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mmWave Networking and Edge Computing for
Scalable 360° Video Multi-User Virtual Reality
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Abstract— We investigate a novel multi-user mobile Virtual
Reality (VR) arcade system for streaming scalable 8K 360° video
with low interactive latency, while providing high remote scene
immersion fidelity and application reliability. This is achieved
through the integration of embedded multi-layer 360° tiling, edge
computing, and wireless multi-connectivity that comprises sub-
6 GHz and mmWave (millimeter wave) links. The sub-6 GHz
band is used for broadcast of the base layer of the entire 360°
panorama to all users, while the directed mmWave links are
used for high-rate transmission of VR-enhancement layers that
are specific to the viewports of the individual users. The viewport-
specific enhancements can comprise compressed and raw 360°
tiles, decoded first at the edge server. We aim to maximize the
smallest immersion fidelity for the delivered 360 content across
all VR users, given rate, latency and computing constraints.
We characterize analytically the rate-distortion trade-offs across
the spatiotemporal 360° panorama and the computing power
required to decompress 360° tiles. The proposed solution consists
of geometric programming algorithms and an intermediate step
of graph-theoretic VR user to mmWave access point assignment.
The results reveal a significant improvement (8 — 10 dB) in
delivered VR user immersion fidelity and spatial resolution
(8K vs. 4K) compared to a state-of-the-art method based on
sub-6 GHz transmission only. We also show that an increasing
number of raw 360° tiles are sent, as the mmWave network
link data rate or the edge server/user computing power increase.
Finally, we demonstrate that in order to hypothetically deliver
the same immersion fidelity, the reference method would incur
a much higher (2.5-4.5x) system latency.

Index Terms— Multi-user virtual reality, scalable 360° video,
mmWave, edge computing, resource allocation.

I. INTRODUCTION

V IRTUAL reality (VR) technologies are becoming increas-
ingly popular in entertainment and gaming, education
and training, healthcare, advertising, and social media. It is
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expected that VR technology will represent a 120 billion
market by 2022 [1]. 360° video is an integral part of virtual
reality systems and can enable remote scene immersion for
a VR user experiencing it. Relative to traditional video
streaming, VR based 360° video streaming has the following
challenging requirements: ultra high data rate, ultra low
response latency, and intensive computing. Thus, at present,
only low-quality and low-resolution 360° videos can be
streamed, and only over wired networks [2], [3]. The quality
of experience is even worse over mobile devices, due to the
much lower wireless bandwidth and computing capabilities of
the user’s mobile device to which the VR headset is attached.
On the other hand, seamless untethered VR applications
integrating high-fidelity real remote scene 360° content are
expected to have the highest societal impact, advancing quality
of life, the global economy, and energy conservation [4].
Enabling such applications is the objective we pursue within
the present paper.

The latency in 360° video streaming systems comprises
communication and computing delays that need to be
constrained to 10-20 milliseconds end-to-end [5]. Relative
to traditional 2D video, 360° video has a much higher
resolution and temporal frame rate, and thus requires much
more bandwidth to deliver the entire 3D 360° look-around
remote scene it represents. High quality 360° video of frame
rate of 100 frames per second and spatial resolution of 12K,
as recommended by MPEG, can easily consume bandwidth of
multiple Gigabits-per-second (Gbps) [6].

A. Proposed Framework and Contributions

We explore a novel streaming system for next-generation
untethered VR that enables high immersion fidelity and
low interactive latency, illustrated in Figure 1. It integrates
synergistically, for the first time, high fidelity 8K scalable
360° video, edge computing, and wireless millimeter wave
(mmWave) transmission. Firstly, using statistical characteriza-
tion of user viewport navigation, we identify the subset of
all tiles of the 360° content that have a high likelihood of
being navigated by the user. Next, leveraging high computing
capability at the network edge and using mmWave technology,
our system enables transmitting a subset of viewport specific
tiles as decompressed (therefore, reducing decoding delay at
a user) and the rest of the viewport specific tiles as encoded
at high data rates via mmWave. Moreover, to augment the
system’s reliability, and compensate for prospective mmWave
link uncertainty and viewport prediction error, the base layer
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of the entire 360° panorama is broadcast over sub-6 GHz to all
the users. These advances result in a significant improvement
in VR user immersion fidelity.

The major technical contributions of this paper are the

following:

« We propose a novel next generation mobile VR system
with integrated edge computing and millimeter wave
capability, 8K space-time scalable 360° multi-layer
tiling, and multi-connectivity based one sub-6 GHz and
mmWave links, and investigate the benefits of raw
360° tile mmWave transmission and the induced trade-
offs between communication and computing latency.
Viewport-adaptive scalable 360° tiling is integrated for
efficient resource utilization.

« Joint optimization of raw 360° tile selection for mmWave
transmission, allocation of remaining mmWave link data
rate across the rest of the compressed 360° tiles, and
allocation of edge server and user device computing
resources. The objective is to maximize the delivered
immersion fidelity, subject to end-to-end delay and
transmission/computing constraints.

« We investigate the computing requirements of 360°
tiles and formulate an accurate analytical polyno-
mial model that captures the dependence between
the number of CPU computing cycles required to
decompress a tile and the transmission data rate assigned
to it.

o To overcome the mixed-integer programming nature
of the problem formulation, we formulate a lower-
complexity solution that comprises multiple geometric
programming algorithms and an intermediate step of
graph-theoretic VR user to mmWave access point
assignment. We rigorously characterize the computational
complexity of our solution.

o Our experimental results demonstrate that the proposed
360° VR streaming system enables for the first time
streaming high-fidelity 8K 360° videos to mobile VR
clients. Significant performance gains in delivered immer-
sion fidelity and interactive latency are demonstrated

A next generation mobile VR arcade with integrated edge computing and millimeter wave capability.

over a state-of-the-art reference method that relies on
sub-6 GHz transmission.

B. Organization of the Paper

In Section II, we first discuss related work. Formulation
of our system models is carried out in Section III.
We present the problem formulation in Section IV and
the respective optimization solution in Section V. We carry
out comprehensive simulation experiments to assess the
performance of our framework in Section VI. Finally,
we conclude in Section VII.

II. RELATED WORK

Tiling-based viewport-adaptive streaming [7], [8], [9], [10]
is a popular scheme to efficiently utilize communication
resources. In this approach, each frame of the 360° video
is spatially divided into a number of rectangular regions
called tiles, as illustrated in Figure 2. Each tile is encoded
independently at a fixed data rate. At any time, a VR user
experiencing the streaming content can only watch a limited
spatial portion of the wide 360° panorama on its head-mounted
display (HMD), known as the viewport. The streaming server,
anticipating the user’s viewing direction, sends then a smaller
subset of the video tiles that overlap with the user’s viewport
over short periods of time (1-2s) into the future. Once the
compressed tiles are received, they need to be decoded and
rendered at the processing unit of the VR device. PC-based
VR devices, e.g., Oculus Rift [2] and HTC Vive [3], are
tethered to a powerful gaming computer and perform decoding
locally on the computer/console. Hence, they lack mobility
and present potential tripping hazzard. On the other hand,
mobile VR solutions such as Samsung Gear VR [11] and
Google Daydream [12] are attached to a mobile device, with
limited computing capabilities and wireless bandwidth, which
adversely impact the quality of experience.

Resource allocation for scalable 360° video transmission
in sub-6 GHz networks has been investigated recently [13]
and [14]. Sun et al. [13] proposed a two layer system for
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Fig. 2. Spatiotemporal tiling and Group of Pictures (GOP) of a 360° video.

