13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

DRAFT VERSION JUNE 14, 2023
Typeset using IATEX default style in AASTeX631

Scattering of ions at a rippled shock

MicHAEL GEDALIN (2! Nikorar V. PocoreLov (2,23 AND VADIM ROYTERSHTEYN (24

! Department of Physics, Ben Gurion University of the Negev, Beer-Sheva, Israel
2 Department of Space Science, The University of Alabama in Huntsville, AL 35805, USA
3 Center for Space Plasma and Aeronomic Research, The University of Alabama in Huntsville, AL 85805, USA
4Space Science Institute, Boulder, CO 80301, USA

(Received; Revised; Accepted)

ABSTRACT

In a collisionless shock the energy of the directed flow is converted to heating and acceleration of
charged particles, and to magnetic compression. In low-Mach number shocks the downstream ion
distribution is made of directly transmitted ions. In higher-Mach number shocks ion reflection is
important. With the increase of the Mach number rippling develops which is expected to affect ion
dynamics. Using ion tracing in a model shock front, downstream distributions of ions are analyzed and
compared for a planar stationary shock with an overshoot and a similar shock with ripples propagating
along the shock front. It is shown that rippling results in the distributions which are substantially
broader and more diffuse in the phase space. Gyrotropization is sped up. Rippling is able to generate
backstreaming ions which are absent in the planar stationary case.

Keywords: shock waves — acceleration of particles

1. INTRODUCTION

Collisionless shocks are one of the most ubiquitous phenomena in space plasmas (see Treumann 2009, for a review
and further references). At a fast magnetosonic shock the energy of the directed plasma flow is re-distributed. A
large part of it is converted into ion heating. At low Mach numbers, ion heating is due to the gyration of the directly
transmitted ions (Gedalin 1997, 2021). The corresponding post-shock (downstream) distributions are initially non-
gyrotropic and gradually gyrotropize and isotropize (Gedalin et al. 2015b). At sufficiently high Mach numbers, ion
reflection becomes important. Reflected ions contribute substantially to the downstream ion temperature (Phillips
& Robson 1972; Gosling et al. 1982; Sckopke et al. 1983, 1990). Ion reflection is affected by the shock structure, in
particular, by the overshoot (Gedalin et al. 2023). With the increase of the Mach number, the shock front undergoes
structural changes, like rippling (Lowe & Burgess 2003; Moullard et al. 2006; Lobzin et al. 2008; Yang et al. 2012;
Ofman & Gedalin 2013; Johlander et al. 2016; Gingell et al. 2017; Johlander et al. 2018; Hanson et al. 2019; Omidi et al.
2021). Rippling causes deviations of the local normal to the shock transition layer from the global normal determined
by the conservation laws, a.k.a., Rankine-Hugoniot relations (Ofman & Gedalin 2013). Therefore, the dynamics of
ions, entering the shock at different spatial locations, is affected by different fields, and the downstream distributions
near the shock front, produced at different sites. Further downstream these distributions mix to evolve into a single
uniform gyrotropic distribution. The relation of the uniform upstream ion distribution to the far downstream gyrotropic
distribution can be described as scattering at the shock front (Gedalin et al. 2015a). The exact influence of the shock
rippling on the ion scattering is not known at present. Observations provide detailed information on ion distributions
along the spacecraft trajectory. Multi-spacecraft observations may provide distributions simultaneously along several
close spacecraft paths. Self-consistent numerical simulations may provide detailed distributions in two or even three
dimensions. However, neither observations, nor simulations are capable of separating the effects of rippling, since it is
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2 GEDALIN ET AL.

not possible to make observations or perform simulations for the same shock parameters with ripples being eliminated.
Here a test particle analysis may be useful. The idea is to determine the ion distributions formed in a stationary plane
shock model and compare these distributions with those obtained in the same profile with rippling added.

2. A MODEL SHOCK PROFILE

The stationary plane model used in the analysis is based on the following profile:

B, = cosfp, (1)

B, = Bsinfp, (2)
dB

B, =kp (dz) (3)

dB
E,=—kg|—
E(M)

E, =sinfp,

(4)
(5)
E.=0 (6)
(7)
(8)

B = Bygs + Baad .
Rpas — 1 Rpos +1 3x
Byas = b 2 4+ =2 5 tamh5 3
3(x —c, 3 —
Badd = Radd (1 — tanh M) (1 + tanh (xcl)) )
Wy w;

