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Abstract—The emerging technologies of Virtual Reality (VR)
and 360◦ video introduce new challenges for state-of-the-art video
communication systems. Enormous data volume and spatial user
navigation are unique characteristics of 360◦ videos that neces-
sitate a space-time effective allocation of the available network
streaming bandwidth over the 360◦ video content to maximize
the Quality of Experience (QoE) delivered to the user. Towards
this objective, we investigate a framework for viewport-driven
rate-distortion optimized 360◦ video streaming that integrates
the user view navigation patterns and the spatiotemporal rate-
distortion characteristics of the 360◦ video content to maximize
the delivered user viewport video quality, for the given net-
work/system resources. The framework comprises a methodology
for assigning dynamic navigation likelihoods over the 360◦

video spatiotemporal panorama, induced by the user navigation
patterns, an analysis and characterization of the 360◦ video
panorama’s spatiotemporal rate-distortion characteristics that
leverage preprocessed spatial tilling of the content, and an opti-
mization problem formulation and solution that capture and aim
to maximize the delivered expected viewport video quality, given
a user’s navigation patterns, the 360◦ video encoding/streaming
decisions, and the available system/network resources. We for-
mulate a Markov model to capture the navigation patterns of a
user over the 360◦ video panorama and simultaneously extend
our actual navigation datasets by synthesizing additional realistic
navigation data. Moreover, we investigate the impact of using two
different tile sizes for equirectangular tiling of the 360◦ video
panorama. Our experimental results demonstrate the advantages
of our framework over the conventional approach of streaming a
monolithic uniformly-encoded 360◦ video and a state-of-the-art
navigation-speed based reference method. Considerable average
and instantaneous viewport video quality gains of up to 5 dB
are demonstrated in the case of five popular 4K 360◦ videos.
In addition, we explore the impact of two different popular
360◦ video quality metrics applied to evaluate the streaming
performance of our system framework and the two reference
methods. Finally, we demonstrate that by exploiting the unequal
rate-distortion characteristics of the different spatial sectors of
the 360◦ video panorama, we can enable spatially more uniform
and temporally higher 360◦ video viewport quality delivered to
the user, relative to monolithic streaming.

Index Terms—Omnidirectional video, quality of experience,
viewport-adaptive 360◦ video streaming, rate-distortion analysis
and optimization, user navigation modeling.

I. INTRODUCTION

The emerging technologies of virtual reality and 360◦ video

are helping to introduce novel immersive digital experiences.

It is anticipated that related products and applications will

represent a $62 billion market by 2027 [1]. Gaming and

entertainment, as well as education and training represent the

main application domains of these technologies at present,

with a broader set of societal applications spanning remote

sensing, the environmental and weather sciences, disaster

relief, and transportation anticipated in the future [2]. The

recent feature article [3] provides a tutorial coverage of the

diversity of virtual reality applications expected in the future

across the spectrum of our society and their benefits that can

broadly advance quality of life, energy conservation, and the

economy, as well as the related research opportunities that can

be pursued towards enabling them.

Fig. 1: 360◦ video streaming: Viewport Vi on the 360◦ sphere.

360◦ video is a recent video format captured by an omnidi-

rectional camera that records incoming light rays from every

direction. It enables a 360◦ look-around of the surrounding

scene for a remote user, virtually placed at the camera location,

on his VR device, as illustrated in Figure 1. Presently, existing

systems stream the entire monolithic 360◦ view panorama to

a user, who can, at any time, only experience a small portion

of it denoted as viewport Vi, as also illustrated in Figure 1.

However, this results in a huge network overhead/bottleneck

and unnecessary computational/bandwidth loading of the de-

vice, which, in turn, considerably penalizes the user’s quality

of experience. Moreover, to apply traditional state-of-the-art

video coding, the 360◦ view sphere is first mapped to a planar

shape using a sphere-to-plane projection, as illustrated in the

bottom left portion of Figure 1.

Two types of sphere-to-plane projections are commonly

used: (i) direct projections such as the equirectangular pro-

jection (ERP) that map the latitude/longitude of a spherical

point to planar coordinates on an equirectangle, or (ii) pro-

jections that use intermediate 3D objects such as a pyramid,

cube, or dodecahedron, comprised of planar faces that are

encoded independently. The latter have been considered since

around 30% pixel replication is introduced when the sphere

is mapped using an ERP [4, 5]. However, they have their own

deficiencies, e.g., introduction of projection distortions around

the planar shape’s edges. In this paper, we only consider

the equirectangular mapping, as it is one of the most widely

used and one of the two (the other one being the cube map)

currently considered by the MPEG’s Omnidirectional File

Format Standard (OMAF) [6].

The growing popularity of VR technologies stimulates an

equivalent increasing demand for 360◦ video content, which

today can be accessed through over-the-top online content
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providers such as YouTube and Facebook 360 [7, 8]. However,

present 360◦ video streaming practices necessitate excessive

data rates that even anticipated broadband network access

technologies would not be able to support [9, 10], due to the

heuristic design shortcomings of the former outlined above.

On the other hand, delivering the entire 360◦ view sphere is

necessary to avoid simulator/motion sickness [11] that would

degrade the quality of experience, as the intuitive approach

of sending only Vi using traditional server-client delivery

architectures, where the server responds to client updates,

would preclude application interactivity, due to the inherent

network round-trip-time induced latency.

This apparent impasse between 360◦ application require-

ments and present technology capabilities/design essentially

stems from the direct application to the 360◦ domain of

existing video coding/streaming technologies that treat 360◦

content as conventional video. Thus, recent studies have con-

sidered uneven spatial quality encoding of 360◦ videos, to min-

imize the data rate assigned to 360◦ regions not navigated by

the user presently, thereby considerably reducing the induced

network overhead [4]. This is the general strategy we also

follow. In this paper, we present the following contributions:

1) We formulate a framework for viewport-driven rate

optimized 360◦ video streaming that integrates the user

view navigation patterns and the spatiotemporal rate-

distortion characteristics of the 360◦ video content to

maximize the delivered quality of experience of the user,

for the given network/system resources. It comprises: (i)

a methodology for assigning dynamic navigation likeli-

hoods to the spatiotemporal 360◦ panorama that capture

the probabilities of navigating different spatial segments

of the 360◦ video content over time, by the user, (ii)

an analysis and formulation of the spatiotemporal rate-

distortion characteristics of compressed 360◦ video tiles

that leverage preprocessed spatial tilling of the 360◦

view sphere, and (iii) an optimization problem formu-

lation and solution that respectively characterize and

aim to maximize the delivered QoE of the user, given

the user’s navigation patterns, 360◦ video encoding

decisions, and the available system/network resources.

2) We formulate and analyze a user navigation Markov

model to investigate the head navigation movements of

a user in detail, and extend our dataset, at the same

time. The proposed navigation models advances our

system framework, by providing further insights into

navigation aspects fundamentals of 360-degree video,

and the capability to generate realistic navigation data

without the need to capture one in reality, which can be

quite costly and thus always of limited scale in practice.

Thereby, experiments can be carried out over broader

sets of navigation traces and user conditions, to provide

further knowledge and insights.

3) We explore the impact of two different popular 360◦

video quality metrics applied to evaluate the streaming

performance of our system framework.

4) We investigate the impact of two different tile sizes used

in equirectangular tiling of the 360◦ video panorama,

on the performance of our framework and 360◦ video

streaming in general. These insights can help gain

understanding of the benefits and drawbacks of using

smaller tile sizes, and advance existing systems and

implementations for 360◦ video streaming.