360 video streaming, which can dynamically adapt the bitrates
of the base layer and the enhancement layer according to
the network throughput variations and viewport prediction
errors. In [14], the authors proposed a cooperative streaming
scheme of scalable viewport specific 360° content in which
base station multicasts viewport specific 360° content to all
users and users locally share part of the received viewport
specific 360° content using mobile ad hoc network. Aerial
360° video streaming for remote scene immersion in next
generation UAV-IoT applications has been explored in [4].
Cooperative mobile-edge multi-user 360° video delivery in 5G
small-cell cellular networks has been investigated in [15].

n [16], a terahertz network with multiple reconfigurable
intelligent surfaces (RISs) and users, and a single transmitter
is considered for VR applications, and the problem of RIS to
user association is investigated with the aim of optimizing the
rate and reliability of the network. Chen et al. [17] propose a
federated learning based user to base station (BS) association
strategy with the aim of minimizing “breaks in presence”
in VR, where the content is transmitted from the BSs to
the users using mmWave communication. However, bitrate
allocation for the transmitted VR content is not considered
in this study. Moreover, efficient signal processing techniques
such as scalable video coding and 360° video tiling are not
considered. Therefore, the above strategy may be sub-optimal
for maximizing the VR users’ experienced immersion fidelity.

The role of edge computing and caching for wireless
VR has been discussed recently [18], [19], [20], [21], and
[22]. In particular, the study in [18] discusses the possibility
of improving the overall system delay by the use of edge
computing for VR gaming. Similarly, for 360° video delivery
and VR gaming, the work in [19] examines the data rate and
latency requirement for enabling wireless VR with the help of
edge computing. Similarly, [23] has shown that high data rate
mmWave link can support uncompressed video transmission.
Sukhmani et al. [20] shown that the distributed cache can
improve the service performance of VR applications. The users
can cache and share their local content resources between
neighbors which can greatly shorten the service latency. [21]
proposes an efficient VR framework in which selection of
device for rendering and caching of the viewport content for
each user is made based on available computation and cache
availability at the users and the edge server. In [22], the authors

investigate the communication resource allocation and base
station selection to optimize VR video delivery delay and
tracking accuracy in an orthogonal frequency division multiple
access (OFDMA) network. Uplink and downlink resources are
used to transmit cellular user’s tracking information and VR
scenes, respectively. Edge computing helps to generate VR
scenes when erroneous tracking information is received due
to poor uplink wireless channel.

The integration of mmWave and edge computing for mobile
VR has been considered in [19], [24], and [25], however, with
limited contributions. [19] studies a user clustering strategy to
maximize the user field-of-view frame request admission. [25]
studies proactive computing and caching of synthesized
interactive VR video frames, to minimize the traffic volume
of VR gaming. [24] introduces a parallel rendering and
streaming mechanism to reduce the addon streaming latency,
by pipelining the rendering, encoding, transmission and
decoding procedures. The strategies considered in [19] and
[25] are heuristic and do not necessarily enable higher VR
immersion fidelity for the user. Similarly, only low-quality
low-resolution (4K) 360° content has been considered. Both of
this shortcomings considerably penalize the delivered quality
of experience. On the other hand, we considerably advance the
state-of-the-art by a rigorous end-to-end system analysis and
optimization that aim to maximize the delivered immersion
fidelity subject to various system constraints. Moreover,
we synergistically integrate raw 360° tile transmission, 8K
scalable 360° multi-layer tiling, and dual sub-6 GHz and
mmWave transmission, and provide rigorous analysis of the
enabled benefits and induced performance trade-offs. Our
experimental results demonstrate the considerable performance
advances enabled by our framework.

The present work is based on our preliminary studies in
[26] and [27]. In [26], we investigated the joint optimization
of mmWave access point to user assignment, the allocation
of mmWave data rate for a given set of viewport-specific
enhancement tiles, and allocation of computing resources
at the edge server and user devices for the proposed
streaming system. In this work and [27], along with the
above mentioned design variables, we jointly decide the
choice of viewport-specific enhancement tiles to be transmitted
decompressed to provide a complete analysis of our proposed
system. Compared to our previous work in [27], the major
improvements in this present study are as follows: (i) Complete
mathematical analysis of the proposed optimization problem
is provided, (ii) Complexity of the proposed solution is
investigated, and (iii) New analysis of the dependency CPU
computing cycles versus data rate is obtained.

III. VR ARCADE SYSTEM MODELS
A. General Aspects

In our VR arcade system, illustrated in Figure 1, there are
M users receiving the 360° video content through wireless
VR headsets. There are N mmWave APs and a sub-6 GHz
router interlinked with a collocated edge server, where the
compressed content resides. A user is assigned to a mmWave
access point (AP) and viewport-specific enhancement layers of
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TABLE I
MAJOR NOTATION USED IN THE PAPER

Parameters Definition

U, A Set of users and set of mmWave APs
L, Set of GOP-tiles and size of £

Ly, GOP-tile set in user u’s expected viewport
L, No. of GOP-tiles in user u’s expected viewport
Loy,r Set of GOP-tiles in L, to be sent as raw data
Lu,r No. of GOP-tiles in L, to be sent as raw data
Ly, Set of GOP-tiles in L, to be sent as encoded
Ly, No. of GOP-tiles in L,, to be sent as encoded
Ry Data rate of sub-6 GHz communication
Ry Data rate of each encoded GOP-tile [ € Ly, ¢
by Size of the enhancement layer of GOP-tile
l € Ly, after decoding
fu Processing power of user u
Sfu,1 User u’s CPU power applied to decode the
GOP-tiles that are received over sub-6 GHz
Sfu,2 User u’s CPU power applied to decode the
GOP-tiles | € Ly, c.
Bk, No. of CPU cycles required to decode GOP-tile I € Ly,
Fy Computation resource allocated at the edge server to user u.
II Set of all possible AP to user assignments
p;L Navigation likelihood of GOP tile [ € L,,
T Downlink broadcast transmission rate of sub-6 GHz
Ta,u mmWave transmission rate through the AP a to user u link
T Maximum tolerable end-to-end delay

the scalable 360° content are sent to this user using mmWave
transmission, comprising both raw and compressed tiles.
Furthermore, the base layer of the entire 360° panorama is
broadcast over sub-6 GHz to all the users. Table I summarizes
the main notation used throughout the development of
our system models, problem formulation, and optimization
techniques, over the following three sections of the paper.

B. Sub-6 GHz and mmWave Communication Model

Here, we describe the two transmission media used
in our system. The bandwidth allocated for sub-6 GHz
communication is By. Therefore the sub-6 GHz rate is
" = Bylog(l + ypr) where yp, is the broadcast SNR using
sub-6 GHz.

The mmWave channel is based on measurement results
of line of sight (LoS) or non-line of sight (NLoS) paths
for the 60-GHz indoor channels, and includes both pathloss
attenuation [,, and small scale Nakagami fading with
coefficient g, [28]. The channel gain h,, from AP a to user
u is thus given by |hqu|®> = luulgaul>. The corresponding
Nakagami shape factor m,, will take value mjy for LoS
and my for NLoS paths; it is further assumed that g,, is
ii.d. and not temporally correlated. The pathloss value is
lyy = Cpd=%L if there is a LoS path between AP a and

user u. Otherwise, l,, = Cyd *N. Here, C; and Cy are
constants that depend on LoS or NLoS channel characteristics,
respectively.

