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Abstract—The emerging technologies of Virtual Reality (VR)
and 360° video introduce new challenges for state-of-the-art video
communication systems. Enormous data volume and spatial user
navigation are unique characteristics of 360° videos that neces-
sitate a space-time effective allocation of the available network
streaming bandwidth over the 360° video content to maximize
the Quality of Experience (QoE) delivered to the user. Towards
this objective, we investigate a framework for viewport-driven
rate-distortion optimized 360° video streaming that integrates
the user view navigation patterns and the spatiotemporal rate-
distortion characteristics of the 360° video content to maximize
the delivered user viewport video quality, for the given net-
work/system resources. The framework comprises a methodology
for assigning dynamic navigation likelihoods over the 360°
video spatiotemporal panorama, induced by the user navigation
patterns, an analysis and characterization of the 360° video
panorama’s spatiotemporal rate-distortion characteristics that
leverage preprocessed spatial tilling of the content, and an opti-
mization problem formulation and solution that capture and aim
to maximize the delivered expected viewport video quality, given
a user’s navigation patterns, the 360° video encoding/streaming
decisions, and the available system/network resources. We for-
mulate a Markov model to capture the navigation patterns of a
user over the 360° video panorama and simultaneously extend
our actual navigation datasets by synthesizing additional realistic
navigation data. Moreover, we investigate the impact of using two
different tile sizes for equirectangular tiling of the 360° video
panorama. OQur experimental results demonstrate the advantages
of our framework over the conventional approach of streaming a
monolithic uniformly-encoded 360° video and a state-of-the-art
navigation-speed based reference method. Considerable average
and instantaneous viewport video quality gains of up to 5 dB
are demonstrated in the case of five popular 4K 360° videos.
In addition, we explore the impact of two different popular
360° video quality metrics applied to evaluate the streaming
performance of our system framework and the two reference
methods. Finally, we demonstrate that by exploiting the unequal
rate-distortion characteristics of the different spatial sectors of
the 360° video panorama, we can enable spatially more uniform
and temporally higher 360° video viewport quality delivered to
the user, relative to monolithic streaming.

Index Terms—Omnidirectional video, quality of experience,
viewport-adaptive 360° video streaming, rate-distortion analysis
and optimization, user navigation modeling.

I. INTRODUCTION

The emerging technologies of virtual reality and 360° video
are helping to introduce novel immersive digital experiences.
It is anticipated that related products and applications will
represent a $62 billion market by 2027 [1]. Gaming and
entertainment, as well as education and training represent the
main application domains of these technologies at present,
with a broader set of societal applications spanning remote
sensing, the environmental and weather sciences, disaster
relief, and transportation anticipated in the future [2]. The
recent feature article [3] provides a tutorial coverage of the

diversity of virtual reality applications expected in the future
across the spectrum of our society and their benefits that can
broadly advance quality of life, energy conservation, and the
economy, as well as the related research opportunities that can
be pursued towards enabling them.
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Fig. 1: 360° video streaming: Viewport V; on the 360° sphere.

360° video is a recent video format captured by an omnidi-
rectional camera that records incoming light rays from every
direction. It enables a 360° look-around of the surrounding
scene for a remote user, virtually placed at the camera location,
on his VR device, as illustrated in Figure 1. Presently, existing
systems stream the entire monolithic 360° view panorama to
a user, who can, at any time, only experience a small portion
of it denoted as viewport V;, as also illustrated in Figure 1.
However, this results in a huge network overhead/bottleneck
and unnecessary computational/bandwidth loading of the de-
vice, which, in turn, considerably penalizes the user’s quality
of experience. Moreover, to apply traditional state-of-the-art
video coding, the 360° view sphere is first mapped to a planar
shape using a sphere-to-plane projection, as illustrated in the
bottom left portion of Figure 1.

Two types of sphere-to-plane projections are commonly
used: (i) direct projections such as the equirectangular pro-
jection (ERP) that map the latitude/longitude of a spherical
point to planar coordinates on an equirectangle, or (ii) pro-
jections that use intermediate 3D objects such as a pyramid,
cube, or dodecahedron, comprised of planar faces that are
encoded independently. The latter have been considered since
around 30% pixel replication is introduced when the sphere
is mapped using an ERP [4, 5]. However, they have their own
deficiencies, e.g., introduction of projection distortions around
the planar shape’s edges. In this paper, we only consider
the equirectangular mapping, as it is one of the most widely
used and one of the two (the other one being the cube map)
currently considered by the MPEG’s Omnidirectional File
Format Standard (OMAF) [6].

The growing popularity of VR technologies stimulates an
equivalent increasing demand for 360° video content, which
today can be accessed through over-the-top online content



providers such as YouTube and Facebook 360 [7, 8]. However,
present 360° video streaming practices necessitate excessive
data rates that even anticipated broadband network access
technologies would not be able to support [9, 10], due to the
heuristic design shortcomings of the former outlined above.
On the other hand, delivering the entire 360° view sphere is
necessary to avoid simulator/motion sickness [11] that would
degrade the quality of experience, as the intuitive approach
of sending only V; using traditional server-client delivery
architectures, where the server responds to client updates,
would preclude application interactivity, due to the inherent
network round-trip-time induced latency.

This apparent impasse between 360° application require-
ments and present technology capabilities/design essentially
stems from the direct application to the 360° domain of
existing video coding/streaming technologies that treat 360°
content as conventional video. Thus, recent studies have con-
sidered uneven spatial quality encoding of 360° videos, to min-
imize the data rate assigned to 360° regions not navigated by
the user presently, thereby considerably reducing the induced
network overhead [4]. This is the general strategy we also
follow. In this paper, we present the following contributions:

1) We formulate a framework for viewport-driven rate
optimized 360° video streaming that integrates the user
view navigation patterns and the spatiotemporal rate-
distortion characteristics of the 360° video content to
maximize the delivered quality of experience of the user,
for the given network/system resources. It comprises: (i)
a methodology for assigning dynamic navigation likeli-
hoods to the spatiotemporal 360° panorama that capture
the probabilities of navigating different spatial segments
of the 360° video content over time, by the user, (ii)
an analysis and formulation of the spatiotemporal rate-
distortion characteristics of compressed 360° video tiles
that leverage preprocessed spatial tilling of the 360°
view sphere, and (iii) an optimization problem formu-
lation and solution that respectively characterize and
aim to maximize the delivered QoE of the user, given
the user’s navigation patterns, 360° video encoding
decisions, and the available system/network resources.