5) Finally, we study the spatial distribution of 360◦ video

quality across the user viewport and demonstrate how

our 360◦ rate-distortion optimization results in spatially

more uniform viewport video quality, which in turn can

considerably augment the user’s quality of experience.

The rest of the paper is organized as follows. In Section II,

we first review related work. Subsequently, we present the

building components of our system framework and navigation

model in Section III. The problem formulation that aims to

maximize the delivered 360◦ user quality of experience given

the user navigation patterns, 360◦ video encoding decisions,

and the available system/network resources, is presented in

Section IV. Experimental analysis of the performance of our

framework and validation of our system models is carried out

in Section VI. Finally, concluding remarks and a summary of

envisioned future work are provided in Section VII.

II. RELATED WORK

Studies of 360◦ video streaming to date have generally con-

sidered diverse challenges encountered in rendering the user

viewport, streaming the 360◦ video panorama, and mapping

the native 360◦ view sphere to a planar shape [12].

In particular, Afzal et al. carry out an empirical character-

ization of diverse characteristics of compressed 360◦ videos

highlighting their main features, e.g., their lower temporal rate

variability compared to conventional videos [13]. Moreover, a

number of studies have considered splitting the 360◦ video

into spatial tiles as part of the encoding process, leveraging

the tiling feature of the latest High Efficiency Video Coding

(HEVC) standard [14]. The encoding data rate of each tile can

then be controlled independently to reduce the overall network

streaming bandwidth usage [15–18]. Concretely, [15] explores

a heuristic method for allocating bitrate to tiles comprising the

360◦ panorama, where viewport tiles are assigned a fraction

of the available bandwidth, weighted by the proportion of

their pixels present in the viewport area. Tiles entirely outside

the viewport area are assigned a fraction of the remaining

bandwidth weighted by their distance from the center point of

the viewport. Similarly, [16] streams the tiles in the viewport

at the highest possible quality, while the remaining tiles in

the 360◦ panorama are assigned an equal portion of the

remaining network bandwidth. The server push feature of the

latest HTTP/2 protocol is used to deliver the tiled video faster

and with better bandwidth utilization. Moreover, [18] adopts a

similar view-aware approach, where tiles overlapping with the

viewport are streamed at higher quality, while non-overlapping

tiles are streamed at lower quality, to enable considerable

network bandwidth savings. Finally, [17] proposes a regression

based method for predicting the user viewport over the next

streaming segment of the content, as part of a broader stream-

ing framework that enables a client to request tiles overlapping

with the predicted viewing direction of the user.
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Xiao et al. propose using variable-sized tiles for an optimal

viewport coverage and explore a linear programming and deep

learning approach to identify the optimal tiling configuration

over the 360◦ video panorama [19]. [20] explores DASH-

based streaming of tiled 360◦ video, where different quality

representations of the tiled content are available and coupled

with several tile quality selection mechanisms to choose

from. [21] exploits the stream prioritization and termination

features of the HTTP/2 protocol to enable selective video

frame dropping and scheduling within a content segment of a

compressed 360◦ video, to maximize the amount of video data

received on time by the client. [22] explores a probabilistic

model for pre-fetching 360◦ video tiles that captures the

distribution of the viewport prediction error and formulates a

QoE-driven optimization framework that minimizes the total

expected distortion of pre-fetched tiles. Similarly, [4] addresses

the impact of the uncertainty of the upcoming user naviga-

tion actions in 360◦ video streaming by designing multiple

representations of the 360◦ video content, characterized with

different quality emphasized regions, which are adaptively

served to the user. Rigorous analysis is carried out to select the

number of representations and the locations and spatial sizes

of the quality emphasized centers of each.

[23–25] explore neural network based strategies for accu-

rate viewport prediction in 360◦ video and VR streaming.

Moreover, live 360◦ video multicast over an LTE network

is investigated in [23, 26], addressing aspects such as user

clustering and allocation of resources to different parts of the

360◦ video content. [23] also explores the use of scalable

360◦ video tiling and rigorous rate-distortion optimization of

the resource allocation problem. Finally, in three recent more

distantly related studies, [27] explores a system framework

for aerial multi-viewpoint 360◦ video streaming of a remote

scene to a VR user, integrating reinforcement learning, re-

source scheduling, and 360◦ video representation advances,

to maximize the quality of experience of the user, given the

available system resources. On the other hand, [28] explores

viewport-adaptive multi-user VR mobile-edge streaming in 5G

small-cell systems, where a collection of 5G small cell base

station can pool their communication, computing, and storage

resources to collectively deliver scalable 360◦ video content to

mobile VR clients at much higher quality. Yet, [29] studies the

integration of millimeter wave (or free-space optics) and sub-

6 GHz links for dual-connectivity streaming of six-degrees of

freedom VR content to multiple mobile users navigating the

content across the spatial area of an indoor VR arena.

In contrast to the few studies cited above that consider

HEVC 360◦ tiling, we employ preprocessed spatial tiles of

the 360◦ view panorama, as introduced later, which has several

advantages in the form of lower complexity at multiple critical

aspects of a server-client 360◦ streaming architecture [4].

Moreover, formal analysis of the spatiotemporal rate-distortion

characteristics of 360◦ tiling that integrates the user navi-

gation patterns and the available network/system resources

has not been carried out towards optimal selection of 360◦

encoding/streaming decisions. The framework of our paper

aims to fill this gap. The present paper builds upon our

preliminary work in [30], introducing the following additional

major advances over [30]: (i) Analysis of the impact of the

equirectangular tile size and the enabled gains by using smaller

tiles. (ii) User navigation Markov model developed from real

user head navigation traces. (iii) Analysis of temporal and

spatial viewport quality variation. (iv) Exploration of the

impact of two different 360◦ video quality metrics. (v) A

comprehensive experimental analysis over a broad range of

operating conditions and an extensive 360◦ video dataset.

III. SYSTEM MODELS

Our 360◦ network system architecture comprises several

major component blocks and is illustrated in Figure 2. In

particular, based on the tiling preprocessing of the 360◦

video content that is carried out ahead of time, rate-distortion

analysis is carried out for each GOP tile. In parallel, navigation

likelihoods are developed based on existing navigation traces

from the current and prior VR users, as well as synthetic

traces generated from the actual navigation traces corpus using

the first order user navigation Markov model that we explore.

Finally, using these two system components, viewport-adaptive

streaming optimization is carried out to assign the appropriate

network data rate to each tile of the current GOP of the content

delivered to the user, as illustrated in Figure 2. We describe

each system component in detail in the following subsections.

Fig. 2: Key components of our 360◦ network streaming system.

A. Tiling Preprocessing

We partition an equirectangular 360◦ video into a set of

N ×M spatial tiles. In particular, we partition the raw 360◦

video frames into spatial tiles and consider the collection of

thereby constructed (smaller) video frames for each tile as

separate videos. The tiles are then separately encoded off-line

(ahead of time) and streamed to the user on-demand, according

to our analysis and optimization. As explained earlier, carrying

out the tiling as a preprocessing step has several advantages

over tiling the video as part of the encoding process, as enabled

by the tiling feature of the latest video coding standard HEVC.