The radiation pattern of actual directional antennas is
approximated with a 2D sectored antenna model [29]. Let
gI* and gR¥ denote the transmission and reception antenna
gains from AP a to the user u. They are defined as g3, =
M, if vy, < ‘pz“ and g3, = gy, otherwise. Here,
®c {Tx Rx}, v} stands for the angular deviation from the

boresight dlrectlons, and gy is the constant sidelobe gain with
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gs1 < 1. Thus, the AP a to user u SNR is y,,, = M,
where p, is the transmit power by the AP a, B is the
bandwidth for mmWave communication, and N is the noise
power spectral density. Therefore, the AP a to user u rate is
ra.u = Blog(14ya,). We use the approximation that mmWave
interference among the user links is absent due to the directed
pencil-shaped mmWave beams between users and APs. Also,
the transmission rate r, ,, for each link between AP a € A
and user u € U is available at the centralized controller,
by continuous monitoring of the beam direction [30].

C. Scalable 360° Video Encoding and Decoding Model

We introduce a scalable 360° video representation method
that synergistically integrates with mmWave and sub-6 GHz
communication for efficient resource utilization. First, using
an equirectangular projection, the raw spherical video frames
are mapped to respective 2D panoramas, as illustrated in
Figure 3 below, to enable the application of state-of-the-art
video coding [31], [32]. Then, each panoramic 360° video
frame is partitioned into L g x Ly tiles. Finally, the tiled frames
are grouped temporally into blocks of subsequent frames,
each denoted as Group of Pictures (GOP) and compressed
separately. Here, we denote the sequence of tiles at the
same spatial location (h,v) in a GOP as a GOP-tile and
construct K scalable layers of increasing immersion fidelity
for each GOP-tile, as illustrated in Figure 3, by applying the
scalable extension of the latest video compression standard
denoted as SHVC [33] independently to each GOP-tile [33].
The first layer of a compressed GOP-tile is known as the
base layer, and the remaining K — 1 layers are denoted as
enhancement layers. The reconstruction fidelity of a GOP-tile
improves incrementally as more layers are being decoded
progressively starting from the base layer. Let L denote the set
of all GOP-tiles. Each GOP-tile / € L exhibits an immersion
reconstruction distortion D; related t0 the encoding data rate
R; of the GOP-tile as D; = alR where a; and b; are
constants [34].

For each user, a subset of GOP-tiles are decoded at the edge
server and rest of the GOP-tiles are decoded at the user. The
time required to decode a GOP-tile depends upon the data
rate of the GOP-tile, which in turn depends on the number of
scalable layers from which the tile is decoded/reconstructed.
To find the time delay induced by decoding GOP-tiles at
the edge server or a user, we analyze the number of CPU
computing cycles B required to decode a GOP-tile as a
function of its data rate R. Our empirical results shown in
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Figure 4 demonstrate a polynomial relationship that we can
capture as 8 = cR3—dR?>+¢R + g, where ¢, d, e, and g are
positive constants. We indicate the values of these constants
in Figure 4. The computation delay of a GOP-tile can be
expressed as the ratio of required CPU cycles to decode and
CPU frequency of the equipment at which the tile is decoded.

D. Proposed Video Transmission Framework

The overall delivery process of the proposed 360° streaming
and associated delay is shown in Fig. 5. Multiple enhancement
layers of viewport-specific GOP-tiles are sent to the individual
users over mmWave links. Specifically, we leverage our
ongoing work on statistical characterization of user viewport
navigation [34], [35], to identify as the subset of 360° GOP-
tiles that overlap with the VR viewport of user u over that
GOP. Essentially, it comprises the GOP-tiles that exhibit a
non-zero likelihood of being navigated by the user during that
GOP of the 360° content. Let L, denote the set of GoP-tiles
in expected viewport of user u. Enhancement layers of tiles
|l € L, will be sent to user u using mmWave transmission
from one select AP, to augment the enabled immersion fidelity.
In particular, from the L, set of GOP-tiles to be sent via
mmWave AP a, the L, , € L, subset of GOP-tiles are sent
raw, while the remaining L,. = L, \ L, , tiles are sent
compressed. When carried out at the edge server, GOP-tile
!l € L, is decoded from the highest available data rate
(best quality) R; mqx of the GOP-tile. This corresponds to
reconstructing the tile from all K scalable layers into which
it has been encoded using our approach. Let data rate of
each encoded GOP-tile /| € L, . is R;. To augment the
system’s reliability, and compensate for prospective mmWave
link uncertainty and viewport prediction error, the base layer
of every GOP-tile / € L is broadcast over sub-6 GHz to all
users. Let the immersion distortion of each GOP-tile [ € L
which is sent over sub-6 GHz communication be D, and
the corresponding data rate of the GOP-tile be R,. Since
we construct/encode the 360° content in scalable manner, the
number of bits required to be sent for the enhancement layers
of each compressed GOP-tile / € L, . is (R;— R,,). Therefore,
via mmWave channel, the GOP-tiles [ € L, . is transmitted to

the user in time 7!,

Der, . (Ri— Ry
o, == (1)

Fa,u

which is expressed as

Simultaneously, L, , GOP-tiles is decoded in time 7, », which
is expressed as

2ieL,, P
Ty = —2——, 2
u,l Fu ( )
where Bk, = cRimax — de%max + eR} max + g is the number

of CPU cycles required to decode tile [ € L, », F, is the edge
server’s computing resource allocated to user u. Let the size of
each GOP-tile [ € L, , after decoding be b,. After completion
of L, . GOP-tiles’ delivery and L, , GOP-tiles’ decoding in
time max (7} 1, taly ), the raw GOP-tileset is sent via mmWave.
The delay for transmitting this information is given by

Lyrb
T(iu — u,rvr (3)
Ta,u
where L£,, = |L,,|. Therefore, overall delay associated

with decoding and transmission of L,, GoP tiles is
max(7y,1, ral’u) + tiu.

Let 7.1 denote the delay in transmitting the GOP-tiles
l € L, over sub-6 GHz to all users, ie., 7,1 = L”’rc,R",
where £, . = |Ly.c|. The L, . GoP-tiles can be decoded at
the user after the enhancement layer information as well as the
base layer information of all L, . GoP-tiles are received at the
user, i.e., after the delay of max(tal,u, 7..1). Let the processing
capability of the VR headset of user u be f,, and let f, ;
and f, 2 be the processing power allocated by the user to
decode the GOP-tiles received over sub-6 GHz and mmWave,
respectively, where f, 1+ f,.2 < fu. Thus, the number of CPU
computing cycles required to decode the GOP-tiles [ € L,
of data rate R; at the user is (ch — dez + eR; + g). Hence,

the induced decoding delay can be formulated as:
ZleL“ ch3 - de2 +eR +g
fu,2 .

Therefore, the overall delay associated with transmission and
decoding of L, . GoP tiles is max(ral’u, 1)+ Ty
Let the delay delay in transmitting all the GOP-tiles / € L
over sub-6 GHz to all users be t. which can be expressed as
LR
o= 5)

r

Tu2 = “4)

where £ = |L|. Therefore, we have 7. > 7. 1. After
delivery of the GOP-tiles [ € L in time t. over sub-6 GHz
communication, each user u can compute L \ L, . GoP-tiles
with processing power f, 1. The number of CPU computing
cycles required to decode the GOP-tiles [ € L \ L, . of data
rate R, at the user is (£ — Lu,c)(cRZ — dRi + eR, + g).
Hence, the induced decoding delay can be formulated as:

_«- Luc)(cR} —dR% +eR, + g)
fu,l .

