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not possible to make observations or perform simulations for the same shock parameters with ripples being eliminated.40

Here a test particle analysis may be useful. The idea is to determine the ion distributions formed in a stationary plane41

shock model and compare these distributions with those obtained in the same profile with rippling added.42

2. A MODEL SHOCK PROFILE43

The stationary plane model used in the analysis is based on the following profile:44

Bx = cos θBn (1)45

Bz = B sin θBn (2)46

By = kB

(

dB

dx

)

(3)47

Ex = −kE

(

dB

dx

)

(4)48

Ey = sin θBn (5)49

Ez = 0 (6)50

B = Bbas +Badd (7)51

Bbas =
Rbas − 1

2
+
Rbas + 1

2
tanh

3x

D
(8)52

Badd = Radd

(

1− tanh
3(x− cr)

wr

)(

1 + tanh
3(x− cl)

wl

)

(9)53

Here the magnetic field is normalized on the upstream magnetic field Bu and the electric field is normalized on54

VuBu/c. The coefficients kE and kB are determined by the cross-shock potential (see below). The coordinate x and55

all lengths are normalized on the upstream convective gyroradius, Vu/Ωu, where Vu is the plasma speed in the normal56

incidence frame (NIF) and Ωu = eBu/mpc is the upstream proton, p, gyrofrequency. NIF is the shock frame in57

which the upstream plasma flow is directed along the shock normal. The upstream ion inertial length is c/ωpi, where58

ωpi =
√

4πe2nu/mp and nu are the upstream proton plasma frequency and the upstream proton number density. The59

Alfvénic Mach number is MA = Vu/vA, where the Alfvén speed is vA = Bu/
√

4πnump. We shall also use the angle60

θBn between the shock normal and the upstream magnetic field vector. The magnetic compression is61

Bd

Bu

=
√

cos2 θBn +R2

bas sin
2 θBn (10)62

The expression Eq. (8) describes a monotonic transition from the upstream magnetic field to the downstream63

magnetic field (the main varying component). Eq. (9) adds an overshoot. Eq. (3) describes the noncoplanar magnetic64

field which is nonzero only inside the transition layer. The motional electric field (5) is constant throughout the shock.65

The cross-shock electric field along the shock normal (4) is also present only inside the transition layer. In a planar66

stationary shock Ez is identically zero. The coefficients kE and kB are determined by the cross-shock potential:67

−

∫

Exdx = φNIF ≡ sNIF (mpV
2

u /2e) (11)68

−

∫

(Ex + Vu tan θBnBy/c)dx = φHT ≡ sHT (mpV
2

u /2e) (12)69

The subscript HT means de Hoffman-Teller frame. The latter is the shock frame in which the upstream plasma flow70

is along the upstream magnetic field. The parameters θBn, Bd/Bu, Radd, sNIF , sHT , D, cl, cr, wl, wr, kE , and kB71

completely define the adopted model of a planar stationary shock profile.72

Rippling is added by the replacement73

x→ X = x− aψg (13)74

ψ(y, z, t) = sin(krip(z cosϕ+ y sinϕ− Vript)) (14)75

g(x) =

(

1 + tanh
3(x−XL)

WL

)(

1− tanh
3(x−XR)

WR

)

(15)76
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in NIF. Accordingly, B(x) → B(X), and77

Bx = kB

(

dB

dX

)(

∂X

∂y

)

−B sin θBn

(

∂X

∂z

)

+ cos θBn (16)78

By = −kB

(

dB

dX

)(

∂X

∂x

)

(17)79

Bz = B sin θBn

(

∂X

∂x

)

(18)80

Ex = −kE

(

dB

dX

)(

∂X

∂x

)

(19)81

Ey = sin θBn −B sin θBn

(

∂X

∂t

)

− kE

(

dB

dX

)(

∂X

∂y

)

(20)82

Ez = −kB

(

dB

dX

)(

∂X

∂t

)

− kE

(

dB

dX

)(

∂X

∂z

)

(21)83

These fields are the fields in NIF. The ripples are moving along the shock front with the velocity Vrip =84

Vrip(0, sinϕ, cosϕ). In the rippling frame the fields become time independent. The speed Vrip is of the order of85

the Alfvén speed (Johlander et al. 2016; Gingell et al. 2017; Johlander et al. 2018; Omidi et al. 2021) and we may86

apply the nonrelativistic transformation87

E′
x = Ex + Vrip sinϕBz − Vrip cosϕBy (22)88

E′
y = Ey + Vrip cosϕBx (23)89

E′
z = Ez − Vrip sinϕBx (24)90

The advantage of the rippling frame for ion tracing is that it is not necessary to take into account time dependence.91

The two-dimensional surface of the magnetic field magnitude for the rippled shock is shown in Figure 1. The rippling92

Figure 1. The two-dimensional surface of the magnetic field magnitude for the rippled shock. Y is in the direction or rippling
propagation. The global shock normal is along x. The local shock normal is determined by the steepest gradient of the magnetic
field magnitude, depends on Y , and differs from the global normal. The maximum overshoot magnetic field also depends on Y .