In our experiments, we preprocessed 4K 360◦ videos into two

different spatial tiling settings: large 6× 4 tiles, as illustrated

in Figure 3, and small 8 × 8 tiles (Figure 4) where the first

and second dimension respectively refer to the horizontal and

vertical number of identical tiles in the video. Each tile is

indexed in a raster fashion, left-to-right and top-to-bottom.

We selected these tiling settings based on empirical analysis,

as a reasonable choice between the complexity and compres-

sion efficiency introduced by a given tiling set. Using a large

tile size has the advantage of compression efficiency [31] and
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Fig. 3: 360◦ video panorama 6× 4 spatial tiling.

Fig. 4: 360◦ video panorama 8× 8 spatial tiling.

smaller number of additional Media Presentation Description

(MPD) files generated for each independent video tile [4].

Small tiling, on the other hand, is less complex in terms

of video compression carried out per tile. In addition, using

smaller tiles allows for constructing a more accurate expected

user viewport by having smaller building blocks spanning the

360◦ video panorama. Compared to using a bigger tile size,

this will result in a more optimal network resource usage and

is expected to have higher average viewport quality delivered

to the user, when integrated with a viewport-driven resource

allocation such as the one we pursue here. Lastly, we note that

though using smaller tiling will penalize video compression

efficiency, it appears that in practice the induced penalty may

not be severe, as reported in a recent study carried out by a

VR streaming spin-off company, where 100 tiles were used to

partition an 8K 360◦ video panorama [32].

B. 360◦ VR Head Movement Data

We collected head-movement data that describes how a user

navigates a 360◦ video over time. In particular, a VR device

outputs the direction of the current viewpoint of the user Vi

on the 360◦ view sphere up to 250 times per second, with the

user considered to be placed at the sphere center, as described

earlier in Figure 1. Precisely, this is the surface normal of

Vi on the 360◦ sphere that is uniquely described by the

spherical coordinates azimuth and polar angles φ ∈ [0◦, 360◦]
and θ ∈ [0◦, 180◦] it spans on the sphere, in a spherical

coordinate system with the 360◦ unit sphere center as its

origin, as illustrated in Figure 5 (right). These two angles are

equivalently denoted as yaw and pitch in the VR community,

captured as rotation angles around the Z and Y axes, as

denoted in Figure 5 (left). We collected the pairs (φj , θj)
that coincided with the discrete temporal instances tj of

Fig. 5: 360◦ head movement navigation data of current viewport Vi. Left:
Rotation angles yaw, pitch, and roll around the three coordinate axis. Right:
Azimuthal and polar angles (ϕ, θ) in spherical coordinates.

subsequent 360◦ video frames j displayed to the user as she

navigates the content. They are the navigation data points

relevant for our analysis. We note that we omitted capturing

the head orientation angle roll as part of our navigation traces

for simplicity and most importantly, because its values are

predominantly very small and thus have insignificant impact

on establishing the user viewport on the 360◦ view sphere

or panorama [33, 34]. We provide further details about our

navigation data capture procedure and overall experimental

setup in Section VI-A later.

In addition to our own recorded data traces, we used the

navigation dataset of Corbillon et al. [35]. Having navigation

traces for a bigger number of captured 360◦ videos will

extend the dataset we can work with, to help produce statisti-

cally more significant/reliable results devoid from any related

anomalies that can arise from working with a smaller statis-

tical sample. Relatedly, more recently, in another study, we

have carried out an extensive data collection and preparation

initiative, to share with the broader community full UHD (8K)

360◦ video navigation traces and rate-distortion compression

information, to facilitate research of next generation 360◦

video and VR streaming systems, and beyond [34].

C. 360◦ Navigation Model

Having actual data traces of a user watching a 360◦ video

recorded using a Head-Mounted Display (HMD) device is

necessary to analyze the navigation patterns of a user and

the induced expected viewport quality, in diverse settings.

However, in order to accurately predict the expected user

viewport from user actions, a large number of navigation traces

are required, especially in the case of small video tiles. In order

to generate a large navigation trace dataset, we investigate the

statistical dependencies of user navigation traces.

We are interested in a user navigation model based on user

actions made between consecutive video frames. We develop

a parameterized first order Markov model that captures the

present user action based on the previous action of the user

and the location of the present action on the 360◦ view

sphere, integrated as a parameter of the model. In the real

user navigation traces we have worked with [34, 35], more

than 99% of the time, a user does not navigate more than one

macroblock, which has a size of 64 pixels in both vertical

and horizontal directions. We note that a macroblock is a

basic unit of planar video compression that has been used

in every subsequent video coding standard. Its default size

in the present HEVC standard is 64 × 64 pixels [14] in the
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Region 1

Region 2

Region 3

(a) Video regions and navigation actions on the 360◦ view sphere and associated equirectangular 2D panorama. Video region
r = 2 and index of last navigation action (diagonally to the upper right macroblock) is j = 3.

(b) Prospective choices for the sub-
sequent navigation action, formu-
lated by our model, and their respec-
tive likelihoods.

Fig. 6: Proposed navigation model: Sample trajectory and next navigation action options.

2D plane of a video frame. We also note that the concept of

a macroblock is different from the concept of a 360◦ video

tile that was introduced earlier. A macroblock is spatially

much smaller than a video tile, macroblocks are an inherent

component of video compression, while tiling can be used

optionally, and a tile will comprise multiple macroblocks.

In our model, we first divided the 360◦ video panorama into

macroblocks, using the default macroblock size noted above.

This choice will allow us to capture accurately the center of

the user’s attention and the user’s direction of navigation with

a limited number of macroblocks, to control the complexity

of our model. Using a smaller macroblock size, e.g., 16 ×16,

as used in previous codecs, would unnecessarily increase the

model’s complexity, without any benefit to its accuracy. Now,

a viewport center at a given time has 9 possible navigation

actions: it can navigate to one of 8 neighbors of its current

macroblock position or stay in the present location/macroblock

(see Figure 6b). The probabilities of each action P j,r
m,n are

determined using actual data traces where j and r represent the

previous action and region, respectively, and m and n represent

the horizontal and vertical indices of the (adjacent or same)

macroblock to which a transition can be made at the next

navigation action/step, as explained above. We integrate these

two aspects to make our model more realistic: the previous

navigation action and the video region where it took place.

In particular, a user navigating a 360◦ video is considered

by Sitzmann et al. [36] to be in one of the following two states:

(i) attention and (ii) re-orientation. In the attention state, the

user tends to navigate less and in the re-orientation state the

user explores the panorama by constantly moving. In order to

capture these two states, we calculated the probabilities of each

prospective subsequent action given the most recent navigation

action of the user already taken. Because prior actions will

influence the outcome of subsequent actions, by formulating

our model thereby, we can account for persistent re-orientation

and stationary attention navigation actions/states of the user. In

our model, there are nine prospective subsequent actions/states

(m,n ∈ {1, 2, 3}), for every prospective outcome for the most

recent prior action j ∈ {1, . . . , 9}.

Moreover, head navigation movements around the equator

and near the poles are usually not same in the equirectangular

2D plane. For instance, a yaw navigation movement of one

macroblock size near the equator corresponds to a size of

several macroblocks near the poles of the 360◦ view sphere.