Therefore, the overall delay associated with transmission and
decoding of L \ L,  GoP-tiles is 7. + T, 3.

(6)

Tu,3
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Therefore, overall delay associated at the user u to receive
and decode base layer content of all GoP-tiles L and enhanced
layer content of GoP-tiles L, is max(max (7,1, ral’u) +

2 1
Tau» max(ta’u, Tc,l) + Tu2, Te + Tu3)

IV. PROBLEM FORMULATION

Let IT denotes the set of all possible AP to user assignments,
for the AP set A and user set U, such that every member
set w € II features AP to user assignments comprising |U|
disjoint AP user pairs. For example, with A = {aj, ay} and
U = {uy,uz}, we have two different AP user assignments
partitions {(ai, u1), (a2, uz)}, and {(ay, us), (az, u1)} and Il =
{{(a1, uy), (a2, u2)}, {(a, u2), (az, uy)}}. Furthermore, let L,
be the power set of the set L, which is the set of all subsets
of L,, including the empty set and L, itself.

Leveraging our recent advances in [34] and [36], we can
characterize the likelihood of every GOP-tile appearing in
the user viewport over that GOP and the expected immersion
distortion experienced by the user, given a data rate allocation
across the GOP-tiles. In particular, let p;‘, [ € L,, denote
this navigation likelihood of GOP tile [ € L,. Then, we can
formulate the expected immersion distortion experienced by
user u in our systemas > ¢, P}‘aleb,lmax‘*‘ZleLu,c praR].
Our aim is to minimize the maximum expected immersion
distortion over all users, for given system and application
constraints. Thus, the optimization problem of interest can be
expressed as:

min
LuyreLu,Ry, ,,
Jus fu2. ML F

max
uelU

u by u by
Z Pi alRl,max+ Z 12 aR;’,
leLy,, leL, .

s.t. max(7y 1, ral’u) + Taz,u <tuel,
S.t. max(ra]’u, 1)+ Tu2 <t uecl,
st. e +Tys3<tuel,
D Fu<F, fuitfur<fu uel,

uelU

)

Operations at different devices for delivery of 360° video to user u.

where Ry, is a set that contains all R;, I € L., for a
given choice of L,. € Ly, F is the vector of all values of
F,, u € U, and 7 is the maximum tolerable delay within
which each GOP needs to be sent such that users do not
experience any lag. The first constraint in (8) imposes that
the total delay of decoding and receiving GOP-tiles [ € L, ,
at the user, be bounded by 7, the maximum tolerable end-to-
end delay. The second constraint imposes that the total delay
of receiving enhancement layer GOP-tiles [ € L, . at the user
and decoding these GOP-tiles be bounded by 7. Similarly,
the third constraint imposes that the total delay of receiving
and decoding base layer GOP-tiles | € L at the user be
bounded by t. The computation resource allocation at the
edge server is restricted by the total available computation
resource F, as shown in the fourth constraint. Similarly, the
restriction on computation resource allocation for each user
u € U is given by the fifth constraint. We aim to select the
optimal L, , from L,, find the set of optimal data rate Ry,
for the selected tile set L, ,, computing resource allocation,
and AP to user assignment to minimize immersion distortion
across all the users. Minimizing the immersion distortion is the
same as maximizing the immersion fidelity, due to the one-
to-one mapping between them [34]. The proposed statistical
characterization of user navigation captures as navigation
likelihoods the expected overlap of a tile with the user
viewport over a time duration and the factor that equatorial
tiles are more likely navigated than polar tiles. Therefore, our
expected viewport quality formulation can correspond to a tile-
level Weighted Spherical PSNR (WS-PSNR) [37].

Using (1), (2), (3), (4), (5), and (6), we can rewrite
problem (7) as follows

1 u by u by
o max Z Py alRl,max + 2 P alRl ,
LMJELusRL“',, uel s 5
Suts fup,mell,F €Lu,r €Ly,
ZleLW Bi k, ZIGLM(RI —Ry)
s.t. ——— < V.1,
u Ta,u

SVM,I MEU,
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R, — R
St ZleLu,C( M) < Vu,2, £u,c/Rp.
Ta.u r
<Vuip uel,
Lurb
S.t. Vu,1+£ <t uel,
Ya,u
ZleL“ ch3 - de2 +eR + g
s.t. Vuo+ .
fu,2
<t uel,
t LR, L,(cR} —dR%+eR,+g)
s.t.
r’ fu,l
<tuel,
D F<F  furtfur<fu uel, —®
uelU

where V, 1, V,2, Yu € U, are slack variables, and L; =
(L — Ly,¢), which has a non-negative value since £ > L, ..

V. OPTIMIZATION SOLUTION
A. Solution Discussion and Outline

The above optimization problem is mixed-integer program-
ming, which is hard to solve optimally in practice, due to its
complexity. Thus, we investigate a lower-complexity solution
framework that comprises three steps applied sequentially.
First, we fix the edge server’s computing resource allocation,
e.g., a uniform allocation across all mobile VR users, to be able
to tackle the integer variables in the optimization problem. For
a given edge server computing resource allocation, the problem
in (8) decomposes into a joint mmWave data rate allocation,
user computing resource allocation, and raw tile selection,
for each user u to AP a pairing in a given assignment.
We compute solutions to each of these independent problems,
for any prospective user to AP assignment 7, in Section V-B.
These solutions will produce edge weights for any user u
to AP a prospective pairing, which we will then leverage in
Section V-C to compute the optimal user to AP assignment 7 *
using a graph-theoretic solution. Finally, given this assignment,
and considering again F as variable, we resolve (8), to jointly
identify/update the optimal computing resource allocation
at the edge server and the users, and the mmWave data
rate allocation. This step is carried out in Section V-D and
completes our optimization strategy. Figure 6 illustrates our
optimization framework and its major steps.

B. Computing the Optimal Edge Weights for AP to User
Fairings

We set the edge server’s computing resource allocation to
be constant and uniform across all users, i.e., F, = F/M.
Due to the fixed allocation, (8) decouples into the following

subproblems:
u by u by
Z plalRl,max+ Z plalRl ’
leLy leL,\Ly,,

2er, . (Ri— Ry
Ta,u

»CLI,CR;/,

r/

min
Lu.rELuaRLuJy
fu,l’fu,Z
" 2eL,, Bk 5
Fy
ety (Rl — Ry)
S.t. <

Ya,u

u,ls =< Vu,l,

u,2s =< VM,Za

383
Lyrb

sit. Vg + /2 <t
Ya,u

st. Vyo+ ZleL"’C CRI3 _dez teRite <7

L. 2 =T,

! fu,2

o LR, N L,(cR} —dR> +eR, + g) .

- r’ fu,l -

Ju1 + fu2 = Jus 9

for each user u and AP a pairing in an assignment 7. To solve
(9), we first consider a fixed set of raw enhancement GOP-
tiles L, -, and formulate an optimization strategy to solve the
allocation of mmWave data rate and user computing resource.
We then show how to integrate the selection of L, , into our
optimization strategy, by reformulating (9) accordingly.