2) We formulate and analyze a user navigation Markov
model to investigate the head navigation movements of
a user in detail, and extend our dataset, at the same
time. The proposed navigation models advances our
system framework, by providing further insights into
navigation aspects fundamentals of 360-degree video,
and the capability to generate realistic navigation data
without the need to capture one in reality, which can be
quite costly and thus always of limited scale in practice.
Thereby, experiments can be carried out over broader
sets of navigation traces and user conditions, to provide
further knowledge and insights.

3) We explore the impact of two different popular 360°
video quality metrics applied to evaluate the streaming
performance of our system framework.

4) We investigate the impact of two different tile sizes used
in equirectangular tiling of the 360° video panorama,

on the performance of our framework and 360° video
streaming in general. These insights can help gain
understanding of the benefits and drawbacks of using
smaller tile sizes, and advance existing systems and
implementations for 360° video streaming.

5) Finally, we study the spatial distribution of 360° video
quality across the user viewport and demonstrate how
our 360° rate-distortion optimization results in spatially
more uniform viewport video quality, which in turn can
considerably augment the user’s quality of experience.

The rest of the paper is organized as follows. In Section II,
we first review related work. Subsequently, we present the
building components of our system framework and navigation
model in Section III. The problem formulation that aims to
maximize the delivered 360° user quality of experience given
the user navigation patterns, 360° video encoding decisions,
and the available system/network resources, is presented in
Section IV. Experimental analysis of the performance of our
framework and validation of our system models is carried out
in Section VI. Finally, concluding remarks and a summary of
envisioned future work are provided in Section VII.

II. RELATED WORK

Studies of 360° video streaming to date have generally con-
sidered diverse challenges encountered in rendering the user
viewport, streaming the 360° video panorama, and mapping
the native 360° view sphere to a planar shape [12].

In particular, Afzal et al. carry out an empirical character-
ization of diverse characteristics of compressed 360° videos
highlighting their main features, e.g., their lower temporal rate
variability compared to conventional videos [13]. Moreover, a
number of studies have considered splitting the 360° video
into spatial tiles as part of the encoding process, leveraging
the tiling feature of the latest High Efficiency Video Coding
(HEVC) standard [14]. The encoding data rate of each tile can
then be controlled independently to reduce the overall network
streaming bandwidth usage [15-18]. Concretely, [15] explores
a heuristic method for allocating bitrate to tiles comprising the
360° panorama, where viewport tiles are assigned a fraction
of the available bandwidth, weighted by the proportion of
their pixels present in the viewport area. Tiles entirely outside
the viewport area are assigned a fraction of the remaining
bandwidth weighted by their distance from the center point of
the viewport. Similarly, [16] streams the tiles in the viewport
at the highest possible quality, while the remaining tiles in
the 360° panorama are assigned an equal portion of the
remaining network bandwidth. The server push feature of the
latest HTTP/2 protocol is used to deliver the tiled video faster
and with better bandwidth utilization. Moreover, [18] adopts a
similar view-aware approach, where tiles overlapping with the
viewport are streamed at higher quality, while non-overlapping
tiles are streamed at lower quality, to enable considerable
network bandwidth savings. Finally, [17] proposes a regression
based method for predicting the user viewport over the next
streaming segment of the content, as part of a broader stream-
ing framework that enables a client to request tiles overlapping
with the predicted viewing direction of the user.



Xiao et al. propose using variable-sized tiles for an optimal
viewport coverage and explore a linear programming and deep
learning approach to identify the optimal tiling configuration
over the 360° video panorama [19]. [20] explores DASH-
based streaming of tiled 360° video, where different quality
representations of the tiled content are available and coupled
with several tile quality selection mechanisms to choose
from. [21] exploits the stream prioritization and termination
features of the HTTP/2 protocol to enable selective video
frame dropping and scheduling within a content segment of a
compressed 360° video, to maximize the amount of video data
received on time by the client. [22] explores a probabilistic
model for pre-fetching 360° video tiles that captures the
distribution of the viewport prediction error and formulates a
QoE-driven optimization framework that minimizes the total
expected distortion of pre-fetched tiles. Similarly, [4] addresses
the impact of the uncertainty of the upcoming user naviga-
tion actions in 360° video streaming by designing multiple
representations of the 360° video content, characterized with
different quality emphasized regions, which are adaptively
served to the user. Rigorous analysis is carried out to select the
number of representations and the locations and spatial sizes
of the quality emphasized centers of each.

[23-25] explore neural network based strategies for accu-
rate viewport prediction in 360° video and VR streaming.
Moreover, live 360° video multicast over an LTE network
is investigated in [23,26], addressing aspects such as user
clustering and allocation of resources to different parts of the
360° video content. [23] also explores the use of scalable
360° video tiling and rigorous rate-distortion optimization of
the resource allocation problem. Finally, in three recent more
distantly related studies, [27] explores a system framework
for aerial multi-viewpoint 360° video streaming of a remote
scene to a VR user, integrating reinforcement learning, re-
source scheduling, and 360° video representation advances,
to maximize the quality of experience of the user, given the
available system resources. On the other hand, [28] explores
viewport-adaptive multi-user VR mobile-edge streaming in 5G
small-cell systems, where a collection of 5G small cell base
station can pool their communication, computing, and storage
resources to collectively deliver scalable 360° video content to
mobile VR clients at much higher quality. Yet, [29] studies the
integration of millimeter wave (or free-space optics) and sub-
6 GHz links for dual-connectivity streaming of six-degrees of
freedom VR content to multiple mobile users navigating the
content across the spatial area of an indoor VR arena.