93

94

is localized around the shock transition and disappears sufficiently far upstream and downstream.95

3. PRINCIPLES OF TEST PARTICLE ANALYSIS96

An incident ion distribution is specified and for each ion the equations of motion in the corresponding dimensionless97

form98

dr

dt
= v,

dv

dt
= E + v ×B (25)99

are solved numerically. Here the velocity v is normalized on Vu, the position vector r is normalized on Vu/Ωu, and100

time is normalized on Ω−1

u . The distribution function f(v, r, t) throughout the shock front is derived using df/dt = 0101
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along the particle trajectory, that is, f(v, r, t) = f(v0, r0, t0), where102

r = r(t;v0, r0, t0), v = v(t;v0, r0, t0) (26)103

is the solution of the equations of motion with the initial conditions104

r(t = t0) = r0, v(t = t0) = v0 (27)105

For the stationary plane shock ion tracing is done in NIF, where the fields depend only on x, we have f = f(x,v). For106

the rippled shock ion tracing is done in the rippling frame, where the fields are time independent, f = f(x, y, z,v).107

The moments of the distribution function are derived as follows:108

∫

ψ(x, y, z,v)f(x, y, z,v)d3v =

∫

ψf(x0, y0, z0,v0)|J |d
3v0 (28)109

where the Jacobian is110

J = det

(

∂vi(x, y, z)

∂vj(0)

)

=
v0x
vx

, i, j = x, y, z (29)111

(see Appendix). In Eqs. (28) and (29) the velocity v depends on the initial conditions and on the current position.112

Note that for ion tracing in the rippled shock the initial velocity distribution should be shifted v0 → v0 −Vrip. In the113

whole analysis all velocities are normalized on Vu.114

4. DISTRIBUTIONS115

In the present analysis the following parameters were used: MA = 6, θBn = 60◦, βi = 1, Bd/Bu = 3, Badd = 1,116

sNIF = 0.4, sHT = 0.1, D = 2/M , krip = 2π, ϕ = 45◦, Vrip = 1/M , wl = D, wr = 3D, xl = 0.5D, xr = 0.5D,117

WL = 2, WR = 2, XL = 0, XR = 0. The incident ion distribution is Maxwellian with βi = 8πnuTiu/B
2

u = 1.118

In the shock without rippling it is sufficient to start tracing at the same (x0, y0, z0). Figure 2 shows the reduced119

distribution functions f(x, vx), f(x, vy), and f(x, vz), for the case without rippling. Each reduced distribution function120121

is obtained by integration over two other components of the velocity, e.g.,122

f(x, vx) =

∫

f(x,v)dvydvz (30)123

The distribution functions are shown on the log scale. The top panel shows f(x, vx), the middle panel shows f(x, vy),124

and the bottom panel is for f(x, vz). The black line in each panel shows the magnetic field magnitude. Various125

populations in the ion distribution marked on the top panel. The directly transmitted ions and the reflected-transmitted126

ions (ions which cross the shock again after reflection) are clearly seen. There are well pronounced dips (ion phase127

space holes) in the distribution function. Non-gyrotropy of the downstream distribution is quite clear. Relaxation to128

gyrotropy is gradual but rather fast, because of the overshoot (Gedalin et al. 2023).129

The ultimate objective of the test particle analysis is the determination of the downstream gyrotropic function130

fd(v∥, v⊥) sufficiently far from the shock transition layer. Here ∥ and ⊥ refer to the direction of the downstream131

magnetic field, and the distribution function is calculated in HT. The same Jacobian as in Eq. (29) is added as a132

weight in the calculation of the distribution function. Figure 3 shows the gyrotropic distribution of incident ions in the133

upstream region on the log scale. Figure 4 shows the gyrotropic distribution of the downstream ions. The distribution134135136

consists of two distinct populations: the directly transmitted ions and the reflected-transmitted ions. Both populations137

have rather smooth shapes possessing maxima and monotonic decrease around them.138

For the rippled shock the incident ions start at the same x0 but their positions along the rippling direction are chosen139

randomly within the rippling wavelength 2π/krip. Figure 5 shows the reduced distribution functions f(x, vx), f(x, vy),140141

and f(x, vz), for the case with rippling. The distribution functions are integrated over the coordinates perpendicular142

to the shock normal direction. The magnetic field is represented not by a line but by a ribbon, because each ion is143

measuring its own magnetic field magnitude along its trajectory. The integrated distribution of the directly transmitted144

ions is nearly gyrotropic because of the mixing of ions appearing at the same cross-section x = const but at different145

y and z. In all three panels the backstreaming ions are clearly seen. In the top panel these ions have vx < 0 farther146

from the shock than the turning distances of the reflected ions which later cross the shock again. In the bottom panel147

these backstreaming ions all have vz < −2 and are completely separated from other populations.148
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Figure 2. Reduced distribution functions for the case without rippling. Top: f(x, vx). Middle: f(x, vy). Bottom: f(x, vz).
The black line shows the magnetic field magnitude. All distinct ion populations are indicated on the top panel: a) the
directly transmitted ions cross the shock and proceed further downstream, b) the reflected ions are seen just ahead of the shock
transition, c) the reflected-transmitted ions are the reflected ions which cross the shock again and proceed further downstream.
Ion phase space holes are the regions where the phase space density is very low and even approaches zero. Non-gyrotropy of
the downstream distribution persists well into the downstream region.