This distinction affects the recurrence of various navigation

movements, depending on the location of a movement on the

360◦ view sphere. To capture this phenomenon, we divided

the 360◦ panorama into 3 regions: 2 polar regions and one

equatorial region, indexed by r, i.e., r ∈ {1, 2, 3}. Then,

based on the region where a navigation action is initiated,

the probability of each prospective choice for the subsequent

navigation action/decision will depend on its recurrence in that

region only. Now, we note that although small angular head

movements may lead to multi-macroblock distances in polar

regions, the fraction of such navigation movements in our

dataset is negligible. Thus, in our modeling, we kept using

a one macroblock size movement also for polar regions, with

region-specific probabilities.

By integrating the two aspects described above, our navi-

gation model is as follows, and illustrated in Figure 6. First,

the movement region r in the 360◦ panorama is determined.

Then, based on the previous action (red arrows in Figure 6a)

and the corresponding region r, the probability model P j,r

is selected. Alike to the prospective choices for the current

navigation action, we denote the previous action’s nine op-

tions as: moving to one of the eight neighboring macroblock

(j ∈ (1, ..., 4) ∪ (6, ..., 9)) and making no movement (j = 5),

i.e., staying in the same macroblock. The probabilities of each

prospective next navigation movement, indexed by (m,n),
(blue arrows and blue dot in Figure 6a) are P j,r

m,n, where m

and n indicate the indices of the navigation probabilities in the

3×3 matrix [P j,r], parameterized by the navigation region (r)

and previous navigation action (j), as introduced earlier. We

use our model to generate synthetic navigation traces.

D. Navigation Likelihoods

For various HMD used in VR applications, the viewport

size experienced by the user varies. In this paper, we assume

a viewport of 110◦ horizontal and 90◦ vertical fields of view.

For every navigation trace for a given 360◦ video, we compute

the fraction of the surface area of tile k occupied by the user
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viewport Vi at time instance t, denoted as wk,t. To account for

the unequal surface area occupied by different viewports, when

mapped to a 2D rectangle used to encode the data, depending

on their latitude (polar angle θ) on the 360◦ view sphere (see

Figure 10 and Figure 11, and the related discussion therein),

each tile k is assigned a normalized weight w̄k,t, computed as

w̄k,t = wk,t/
∑

k wk,t. We can then aggregate these weights

over different time durations, to compute the likelihoods of

navigating different tiles of the respective 360◦ video during

those time periods, e.g., pk =
∑t2

t=t1
w̄k,t/(t2 − t1 + 1). In

our analysis, we are interested in exploiting these navigation

likelihoods over the duration of individual Group of Picture

(GOP)s comprising the encoded 360◦ video content. In partic-

ular, for each GOP, we assign dynamic navigation likelihoods

to each tile by aggregating navigation likelihoods of similar

user navigation traces, i.e. sharing the GOP’s initial tile for

their viewport center. Since users are following the contents

of the video, it is expected to for them to have similar short-

term navigations given they started at the same point.

For illustration, Figure 7 shows the average (over the entire

video) navigation likelihoods of different tiles comprising the

selected 6× 4 tiling applied to the 360◦ video Roller Coaster

[37] used in our experiments. We can see that corner tiles

appear rarely in a viewport navigated by the user, as their

navigation likelihoods are close to zero. Conversely, it appears

that the user often navigated through tiles 15 and 16, for

instance, as they have much higher navigation likelihoods.

Fig. 7: Navigation likelihoods of tiles for Roller Coaster. [30]

Figure 8 shows the corresponding tile navigation likelihoods

for the second 360◦ video, Wingsuit, used in our experiments.

It appears that in this case the viewport navigated by the user

is mostly closer to the south pole, as the corresponding tiles

have much higher likelihoods now, due to the specific nature of

this video (more interesting content is spatially located there).

In Figure 9, we explore the navigation likelihoods of the

small tiling setting for the 360◦ video Roller Coaster. We can

see that here there are more tiles in the user viewport with

similar/more uniform navigation likelihoods, compared to the

case observed in Figure 7. This is expected and is due to the

smaller size of tiles that is used here. The finer tiling will

enable delineating the user viewport more accurately, which

in turn will enable a more precise rate-distortion optimized

Fig. 8: Navigation likelihoods of tiles for Wingsuit. [30]

allocation of resources across the 360◦ video panorama. This,

in turn, will enable a higher quality viewport for the user and

will augment his or her quality of experience. On the other

hand, using a bigger number of tiles to partition the 360◦

video panorama will increase the processing complexity for

the video encoder at the streaming server and will reduce the

compression efficiency. The former may not be such a chal-

lenge for 360◦ video on demand applications, as considered

in this paper, as it can be carried out off-line (ahead of time).

The latter, on the other hand, can increase the requirements for

network streaming bandwidth, though there are some recent

industry studies that provide evidence of only a small penalty

in compression efficiency, even when high number of tiles

(100) is used [32]. Regardless, the benefits versus drawbacks

of using tiling and the selection of the tile size, need to be

carefully evaluated for the target application in mind.

Fig. 9: Navigation likelihoods of small tiles for Roller Coaster.

A visualization of two representative viewports on the 360◦

panorama is shown in Figures 10 and 11. Since mapping a

3D sphere to an equirectangular 2D plane causes a stretching

distortion, the shape of a viewport will also change depending

on its spatial location, in particular its latitude on the 360◦

view sphere as specified by its polar angle θ (see Figure 5 and

Section III-B). In equatorial regions, a viewport is smaller and

more compact (see Figure 10), while in polar regions of the

360◦ panorama a viewport is spread over all polar tiles (see

Figure 11). This distinction visually clarifies and demonstrates
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Fig. 10: Viewport at (ϕ, θ) = (0◦, 0◦).

the need for the integrated normalization of the tile-viewport

intersection weights wk,t carried out as part of the formulation

of the tile navigation likelihoods described in this section.

Moreover, Figures 3 and 4 can be referenced to understand

the spatial locations of these two viewports relative to the

underlying tiling of the respective 360◦ video.

Fig. 11: Viewport at (ϕ, θ) = (120◦,−60◦).

E. Rate-Distortion Models

Changing the quality of tiles is a useful method to control

the bitrate of a 360◦ video. The Quantization Parameter (QP)

employed by the HEVC codec is a convenient tool for tile

quality adaptation. We explore two prospective characteriza-

tions of the dependency between the parameter QP and the

resulting bitrate R of the encoded tile. That is, we investigate

modeling R = f1(QP) via an exponential or power law

function for f1 as follows

R = a1e
−b1 QP or R = a2QPb2 . (1)

We will validate these relationships by comparing the bitrate

and QP for an encoded 360◦ tile in Section VI-B. Since we

have a function between the bitrate and QP, we can define

bounds for our optimization problem with the highest and

lowest QP values that can be selected. And after calculating

the optimal bandwidth, going back to QP value and encoding

the tiles accordingly can be done easily at the server side.

Similarly, we investigate two prospective characterizations

of the dependency between the encoded tile bitrate R and the

induced reconstruction error or distortion D for a tile, where

the latter can be calculated as the Mean Square Error (MSE)

between the encoded tile video data and the corresponding

raw video data for the tile. In essence, the distortion D
captures the average deviation of encoded tile pixels from their

raw data counterparts. In a raw 360◦ YUV 4:2:0 video, for

every pixel sample of the color (chrominance) components

U and V there are 4 pixel samples of the (monochromatic)

intensity (luminance) component Y . Thus, the luminance

distortion dominates the encoding distortion for the two color

components. Therefore, we used the luminance component

distortion as the representative of the encoding distortion D
for a tile, measured for every 360◦ tile luminance video frame.