In contrast to the few studies cited above that consider
HEVC 360° tiling, we employ preprocessed spatial tiles of
the 360° view panorama, as introduced later, which has several
advantages in the form of lower complexity at multiple critical
aspects of a server-client 360° streaming architecture [4].
Moreover, formal analysis of the spatiotemporal rate-distortion
characteristics of 360° tiling that integrates the user navi-
gation patterns and the available network/system resources
has not been carried out towards optimal selection of 360°
encoding/streaming decisions. The framework of our paper
aims to fill this gap. The present paper builds upon our
preliminary work in [30], introducing the following additional

major advances over [30]: (i) Analysis of the impact of the
equirectangular tile size and the enabled gains by using smaller
tiles. (ii) User navigation Markov model developed from real
user head navigation traces. (iii) Analysis of temporal and
spatial viewport quality variation. (iv) Exploration of the
impact of two different 360° video quality metrics. (v) A
comprehensive experimental analysis over a broad range of
operating conditions and an extensive 360° video dataset.

III. SYSTEM MODELS

Our 360° network system architecture comprises several
major component blocks and is illustrated in Figure 2. In
particular, based on the tiling preprocessing of the 360°
video content that is carried out ahead of time, rate-distortion
analysis is carried out for each GOP tile. In parallel, navigation
likelihoods are developed based on existing navigation traces
from the current and prior VR users, as well as synthetic
traces generated from the actual navigation traces corpus using
the first order user navigation Markov model that we explore.
Finally, using these two system components, viewport-adaptive
streaming optimization is carried out to assign the appropriate
network data rate to each tile of the current GOP of the content
delivered to the user, as illustrated in Figure 2. We describe
each system component in detail in the following subsections.
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Fig. 2: Key components of our 360° network streaming system.

A. Tiling Preprocessing

We partition an equirectangular 360° video into a set of
N x M spatial tiles. In particular, we partition the raw 360°
video frames into spatial tiles and consider the collection of
thereby constructed (smaller) video frames for each tile as
separate videos. The tiles are then separately encoded off-line
(ahead of time) and streamed to the user on-demand, according
to our analysis and optimization. As explained earlier, carrying
out the tiling as a preprocessing step has several advantages
over tiling the video as part of the encoding process, as enabled
by the tiling feature of the latest video coding standard HEVC.
In our experiments, we preprocessed 4K 360° videos into two
different spatial tiling settings: large 6 x 4 tiles, as illustrated
in Figure 3, and small 8 x 8 tiles (Figure 4) where the first
and second dimension respectively refer to the horizontal and
vertical number of identical tiles in the video. Each tile is
indexed in a raster fashion, left-to-right and top-to-bottom.

We selected these tiling settings based on empirical analysis,
as a reasonable choice between the complexity and compres-
sion efficiency introduced by a given tiling set. Using a large
tile size has the advantage of compression efficiency [31] and
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Fig. 4: 360° video panorama 8 X 8 spatial tiling.

smaller number of additional Media Presentation Description
(MPD) files generated for each independent video tile [4].
Small tiling, on the other hand, is less complex in terms
of video compression carried out per tile. In addition, using
smaller tiles allows for constructing a more accurate expected
user viewport by having smaller building blocks spanning the
360° video panorama. Compared to using a bigger tile size,
this will result in a more optimal network resource usage and
is expected to have higher average viewport quality delivered
to the user, when integrated with a viewport-driven resource
allocation such as the one we pursue here. Lastly, we note that
though using smaller tiling will penalize video compression
efficiency, it appears that in practice the induced penalty may
not be severe, as reported in a recent study carried out by a
VR streaming spin-off company, where 100 tiles were used to
partition an 8K 360° video panorama [32].

B. 360° VR Head Movement Data

We collected head-movement data that describes how a user
navigates a 360° video over time. In particular, a VR device
outputs the direction of the current viewpoint of the user V;
on the 360° view sphere up to 250 times per second, with the
user considered to be placed at the sphere center, as described
earlier in Figure 1. Precisely, this is the surface normal of
V; on the 360° sphere that is uniquely described by the
spherical coordinates azimuth and polar angles ¢ € [0°, 360°]
and 6 € [0°,180°] it spans on the sphere, in a spherical
coordinate system with the 360° unit sphere center as its
origin, as illustrated in Figure 5 (right). These two angles are
equivalently denoted as yaw and pitch in the VR community,
captured as rotation angles around the Z and Y axes, as
denoted in Figure 5 (left). We collected the pairs (¢;,6;)
that coincided with the discrete temporal instances t; of

Fig. 5: 360° head movement navigation data of current viewport V;. Left:
Rotation angles yaw, pitch, and roll around the three coordinate axis. Right:
Azimuthal and polar angles (¢, #) in spherical coordinates.

subsequent 360° video frames j displayed to the user as she
navigates the content. They are the navigation data points
relevant for our analysis. We note that we omitted capturing
the head orientation angle roll as part of our navigation traces
for simplicity and most importantly, because its values are
predominantly very small and thus have insignificant impact
on establishing the user viewport on the 360° view sphere
or panorama [33,34]. We provide further details about our
navigation data capture procedure and overall experimental
setup in Section VI-A later.

In addition to our own recorded data traces, we used the
navigation dataset of Corbillon et al. [35]. Having navigation
traces for a bigger number of captured 360° videos will
extend the dataset we can work with, to help produce statisti-
cally more significant/reliable results devoid from any related
anomalies that can arise from working with a smaller statis-
tical sample. Relatedly, more recently, in another study, we
have carried out an extensive data collection and preparation
initiative, to share with the broader community full UHD (8K)
360° video navigation traces and rate-distortion compression
information, to facilitate research of next generation 360°
video and VR streaming systems, and beyond [34].

C. 360° Navigation Model

Having actual data traces of a user watching a 360° video
recorded using a Head-Mounted Display (HMD) device is
necessary to analyze the navigation patterns of a user and
the induced expected viewport quality, in diverse settings.
However, in order to accurately predict the expected user
viewport from user actions, a large number of navigation traces
are required, especially in the case of small video tiles. In order
to generate a large navigation trace dataset, we investigate the
statistical dependencies of user navigation traces.