The downstream gyrotropic distribution is derived in the region where rippling is no longer noticeable, and is also149

done in HT. It is shown in Figure 6. The directly transmitted and reflected-transmitted populations are still clearly150151

separated but both are very diffuse and not smooth. The distribution of reflected-transmitted ions is especially broad.152

Figure 7 shows the gyrotropic distribution function of backstreaming ions far upstream of the shock. The number153

of these ions is low. The distribution is rather diffuse with substantial v⊥ for most ions, so that the pitch-angle ψ,154155

cosψ = |v∥|/
√

v2∥ + v2⊥ is large.156

5. CONCLUSIONS157
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Figure 3. Gyrotropic distribution function of incident ions. The distribution is Maxwellian with the normalized thermal
speed vT ≈ 0.11.

Figure 4. Downstream gyrotropic distribution function in the shock without rippling. The downstream populations of the
directly transmitted ions and the reflected-transmitted ions are clearly distinct.

Rippling significantly changes ion scattering at the shock front. Integrated downstream distributions are nearly158

gyrotropic in the rippled case while non-gyrotropy is prominent in the stationary planar counterpart. Far downstream159

the gyrotropic distributions are much broader and much more diffuse in the phase space. Rippling produces back-160

streaming ions which are absent without rippling. Thus, rippling may be a clue to the solution of the injection problem:161

generation of a population of superthermal ions escaping to the upstream region from the shock. These ions can be162

further accelerated to higher energies by the diffusive shock acceleration mechanism (Giacalone 2003). Previous studies163

of planar stationary shocks have not found backstreaming ions for θBn > 50◦ (Gedalin et al. 2008), while observations164

have shown their presence at quasi-perpendicular shocks (Kucharek et al. 2004). Local normals in a rippled shock are165

different at different positions and different from the global normal (Ofman & Gedalin 2013). This may be the main166

reason of the changes in ion reflection causing production of backstreaming ions at even a globally quasi-perpendicular167

shock.168
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Figure 5. Reduced distribution functions for the case with rippling. Top: f(x, vx). Middle: f(x, vy). Bottom: f(x, vz).
The black ribbon shows the magnetic field magnitude as observed by ions crossing the shock in different positions. The
directly transmitted, reflected, and reflected-transmitted ions are clearly seen but ion phase space holes are filled with ions.
Gyrotropization of the downstream distribution occurs within one ion convective gyroradius. The most important change is the
appearance of the backstreaming ions.
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Figure 6. Downstream gyrotropic distribution function in the rippled shock. Compare with Figure 4. Both directly transmitted
and reflected-transmitted populations are more diffuse since they consist of particles coming from different crossing positions.

Figure 7. Gyrotropic distribution function of backstreaming ions in the rippled shock. The distribution is rather broad.
There is substantial dispersion in v∥ and v⊥.
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APPENDIX175

A. JACOBIAN DERIVATION176

We consider electric and magnetic fields which depend on (x, y, z), while the plasma flow is along x. For simplicity177

we limit ourselves with the non-relativistic case. Relativistic generalization is straightforward. Given r0 the velocity178

of the particle depends on r. This function v(r) may be not single-valued but otherwise is time-independent. The179

Jacobian180

J(r) = det

(

∂vi(r)

∂uj(0)

)

(A1)181

will be time-independent too. Let us consider182

J(r + dr) = J(r) + dJ (A2)183

dJ = ∇J · dr (A3)184

J(r + dr) = J(r) det

(

∂vi(r + dr)

∂vj(r)

)

(A4)185

J(r + dr) = J(r)

(

1 + Tr

(

∂dvi
∂vj

))

(A5)186

dv = gdt (A6)187

g =
q

m
(E + v ×B) (A7)188

We have189

dt =
dx

vx
, dy =

vydx

vx
, dz =

vzdx

vx
(A8)190

dvx =
gxdx

vx
, dvy =

gydx

vx
, dvz =

gzdx

vx
(A9)191

For given dx192

∂dvx
∂vx

=
∂

∂vx

gxdx

vx
= −

gxdx

v2x
= −

dvx
vx

(A10)193

∂dvy
∂vy

=
∂

∂vy

gydx

vx
= 0 (A11)194

∂dvz
∂vz

=
∂

∂vz

gzdx

vx
= 0 (A12)195

therefore196

dJ = −J
dvx
vx

, J =
v0x
vx

(A13)197

Note that in this expression vx depends on v0, r0, and r.198

REFERENCES

Gedalin, M. 1997, Geophys. Res. Lett., 24, 2511,199

doi: 10.1029/97GL02524200

—. 2021, Astrophys. J., 912, 82,201

doi: 10.3847/1538-4357/abf1e2202

Gedalin, M., Dimmock, A. P., Russell, C. T., Pogorelov,203

N. V., & Roytershteyn, 2023, J. Plasma Phys., 89,204

905890201, doi: 10.1017/S0022377823000090205



10 Gedalin et al.
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