We investigate modeling the dependency D = f2(R) via an

exponential or power law function for f2 as follows

D = c1e
−d1R or D = c2R

d2 . (2)

We will also validate these relationships by comparing

the encoding bitrate and distortion for an encoded 360◦ tile

in Section VI-B. The characterizations R = f1(QP) and

D = f2(R) will allow us to formulate the aggregate 360◦

video encoding quality and pursue related optimizations, as

explained in the next section.

IV. OPTIMIZATION FRAMEWORK

Given the analytical modeling of the relevant problem vari-

ables, we now set out to find the optimal bitrate for each tile.

We integrate two new constraints into the problem formulation.

These are the aggregate available network bandwidth C and

the allowed QP range per tile.

A. Problem Setup

Given the limited network bandwidth, tiles should be trans-

mitted with a data rate corresponding to their navigation

likelihoods and rate-distortion characteristics such that we can

minimize the distortion (and maximize the delivered aggregate

quality) of the respective 360◦ video. Let Ri(QPi) denote the

bitrate of the ith tile where QP is the encoding quantization

parameter, as introduced earlier. This gives us the following

inequality to maintain:
∑

i

Ri(QPi) ≤ C, i = 1, . . . ,M ×N. (3)

For practical reasons, for every tile i we set a range of QP

values that can be considered, defined by the upper and lower

bounds QPmin and QPmax. This therefore induces constraints

on the minimum and maximum data rates that can be assigned

to a tile, given the monotonic relationship between QP and

Ri, as captured by the function Ri(QP). Formally, these two

constraints can be written as

Ri(QPmax) ≤ Ri(QPi) ≤ Ri(QPmin). (4)

Finally, we formulate the expected 360◦ quality of expe-

rience that a user observes while navigating the scene, as

the navigation likelihood weighted sum of video qualities of

all tiles comprising the 360◦ video content streamed to the

user. This can be formally written as
∑

i p(i|v)Di(Ri), where

p(i|v) denotes the navigation likelihood of tile i given that

viewport v is requested initially. To be precise, note that we

formulated our objective as the expected 360◦ video distortion,

due to the one-to-one correspondence between video quality

and reconstruction error (distortion). Therefore, we aim to

minimize our objective function, as it will lead to the same

goal (maximum 360◦ quality of experience).
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B. Optimization Formulation

Leveraging the problem setup described earlier, we can now

formulate the optimization problem of interest as

min
{Ri}

∑

i

p(i|v)Di(Ri), (5)

subject to:
∑

i

Ri(QPi) ≤ C, i = 1, . . . ,M ×N,

Ri(QPmax) ≤ Ri(QPi) ≤ Ri(QPmin), ∀i.

Note that (5) represents a convex optimization problem, due

to the nature of the constraints involved and the objective

function under consideration. Therefore, it can be efficiently

solved using Lagrange multipliers [38]. In our experiments, we

carry out the optimization in (5) for every GOP, facilitating

the dynamic navigation likelihood assignment described in

Section III-D to compute the navigation likelihoods p(i|v).
In particular, after the optimization completes, the QP vs R
dependency for each tile i in a GOP is used to obtain the

explicit optimal QPi value that corresponds to the optimal

data rate R∗
i produced by (5). Note that for illustration we

included the average navigation likelihoods p(i|v) across the

applied 360◦ video tilling for the duration of the entire video in

Figures 7 and 8, for the 360◦ content used in our experiments.

We recall that the analytical dependencies between R and

D, and between R and QP are not explicitly denoted in (5). As

explained earlier, we explore two models for each dependency

D = f2(R) and R = f1(QP), an exponential one and a

power-law one. And the parameters that comprise each model

are extracted uniquely for each tile, before we carry out the

optimization in (5). In our experiments, we first validate each

of these models, for each dependency, and select the one

that is more accurate, to carry out the remaining performance

evaluation analysis.

V. IMPLEMENTATION ASPECTS

We note that in our setup, just as in any other on-demand

video streaming systems, multiple versions of a given 360◦

video are constructed/encoded at different data rates off-line,

with a preprocessing step of tiling involved first, and then

streamed from to a user requesting that content on-demand

online. Thus, the setup we consider falls closely under the

general DASH-umbrella for on-demand video streaming. The

following aspects of our framework can be implemented and

integrated with a DASH-compliant system as follows. The

rate-distortion analysis and optimization can be carried out

respectively off-line, at the server (the former) and online

at streaming time, at the client (the latter), within an actual

DASH system. Moreover, the necessary rate-distortion models,

necessary to run the optimization can be shared by the server

with the client at the start of the streaming media session.

The DASH-based client will use its estimates of the available

download data rate that are typically carried out on its end

within DASH to supplement the optimization with the right

value of the available network streaming bandwidth C in (5).

VI. EXPERIMENTATION

A. System Setup

We used five popular 4K 360◦ videos from Youtube to eval-

uate the performance of our framework. 48 VR users watched

the first two videos (Roller Coaster [37] and Wingsuit [39])

with an Oculus Rift HMD device while their head movements

have been tracked using the OpenTrack software [40]. The

other three videos (Elephant [41], Timelapse [42], and Div-

ing [43]) are from the Corbillon et al. dataset and each of

them has between 40-58 head movement traces. We generated

500 synthetic navigation traces for each video as discussed

in Section III-C. Then, we calculated the tile navigation

likelihoods for each GOP, as formulated earlier, across all

available navigation traces, for a given 360◦ video, to use them

in our optimization and experiments later on.

Each 360◦ video is preprocessed and compressed off-line

using 2 different equirectangular tile sizes: large 6×4 tiles and

smaller 8×8 tiles. Each tile is encoded into GOPs of size 32

frames using HEVC. Each video consist of 10 GOPs, which

corresponds to 320 frames and 10.6 seconds temporal duration,

with a frame rate of 30 fps. Each GOP is encoded using 5 QP

values (22, 27, 32, 37, 42). Using the compressed 360◦ video

tiles for these QP values, we extracted the R−D and QP −R
parameters for our related analytical modeling, across all tiles

and GOPs, to explore and validate the proposed rate-distortion

modeling from Section III-E.

Two reference methods are examined to compare against

our optimization framework denoted as Proposed. The first

one is Monolithic where an entire monolithic 360◦ video is

encoded using the following 5 QP values (32, 34, 36, 39, 42).

In each case, the induced average data rates for every GOP

are used as the network bandwidth constraint C in our own

optimization in Section IV-A. The second one is Speed-based,

a state-of-the-art method proposed by Petrangeli et al. [16]. It

predicts future viewports accessed by the user, based on the

speed and the position of the current viewport center. Tiles

within the current/future predicted viewports in a GOP are

encoded with the highest possible QP value. The remaining

tiles are encoded with the lowest possible QP value given the

remaining bandwidth budget. Finally, Proposed indicates the

framework introduced in this paper.

We note that space limits precluded us from including the

entire corpus of results present in the paper, for every single

360◦ video used in our experiments. Moreover, we observed

that the relative performance of the reference methods and the

proposed framework remains consistent across the entire 360◦

video corpus, for each experimental evaluation we considered.

For these two reasons, we decided to vary the specific one

or two 360◦ videos used in a given evaluation considered in

Section VI, to increase the breadth of results presented in the

paper across the entire video corpus we used.

