

Scattering of ions at a rippled shock

2 MICHAEL GEDALIN ,¹ NIKOLAI V. POGORELOV ,^{2,3} AND VADIM ROYTERSHTEYN ,⁴

3 ¹*Department of Physics, Ben Gurion University of the Negev, Beer-Sheva, Israel*

4 ²*Department of Space Science, The University of Alabama in Huntsville, AL 35805, USA*

5 ³*Center for Space Plasma and Aeronomics Research, The University of Alabama in Huntsville, AL 35805, USA*

6 ⁴*Space Science Institute, Boulder, CO 80301, USA*

7 (Received; Revised; Accepted)

ABSTRACT

8 In a collisionless shock the energy of the directed flow is converted to heating and acceleration of
9 charged particles, and to magnetic compression. In low-Mach number shocks the downstream ion
10 distribution is made of directly transmitted ions. In higher-Mach number shocks ion reflection is
11 important. With the increase of the Mach number rippling develops which is expected to affect ion
12 dynamics. Using ion tracing in a model shock front, downstream distributions of ions are analyzed and
13 compared for a planar stationary shock with an overshoot and a similar shock with ripples propagating
14 along the shock front. It is shown that rippling results in the distributions which are substantially
15 broader and more diffuse in the phase space. Gyrotropization is sped up. Rippling is able to generate
16 backstreaming ions which are absent in the planar stationary case.

18 **Keywords:** shock waves – acceleration of particles

1. INTRODUCTION

20 Collisionless shocks are one of the most ubiquitous phenomena in space plasmas (see Treumann 2009, for a review
21 and further references). At a fast magnetosonic shock the energy of the directed plasma flow is re-distributed. A
22 large part of it is converted into ion heating. At low Mach numbers, ion heating is due to the gyration of the directly
23 transmitted ions (Gedalin 1997, 2021). The corresponding post-shock (downstream) distributions are initially non-
24 gyrotropic and gradually gyrotropize and isotropize (Gedalin et al. 2015b). At sufficiently high Mach numbers, ion
25 reflection becomes important. Reflected ions contribute substantially to the downstream ion temperature (Phillips
26 & Robson 1972; Gosling et al. 1982; Sckopke et al. 1983, 1990). Ion reflection is affected by the shock structure, in
27 particular, by the overshoot (Gedalin et al. 2023). With the increase of the Mach number, the shock front undergoes
28 structural changes, like rippling (Lowe & Burgess 2003; Moullard et al. 2006; Lobzin et al. 2008; Yang et al. 2012;
29 Ofman & Gedalin 2013; Johlander et al. 2016; Gingell et al. 2017; Johlander et al. 2018; Hanson et al. 2019; Omidi et al.
30 2021). Rippling causes deviations of the local normal to the shock transition layer from the global normal determined
31 by the conservation laws, a.k.a., Rankine-Hugoniot relations (Ofman & Gedalin 2013). Therefore, the dynamics of
32 ions, entering the shock at different spatial locations, is affected by different fields, and the downstream distributions
33 near the shock front, produced at different sites. Further downstream these distributions mix to evolve into a single
34 uniform gyrotropic distribution. The relation of the uniform upstream ion distribution to the far downstream gyrotropic
35 distribution can be described as scattering at the shock front (Gedalin et al. 2015a). The exact influence of the shock
36 rippling on the ion scattering is not known at present. Observations provide detailed information on ion distributions
37 along the spacecraft trajectory. Multi-spacecraft observations may provide distributions simultaneously along several
38 close spacecraft paths. Self-consistent numerical simulations may provide detailed distributions in two or even three
39 dimensions. However, neither observations, nor simulations are capable of separating the effects of rippling, since it is

not possible to make observations or perform simulations for the same shock parameters with ripples being eliminated. Here a test particle analysis may be useful. The idea is to determine the ion distributions formed in a stationary plane shock model and compare these distributions with those obtained in the same profile with rippling added.