We are interested in a user navigation model based on user
actions made between consecutive video frames. We develop
a parameterized first order Markov model that captures the
present user action based on the previous action of the user
and the location of the present action on the 360° view
sphere, integrated as a parameter of the model. In the real
user navigation traces we have worked with [34,35], more
than 99% of the time, a user does not navigate more than one
macroblock, which has a size of 64 pixels in both vertical
and horizontal directions. We note that a macroblock is a
basic unit of planar video compression that has been used
in every subsequent video coding standard. Its default size
in the present HEVC standard is 64 x 64 pixels [14] in the
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Fig. 6: Proposed navigation model: Sample trajectory and next navigation action options.

2D plane of a video frame. We also note that the concept of
a macroblock is different from the concept of a 360° video
tile that was introduced earlier. A macroblock is spatially
much smaller than a video tile, macroblocks are an inherent
component of video compression, while tiling can be used
optionally, and a tile will comprise multiple macroblocks.

In our model, we first divided the 360° video panorama into
macroblocks, using the default macroblock size noted above.
This choice will allow us to capture accurately the center of
the user’s attention and the user’s direction of navigation with
a limited number of macroblocks, to control the complexity
of our model. Using a smaller macroblock size, e.g., 16 x 16,
as used in previous codecs, would unnecessarily increase the
model’s complexity, without any benefit to its accuracy. Now,
a viewport center at a given time has 9 possible navigation
actions: it can navigate to one of 8 neighbors of its current
macroblock position or stay in the present location/macroblock
(see Figure 6b). The probabilities of each action Pjnrn are
determined using actual data traces where j and r represent the
previous action and region, respectively, and m and n represent
the horizontal and vertical indices of the (adjacent or same)
macroblock to which a transition can be made at the next
navigation action/step, as explained above. We integrate these
two aspects to make our model more realistic: the previous
navigation action and the video region where it took place.

In particular, a user navigating a 360° video is considered
by Sitzmann et al. [36] to be in one of the following two states:
(i) attention and (ii) re-orientation. In the attention state, the
user tends to navigate less and in the re-orientation state the
user explores the panorama by constantly moving. In order to
capture these two states, we calculated the probabilities of each
prospective subsequent action given the most recent navigation
action of the user already taken. Because prior actions will
influence the outcome of subsequent actions, by formulating
our model thereby, we can account for persistent re-orientation
and stationary attention navigation actions/states of the user. In
our model, there are nine prospective subsequent actions/states
(m,n € {1,2,3}), for every prospective outcome for the most
recent prior action j € {1,...,9}.

Moreover, head navigation movements around the equator
and near the poles are usually not same in the equirectangular

2D plane. For instance, a yaw navigation movement of one
macroblock size near the equator corresponds to a size of
several macroblocks near the poles of the 360° view sphere.
This distinction affects the recurrence of various navigation
movements, depending on the location of a movement on the
360° view sphere. To capture this phenomenon, we divided
the 360° panorama into 3 regions: 2 polar regions and one
equatorial region, indexed by r, ie., r € {1,2,3}. Then,
based on the region where a navigation action is initiated,
the probability of each prospective choice for the subsequent
navigation action/decision will depend on its recurrence in that
region only. Now, we note that although small angular head
movements may lead to multi-macroblock distances in polar
regions, the fraction of such navigation movements in our
dataset is negligible. Thus, in our modeling, we kept using
a one macroblock size movement also for polar regions, with
region-specific probabilities.

By integrating the two aspects described above, our navi-
gation model is as follows, and illustrated in Figure 6. First,
the movement region r in the 360° panorama is determined.
Then, based on the previous action (red arrows in Figure 6a)
and the corresponding region r, the probability model P7"
is selected. Alike to the prospective choices for the current
navigation action, we denote the previous action’s nine op-
tions as: moving to one of the eight neighboring macroblock
Ged,..,4)uU(6,..,9)) and making no movement (j = 5),
i.e., staying in the same macroblock. The probabilities of each
prospective next navigation movement, indexed by (m,n),
(blue arrows and blue dot in Figure 6a) are P,Z;’:n, where m
and » indicate the indices of the navigation probabilities in the
3 x 3 matrix [P’"], parameterized by the navigation region (r)
and previous navigation action (j), as introduced earlier. We
use our model to generate synthetic navigation traces.

D. Navigation Likelihoods

For various HMD used in VR applications, the viewport
size experienced by the user varies. In this paper, we assume
a viewport of 110° horizontal and 90° vertical fields of view.
For every navigation trace for a given 360° video, we compute
the fraction of the surface area of tile k£ occupied by the user



viewport V; at time instance ¢, denoted as wy, ¢. To account for
the unequal surface area occupied by different viewports, when
mapped to a 2D rectangle used to encode the data, depending
on their latitude (polar angle #) on the 360° view sphere (see
Figure 10 and Figure 11, and the related discussion therein),
each tile k is assigned a normalized weight wy, ;, computed as
Wit = Wit/ Y, Wk We can then aggregate these weights
over different time durations, to compute the likelihoods of
navigating different tiles of the respective 360° video during
those time periods, e.g., pp = Ziitl Wi,/ (t2 —t1 +1). In
our analysis, we are interested in exploiting these navigation
likelihoods over the duration of individual Group of Picture
(GOP)s comprising the encoded 360° video content. In partic-
ular, for each GOP, we assign dynamic navigation likelihoods
to each tile by aggregating navigation likelihoods of similar
user navigation traces, i.e. sharing the GOP’s initial tile for
their viewport center. Since users are following the contents
of the video, it is expected to for them to have similar short-
term navigations given they started at the same point.

For illustration, Figure 7 shows the average (over the entire
video) navigation likelihoods of different tiles comprising the
selected 6 x 4 tiling applied to the 360° video Roller Coaster
[37] used in our experiments. We can see that corner tiles
appear rarely in a viewport navigated by the user, as their
navigation likelihoods are close to zero. Conversely, it appears
that the user often navigated through tiles 15 and 16, for
instance, as they have much higher navigation likelihoods.
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Fig. 7: Navigation likelihoods of tiles for Roller Coaster. [30]

Figure 8 shows the corresponding tile navigation likelihoods
for the second 360° video, Wingsuit, used in our experiments.
It appears that in this case the viewport navigated by the user
is mostly closer to the south pole, as the corresponding tiles
have much higher likelihoods now, due to the specific nature of
this video (more interesting content is spatially located there).