1) Fixed Set of Raw GOP-Tiles: We first solve (9), for
a given L, , € L,. We can show that this problem is not
convex. It can be reformulated into geometric programming
(GP) via the single condensation method [38]. According to
this method, for a constraint which is a ratio of posynomials,
the denominator posynomial (say f(x)) can be approximated
into a monomial using the following inequality:

. fr(x) 7%
0 = 0 = foo = [T 52
14

14

(10)

where 8¢ > 0 and >,8 = 1. Then, for §, =
fo (x)/f(X), f(%) is the best monomial approximation of f(x)
near X = X.

We formulate an iterative technique to optimally solve
(9) in this case. In particular, at each iteration ¢, the
second constraint in (9) is converted into a posynomial
using (10) as:

['u,cR/J. —o1® Vu,l(t)ra,u —62(0)
>ro(SE) () o

lel, .

where 81(¢), and §(¢), are obtained from the solution at the

. . . _ u,(‘R;l. —
(t — 1)-th iteration as: §;(t) = Lo RtV (=Dra S(t) =
Vu.l(t_l)ra,u

TRV =D Similarly, at every iteration 7, we can

u,c M u, . a,u . . . .
convert the third, sixth and seventh constraints in (9) into a
posynomial using (10) as:

> R (M)_M[) (Vu,z(t)ra,u)_&‘(t) <1 (12)
leLn. 83(1) 84(t) -
2y —%s1(1)
Va2 fu2+ Z (cR? +eR; + ) H (dRz(t) )
leLy. Il 8s51(1)
—36 (1)
w2t
(Ze 20y T (13)
86(2)
(rr/fu,l(w)“”“) r,drE\
87(2) 83(1)
: (r/ﬁ;(cRi +eRy+8) + fu (t)ERM) <1, (14)

where 83(t), 84(2), 6&51(¢), S86¢(t) 87(r) and 8g(z) are
obtained from the solution at the (t+ — 1)-th iteration
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Algorithm 1 GP Based Solution for (9), for a Given L, ,

1: Sett =1,

2: Initialize f, 1(t) =
3: while true do

4: t=t+1
5
6

fu,2(t) = fu/2, Initialize R;(t)

> infinite loop

Calculate 01(t), d2(t)
Find the optimum f 1(t), fu,2(t)

: D(t), R;(t) solving
(15) using GGPLAB [39]

7: if |D(t) — D(t —1)| < € then
8: Break
9: end if

10: end while
11: The optimal value of the optimization problem (9) is D(t)

. _ LR _ Vu2(t=Drau
as: 83(t) - ctt,cRu+Vu,25_l)ra,u 84(t) - [:u,cRpL“‘Vu,Z(I_l)ra,u
- dR(1=1)° -
8s1(1) - ety ARIG=DT T/ 2G—1) 86 (1) =
Tfu‘2(t_l) (S (t) Tr/fu,l(t_l)
ZIGLMcde(t71)2+rfu,2(t71)’ 7 ‘L'r/fu,l(tfl)+r/£;de2L’
: 'r! dRZ
85(1) = i

Tr! fu1(t— 1)+r’£{‘dRﬁ :

b
Let D(t) = Yyer,, PIUR oy + Zier,r,, PlaRIO™.
Then, the overall optimization to be solved at iteration ¢ is

min (t) D(t)
RLu_r(t)sfu.l(t)’fu,Z
s.t. (12), ,(13), (14), , fu1@®) + fu2() < fu.
> Bk, L. cR
St.—lELu'r = Vu,l, u’C, = =< Vu,Za
u
Lu.b
sit. Vo + /=L <1, (15)
Ta,u

The above optimization problem is GP and can be solved
optimally. The iterative optimization is carried out until
|ID(t) — D(t — 1)] < € with 0 < ¢ « 1. An algorithmic
implementation is included in Algorithm 1, which converges
to the global solution [38].

Let the optimal expected immersion distortion obtained by
Algorithm 1 be D, , (L, ) = D(t), which depends on of L, .
Next, we consider integrating the optimal selection of L, ;.

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 32, 2023

/ Update allocation of \
server/user computing
resources and
mmWave data rate

Optimal
user to AP
assignment

Uniform edge
server computing
resource allocation

Weights|
D..'

Allocation of user
computing resource

and mmWave data

\ rate

A Optimization Steps bl

2) Raw GOP-Tile Selection: The optimization problem in
(9) can be solved optimally in the following manner: In an
inner loop, for each possible tile set L, , in L,, find the
mmWave data rate optimization and user computing resource
allocation using the procedure described in Section V-B.1, and
then in an outer loop, find the best tile set L, , for which
the expected immersion distortion of viewport is smallest.
However, this scheme requires to search over 2/L«! possible tile
sets. To solve (9) with low complexity, first, we reformulate
our problem as follows: Let x; be an indicator function that
denotes whether a tile is sent as encoded or raw, where
x; = 1, if tile [ is sent as raw, and x; = 0, if the tile is
sent as encoded. Thus, the optimization problem in (9) can be
reformulated as

. b, b
Lmin D apl R+ (= xoplaRy,
lf"u,ll:fu,Zu leL, leLy
ot ZleLu xlﬁl,k, < | ZleLu(l —x) (R — RM)
- Fy - Ya,u
=< Vu,17
(I —=x)(R — Ry)
ZZGL“ & S Vu,Z»
Ya,u
Ry 2er, (1 —x1)
er,; = Vu,Z, Vu,l
+ ZIEL,, x1by <,
Ya,u
s.t. Vo + Yier, (1 = x) (R} —dR} +eRi + )
“ fu,Z
S T7
LR,
r/

D Yo x1))(cR}, —dR2 +eRy, + g)

fu,l

=71,
Jur+ fu2 < fu, x1€{0,1}, 1 € Ly. (16)

To solve the above problem efficiently, we first replace
the binary constraints above with continuous equivalents
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x; € [0,1],1 € L,. Furthermore, we intr(}))duce vo as a slack
i I

variable shuch that vy > ZleLu xlplualRl,max + ZleLu(l _

xl)pl”clel’. Then, we can reformulate (16) as:

min V0,
x;, Ry, leLy
fu,l!fu,Z

u by u by
ot DieL, XIPAUR] o+ Der, PlAIR, <1
. > <1,
vo + 2er, XipjaR)
¢ ZleLu X181k, < ZleLu(l —x)(R; — Ry)
st.————

u,l>

Fy - Ta,u
S Vu,l,
1—x)(R,—R
St ZIEL“( ) (R p,) <V,
Ta,u ’
R Z (I —xp) Z x1b,
e < Vi Vi 4 Sl
r Ya,u
S r?
Ser. I —x)(cR} —dR? + eR; + g)
S.t. Vu,2+ “
fu,2
S T?
LR
st —*H
r
n (L= e, (1 —x))(cR) —dR% +eR, + g)
fu,l
<,

fu,1+fu,2§fu» xle[o’ 1]7 IELM (17)

The above optimization problem can be solved iteratively
using a GP method similar to Algorithm 1. It can be shown
that the iterative solution method converges to the global
solution [38]. The detailed solution process (17) is omitted
due to the limited space.