2. A MODEL SHOCK PROFILE

The stationary plane model used in the analysis is based on the following profile:

$$B_x = \cos \theta_{Bn} \quad (1)$$

$$B_z = B \sin \theta_{Bn} \quad (2)$$

$$B_y = k_B \left(\frac{dB}{dx} \right) \quad (3)$$

$$E_x = -k_E \left(\frac{dB}{dx} \right) \quad (4)$$

$$E_y = \sin \theta_{Bn} \quad (5)$$

$$E_z = 0 \quad (6)$$

$$B = B_{bas} + B_{add} \quad (7)$$

$$B_{bas} = \frac{R_{bas} - 1}{2} + \frac{R_{bas} + 1}{2} \tanh \frac{3x}{D} \quad (8)$$

$$B_{add} = R_{add} \left(1 - \tanh \frac{3(x - c_r)}{w_r} \right) \left(1 + \tanh \frac{3(x - c_l)}{w_l} \right) \quad (9)$$

Here the magnetic field is normalized on the upstream magnetic field B_u and the electric field is normalized on $V_u B_u / c$. The coefficients k_E and k_B are determined by the cross-shock potential (see below). The coordinate x and all lengths are normalized on the upstream convective gyroradius, V_u / Ω_u , where V_u is the plasma speed in the normal incidence frame (NIF) and $\Omega_u = e B_u / m_p c$ is the upstream proton, p , gyrofrequency. NIF is the shock frame in which the upstream plasma flow is directed along the shock normal. The upstream ion inertial length is c / ω_{pi} , where $\omega_{pi} = \sqrt{4\pi e^2 n_u / m_p}$ and n_u are the upstream proton plasma frequency and the upstream proton number density. The Alfvénic Mach number is $M_A = V_u / v_A$, where the Alfvén speed is $v_A = B_u / \sqrt{4\pi n_u m_p}$. We shall also use the angle θ_{Bn} between the shock normal and the upstream magnetic field vector. The magnetic compression is

$$\frac{B_d}{B_u} = \sqrt{\cos^2 \theta_{Bn} + R_{bas}^2 \sin^2 \theta_{Bn}} \quad (10)$$

The expression Eq. (8) describes a monotonic transition from the upstream magnetic field to the downstream magnetic field (the main varying component). Eq. (9) adds an overshoot. Eq. (3) describes the noncoplanar magnetic field which is nonzero only inside the transition layer. The motional electric field (5) is constant throughout the shock. The cross-shock electric field along the shock normal (4) is also present only inside the transition layer. In a planar stationary shock E_z is identically zero. The coefficients k_E and k_B are determined by the cross-shock potential:

$$-\int E_x dx = \phi_{NIF} \equiv s_{NIF} (m_p V_u^2 / 2e) \quad (11)$$

$$-\int (E_x + V_u \tan \theta_{Bn} B_y / c) dx = \phi_{HT} \equiv s_{HT} (m_p V_u^2 / 2e) \quad (12)$$

The subscript HT means de Hoffmann-Teller frame. The latter is the shock frame in which the upstream plasma flow is along the upstream magnetic field. The parameters θ_{Bn} , B_d / B_u , R_{add} , s_{NIF} , s_{HT} , D , c_l , c_r , w_l , w_r , k_E , and k_B completely define the adopted model of a planar stationary shock profile.

Rippling is added by the replacement

$$x \rightarrow X = x - a \psi g \quad (13)$$

$$\psi(y, z, t) = \sin(k_{rip}(z \cos \varphi + y \sin \varphi - V_{rip} t)) \quad (14)$$

$$g(x) = \left(1 + \tanh \frac{3(x - X_L)}{W_L} \right) \left(1 - \tanh \frac{3(x - X_R)}{W_R} \right) \quad (15)$$

77 in NIF. Accordingly, $B(x) \rightarrow B(X)$, and

$$78 \quad B_x = k_B \left(\frac{dB}{dX} \right) \left(\frac{\partial X}{\partial y} \right) - B \sin \theta_{Bn} \left(\frac{\partial X}{\partial z} \right) + \cos \theta_{Bn} \quad (16)$$

$$79 \quad B_y = -k_B \left(\frac{dB}{dX} \right) \left(\frac{\partial X}{\partial x} \right) \quad (17)$$

$$80 \quad B_z = B \sin \theta_{Bn} \left(\frac{\partial X}{\partial x} \right) \quad (18)$$

$$81 \quad E_x = -k_E \left(\frac{dB}{dX} \right) \left(\frac{\partial X}{\partial x} \right) \quad (19)$$

$$82 \quad E_y = \sin \theta_{Bn} - B \sin \theta_{Bn} \left(\frac{\partial X}{\partial t} \right) - k_E \left(\frac{dB}{dX} \right) \left(\frac{\partial X}{\partial y} \right) \quad (20)$$

$$83 \quad E_z = -k_B \left(\frac{dB}{dX} \right) \left(\frac{\partial X}{\partial t} \right) - k_E \left(\frac{dB}{dX} \right) \left(\frac{\partial X}{\partial z} \right) \quad (21)$$