Here the magnetic field is normalized on the upstream magnetic field B, and the electric field is normalized on
VuBu/c. The coefficients kg and kp are determined by the cross-shock potential (see below). The coordinate = and
all lengths are normalized on the upstream convective gyroradius, V,, /€, where V,, is the plasma speed in the normal
incidence frame (NIF) and , = eB,/mpc is the upstream proton, p, gyrofrequency. NIF is the shock frame in
which the upstream plasma flow is directed along the shock normal. The upstream ion inertial length is ¢/wp;, where
wpi = v/4me?n, /m, and n,, are the upstream proton plasma frequency and the upstream proton number density. The
Alfvénic Mach number is My =V, /va, where the Alfvén speed is vg = By /\/4mwn,m,. We shall also use the angle
0pn between the shock normal and the upstream magnetic field vector. The magnetic compression is

Ba = \/(:052 Opn + R}, sin Op, (10)
B’LL
The expression Eq. (8) describes a monotonic transition from the upstream magnetic field to the downstream
magnetic field (the main varying component). Eq. (9) adds an overshoot. Eq. (3) describes the noncoplanar magnetic
field which is nonzero only inside the transition layer. The motional electric field (5) is constant throughout the shock.
The cross-shock electric field along the shock normal (4) is also present only inside the transition layer. In a planar
stationary shock F, is identically zero. The coefficients kg and kp are determined by the cross-shock potential:

—/Emd$:¢N[FESN[F(TI’LPVUQ/Qe) (11)
— /(Ex + Vytanbp, B, /c)dr = ¢ppr = sHT(mquQ/Ze) (12)

The subscript HT means de Hoffman-Teller frame. The latter is the shock frame in which the upstream plasma flow
is along the upstream magnetic field. The parameters 0p,, Bq/Bu, Radd, SNIF, SuT, D, ¢, ¢ry Wi, Wy, kg, and kp
completely define the adopted model of a planar stationary shock profile.

Rippling is added by the replacement

r—=X=z—ayg (13)
Y(y, z,t) = sin(krip(z cosp + ysing — Viipt)) (14)

g(z) = (1 + tanh W) <1 — tanh W) (15)
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SCATTERING OF IONS AT A RIPPLED SHOCK 3

in NIF. Accordingly, B(z) — B(X), and

B, ( )( a) BsineBn(aaf)+cosaBn (16)
n-n () (3)
B. = Bsinfn, (%X) (18)
w-ar(2) ()
B, = sin 0, — Bsinf, (%’f) kp (3)‘?) (f;yf) (20)

=i (22) (25) 30 (22) (%)

These fields are the fields in NIF. The ripples are moving along the shock front with the velocity V,;, =
Vrip(0,sin g, cos ¢). In the rippling frame the fields become time independent. The speed V., is of the order of
the Alfvén speed (Johlander et al. 2016; Gingell et al. 2017; Johlander et al. 2018; Omidi et al. 2021) and we may
apply the nonrelativistic transformation

E! = E; + Viipsin B, — V,yy, cos B, (22)
E; =FE, + V,ipcospB, (23)
E.=E,—V,sinpB, (24)

The advantage of the rippling frame for ion tracing is that it is not necessary to take into account time dependence.
The two-dimensional surface of the magnetic field magnitude for the rippled shock is shown in Figure 1. The rippling

|B|/Bu

05 - s 1
o5 0 05

z/(Vi/ Q)

Figure 1. The two-dimensional surface of the magnetic field magnitude for the rippled shock. Y is in the direction or rippling
propagation. The global shock normal is along x. The local shock normal is determined by the steepest gradient of the magnetic
field magnitude, depends on Y, and differs from the global normal. The maximum overshoot magnetic field also depends on Y.

Y/ (Vu/ )

is localized around the shock transition and disappears sufficiently far upstream and downstream.

3. PRINCIPLES OF TEST PARTICLE ANALYSIS

An incident ion distribution is specified and for each ion the equations of motion in the corresponding dimensionless
form
dr dv
—=v, —=FE+vxB 25
dt dt * (25)
are solved numerically. Here the velocity v is normalized on V,,, the position vector 7 is normalized on V,,/Q,, and
time is normalized on Q;'. The distribution function f(v,r,t) throughout the shock front is derived using df /dt = 0
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4 GEDALIN ET AL.

along the particle trajectory, that is, f(v,r,t) = f(vo, 70, to), where
r =r(t; v, ro,to), v =v(t;vg,7T0,t0) (26)

is the solution of the equations of motion with the initial conditions
r(t=ty) =19, v(t=ty) =10 (27)

For the stationary plane shock ion tracing is done in NIF, where the fields depend only on z, we have f = f(z,v). For
the rippled shock ion tracing is done in the rippling frame, where the fields are time independent, f = f(z,y, z,v).
The moments of the distribution function are derived as follows:

/w(x,y,z,v)f(x,y,z,v)d?’v = /wf(anyOazOv'UO)L”dst (28)

where the Jacobian is

J _ det (8%(33,3;,2)) _ Voz

=22 Gi= 29
90,(0) b BI=Ty2 (29)
(see Appendix). In Egs. (28) and (29) the velocity v depends on the initial conditions and on the current position.
Note that for ion tracing in the rippled shock the initial velocity distribution should be shifted vg — vg — V4. In the

whole analysis all velocities are normalized on V,.