B. Rate-Distortion Model Validation

We formulated two prospective models for the dependencies

D = f2(R) and R = f1(QP), described in Section III-E. Here,

we explore their accuracy in characterizing the encoded 360◦

video content we considered in our experiments.
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Examination of the employed QP versus induced bitrate

relationship for different tiles shows that exponential model fits

better the actual data points. In Figure 12, we examine these

data points, shown as markers, and the fitted analytical de-

pendencies according to the two formulated models, for three

representative tiles, with diverse rate-distortion characteristics,

from the Roller Coaster video. Referencing the tile indexing

from Figure 3, we can see that while tiles 3 and 16 show lower

bitrate requirements due to their relatively static nature, tile 11

requires a higher bitrate as it corresponds to a more dynamic

360◦ region.
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Fig. 12: QP vs. bitrate dependency for different tiles. Actual data points shown
as markers.

Figure 13 shows the advantage of the power law model in

describing the observed D versus R dependency, denoted with

markers, across the 360◦ video tiles. In particular, for lower

bitrates, the impact of higher distortion dominates for tiles with

more dynamic content (Tile 11), while for higher bitrates the

difference across different tiles in this regard becomes smaller,

as seen from Figure 13.
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Fig. 13: Bitrate vs. distortion dependency for different tiles. Actual data points
shown as markers.

C. Optimal QP and Bitrates vs. Available Bandwidth

We examine how the optimal data rates Ri and the cor-

responding QPi values, produced by the optimization in (5)

for every tile i, vary, as the available network bandwidth C is

varied. Figure 14a shows the optimal rates produced by (5) for

three tiles from the Roller Coaster video, for the GOP number

57 in the 360◦ video, selected as a representative example. For

this GOP, tile 3 has a small navigation likelihood, while tile

16 has the highest among the three tiles considered. Still, it is

interesting to note that although tile 16 has a higher navigation

likelihood relative to tile 11 and is assigned a smaller QP

earlier (as seen from Figure 14b), encoding tile 11 leads to a

higher data rate in the second half of the graph in Figure 14a,

due to its more dynamic content, which makes encoding it

more challenging.
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Fig. 14: Optimal values in various bandwidths

Figure 15 shows the temporal evolution of the optimal

QP and bitrate values for these three tiles over the GOPs

comprising the 360◦ content while using the corresponding

bandwidth value C for each GOP. We can see that tile 16

typically has a lower QP value relative to the other two tiles,

due to its frequently accessed spatial location, while tile 3 is

often navigated only for a brief period of time towards the end

of the video. Discontinuities in Figure 15a indicate that a tile

has not been assigned any rate (skip encoding mode) by the

optimization in (5), as indicated by the corresponding graphs

in Figure 15b.
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Fig. 15: Optimal values in various GOPs

D. Expected 360◦ Video Quality

For the three 360◦ video streaming systems under compar-

ison, we measured the video quality per viewport experienced

by a user navigating the 360◦ content, as the Luminance

Peak Signal to Noise Ratio (Y-PSNR) of the MSE of the

pixels displayed in the viewport. Figure 16 shows the viewport

Y-PSNR over time for the three competing systems in the

case of the Timelapse video. We can see from Figure 16

that Speed-based and Monolithic exhibit the same temporal

pattern in viewport Y-PSNR variations, as the dynamic 360◦

content evolves, with our framework outperforming the both

method consistently and considerably. We also observed that

Speed-based offers an improved performance over Monolithic,

when viewport prediction succeeds. Though there are minor

variations for some frames, we observed that on average

Proposed provides a 4.5 dB gain over Monolithic.

Speed-based framework utilizes the user head navigation

to predict expected viewport and aims for a uniform QP

distribution in the expected viewport. This allows reaching

higher qualities in viewport. Proposed framework, on the other

hand, exploits the rate-distortion characteristics of video tiles
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to reach a uniform expected quality. The non-linear nature of a

rate-distortion curve enables reaching higher viewport quality

for the same network bandwidth budget, for our framework.

This results in a more consistent and uniform quality and QoE

for the user viewport.
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Fig. 16: 360◦ viewport video quality: Timelapse.

In Figure 16, the markers indicate the initial frames of

GOPs. Since we encoded the frames of each GOP using

uniform QP values, the I frames have higher Y-PSNR values,

for all three methods under comparison. We observed in this

evaluation, as expected, that using lower QP values lead to

higher Y-PSNR values overall and cause a higher gap between

the I frames and the subsequent P/B frames. Figure 17 shows

the average Y-PSNR values of each frame in a GOP, averaged

over 50 users. Here, we observe similar Y-PSNR trends for

all three methods under comparison, with decaying intensity

over the GOP. Especially for higher QP values, we observed

a maximum of 1.5 dB difference across the duration/length of

a GOP for Proposed, and slightly smaller values of 1 dB for

Speed-based, and 0.5 dB for Monolithic.
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Fig. 17: Intra-GOP (per frame) PSNR trend: Timelapse.

Next, we examine the average (over time) viewport 360◦

video quality (Y-PSNR) delivered by the three competing

systems, as the available network bandwidth C is varied.

Figure 18 show these results for average of 5 users in the case

of Timelapse. We can see that again Proposed outperforms

Speed-based and Monolithic, with a consistent gain more than

4 dB, in C values higher than 2 Mbps. On the other hand, the

reconstruction error can vary more spatially across pixels in

viewports delivered by Proposed and Speed-based, due to the

applied tiling, especially as the number of tiles that comprise

a viewport increases.
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Fig. 18: Average 360◦ viewport video quality: Timelapse.

The cumulative density function (CDF) of the Y-PSNR val-

ues of Timelapse video are compared in figure 19. Monolithic

approach has the steepest CDF curve since its Y-PSNR values

has a very small overall variance. Conversely, Speed-based

has more gradual curve where it drops below the Monolithic

case due to occasional mispredictions. Misprediction in Speed-

based results in very low viewport quality since only expected

viewport tiles are encoded with the high quality. Proposed

approach has the highest overall Y-PSNR values as a result of

efficient rate-allocation. However it has the most gradual shape

especially due to increasing Y-PSNR differences in higher

qualities.
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Fig. 19: CDF of Y-PSNR for all frames: Timelapse.

Finally, in Table I, we examine the viewport quality per-

formance of all three methods under comparison and the

performance gains of our Proposed framework relative to

Monolithic, across all five 360◦ videos used in our exper-

iments, for three different network bandwidth values (high,

medium, low) used to compress and stream each 360◦ video

content to a VR user. First, we can observe that our framework
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considerably outperforms the two competing methods across

all 360◦ videos and network bandwidth values considered, due

to its integrated advances spanning rate-distortion analysis,

system resource optimization, and navigation modeling. The

gains over Monolithic, a method that is most dominantly

used in current industry practices, are the highest and most

consistent in the cases of the Timelapse, Wingsuit, and Div-

ing videos. These benefits are promising and merit further

investigation and pursuit of practical implementations of our

system. We note that we observed more significant correlation

in the navigation patterns of users, for the Timelapse and

Diving 360◦ videos. This can enable a more accurate viewport

prediction and thus a better utilization of the allocated network

resources. Moreover, we also note that given its dynamic

content nature, the 360◦ video Wingsuit required much higher

network streaming bandwidth to be compressed and delivered

at comparable viewport quality relative to the other four

videos used in our experiments. Similarly, we further note that

different network streaming bandwidth values were considered

to compress and deliver each 360◦ video, in order to enable

comparable encoding qualities in each case (high, medium,

low), across the entire 360◦ video corpus we considered.