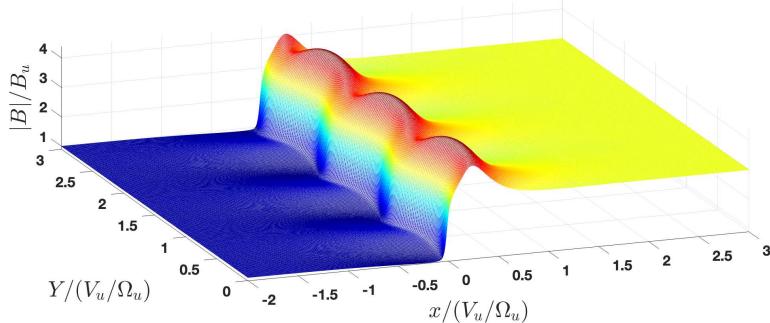
84 These fields are the fields in NIF. The ripples are moving along the shock front with the velocity $\mathbf{V}_{rip} =$
 85 $V_{rip}(0, \sin \varphi, \cos \varphi)$. In the rippling frame the fields become time independent. The speed V_{rip} is of the order of
 86 the Alfvén speed (Johlander et al. 2016; Gingell et al. 2017; Johlander et al. 2018; Omidi et al. 2021) and we may
 87 apply the nonrelativistic transformation

$$88 \quad E'_x = E_x + V_{rip} \sin \varphi B_z - V_{rip} \cos \varphi B_y \quad (22)$$

$$89 \quad E'_y = E_y + V_{rip} \cos \varphi B_x \quad (23)$$

$$90 \quad E'_z = E_z - V_{rip} \sin \varphi B_x \quad (24)$$

91 The advantage of the rippling frame for ion tracing is that it is not necessary to take into account time dependence.
 92 The two-dimensional surface of the magnetic field magnitude for the rippled shock is shown in Figure 1. The rippling



93 **Figure 1.** The two-dimensional surface of the magnetic field magnitude for the rippled shock. Y is in the direction of rippling
 94 propagation. The global shock normal is along x . The local shock normal is determined by the steepest gradient of the magnetic
 95 field magnitude, depends on Y , and differs from the global normal. The maximum overshoot magnetic field also depends on Y .

96 is localized around the shock transition and disappears sufficiently far upstream and downstream.

97 3. PRINCIPLES OF TEST PARTICLE ANALYSIS

98 An incident ion distribution is specified and for each ion the equations of motion in the corresponding dimensionless
 99 form

$$99 \quad \frac{d\mathbf{r}}{dt} = \mathbf{v}, \quad \frac{d\mathbf{v}}{dt} = \mathbf{E} + \mathbf{v} \times \mathbf{B} \quad (25)$$

100 are solved numerically. Here the velocity \mathbf{v} is normalized on V_u , the position vector \mathbf{r} is normalized on V_u/Ω_u , and
 101 time is normalized on Ω_u^{-1} . The distribution function $f(\mathbf{v}, \mathbf{r}, t)$ throughout the shock front is derived using $df/dt = 0$

102 along the particle trajectory, that is, $f(\mathbf{v}, \mathbf{r}, t) = f(\mathbf{v}_0, \mathbf{r}_0, t_0)$, where

$$\mathbf{r} = \mathbf{r}(t; \mathbf{v}_0, \mathbf{r}_0, t_0), \quad \mathbf{v} = \mathbf{v}(t; \mathbf{v}_0, \mathbf{r}_0, t_0) \quad (26)$$

104 is the solution of the equations of motion with the initial conditions

$$\mathbf{r}(t = t_0) = \mathbf{r}_0, \quad \mathbf{v}(t = t_0) = \mathbf{v}_0 \quad (27)$$

106 For the stationary plane shock ion tracing is done in NIF, where the fields depend only on x , we have $f = f(x, \mathbf{v})$. For
107 the rippled shock ion tracing is done in the rippling frame, where the fields are time independent, $f = f(x, y, z, \mathbf{v})$.
108 The moments of the distribution function are derived as follows:

$$\int \psi(x, y, z, \mathbf{v}) f(x, y, z, \mathbf{v}) d^3 \mathbf{v} = \int \psi f(x_0, y_0, z_0, \mathbf{v}_0) |J| d^3 \mathbf{v}_0 \quad (28)$$