4. DISTRIBUTIONS

In the present analysis the following parameters were used: My = 6, 0, = 60°, 8; = 1, By/By = 3, Baaa = 1,
SNIF = 0.4, SHT = 0.1, D = 2/]\4'7 km'p = 27T, @ = 4507 ‘/;*ip = ]./M, w; = D, Wy = 3D, T = 05D, Ty = O5D,
Wr =2, Wg =2, X;, =0, Xg =0. The incident ion distribution is Maxwellian with §; = 87muTm/BZ =1.

In the shock without rippling it is sufficient to start tracing at the same (zg, Yo, 20). Figure 2 shows the reduced
distribution functions f(z,v.), f(z,vy), and f(x,v,), for the case without rippling. Each reduced distribution function
is obtained by integration over two other components of the velocity, e.g.,

f(x,vz):/f(:c,v)dvydvz (30)

The distribution functions are shown on the log scale. The top panel shows f(x,v,), the middle panel shows f(z,vy),
and the bottom panel is for f(z,v,). The black line in each panel shows the magnetic field magnitude. Various
populations in the ion distribution marked on the top panel. The directly transmitted ions and the reflected-transmitted
ions (ions which cross the shock again after reflection) are clearly seen. There are well pronounced dips (ion phase
space holes) in the distribution function. Non-gyrotropy of the downstream distribution is quite clear. Relaxation to
gyrotropy is gradual but rather fast, because of the overshoot (Gedalin et al. 2023).

The ultimate objective of the test particle analysis is the determination of the downstream gyrotropic function
fa(v,v1) sufficiently far from the shock transition layer. Here || and L refer to the direction of the downstream
magnetic field, and the distribution function is calculated in HT. The same Jacobian as in Eq. (29) is added as a
weight in the calculation of the distribution function. Figure 3 shows the gyrotropic distribution of incident ions in the
upstream region on the log scale. Figure 4 shows the gyrotropic distribution of the downstream ions. The distribution
consists of two distinct populations: the directly transmitted ions and the reflected-transmitted ions. Both populations
have rather smooth shapes possessing maxima and monotonic decrease around them.

For the rippled shock the incident ions start at the same zy but their positions along the rippling direction are chosen
randomly within the rippling wavelength 27 /k,;,. Figure 5 shows the reduced distribution functions f(z,vs), f(z, vy),
and f(x,v,), for the case with rippling. The distribution functions are integrated over the coordinates perpendicular
to the shock normal direction. The magnetic field is represented not by a line but by a ribbon, because each ion is
measuring its own magnetic field magnitude along its trajectory. The integrated distribution of the directly transmitted
ions is nearly gyrotropic because of the mixing of ions appearing at the same cross-section x = const but at different
y and z. In all three panels the backstreaming ions are clearly seen. In the top panel these ions have v, < 0 farther
from the shock than the turning distances of the reflected ions which later cross the shock again. In the bottom panel
these backstreaming ions all have v, < —2 and are completely separated from other populations.
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i f(z,vz)
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z/(Vu/Qu)

Figure 2. Reduced distribution functions for the case without rippling. Top: f(z,vs). Middle: f(x,vy,). Bottom: f(z,v.).
The black line shows the magnetic field magnitude. All distinct ion populations are indicated on the top panel: a) the
directly transmitted ions cross the shock and proceed further downstream, b) the reflected ions are seen just ahead of the shock
transition, c) the reflected-transmitted ions are the reflected ions which cross the shock again and proceed further downstream.
Ton phase space holes are the regions where the phase space density is very low and even approaches zero. Non-gyrotropy of
the downstream distribution persists well into the downstream region.

The downstream gyrotropic distribution is derived in the region where rippling is no longer noticeable, and is also
done in HT. It is shown in Figure 6. The directly transmitted and reflected-transmitted populations are still clearly
separated but both are very diffuse and not smooth. The distribution of reflected-transmitted ions is especially broad.

