain stems from the following

facts: (i.) Scalable multi-layer tile-based 360◦ content enables

dual sub-6 GHz and mmWave transmission which results

in delivering high quality VR content to the users (ii.) By

synergistic integration edge computing along with the above-

mentioned technologies allows minimizing computation delay

at the VR-headset, improving further immersion fidelity at the

user-end. We have also shown that an increasing number of

raw 360◦ enhancement GOP-tiles are sent, as the mmWave

link data rate or the edge server/user computing power

increases, exploring rigorously in this context the fundamental

interplay between computing/communication capabilities, end-

to-end system latency, and delivered VR immersion fidelity.

Finally, we demonstrated that in order to hypothetically deliver

the same immersion fidelity, the reference method would incur

a much higher (2.5-4.5x) system latency.

Here we discuss two different possibilities of extending

our work in future. Firstly, an objective metric which is

a concave and increasing function of encoding rate, may

not be always modeled directly as a polynomial function

of encoding rate, e.g., in [46] and [47]. Even then, the

proposed geometric programming method can still be used as

most of the continuous functions can be well approximated

as the difference of two convex functions [48]. Secondly,

there exist different quality of experiences (QoEs) for 360o

video applications, e.g., tile quality smoothness (in terms of

change in encoding rate) spatially or temporally [47], [49],

[50]. Spatial tile quality smoothness or temporal tile quality

smoothness can be expressed as a polynomial function of

the encoding rate of relevant tiles [47], [49], [50]. Therefore,

if there is a specific spatial/temporal smoothness requirement,

a new constraint can be added. The proposed geometric

programming strategy can still be easily implemented in such

a scenario, as the constraint is a polynomial function of the

encoding rates of the relevant tiles. Furthermore, the results

demonstrated in this paper provide an upper-bound for the

cases where a constraint on video smoothness is required, and

therefore the proposed solution provides a guiding insight for

designing an effective system.
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