110 where the Jacobian is

$$J = \det \left(\frac{\partial v_i(x, y, z)}{\partial v_j(0)} \right) = \frac{v_{0x}}{v_x}, \quad i, j = x, y, z \quad (29)$$

112 (see Appendix). In Eqs. (28) and (29) the velocity \mathbf{v} depends on the initial conditions and on the current position.
113 Note that for ion tracing in the rippled shock the initial velocity distribution should be shifted $\mathbf{v}_0 \rightarrow \mathbf{v}_0 - \mathbf{V}_{rip}$. In the
114 whole analysis all velocities are normalized on V_u .

115 4. DISTRIBUTIONS

116 In the present analysis the following parameters were used: $M_A = 6$, $\theta_{Bn} = 60^\circ$, $\beta_i = 1$, $B_d/B_u = 3$, $B_{add} = 1$,
117 $s_{NIF} = 0.4$, $s_{HT} = 0.1$, $D = 2/M$, $k_{rip} = 2\pi$, $\varphi = 45^\circ$, $V_{rip} = 1/M$, $w_l = D$, $w_r = 3D$, $x_l = 0.5D$, $x_r = 0.5D$,
118 $W_L = 2$, $W_R = 2$, $X_L = 0$, $X_R = 0$. The incident ion distribution is Maxwellian with $\beta_i = 8\pi n_u T_{iu}/B_u^2 = 1$.

119 In the shock without rippling it is sufficient to start tracing at the same (x_0, y_0, z_0) . Figure 2 shows the reduced
120 distribution functions $f(x, v_x)$, $f(x, v_y)$, and $f(x, v_z)$, for the case without rippling. Each reduced distribution function
121 is obtained by integration over two other components of the velocity, e.g.,

$$f(x, v_x) = \int f(x, \mathbf{v}) dv_y dv_z \quad (30)$$

124 The distribution functions are shown on the log scale. The top panel shows $f(x, v_x)$, the middle panel shows $f(x, v_y)$,
125 and the bottom panel is for $f(x, v_z)$. The black line in each panel shows the magnetic field magnitude. Various
126 populations in the ion distribution marked on the top panel. The directly transmitted ions and the reflected-transmitted
127 ions (ions which cross the shock again after reflection) are clearly seen. There are well pronounced dips (ion phase
128 space holes) in the distribution function. Non-gyrotropy of the downstream distribution is quite clear. Relaxation to
129 gyrotropy is gradual but rather fast, because of the overshoot (Gedalin et al. 2023).

130 The ultimate objective of the test particle analysis is the determination of the downstream gyrotropic function
131 $f_d(v_{\parallel}, v_{\perp})$ sufficiently far from the shock transition layer. Here \parallel and \perp refer to the direction of the downstream
132 magnetic field, and the distribution function is calculated in HT. The same Jacobian as in Eq. (29) is added as a
133 weight in the calculation of the distribution function. Figure 3 shows the gyrotropic distribution of incident ions in the
134 upstream region on the log scale. Figure 4 shows the gyrotropic distribution of the downstream ions. The distribution
135 consists of two distinct populations: the directly transmitted ions and the reflected-transmitted ions. Both populations
136 have rather smooth shapes possessing maxima and monotonic decrease around them.

137 For the rippled shock the incident ions start at the same x_0 but their positions along the rippling direction are chosen
138 randomly within the rippling wavelength $2\pi/k_{rip}$. Figure 5 shows the reduced distribution functions $f(x, v_x)$, $f(x, v_y)$,
139 and $f(x, v_z)$, for the case with rippling. The distribution functions are integrated over the coordinates perpendicular
140 to the shock normal direction. The magnetic field is represented not by a line but by a ribbon, because each ion is
141 measuring its own magnetic field magnitude along its trajectory. The integrated distribution of the directly transmitted
142 ions is nearly gyrotropic because of the mixing of ions appearing at the same cross-section $x = \text{const}$ but at different
143 y and z . In all three panels the backstreaming ions are clearly seen. In the top panel these ions have $v_x < 0$ farther
144 from the shock than the turning distances of the reflected ions which later cross the shock again. In the bottom panel
145 these backstreaming ions all have $v_z < -2$ and are completely separated from other populations.