Figure 7 shows the gyrotropic distribution function of backstreaming ions far upstream of the shock. The number
of these ions is low. The distribution is rather diffuse with substantial v; for most ions, so that the pitch-angle 1,

costp = [vy|//vil + 07 is large.

5. CONCLUSIONS
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fulvy,v1)

10.5

Figure 3. Gyrotropic distribution function of incident ions. The distribution is Maxwellian with the normalized thermal
speed vr ~ 0.11.

fa(vp,v1)

0.5
25 reflected-transmitted
0
2
S -0.5
\_| 1.5 P
b
1 1.5
directly
0.5 transmitted -2
0 : -25
0 1 2

v/ Va

Figure 4. Downstream gyrotropic distribution function in the shock without rippling. The downstream populations of the
directly transmitted ions and the reflected-transmitted ions are clearly distinct.

Rippling significantly changes ion scattering at the shock front. Integrated downstream distributions are nearly
gyrotropic in the rippled case while non-gyrotropy is prominent in the stationary planar counterpart. Far downstream
the gyrotropic distributions are much broader and much more diffuse in the phase space. Rippling produces back-
streaming ions which are absent without rippling. Thus, rippling may be a clue to the solution of the injection problem:
generation of a population of superthermal ions escaping to the upstream region from the shock. These ions can be
further accelerated to higher energies by the diffusive shock acceleration mechanism (Giacalone 2003). Previous studies
of planar stationary shocks have not found backstreaming ions for 6z, > 50° (Gedalin et al. 2008), while observations
have shown their presence at quasi-perpendicular shocks (Kucharek et al. 2004). Local normals in a rippled shock are
different at different positions and different from the global normal (Ofman & Gedalin 2013). This may be the main
reason of the changes in ion reflection causing production of backstreaming ions at even a globally quasi-perpendicular
shock.
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f(z,v:)

|B|/Bu, ve/ Vi

4 05 0 05 1 15 2 25
2/ (Va/ )

f(z,vy)

|B|/Bu, vy/ Vs

-1 -0.5 0 0.5 1 1.5 2 25

|B|/Bu, v:/ Vs

4 05 0 05 1 1.5 2 25
@/ (Va/ )

Figure 5. Reduced distribution functions for the case with rippling. Top: f(z,v;). Middle: f(z,vy). Bottom: f(z,v.).
The black ribbon shows the magnetic field magnitude as observed by ions crossing the shock in different positions.  The
directly transmitted, reflected, and reflected-transmitted ions are clearly seen but ion phase space holes are filled with ions.
Gyrotropization of the downstream distribution occurs within one ion convective gyroradius. The most important change is the
appearance of the backstreaming ions.
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f;z(v||,UL)

Y

Figure 6. Downstream gyrotropic distribution function in the rippled shock. Compare with Figure 4. Both directly transmitted
and reflected-transmitted populations are more diffuse since they consist of particles coming from different crossing positions.

3
25 !
2 0.5

S5 0
1 : 05
0.5 -1
0_3 o -1.5

Y

Figure 7. Gyrotropic distribution function of backstreaming ions in the rippled shock. The distribution is rather broad.
There is substantial dispersion in v and v, .
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175 APPENDIX
176 A. JACOBIAN DERIVATION
177 We consider electric and magnetic fields which depend on (z,y, z), while the plasma flow is along x. For simplicity
178 we limit ourselves with the non-relativistic case. Relativistic generalization is straightforward. Given rg the velocity
179 of the particle depends on r. This function v(7r) may be not single-valued but otherwise is time-independent. The
180 Jacobian
Ov; (1)
J(r) = det Al
182 will be time-independent too. Let us consider
183 J(r+dr)=Jr)+dJ (A2)
184 dJ=VJ-dr (A3)
i d
J(r +dr) = J(r)det <W> (A4)
dv;
J(r +dr) = J(r) <1 +Tr (a Y >> (A5)
8’0]‘
187 dv = gdt (AG)
188 g:i(E+va) (A?)
m
189 We have
d d .d
90 dt =22 gy =% g = (A8)
Vg Vg Vg
d d . d.
191 dvm = g :177 dvy = M, dvz = 9:0% (Ag)
Vg Vg Vg
102 For given dx
odv,, J g.dx gzdz duy
” Ov, O0v, Uy v2 Vg ( )
d d
o0 Odv, _ 0 gydv _, (A11)
Ovy,  Ovy vy
ddv,, 0 g.dx
= =0 Al12
" Ov, ov, vy ( )
106 therefore
de Voz
197 dJ =—-J—, J=— (A13)
Vg Vg
108 Note that in this expression v, depends on vq, 7o, and r.
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