The obtained optimal solution for x; is continuous. To find
the desired raw GOP-tile selection, we pursue the following
rounding strategy. We first initialize L, , as empty. Then,
at each step: (i) We find the tile /* with the biggest value
of x; among the available tile set L, ., and (ii) If the expected
immersion distortion reduces, we add [* to the raw tile set
L, . We continue this process as long as the immersion
distortion reduces further, and finally we produce the desired
tile set L;,, at the end. Then, the allocation of mmWave
data rate and user computing resource can be obtained by
solving (9), for the given L} . Let D , denote the optimal
expected immersion distortion experienced by user u, i.e., the
value of the objective function in (9), enabled by the thereby
produced optimal solution. We compute this quantity for every
prospective pairing AP a to user u, in order to solve for the
optimal AP to user assignment, as explained next. Algorithm 2
summarizes formally our optimization procedure described
herein.We assume block fading to model the mmWave and
sub-6 GHz channels, i.e., channel gain of each link does not
change within the time length of a GoP tile delivery, i.e.,
in time 7, but may vary from time to time. Therefore, the
optimization scheme requires to be executed only after the
duration of time t, if channel gain of any link changes.

Algorithm 2 Optimal Solution of (9), Including a Selection
of L, ,
Sett =1, Ly, =0
Solve (17) and obtain {z;}, I € L,.
fori=1:L, do

[* = arg maxjer, . T

Solve (9) with raw tile set L, , Ul* using the proce-
dure described in Section V-B1 and obtain D, ,, (L, Ul*).

AN L

6: if Dy o (Ly,r UI*) <= Dy o (Ly ) then
7: Ly, =1Ly, U I*

8 else

9: break

10: end if

11: end for

12: Output raw tile set L;, .
13: Solve (9) with fixed raw GOP-tile set Lj, ,. using proce-
dure described in Section V-B1. Compute the respective

objective Dy ,,.

Complexity of Algorithm 2: Here, we analyze the
computational complexity of proposed Algorithm 2. CVX is
used to solve the GP problems with the interior point method
in steps 2 and 5. The number of required iterations to solve
(17) is k)g(ﬁ‘l‘:% where £, + 9 is the total number of
constraints, fo 1 1s the initial point to approximate the accuracy
of interior point method for solving (17) using GP, 0 < € < 1
is the stopping criterion for interior point method, and & is
used for updating the accuracy of interior point method [40].
Furthermore, it can be shown that for each iteration, the
number of computations required to convert the non-convex
constraints into convex is on the order of £,. Therefore, the
total number of computations required to solve (17) is on the
order of £, X WA. The total number of constraints in
(15) is 7 and the number of computations required to compute
(13) is on the order of £, at each iteration. Therefore, it can
be observed that the total number of computations required
to solve (15) is on the order of £, X % where 12
is the initial point to approximate the accuracy of interior
point method for (15). The step 5 is repeated for a maximum
of £, times, for which the computation requirement is on
the order of Eg X mgﬁ/ﬂ. Therefore, the total number of
computations required for Algorithm 2 is on the order of
L, log(L£4+9/10,1€) + [2 x loeU/i02€)
logg u logg

C. Optimal user-to-Access Point Assignment

The optimal user to AP assignment can be identified by
searching over all possible assignments I1. However, this
requires searching over (M + N)!/M! prospective assignments,
where M = |U| is the number of users and N = |A]| is the
number of APs. We explore a lower-complexity alternative
solution that leverages graph-theoretic concepts.

We begin by reviewing some concepts of bipartite graph
theory matching [41], [42]. A graph G comprising a vertex
set V and an edge set £ is bipartite, if V' can be partitioned
into V! and V? (the bipartition), such that every edge in &
connects a vertex in V' to one in V2. Figure 7(b) shows

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on December 23,2022 at 15:52:47 UTC from IEEE Xplore. Restrictions apply.



386

AP1 AP 2
a a

\
0'08‘ 0.05 10.02

- |
,User 1 " User 2 @

nNa nn

(a) (b)
Fig. 7. Example of a weighted bipartite graph for the network with two APs
and two users.

an example of a bipartite graph with two sets of vertices,
VI = (w02} and V? = {v),v}}, and an edge set
&= {(v;, v,i), (v;, v,%), (vaz, vblt), (vg, vz) that correspond to
a user to AP assignment problem illustrated in Figure 7(a).
A matching in G is a subset of £ such that every vertex
v € V is incident to at most one edge of the matching.
A maximum matching in G contains the largest possible
number of edges. For the bipartite graph in Figure 7(b), the
two possible maximum matchings are {(v}, v)), (v2, v2)} and
(Wl 1), W2, vh)).

To solve the AP to user assignment, first the network is
represented as a weighted bipartite graph in which each AP
a €{l,.., N} and each user u € {1, .., M} are represented by
vertices v}l e V! and v,% e V2, respectively, and the weight of
the edges (v}, v2) is expressed as Ol 2) = D} . This is the
minimum expected immersion distortion experienced by user u
when assigned to AP a. In Section V-B, we describe how each
Dy, can be obtained. Thus, we can construct the respective
bipartite graph for the actual problem under consideration.'

Leveraging the development heretofore, we formulate the
user to AP assignment subproblem from (8) as a bottleneck
matching (BM) problem for the graph defined by the
maximum matching whose largest edge weight is as small as
possible, i.e., mingew Max(,i 2)ep @1 12), Where @ contains
all possible maximum matchings. Note that & is directly
related to I1 such that each maximum matching ¢ € &
corresponds to an user to AP assignment in IT.

For the graph in Figure 7(b), the bottleneck matching
is {(vé, v,f), (v%, v,i)} and thus the corresponding assignment
is: User 2 assigned to AP 1, and User 1 assigned to
AP 2. The constructed bipartite graph has M N edges and
N + M vertices. We solve the BM problem optimally
using the algorithm proposed in [42] with complexity
O(Nz's). Moreover, to construct a graph with MN edges
the induced time complexity is O(MN). Therefore, the user
to AP assignment problem can be solved optimally with
complexity O(N%?).

D. Joint Transmission and User/Edge Server Computing
Resources Allocation

In Section V-B, as part of the optimization -carried

out therein, we identified the optimal enhancement GOP-
tile subset L, , that should be transmitted as raw data

IThe edge weights shown in Figure 7(b) are produced in this fashion, for
the example network from Figure 7(a).
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over the mmWave link of a given user and AP pairing
(u,a). In Section V-C, we identified the optimal user
to AP assignment 7*. Given these discrete optimization
developments, we can (re)solve jointly now the optimal
allocation of user and edge server computing resources, and
mmWave link data rate across the compressed enhancement
layer GOP-tile subset L, \ L} ,. Concretely, we investigate
the joint allocation of these three system resources by solving
(8), for given 7* and Lj’,, Yu.

We pursue a solution to this optimization problem by
reformulating it first as GP using the single condensation
method, analogously to the analytical steps carried out in
Section V-B.1. We then solve the problem reformulation via
an iterative optimization method that we design equivalently
to Algorithm 1. A high level illustration of our overall
optimization framework described throughout SectionV herein
is included in Figure 6.

VI. EXPERIMENTAL EVALUATION

We carry out a comprehensive experimental evaluation
to assess the performance of our system framework.
We measure the delivered VR immersion fidelity as
the inverse of the respective distortion quantity, using
1010g,((255%/ > ), P¥ D), commonly known as the Peak
Signal-to-Noise ratio (PSNR). We compare the performance
of the proposed strategy with the following techniques.

1) Reference: State-of-the-art method that integrates the
latest video streaming standard MPEG DASH [43], [44],
to deliver the 360° content over sub-6 GHz, given the
same system constraints.