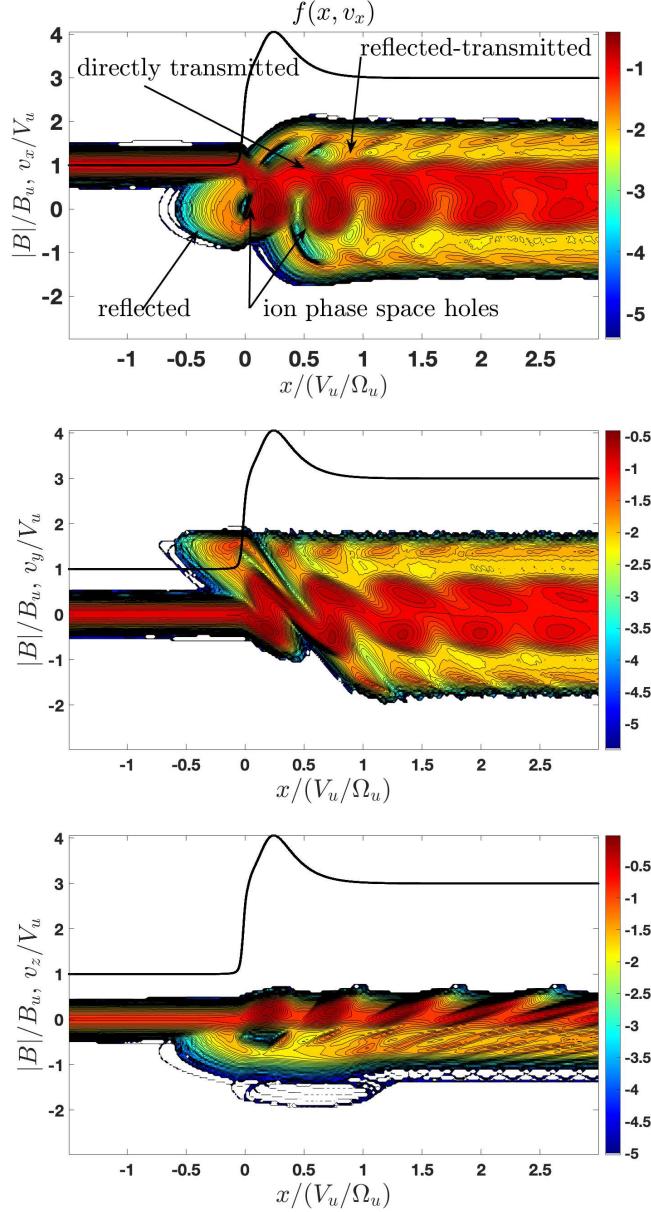


Figure 2. Reduced distribution functions for the case without rippling. Top: $f(x, v_x)$. Middle: $f(x, v_y)$. Bottom: $f(x, v_z)$. The black line shows the magnetic field magnitude. All distinct ion populations are indicated on the top panel: a) the directly transmitted ions cross the shock and proceed further downstream, b) the reflected ions are seen just ahead of the shock transition, c) the reflected-transmitted ions are the reflected ions which cross the shock again and proceed further downstream. Ion phase space holes are the regions where the phase space density is very low and even approaches zero. Non-gyrotropy of the downstream distribution persists well into the downstream region.

The downstream gyrotropic distribution is derived in the region where rippling is no longer noticeable, and is also done in HT. It is shown in Figure 6. The directly transmitted and reflected-transmitted populations are still clearly separated but both are very diffuse and not smooth. The distribution of reflected-transmitted ions is especially broad.

Figure 7 shows the gyrotropic distribution function of backstreaming ions far upstream of the shock. The number of these ions is low. The distribution is rather diffuse with substantial v_\perp for most ions, so that the pitch-angle ψ , $\cos \psi = |v_\parallel| / \sqrt{v_\parallel^2 + v_\perp^2}$ is large.

5. CONCLUSIONS

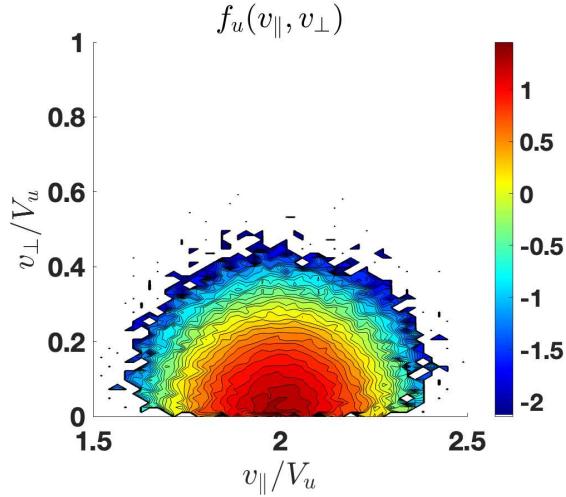


Figure 3. Gyrotropic distribution function of incident ions. The distribution is Maxwellian with the normalized thermal speed $v_T \approx 0.11$.