In Figure 9, we explore the navigation likelihoods of the
small tiling setting for the 360° video Roller Coaster. We can
see that here there are more tiles in the user viewport with
similar/more uniform navigation likelihoods, compared to the
case observed in Figure 7. This is expected and is due to the
smaller size of tiles that is used here. The finer tiling will
enable delineating the user viewport more accurately, which
in turn will enable a more precise rate-distortion optimized

Navigation Likelihoods

Fig. 8: Navigation likelihoods of tiles for Wingsuit. [30]

allocation of resources across the 360° video panorama. This,
in turn, will enable a higher quality viewport for the user and
will augment his or her quality of experience. On the other
hand, using a bigger number of tiles to partition the 360°
video panorama will increase the processing complexity for
the video encoder at the streaming server and will reduce the
compression efficiency. The former may not be such a chal-
lenge for 360° video on demand applications, as considered
in this paper, as it can be carried out off-line (ahead of time).
The latter, on the other hand, can increase the requirements for
network streaming bandwidth, though there are some recent
industry studies that provide evidence of only a small penalty
in compression efficiency, even when high number of tiles
(100) is used [32]. Regardless, the benefits versus drawbacks
of using tiling and the selection of the tile size, need to be
carefully evaluated for the target application in mind.
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Fig. 9: Navigation likelihoods of small tiles for Roller Coaster.

A visualization of two representative viewports on the 360°
panorama is shown in Figures 10 and 11. Since mapping a
3D sphere to an equirectangular 2D plane causes a stretching
distortion, the shape of a viewport will also change depending
on its spatial location, in particular its latitude on the 360°
view sphere as specified by its polar angle 6 (see Figure 5 and
Section III-B). In equatorial regions, a viewport is smaller and
more compact (see Figure 10), while in polar regions of the
360° panorama a viewport is spread over all polar tiles (see
Figure 11). This distinction visually clarifies and demonstrates



Fig. 10: Viewport at (¢, 0) = (0°,0°).

the need for the integrated normalization of the tile-viewport
intersection weights wy, ; carried out as part of the formulation
of the tile navigation likelihoods described in this section.
Moreover, Figures 3 and 4 can be referenced to understand
the spatial locations of these two viewports relative to the
underlying tiling of the respective 360° video.

Fig. 11: Viewport at (¢, 0) = (120°, —60°).

E. Rate-Distortion Models

Changing the quality of tiles is a useful method to control
the bitrate of a 360° video. The Quantization Parameter (QP)
employed by the HEVC codec is a convenient tool for tile
quality adaptation. We explore two prospective characteriza-
tions of the dependency between the parameter QP and the
resulting bitrate R of the encoded tile. That is, we investigate
modeling R = f1(QP) via an exponential or power law
function for f; as follows

—by QP

R =aje or R = a,QP". (1)

We will validate these relationships by comparing the bitrate
and QP for an encoded 360° tile in Section VI-B. Since we
have a function between the bitrate and QP, we can define
bounds for our optimization problem with the highest and
lowest QP values that can be selected. And after calculating
the optimal bandwidth, going back to QP value and encoding
the tiles accordingly can be done easily at the server side.

Similarly, we investigate two prospective characterizations
of the dependency between the encoded tile bitrate R and the
induced reconstruction error or distortion D for a tile, where
the latter can be calculated as the Mean Square Error (MSE)
between the encoded tile video data and the corresponding
raw video data for the tile. In essence, the distortion D
captures the average deviation of encoded tile pixels from their
raw data counterparts. In a raw 360° YUV 4:2:0 video, for

every pixel sample of the color (chrominance) components
U and V there are 4 pixel samples of the (monochromatic)
intensity (luminance) component Y. Thus, the luminance
distortion dominates the encoding distortion for the two color
components. Therefore, we used the luminance component
distortion as the representative of the encoding distortion D
for a tile, measured for every 360° tile luminance video frame.
We investigate modeling the dependency D = f3(R) via an
exponential or power law function for fy as follows

D=cie®® or D=cR%. )

We will also validate these relationships by comparing
the encoding bitrate and distortion for an encoded 360° tile
in Section VI-B. The characterizations R = f;(QP) and
D = f3(R) will allow us to formulate the aggregate 360°
video encoding quality and pursue related optimizations, as
explained in the next section.

IV. OPTIMIZATION FRAMEWORK

Given the analytical modeling of the relevant problem vari-
ables, we now set out to find the optimal bitrate for each tile.
We integrate two new constraints into the problem formulation.
These are the aggregate available network bandwidth C' and
the allowed QP range per tile.

A. Problem Setup

Given the limited network bandwidth, tiles should be trans-
mitted with a data rate corresponding to their navigation
likelihoods and rate-distortion characteristics such that we can
minimize the distortion (and maximize the delivered aggregate
quality) of the respective 360° video. Let R;(QP;) denote the
bitrate of the i tile where QP is the encoding quantization
parameter, as introduced earlier. This gives us the following
inequality to maintain:

> Ri(QP) <C,i=1,...,M xN. 3)

For practical reasons, for every tile ¢ we set a range of QP
values that can be considered, defined by the upper and lower
bounds QP ;, and QP,,... This therefore induces constraints
on the minimum and maximum data rates that can be assigned
to a tile, given the monotonic relationship between QP and
R;, as captured by the function R;(QP). Formally, these two
constraints can be written as

Ri (meax) < Rl(QPz) < Rl (mein)' (4)

Finally, we formulate the expected 360° quality of expe-
rience that a user observes while navigating the scene, as
the navigation likelihood weighted sum of video qualities of
all tiles comprising the 360° video content streamed to the
user. This can be formally written as ) . p(iv)D;(R;), where
p(ilv) denotes the navigation likelihood of tile ¢ given that
viewport v is requested initially. To be precise, note that we
formulated our objective as the expected 360° video distortion,
due to the one-to-one correspondence between video quality
and reconstruction error (distortion). Therefore, we aim to
minimize our objective function, as it will lead to the same
goal (maximum 360° quality of experience).