2) Proposed-Rand: Here, mmWave and edge computing
technologies are used, but an AP is randomly assigned
to each user, and raw GoP tileset is randomly selected
for each user from its expected viewport tiles. The data
rate allocation for encoded enhancement layer tiles and
computation resource allocation at the users and the edge
server are obtained by solving an iterative GP algorithm
similar to Algorithm 1. Proposed-Rand can be regarded
as lower complexity implementation technique for our

proposed framework.
The immersion distortion modelling parameters of each

GoP tile of 'Runner’ and ’Basketball’ 360° video sequences
is experimentally calculated in our previous work [34]. The
viewpoint likelihood distribution was compiled based on traces
of VR user head movements that we collected [34], [36].
Oculus Rift VR headset was used and navigation actions
in real time was recorded using the OpenTrack software.
Modelling the relationship between CPU computing cycle to
tile data rate is conducted on an Intel Core i7 computer, and
modelling parameters c,d, e and g are obtained. All these
parameters are then used to evaluate our system framework
via numerical simulations. In our simulation experiments, five
users are uniformly distributed in a Sm x Sm square room VR
arcade. A sub-6 GHz router and five mmWave APs serve the
users. The mmWave APs and the sub-6 GHz router, linked
to an edge computing server, are placed vertically along the
room boundaries. For 360° content delivered to the mobile VR
users, we leveraged the "Runner’ and ’Basketball’ 360° video
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TABLE I
MAJOR SIMULATION PARAMETERS

Parameter Value

fu 3 GHz

Ry maz 15 Mbps

M 5

N 10

T 1 sec.

F 150 GHz

No —147 dBM/Hz

€ 10~°
56 |
54 *G/e’_#ek —
52 b A

W7
50 - 1

48

PSNR (dB)

46+

44t
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Cloud CPU Power (GHz)

42

Fig. 8. PSNR performance versus edge server computing power.

sequences captured at 8K spatial resolution and 30 frames
per second temporal frame rate [45]. Our major simulation
parameters are summarized in Table II.

A. Delivered Immersion Fidelity Vs. Edge Server Computing
Resource

In Figure 8, we show the PSNR performance of the
proposed system when the edge server computing power
varies from 75 GHz to 175 GHz. The mmWave network
links in the system exhibit diverse data rates in the range
of 600 — 800 Mbps. We can observe that as the edge
server’s computing power F increases and F < 50 GHz,
more enhancement GOP-tiles can be decoded within a small
computing latency at the edge server and can be delivered
using mmWave communication, which in turn reduces the
computing latency at the user. Thus, the mmWave AP can
send a higher number of compressed enhancement GOP-tiles,
encoded at higher data rates, which improves the PSNR. If the
edge server’s computing power increases beyond 50 GHz,
the improvement in PSNR performance is negligible. The
reason is that the mmWave rate is a bottleneck for the system,
and it cannot support the delivery of more raw tiles while
also transmitting compressed enhancement GOP-tiles at high
rates. For F = 75 GHz, the proposed strategy achieves
8.8 and 10 dB PSNR improvement over the reference method
for the ’Runner’ and ’Basketball’ 360° video sequences,
respectively. Furthermore, our proposed scheme in which
all variables are jointly optimized provides 2 dB PSNR
improvement over Proposed-Rand method in which raw GOP-
tileset selection from expected viewport GOP-tiles and AP

56

—F&— Proposed-Runner

42 —<— Proposed-Basketball
—&4— Proposed Rand-Runner
Proposed Rand-Basketball
—H&— Reference-Runner

38 —~A— Reference-Basketball

400 500 600 700 800 900 1000
mmWave rate (Mbps)

o

Fig. 9. PSNR performance versus mmWave network link data rate for
F =150 GHz.

to user assignment are random. The high-performance gain
of the proposed method compared to reference method stems
from the facts that scalable multi-layer tile-based 360° content
enables dual sub-6 GHz and mmWave transmission which
results in delivering high-quality VR content to the users and
also due to the synergistic integration edge computing along
with mmWave technology that allows minimizing computation
delay at the VR-headset, improving further immersion fidelity
at the user-end. These significant performance advances will
considerably enhance the remote scene immersion fidelity and
quality of experience delivered to the mobile users in our VR
arcade system.

B. Delivered Immersion Fidelity Vs. mmWave Transmission
Rate

Next, in Figure 9 we explore the PSNR performance of our
system, when the data rate of the mmWave network links in
the system is uniform, and is progressively increased from
400 Mbps to 1 Gbps. The edge server’s computing power has
been fixed to 150 GHz in these experiments. We can see that as
the mmWave transmission data rate increases, the PSNR of the
proposed system increases, as expected. In particular, as the
data rate increases, more raw enhancement GOP-tiles can be
transmitted. In consequence, this will reduce the computing
time at the user, which together with the higher mmWave
network link data rate, will enable transmitting the remaining
compressed enhancement GOP-tiles, encoded at higher data
rates. Both of these advances will augment the delivered
immersion fidelity for the VR user. Similarly to the earlier
results, we observe from Figure 9 a significant performance
improvement of 7 and 8 dB over the reference method, for the
’Runner’ and ‘Basketball’ 360° video sequences, respectively.
These performance gains considerably advance the state-of-
the-art.

C. Delivered Immersion Fidelity Vs. User Computing
Resource

In Figure 10, we explore the PSNR performance of our
system, when the computing power of the VR user’s mobile
device increases from 3 GHz to 7 GHz. We can observe
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and same PSNR performance.

that as the user’s computing power increases, the time delay
for decoding GOP-tiles of the 360° content at the user
end decreases. Thus, higher encoding data rate compressed
enhancement GOP-tiles can be transmitted within the required
system latency constraints, and hence, in turn, the immersion
fidelity delivered to the mobile VR user increases.

D. Latency Performance Vs. User Computing Resource

In Figure 11, we investigate the end-to-end delay induced
by our system, when streaming the *Runner’ 360° video, vs.
the available computing power at the user. We hypothetically
consider that the reference method can deliver the same
immersion fidelity, as our own system, and measure what
would be its induced end-to-end delay in that case.
In particular, towards this objective, we consider that the
reference method can hypothetically transmit all GOP-tiles
encoded at the same data rate as in the case of our system.
We can observe from Figure 11 that as the user computing
power increases from 3 GHz to 7 GHz, our system is
able to maintain the required system latency of 1 second,
while enabling increasingly higher immersion fidelity for
the mobile user, by facilitating its more plentiful computing
resource. On the other hand, due to the need to decompress
at the user all GOP-tiles that are transmitted encoded at
much higher data rate in this case, in order to provide
the same immersion fidelity as our system, the reference
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TABLE III

EXPECTED NUMBER OF RAW ENHANCEMENT GOP-TILES SELECTED FOR
MMWAVE TRANSMISSION VS. EDGE SERVER COMPUTING POWER AND
MMWAVE TRANSMISSION DATA RATE. USER COMPUTING POWER
Is FIXED TO f, =3 GHz

F [ 400 Mbps | 600 Mbps | 800 Mbps | 1000 Mbps |
50 GHz 0 0 03 12
100 GHz 0 0 09 4
150 GHz 0 0.4 T 17
200 GHz 0 035 3 2.0

method is struggling to maintain the required system latency.
As observed from Figure 11, its end-to-end latency becomes
thereby 2.5 - 4.5 times higher than the required constraint. This
in turn would dramatically penalize the immersion quality of
experience of the mobile VR user, as it would considerably
reduce the interactive nature of the VR application.

E. Expected Number of Raw Enhancement GOP-Tiles
Selected for Transmission

Finally, in Table III, Table IV, and Table V, we investigate
the expected number of raw enhancement GOP-tiles selected
for mmWave transmission in our system, in the case of the
’Runner’ 360° content. In particular, a positive non-integer
valued entry in Table III, associated with a given mmWave
transmission data rate and edge server computing power pair,
can be explained with the following examples.