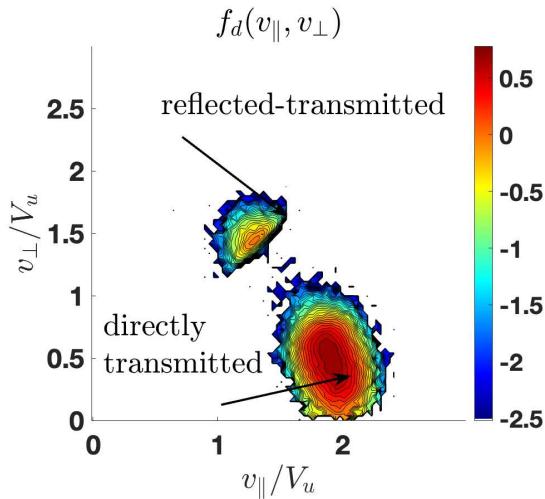


Figure 4. Downstream gyrotropic distribution function in the shock without rippling. The downstream populations of the directly transmitted ions and the reflected-transmitted ions are clearly distinct.

Rippling significantly changes ion scattering at the shock front. Integrated downstream distributions are nearly gyrotropic in the rippled case while non-gyrotropy is prominent in the stationary planar counterpart. Far downstream the gyrotropic distributions are much broader and much more diffuse in the phase space. Rippling produces backstreaming ions which are absent without rippling. Thus, rippling may be a clue to the solution of the injection problem: generation of a population of superthermal ions escaping to the upstream region from the shock. These ions can be further accelerated to higher energies by the diffusive shock acceleration mechanism (Giacalone 2003). Previous studies of planar stationary shocks have not found backstreaming ions for $\theta_{Bn} > 50^\circ$ (Gedalin et al. 2008), while observations have shown their presence at quasi-perpendicular shocks (Kucharek et al. 2004). Local normals in a rippled shock are different at different positions and different from the global normal (Ofman & Gedalin 2013). This may be the main reason of the changes in ion reflection causing production of backstreaming ions at even a globally quasi-perpendicular shock.