B. Optimization Formulation
Leveraging the problem setup described earlier, we can now
formulate the optimization problem of interest as
min
{R:}
subject to: ZRZ»(QPZ») <C,i=1,...,M x N,
i

Zp(z‘lv)ch(Ro, (5)

Note that (5) represents a convex optimization problem, due
to the nature of the constraints involved and the objective
function under consideration. Therefore, it can be efficiently
solved using Lagrange multipliers [38]. In our experiments, we
carry out the optimization in (5) for every GOP, facilitating
the dynamic navigation likelihood assignment described in
Section III-D to compute the navigation likelihoods p(i|v).
In particular, after the optimization completes, the QP vs R
dependency for each tile ¢ in a GOP is used to obtain the
explicit optimal QP; value that corresponds to the optimal
data rate R produced by (5). Note that for illustration we
included the average navigation likelihoods p(i|v) across the
applied 360° video tilling for the duration of the entire video in
Figures 7 and 8, for the 360° content used in our experiments.

We recall that the analytical dependencies between R and
D, and between R and QP are not explicitly denoted in (5). As
explained earlier, we explore two models for each dependency
D = f3(R) and R = f1(QP), an exponential one and a
power-law one. And the parameters that comprise each model
are extracted uniquely for each tile, before we carry out the
optimization in (5). In our experiments, we first validate each
of these models, for each dependency, and select the one
that is more accurate, to carry out the remaining performance
evaluation analysis.

V. IMPLEMENTATION ASPECTS

We note that in our setup, just as in any other on-demand
video streaming systems, multiple versions of a given 360°
video are constructed/encoded at different data rates off-line,
with a preprocessing step of tiling involved first, and then
streamed from to a user requesting that content on-demand
online. Thus, the setup we consider falls closely under the
general DASH-umbrella for on-demand video streaming. The
following aspects of our framework can be implemented and
integrated with a DASH-compliant system as follows. The
rate-distortion analysis and optimization can be carried out
respectively off-line, at the server (the former) and online
at streaming time, at the client (the latter), within an actual
DASH system. Moreover, the necessary rate-distortion models,
necessary to run the optimization can be shared by the server
with the client at the start of the streaming media session.
The DASH-based client will use its estimates of the available
download data rate that are typically carried out on its end
within DASH to supplement the optimization with the right
value of the available network streaming bandwidth C' in (5).

VI. EXPERIMENTATION
A. System Setup

We used five popular 4K 360° videos from Youtube to eval-
uate the performance of our framework. 48 VR users watched
the first two videos (Roller Coaster [37] and Wingsuit [39])
with an Oculus Rift HMD device while their head movements
have been tracked using the OpenTrack software [40]. The
other three videos (Elephant [41], Timelapse [42], and Div-
ing [43]) are from the Corbillon et al. dataset and each of
them has between 40-58 head movement traces. We generated
500 synthetic navigation traces for each video as discussed
in Section III-C. Then, we calculated the tile navigation
likelihoods for each GOP, as formulated earlier, across all
available navigation traces, for a given 360° video, to use them
in our optimization and experiments later on.

Each 360° video is preprocessed and compressed off-line
using 2 different equirectangular tile sizes: large 6x4 tiles and
smaller 8x8 tiles. Each tile is encoded into GOPs of size 32
frames using HEVC. Each video consist of 10 GOPs, which
corresponds to 320 frames and 10.6 seconds temporal duration,
with a frame rate of 30 fps. Each GOP is encoded using 5 QP
values (22, 27, 32, 37, 42). Using the compressed 360° video
tiles for these QP values, we extracted the R— D and QP — R
parameters for our related analytical modeling, across all tiles
and GOPs, to explore and validate the proposed rate-distortion
modeling from Section III-E.

Two reference methods are examined to compare against
our optimization framework denoted as Proposed. The first
one is Monolithic where an entire monolithic 360° video is
encoded using the following 5 QP values (32, 34, 36, 39, 42).
In each case, the induced average data rates for every GOP
are used as the network bandwidth constraint C' in our own
optimization in Section IV-A. The second one is Speed-based,
a state-of-the-art method proposed by Petrangeli et al. [16]. It
predicts future viewports accessed by the user, based on the
speed and the position of the current viewport center. Tiles
within the current/future predicted viewports in a GOP are
encoded with the highest possible QP value. The remaining
tiles are encoded with the lowest possible QP value given the
remaining bandwidth budget. Finally, Proposed indicates the
framework introduced in this paper.

We note that space limits precluded us from including the
entire corpus of results present in the paper, for every single
360° video used in our experiments. Moreover, we observed
that the relative performance of the reference methods and the
proposed framework remains consistent across the entire 360°
video corpus, for each experimental evaluation we considered.
For these two reasons, we decided to vary the specific one
or two 360° videos used in a given evaluation considered in
Section VI, to increase the breadth of results presented in the
paper across the entire video corpus we used.

B. Rate-Distortion Model Validation

We formulated two prospective models for the dependencies
D = f3(R) and R = f1(QP), described in Section III-E. Here,
we explore their accuracy in characterizing the encoded 360°
video content we considered in our experiments.



Examination of the employed QP versus induced bitrate
relationship for different tiles shows that exponential model fits
better the actual data points. In Figure 12, we examine these
data points, shown as markers, and the fitted analytical de-
pendencies according to the two formulated models, for three
representative tiles, with diverse rate-distortion characteristics,
from the Roller Coaster video. Referencing the tile indexing
from Figure 3, we can see that while tiles 3 and 16 show lower
bitrate requirements due to their relatively static nature, tile 11
requires a higher bitrate as it corresponds to a more dynamic
360° region.
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Fig. 12: QP vs. bitrate dependency for different tiles. Actual data points shown
as markers.

Figure 13 shows the advantage of the power law model in
describing the observed D versus IR dependency, denoted with
markers, across the 360° video tiles. In particular, for lower
bitrates, the impact of higher distortion dominates for tiles with
more dynamic content (Tile 11), while for higher bitrates the
difference across different tiles in this regard becomes smaller,
as seen from Figure 13.
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Fig. 13: Bitrate vs. distortion dependency for different tiles. Actual data points
shown as markers.