(i) if F = 150 GHz and mmWave rate is 600 Mbps,
an expected number of transmitted raw tiles of 0.2 can occur
if for one of the five users, one enhancement GOP-tile is
transmitted as raw data. For the other users, all enhancement
GOP-tiles are transmitted compressed. (ii) if F = 200 GHz
and mmWave rate is 800 Mbps, an expected number of
transmitted raw tiles of 1.2 can occur if for one of the five
users, two enhancement GOP-tiles are transmitted as raw
data. For the other four users, one enhancement GOP-tile is
transmitted as raw data. Similar analogy can be drawn for the
alike valued entries in Table IV and Table V.

It can be observed from Table III that as the mmWave
transmission data rate and edge server computing power
increase, a higher number of raw enhancement GOP-tiles
are selected by our optimization framework, to augment
the delivered immersion fidelity. This is because with the
increase in mmWave data rate and edge server computing
power, a higher number of enhancement GOP-tiles can be
decompressed at the edge server and transmitted as raw
data over the mmWave link, within a short time interval.
In consequence, then only a smaller number of compressed
enhancement GOP-tiles, encoded at higher data rate, would
need to be delivered, which would lower the decoding latency
induced at the user. Both of these advances will contribute
to higher immersion fidelity delivered to the VR user, while
maintaining the required system latency.

We can observe from Table IV that a higher number
of raw enhancement GOP-tiles are likewise selected for
transmission, as the mmWave transmission data rate and user
computing power increase, again to augment the immersion
fidelity delivered to the user. This outcome stems from
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TABLE IV

EXPECTED NUMBER OF RAW ENHANCEMENT GOP-TILES SELECTED
FOR MMWAVE TRANSMISSION VS. USER COMPUTING POWER AND
MMWAVE TRANSMISSION DATA RATE. EDGE SERVER COMPUTING
POWER Is FIXED TO F = 150 GHz

[ fu ][ 400 Mbps | 600 Mbps | 800 Mbps | 1000 Mbps |
3 GHz 0 0.2 1.0 1.6
4 GHz 0 0.2 1.0 1.8
5 GHz 0 0.3 12 1.9
6 GHz 0 0.3 1.3 1.9
TABLE V

EXPECTED NUMBER OF RAW ENHANCEMENT GOP-TILES SELECTED FOR
MMWAVE TRANSMISSION VS. EDGE SERVER COMPUTING POWER AND
USER COMPUTING POWER. MMWAVE TRANSMISSION DATA RATE
Is FIXED TO 800 MBPS

[F [fu=3GHz|fu = 4 GHz| fu = 5 GHz| f., = 6 GHz|
50 GHz 0.8 0.8 0.9 1.0
100 GHz 0.9 0.9 10 12
150 GHz 1 K 12 13
200 GHz 12 13 15 1.6

reasons equivalent to those discussed earlier in the context
of the results presented in Table III. In particular, the higher
user computing power enables decoding faster compressed
enhancement GOP-tiles delivered to the user, i.e., with lower
induced delay. This in turn will leave more of the end-
to-end system delay constraint available to be consumed
by mmWave transmission, which coupled with the higher
mmWave transmission data rate, enables sending a higher
number of raw enhancement GOP-tiles.

Similarly, Table V informs that as the edge server computing
power and user computing power increase, again, a higher
number of raw enhancement GOP-tiles are selected for
mmWave transmission. This is because with an increase in
edge server computing power and user computing power,
the compressed enhancement GOP tiles can be decoded
faster, thereby allowing for a higher number of raw
enhancement GOP-tiles to be transmitted over the mmWave
links, within the maximum tolerable system delay. Finally,
it can be observed from Table IIl and Table IV that if the
mmWave transmission data rate is limited, our optimization
framework selects all enhancement GOP-tiles to be transmitted
compressed.

VII. CONCLUSION

We have investigated a novel multi-user mobile VR
system for streaming 8K scalable 360° video that enables
high reliability and immersion fidelity, and low interactive
latency, via the synergistic integration of embedded multi-
layer 360° tiling, dual millimeter wave (mmWave) and sub-6
GHz transmission, and edge computing capability. High rate
directed mmWave links were studied to send viewport-specific
enhancement layers of the 360° content to the individual
VR users, to augment the delivered remote scene immersion
fidelity. Sub-6 GHz broadcast of the base layer of the entire
360° panorama to all users is carried out, to augment the
application reliability. The viewport-specific enhancements
could comprise compressed and raw 360° tiles, decoded first

at the edge server. We explored the joint optimization of
the mmWave access point to user association, the choice of
360° tiles to be transmitted decompressed, the allocation of
mmWave data rate across the compressed tiles in a viewport-
specific enhancement, and the allocation of computing
resources at the edge server and user devices. Our aim was
to maximize the minimal delivered immersion fidelity across
all VR users, given transmission, latency, and computing
constraints. We have introduced analytical characterizations of
the rate-distortion trade-offs across the spatiotemporal 360°
panorama and the computing power required to decompress
360° tiles, to facilitate our analysis and problem formulation.
We explored a solution that comprises multiple geometric
programming algorithms and an intermediate step of graph-
theoretic VR user to mmWave access point assignment. Our
results demonstrate that our framework can enable a significant
improvement in delivered VR user immersion fidelity (8 dB to
10 dB) and spatial resolution (8K vs. 4K), over a state-of-the-
art reference method that leverages sub-6 GHz transmission
only. The high-performance gain stems from the following
facts: (i.) Scalable multi-layer tile-based 360° content enables
dual sub-6 GHz and mmWave transmission which results
in delivering high quality VR content to the users (ii.) By
synergistic integration edge computing along with the above-
mentioned technologies allows minimizing computation delay
at the VR-headset, improving further immersion fidelity at the
user-end. We have also shown that an increasing number of
raw 360° enhancement GOP-tiles are sent, as the mmWave
link data rate or the edge server/user computing power
increases, exploring rigorously in this context the fundamental
interplay between computing/communication capabilities, end-
to-end system latency, and delivered VR immersion fidelity.
Finally, we demonstrated that in order to hypothetically deliver
the same immersion fidelity, the reference method would incur
a much higher (2.5-4.5x) system latency.

Here we discuss two different possibilities of extending
our work in future. Firstly, an objective metric which is
a concave and increasing function of encoding rate, may
not be always modeled directly as a polynomial function
of encoding rate, e.g., in [46] and [47]. Even then, the
proposed geometric programming method can still be used as
most of the continuous functions can be well approximated
as the difference of two convex functions [48]. Secondly,
there exist different quality of experiences (QoEs) for 360°
video applications, e.g., tile quality smoothness (in terms of
change in encoding rate) spatially or temporally [47], [49],
[50]. Spatial tile quality smoothness or temporal tile quality
smoothness can be expressed as a polynomial function of
the encoding rate of relevant tiles [47], [49], [50]. Therefore,
if there is a specific spatial/temporal smoothness requirement,
a new constraint can be added. The proposed geometric
programming strategy can still be easily implemented in such
a scenario, as the constraint is a polynomial function of the
encoding rates of the relevant tiles. Furthermore, the results
demonstrated in this paper provide an upper-bound for the
cases where a constraint on video smoothness is required, and
therefore the proposed solution provides a guiding insight for
designing an effective system.
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