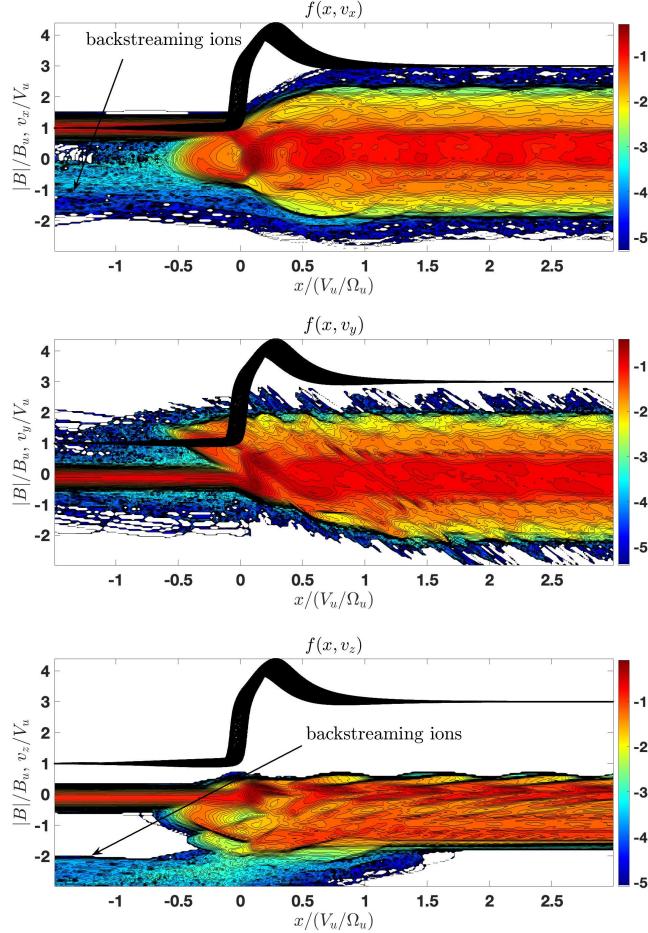


Figure 5. Reduced distribution functions for the case with rippling. Top: $f(x, v_x)$. Middle: $f(x, v_y)$. Bottom: $f(x, v_z)$. The black ribbon shows the magnetic field magnitude as observed by ions crossing the shock in different positions. The directly transmitted, reflected, and reflected-transmitted ions are clearly seen but ion phase space holes are filled with ions. Gyrotropization of the downstream distribution occurs within one ion convective gyroradius. The most important change is the appearance of the backstreaming ions.

169 M. Gedalin was partially supported by NSF-BSF grant 2019744 and by the European Union's Horizon 2020 research
 170 and innovation program under grant agreement No 101004131 (SHARP). N. Pogorelov was supported, in part, by
 171 NSF-BSF award 2010450 and NASA grant 80NSSC18K1649. NP was additionally supported by the *IBEX* mission as
 172 a part of NASA's Explorer program. V. Roytershteyn was partially supported by NASA grant 80NSSC18K1649 and
 173 NSF-BSF award 2010144. Resources supporting this work were provided by the NASA High-End Computing (HEC)
 174 Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center.

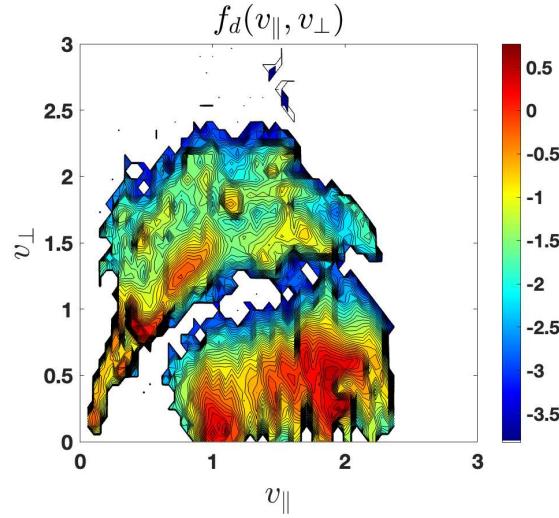


Figure 6. Downstream gyrotropic distribution function in the rippled shock. Compare with Figure 4. Both directly transmitted and reflected-transmitted populations are more diffuse since they consist of particles coming from different crossing positions.

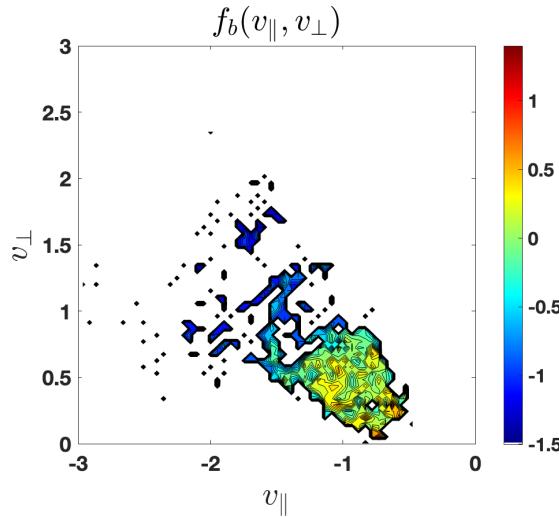


Figure 7. Gyrotropic distribution function of backstreaming ions in the rippled shock. The distribution is rather broad. There is substantial dispersion in v_{\parallel} and v_{\perp} .

175

APPENDIX

176

A. JACOBIAN DERIVATION

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

206 Gedalin, M., Dröge, W., & Kartavykh, Y. Y. 2015a,
 207 *Astrophys. J.*, 807, 126,
 208 doi: [10.1088/0004-637X/807/2/126](https://doi.org/10.1088/0004-637X/807/2/126)

209 Gedalin, M., Friedman, Y., & Balikhin, M. 2015b, *Phys.*
 210 *Plasmas*, 22, 072301, doi: [10.1063/1.4926452](https://doi.org/10.1063/1.4926452)

211 Gedalin, M., Liverts, M., & Balikhin, M. A. 2008, *J.*
 212 *Geophys. Res.*, 113, 05101, doi: [10.1029/2007JA012894](https://doi.org/10.1029/2007JA012894)