C. Optimal QP and Bitrates vs. Available Bandwidth

We examine how the optimal data rates R; and the cor-
responding Q) P; values, produced by the optimization in (5)
for every tile 4, vary, as the available network bandwidth C' is
varied. Figure 14a shows the optimal rates produced by (5) for
three tiles from the Roller Coaster video, for the GOP number
57 in the 360° video, selected as a representative example. For
this GOP, tile 3 has a small navigation likelihood, while tile
16 has the highest among the three tiles considered. Still, it is
interesting to note that although tile 16 has a higher navigation
likelihood relative to tile 11 and is assigned a smaller QP
earlier (as seen from Figure 14b), encoding tile 11 leads to a
higher data rate in the second half of the graph in Figure 14a,

due to its more dynamic content, which makes encoding it
more challenging.
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Fig. 14: Optimal values in various bandwidths

Figure 15 shows the temporal evolution of the optimal
QP and bitrate values for these three tiles over the GOPs
comprising the 360° content while using the corresponding
bandwidth value C for each GOP. We can see that tile 16
typically has a lower QP value relative to the other two tiles,
due to its frequently accessed spatial location, while tile 3 is
often navigated only for a brief period of time towards the end
of the video. Discontinuities in Figure 15a indicate that a tile
has not been assigned any rate (skip encoding mode) by the
optimization in (5), as indicated by the corresponding graphs
in Figure 15b.
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Fig. 15: Optimal values in various GOPs

D. Expected 360° Video Quality

For the three 360° video streaming systems under compar-
ison, we measured the video quality per viewport experienced
by a user navigating the 360° content, as the Luminance
Peak Signal to Noise Ratio (Y-PSNR) of the MSE of the
pixels displayed in the viewport. Figure 16 shows the viewport
Y-PSNR over time for the three competing systems in the
case of the Timelapse video. We can see from Figure 16
that Speed-based and Monolithic exhibit the same temporal
pattern in viewport Y-PSNR variations, as the dynamic 360°
content evolves, with our framework outperforming the both
method consistently and considerably. We also observed that
Speed-based offers an improved performance over Monolithic,
when viewport prediction succeeds. Though there are minor
variations for some frames, we observed that on average
Proposed provides a 4.5 dB gain over Monolithic.

Speed-based framework utilizes the user head navigation
to predict expected viewport and aims for a uniform QP
distribution in the expected viewport. This allows reaching
higher qualities in viewport. Proposed framework, on the other
hand, exploits the rate-distortion characteristics of video tiles



to reach a uniform expected quality. The non-linear nature of a
rate-distortion curve enables reaching higher viewport quality
for the same network bandwidth budget, for our framework.
This results in a more consistent and uniform quality and QoE
for the user viewport.
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Fig. 16: 360° viewport video quality: Timelapse.

In Figure 16, the markers indicate the initial frames of
GOPs. Since we encoded the frames of each GOP using
uniform QP values, the I frames have higher Y-PSNR values,
for all three methods under comparison. We observed in this
evaluation, as expected, that using lower QP values lead to
higher Y-PSNR values overall and cause a higher gap between
the I frames and the subsequent P/B frames. Figure 17 shows
the average Y-PSNR values of each frame in a GOP, averaged
over 50 users. Here, we observe similar Y-PSNR trends for
all three methods under comparison, with decaying intensity
over the GOP. Especially for higher QP values, we observed
a maximum of 1.5 dB difference across the duration/length of
a GOP for Proposed, and slightly smaller values of 1 dB for
Speed-based, and 0.5 dB for Monolithic.
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Fig. 17: Intra-GOP (per frame) PSNR trend: Timelapse.
Next, we examine the average (over time) viewport 360°

video quality (Y-PSNR) delivered by the three competing
systems, as the available network bandwidth C' is varied.
Figure 18 show these results for average of 5 users in the case
of Timelapse. We can see that again Proposed outperforms
Speed-based and Monolithic, with a consistent gain more than

4 dB, in C values higher than 2 Mbps. On the other hand, the
reconstruction error can vary more spatially across pixels in
viewports delivered by Proposed and Speed-based, due to the
applied tiling, especially as the number of tiles that comprise
a viewport increases.
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Fig. 18: Average 360° viewport video quality: Timelapse.

The cumulative density function (CDF) of the Y-PSNR val-
ues of Timelapse video are compared in figure 19. Monolithic
approach has the steepest CDF curve since its Y-PSNR values
has a very small overall variance. Conversely, Speed-based
has more gradual curve where it drops below the Monolithic
case due to occasional mispredictions. Misprediction in Speed-
based results in very low viewport quality since only expected
viewport tiles are encoded with the high quality. Proposed
approach has the highest overall Y-PSNR values as a result of
efficient rate-allocation. However it has the most gradual shape
especially due to increasing Y-PSNR differences in higher
qualities.
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Fig. 19: CDF of Y-PSNR for all frames: Timelapse.

Finally, in Table I, we examine the viewport quality per-
formance of all three methods under comparison and the
performance gains of our Proposed framework relative to
Monolithic, across all five 360° videos used in our exper-
iments, for three different network bandwidth values (high,
medium, low) used to compress and stream each 360° video
content to a VR user. First, we can observe that our framework



considerably outperforms the two competing methods across
all 360° videos and network bandwidth values considered, due
to its integrated advances spanning rate-distortion analysis,
system resource optimization, and navigation modeling. The
gains over Monolithic, a method that is most dominantly
used in current industry practices, are the highest and most
consistent in the cases of the Timelapse, Wingsuit, and Div-
ing videos. These benefits are promising and merit further
investigation and pursuit of practical implementations of our
system. We note that we observed more significant correlation
in the navigation patterns of users, for the Timelapse and
Diving 360° videos. This can enable a more accurate viewport
prediction and thus a better utilization of the allocated network
resources. Moreover, we also note that given its dynamic
content nature, the 360° video Wingsuit required much higher
network streaming bandwidth to be compressed and delivered
at comparable viewport quality relative to the other four
videos used in our experiments. Similarly, we further note that
different network streaming bandwidth values were considered
to compress and deliver each 360° video, in order to enable
comparable encoding qualities in each case (high, medium,
low), across the entire 360° video corpus we considered.
This need arises from the heterogeneous spatiotemporal rate-
distortion characteristics and dynamics that each 360° video
content features.