This need arises from the heterogeneous spatiotemporal rate-

distortion characteristics and dynamics that each 360◦ video

content features.

Network Gain

Video name Bandwidth Proposed Monolithic (wrt Mono.)
(Mbps) (dB) (dB) (dB)

Roller Coaster
4.28 47.50 45.34 2.16
2.59 44.03 42.78 1.25
1.23 38.95 38.99 -0.04

Elephant
4.02 49.70 46.23 3.57
2.20 46.84 44.19 2.65
0.76 41.40 41.45 -0.05

Timelapse
4.57 47.19 42.58 4.61
2.49 44.37 40.48 3.89
0.92 38.97 37.87 1.10

Wingsuit
12.42 52.91 48.66 4.25
6.38 50.49 46.88 3.61
2.12 47.67 44.37 3.30

Diving
6.17 49.43 45.68 3.75
3.42 46.61 43.57 3.04
1.28 42.37 40.98 1.39

TABLE I: Viewport quality performance and gains over Monolithic.

In closing this section, we note the following aspects about

the performance evaluation carried out herein. We introduced

the speed-based system as another reference method to illus-

trate that our proposed framework can broadly outperform

state-of-the-art as well as commonly used methods. In par-

ticular, we have provided five different sets of results here

that include both the Speed-based and Monolithic reference

methods. They highlight different research aspects and insights

of performance comparison across all the three methods under

comparison. Going forward, in the remaining three sections

covering evaluation results, we opted to focus more extensively

on the comparison to Monolithic, as this method represents the

method of choice used in practical deployments today, and the

investigations in these latter sections cover topics that practical

implementations would need to carefully consider, such as the

choice of the tiles’ size, the impact of the quality evaluation

metric, and the variability of quality across the delivered 360◦

video panorama.

E. Synthetic Navigation Traces

We generated 500 synthetic traces for each 360◦ video

considered in our experiments, using the first order Markov

model that we formulated earlier in Section III-C. In order

to have similar user navigation patterns and tile navigation

likelihoods, across the two cases (synthetic and real traces),

we developed our navigation model to capture the related

characteristics of the actual data as closely as possible. In

this section, we investigate a sample synthetic trace and a

sample real trace, for the 360◦ video Roller Coaster, and

compare their resemblance. In particular, Figures 20 and 21

respectively show the synthetic trace and the real trace in

the 2D equirectangular plane of the 360◦ video panorama. It

can be observed that both navigation traces exhibit analogous

spatial movements save for the model-induced characteristic of

the synthetic trace that exhibits more discrete movements that

are following the macroblocks of the spatial 360◦ panorama.
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Fig. 20: Synthetic trace for Roller Coaster.
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Fig. 21: Real data trace for Roller Coaster.

We also examine the navigation likelihoods for a 360◦

video generated from synthetic traces. In Figure 22, we



12

Fig. 22: Navigation likelihoods of tiles for Roller Coaster (synthetic traces).

examine these quantities in the case of the 360◦ video Roller

Coaster. When we compare these navigation likelihoods to

their counterparts from Figure 7, generated based on actual

navigation traces captured from VR users, we can observe

that they fairly accurately reproduce the latter, in terms of

both absolute values as well as relative values that the latter

exhibit among them, with some minor differences in the

magnitude of the distribution of navigation likelihoods across

the 360◦ video panorama. Thus, using synthetic traces to

supplement actual traces can maintain the same navigation

behavior probabilistically. These outcomes and observations

merit the benefits of using the proposed navigation model and

the synthetic navigation traces it can be used to generate, to

supplement existing navigation traces with the objective to

enhance the efficiency of the proposed optimization framework

and 360◦ video streaming system.

We supplement the above investigation with a brief study

of the validity of the Markovian nature of the proposed

navigation model. In particular, we compute the expected

Kullback–Leibler (KL) distance between two instances of

the distribution P j,r
m,n, computed from actual navigation

traces conditioned on two different prior action values,

j = j1 and j = j2, respectively. Formally, the KL

distance or divergence between two statistical distributions

P and Q establishes the degree of their dissimilarity, and

is defined as DKL(P ||Q) =
∑

x∈X P (x) ln(P (x)/Q(x)),
where X denotes the set of possible outcomes for the

random variable x. Since DKL(·||·) is asymmetric as a

measure, we define the distance between P j1,r
m,n and P j2,r

m,n

using its symmetrized counterpart, D∗
KL(P

j1,r
m,n ||P

j2,r
m,n) =

(DKL(P
j1,r
m,n ||P

j2,r
m,n) + DKL(P

j2,r
m,n ||P

j1,r
m,n))/2. The expected

value of D∗
KL(P

j1,r
m,n ||P

j2,r
m,n) that we computed in the above

case is approximately 0.09, which is considered significant

and indicates that the distribution P j,r
m,n can be quite distinct

depending on the value of the parameter j. In addition, we

compute the expected distance D∗
KL between the distribution

P j,r
m,n computed from actual and synthetic navigation traces,

respectively. This quantity is only 0.2% and establishes the

close statistical nature between the actual and synthetic traces.

Finally, when we investigate the delivered viewport quality

performance in each case (real and synthetic trace), for the

Proposed and Monolithic methods, we can see that under a real
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Fig. 23: Delivered viewport quality performance for real and synthetic traces.

trace, our framework enables a higher expected performance

gain over Monolitic across the entire range of network stream-

ing bandwidth values considered on the x-axis of Figure 23.

On the other hand, though Monolithic exhibits only a marginal

performance drop in the case of a synthetic trace that does not

exceed 0.5 dB at best, Proposed exhibits a somewhat more

significant performance drop here which at the high end of

network bandwidth values considered in Figure 23 reaches a

1 dB. This can be explained by the observation that more

accurate viewport prediction can be carried out based on real

traces. In particular, since actual head movements typically

follow the dynamics of the 360◦ video content, navigating

users tend to make similar head movements across the same

360◦ video frames. On the other hand, as each synthetic trace

is randomly seeded at start, this aspect is not captured well by

synthetic traces (lack of significant correlation across traces at

different temporal points), and this can be a point of further

investigation in future work, to improve the modeling and the

closeness to real life of the synthetic traces generated from the

model. For instance, generating multiple traces simultaneously

and introducing further statistical dependencies across them as

part of our modeling could be one direction to pursue in this

regard. Moreover, it should be noted that though the navigation

likelihoods associated with synthetic traces achieve a fairly

accurate reproduction of those associated with actual traces

(see Figure 22), there are still some minor differences between

them, especially with respect to the magnitude of some lower

valued likelihoods on the 360◦ video panorama, which may

also contribute to a bigger performance difference between

the two cases in terms of delivered viewport quality when the

available network bandwidth considered by our optimization

framework is bigger, as observed from Figure 23. We believe

the latter outcome could be improved by having more actual

traces to train the proposed first order Markov navigation that

is used to generate the synthetic traces. Lastly, and at the same

time, the higher performance gains exhibited by Proposed in

the case of real navigation traces imply that having a bigger

real dataset for dynamic tile navigation likelihood assignment

will be expected to enable better navigation prediction and thus

higher delivered viewport quality and quality of experience for



13

the user.

We note for the convenience and recall of the reader that

only some results presented in this section are based on a

synthetic trace. The rest of the results presented throughout

Section VI are obtained based on actual navigation traces.