213 Giacalone, J. 2003, *Plan. Sp. Sci.*, 51, 659,
 214 doi: [10.1016/S0032-0633\(03\)00101-6](https://doi.org/10.1016/S0032-0633(03)00101-6)

215 Gingell, I., Schwartz, S. J., Burgess, D., et al. 2017, *J.*
 216 *Geophys. Res.*, 77, 736, doi: [10.1002/2017JA024538](https://doi.org/10.1002/2017JA024538)

217 Gosling, J. T., Thomsen, M. F., Bame, S. J., et al. 1982,
 218 *Geophys. Res. Lett.*, 9, 1333,
 219 doi: [10.1029/GL009i012p01333](https://doi.org/10.1029/GL009i012p01333)

220 Hanson, E. L. M., Agapitov, O. V., Mozer, F. S., et al.
 221 2019, *Geophys. Res. Lett.*, 46, 2381,
 222 doi: [10.1029/2018GL080240](https://doi.org/10.1029/2018GL080240)

223 Johlander, A., Vaivads, A., Khotyaintsev, Y. V., et al. 2018,
 224 *Plasma Phys. Contr. Fus.*, 60, 125006,
 225 doi: [10.1088/1361-6587/aae920](https://doi.org/10.1088/1361-6587/aae920)

226 Johlander, A., Schwartz, S. J., Vaivads, A., et al. 2016,
 227 *Phys. Rev. Lett.*, 117, 165101,
 228 doi: [10.1103/PhysRevLett.117.165101](https://doi.org/10.1103/PhysRevLett.117.165101)

229 Kucharek, H., Möbius, E., Scholer, M., et al. 2004, *Annales*
 230 *Geophysicae*, 22, 2301, doi: [10.5194/angeo-22-2301-2004](https://doi.org/10.5194/angeo-22-2301-2004)

231 Lobzin, V. V., Krasnoselskikh, V. V., Musatenko, K., &
 232 Dudok de Wit, T. 2008, *Annales Geophysicae*, 26, 2899,
 233 doi: [10.5194/angeo-26-2899-2008](https://doi.org/10.5194/angeo-26-2899-2008)

234 Lowe, R. E., & Burgess, D. 2003, *Annales Geophysicae*, 21,
 235 671, doi: [10.5194/angeo-21-671-2003](https://doi.org/10.5194/angeo-21-671-2003)

236 Mouillard, O., Burgess, D., Horbury, T. S., & Lucek, E. A.
 237 2006, *J. Geophys. Res.*, 111, A09113,
 238 doi: [10.1029/2005JA011594](https://doi.org/10.1029/2005JA011594)

239 Ofman, L., & Gedalin, M. 2013, *J. Geophys. Res.*, 118,
 240 5999, doi: [10.1002/2013JA018780](https://doi.org/10.1002/2013JA018780)

241 Omidi, N., Desai, M., Russell, C. T., & Howes, G. G. 2021,
 242 *J. Geophys. Res.*, 126, e2021JA029287,
 243 doi: [10.1029/2021JA029287](https://doi.org/10.1029/2021JA029287)

244 Phillips, P. E., & Robson, A. E. 1972, *Phys. Rev. Lett.*, 29,
 245 154, doi: [10.1103/PhysRevLett.29.154](https://doi.org/10.1103/PhysRevLett.29.154)

246 Sckopke, N., Paschmann, G., Bame, S. J., Gosling, J. T., &
 247 Russell, C. T. 1983, *J. Geophys. Res.*, 88, 6121,
 248 doi: [10.1029/JA088iA08p06121](https://doi.org/10.1029/JA088iA08p06121)

249 Sckopke, N., Paschmann, G., Brinca, A. L., Carlson, C. W.,
 250 & Luehr, H. 1990, *J. Geophys. Res.*, 95, 6337,
 251 doi: [10.1029/JA095iA05p06337](https://doi.org/10.1029/JA095iA05p06337)

252 Treumann, R. A. 2009, *Astron. Astrophys. Rev.*, 17, 409,
 253 doi: [10.1007/s00159-009-0024-2](https://doi.org/10.1007/s00159-009-0024-2)

254 Yang, Z. W., Lembège, B., & Lu, Q. M. 2012, *J. Geophys.*
 255 *Res.*, 117, A07222, doi: [10.1029/2011JA017211](https://doi.org/10.1029/2011JA017211)