F. Tile Size Choice

Different tile sizes used in partitioning the panorama have

a direct effect on optimization since they alter the assigned

navigation likelihoods which affect the encoding gains. 2D

projected viewport has an arbitrary shape as seen in Figures

10 and 11 and therefore the tiles on the fringe of the viewport

end up having a residual area outside the viewport but en-

coded in high quality. This residual area results in suboptimal

use of bandwidth resources especially in the case of larger

tiles. Using finer tiles on the other hand, makes it easier to

have higher quality around the viewport with minimizing the

residual areas that would be out of the viewport. It, on the

other hand, can result in tiles with likelihood zero assigned to

be closer to the expected viewport and increases the possibility

of sudden quality drops.
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Fig. 24: 360◦ viewport quality for different tiling: Elephant 360◦ video.

Figure 24 shows the Y-PSNR differences of the Elephant

video using small 8x8 Tiles, large 6x4 Tiles and the corre-

sponding Monolithic case. 8x8 Tiles case has higher Y-PSNR

values in average due to better utilization of bandwidth in a

smaller expected viewport area. One disadvantage of using

small tiles is having more sudden and frequent drops. Having

a smaller expected viewport area (cf. Figures 7 and 9) allows

higher quality levels assigned to the most popular viewport

tiles and an average rise in quality, while it has very low or

zero quality assigned to some nearby but less popular tiles.

As a result there are more occasions of sudden quality drops

are observed in smaller tile case.

When we investigate the average quality levels, difference

between 6x4 Tiles and 8x8 Tiles is still observed even though

total Y-PSNR is decreased. In the case of scarce resources,

having a larger expected viewport area rapidly decreases

expected viewport quality. In minimum bandwidth levels both

of the proposed methods are doing worse than Monolithic due

to poor viewport prediction.
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Fig. 25: Average 360◦ viewport tile comparison: Elephant.

G. 360◦ Video Quality Evaluation Metrics

In addition to the viewport Y-PSNR video quality evaluation

and comparison that we carry out here, we also investigate

the Multiscale - Structural Similarity Metric (MS-SSIM) [44]

applied to the delivered viewport video signal (its luminance

component) by each of the three methods under comparison,

in the case of the 360◦ video Roller Coaster. In particular, in

Figure 26, we compare the expected viewport quality delivered

to a VR client, measured through both metrics, for each of the

Proposed, Speed-based, and Monolithic methods, as a function

of the network streaming bandwidth available to compress and

deliver the 360◦ video content. It should be noted that under all

three methods, the viewport’s quality measured via MS-SSIM

and Y-PSNR exhibits closely similar characteristics. One dif-

ference worth noting is that particularly for higher network

bandwidth values examined in Figure 26, the viewport quality

measured via the Y-PSNR metric shows better improvement

and higher gains, since the blurred images used in the evalua-

tion of the MS-SSIM metric exhibit higher similarity when the

difference of content details become subtler. We also note that

subjective metrics have been widely explored for measuring

the QoE. However, although they provide inherently more

human-oriented results, they are highly resource-consuming

to evaluate. Moreover, according to [45], subjective metrics

such as the Mean Opinion Score (MOS) exhibit very similar

QoE results and characteristics with the Peak Signal to Noise

Ratio (PSNR) metric in traditional wireless video streaming.

H. Spatial Viewport Quality Variation

Spatial quality variation is one of the important metrics

in viewport quality. Having inconsistent spatial quality with

high and low quality regions in a viewport is not a desired

case and severely affect the user QoE. Exploiting unequal

rate-distortion characteristics is expected to yield a smoother

quality variation over viewport by assigning uniform distortion

levels to viewport tiles. Figure 27 compares the CDF of

standard deviation of per macroblock Y-PSNR in viewport

of Diving video over all frames. Proposed approach has an

average 2.5 dB standard deviation of Y-PSNR whereas the

Monolithic approach has 5.2 dB. In addition, steeper curve
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Fig. 26: Viewport video quality: A comparison of the Y-PSNR and Y-MS-
SSIM metrics for the Roller Coaster 360◦ video.

of Proposed implies that rate-distortion optimization allows a

more steady and limited spatial Y-PSNR distribution.
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Fig. 27: CDF of viewport spatial quality variation: Diving.
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Fig. 28: CDF of viewport PSNR: Diving.

When we examine the distribution of per macroblock Y-

PSNR over the user viewport we see that Proposed case

has a much smaller span (Figure 28). Lower Y-PSNR values

are observed less frequently in Proposed case and higher Y-

PSNR values has a steeper curve. Figure 29 compares the

per macroblock Y-PSNR values of viewport in their respective

positions. It is apparent that both of the cases have very similar

outlines. This outline of the quality distribution is caused by

the video content. We observe an overall quality increase

over the viewport due to better bandwidth utilization and a

smoother Y-PSNR distribution caused by exploiting the rate-

distortion characteristics to a uniform distortion level (Figure

29a). High quality regions of Monolithic case (upper half and

center) are all increased the same 48 dB Y-PSNR value in

Proposed case. Moreover, seemingly lower quality regions in

Proposed approach (lower left and lower right) has higher and

smoother quality than the Monolithic case.

VII. CONCLUSION

We have formulated a framework for viewport-driven rate

optimized 360◦ video streaming that integrates the user view

navigation patterns and the spatiotemporal rate-distortion char-

acteristics of the 360◦ video content to maximize the deliv-

ered user quality of experience for the given network/system

resources. Our framework comprises a methodology for com-

puting dynamic navigation likelihoods that capture the user

likelihood of navigating different spatial sectors of a 360◦

video over time, an analysis and characterization of its spa-

tiotemporal rate-distortion characteristics that leverages pre-

processed spatial tilling of the 360◦ video panorama, and

an optimization problem formulation that characterizes the

delivered expected user viewport video quality, given the

user navigation patterns, 360◦ video encoding decisions, and

the available system/network resources. Moreover, we have

formulated a user navigation Markov model to analyze the user

navigation actions in greater detail and extend our navigation

dataset. Our experimental results demonstrate the advantages

of our framework over the conventional approach of streaming

a monolithic uniformly-encoded 360◦ video and a state-of-the-

art navigation-speed based reference method, enabling consid-

erable video quality of gains up to 5 dB in the case of five

popular 4K 360◦ videos. In addition, the proposed framework

achieves a substantially lower spatial video quality variation

in the delivered user viewport, compared to monolithic 360◦

streaming, due to the optimization problem formulation we

introduce that implicitly aims for a minimum uniform ex-

pected user viewport spatial distortion. We also investigated

performance trade-offs associated with selecting the tile size

for 360◦ equirectangular panorama spatial tiling/partitioning.

Our experiments show that using finer tiles instead of large

tiles utilizes the available network bandwidth more efficiently

given enough user navigation history is available. Finally,

we explored the impact of two different popular 360◦ video

quality metrics applied to evaluate the streaming performance

of our system framework and the two reference methods.

There are multiple directions of future work that we con-

sider. In the present framework, we used two tiling scenarios

of the 360◦ view panorama. Will variable-size 360◦ tiling

provide additional gains, and at what cost, is one question

we will aim to investigate. Wireless HMD devices allow users

to enjoy VR without the inconvenience of cables yet lack high
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(a) Proposed (b) Monolithic

Fig. 29: Spatial variation of the delivered viewport quality for the Diving 360◦ video.

computational capacity and require a high throughput wireless

connection. Addressing how rate-distortion optimization will

affect untethered VR communication is another study we plan

to carry out in this context.
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