Network Gain

Video name Bandwidth | Proposed | Monolithic | (wrt Mono.)
(Mbps) (dB) (dB) (dB)
4.28 47.50 45.34 2.16
Roller Coaster 2.59 44.03 42.78 1.25
1.23 38.95 38.99 -0.04
4.02 49.70 46.23 3.57
Elephant 2.20 46.84 44.19 2.65
0.76 41.40 41.45 -0.05
4.57 47.19 42.58 4.61
Timelapse 2.49 44.37 40.48 3.89
0.92 38.97 37.87 1.10
12.42 52.91 48.66 4.25
Wingsuit 6.38 50.49 46.88 3.61
2.12 47.67 44.37 3.30
6.17 49.43 45.68 3.75
Diving 3.42 46.61 43.57 3.04
1.28 42.37 40.98 1.39

TABLE I: Viewport quality performance and gains over Monolithic.

In closing this section, we note the following aspects about
the performance evaluation carried out herein. We introduced
the speed-based system as another reference method to illus-
trate that our proposed framework can broadly outperform
state-of-the-art as well as commonly used methods. In par-
ticular, we have provided five different sets of results here
that include both the Speed-based and Monolithic reference
methods. They highlight different research aspects and insights
of performance comparison across all the three methods under
comparison. Going forward, in the remaining three sections
covering evaluation results, we opted to focus more extensively
on the comparison to Monolithic, as this method represents the
method of choice used in practical deployments today, and the
investigations in these latter sections cover topics that practical
implementations would need to carefully consider, such as the
choice of the tiles’ size, the impact of the quality evaluation

metric, and the variability of quality across the delivered 360°
video panorama.

E. Synthetic Navigation Traces

We generated 500 synthetic traces for each 360° video
considered in our experiments, using the first order Markov
model that we formulated earlier in Section III-C. In order
to have similar user navigation patterns and tile navigation
likelihoods, across the two cases (synthetic and real traces),
we developed our navigation model to capture the related
characteristics of the actual data as closely as possible. In
this section, we investigate a sample synthetic trace and a
sample real trace, for the 360° video Roller Coaster, and
compare their resemblance. In particular, Figures 20 and 21
respectively show the synthetic trace and the real trace in
the 2D equirectangular plane of the 360° video panorama. It
can be observed that both navigation traces exhibit analogous
spatial movements save for the model-induced characteristic of
the synthetic trace that exhibits more discrete movements that
are following the macroblocks of the spatial 360° panorama.
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Fig. 20: Synthetic trace for Roller Coaster.
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Fig. 21: Real data trace for Roller Coaster.

We also examine the navigation likelihoods for a 360°
video generated from synthetic traces. In Figure 22, we



Navigation Likelihoods (Synthetic Traces)

Fig. 22: Navigation likelihoods of tiles for Roller Coaster (synthetic traces).

examine these quantities in the case of the 360° video Roller
Coaster. When we compare these navigation likelihoods to
their counterparts from Figure 7, generated based on actual
navigation traces captured from VR wusers, we can observe
that they fairly accurately reproduce the latter, in terms of
both absolute values as well as relative values that the latter
exhibit among them, with some minor differences in the
magnitude of the distribution of navigation likelihoods across
the 360° video panorama. Thus, using synthetic traces to
supplement actual traces can maintain the same navigation
behavior probabilistically. These outcomes and observations
merit the benefits of using the proposed navigation model and
the synthetic navigation traces it can be used to generate, to
supplement existing navigation traces with the objective to
enhance the efficiency of the proposed optimization framework
and 360° video streaming system.

We supplement the above investigation with a brief study
of the validity of the Markovian nature of the proposed
navigation model. In particular, we compute the expected
Kullback—Leibler (KL) distance between two instances of
the distribution anrn computed from actual navigation
traces conditioned on two different prior action values,
j = g1 and j = jo, respectively. Formally, the KL
distance or divergence between two statistical distributions
P and @ establishes the degree of their dissimilarity, and
is defined as Dk (P||Q) = >, cx P(r)In(P(x)/Q(x)),
where X denotes the set of possible outcomes for the
random variable z. Since Dgr(:||-) is asymmetric as a
measure, we define the distance between PJl) and P2
using its symmetrized counterpart, Dj., (Piir||Pir) =
(Dxr(P1|Pn) + Drr(Pizyl|Pii)) /2. The expected
value of Dj (Piir||Pi2r) that we computed in the above
case is approximately 0.09, which is considered significant
and indicates that the distribution Pjnrn can be quite distinct
depending on the value of the parameter j. In addition, we
compute the expected distance D7 ; between the distribution
Pf,fn computed from actual and synthetic navigation traces,
respectively. This quantity is only 0.2% and establishes the
close statistical nature between the actual and synthetic traces.

Finally, when we investigate the delivered viewport quality
performance in each case (real and synthetic trace), for the
Proposed and Monolithic methods, we can see that under a real
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Fig. 23: Delivered viewport quality performance for real and synthetic traces.

trace, our framework enables a higher expected performance
gain over Monolitic across the entire range of network stream-
ing bandwidth values considered on the x-axis of Figure 23.
On the other hand, though Monolithic exhibits only a marginal
performance drop in the case of a synthetic trace that does not
exceed 0.5 dB at best, Proposed exhibits a somewhat more
significant performance drop here which at the high end of
network bandwidth values considered in Figure 23 reaches a
1 dB. This can be explained by the observation that more
accurate viewport prediction can be carried out based on real
traces. In particular, since actual head movements typically
follow the dynamics of the 360° video content, navigating
users tend to make similar head movements across the same
360° video frames. On the other hand, as each synthetic trace
is randomly seeded at start, this aspect is not captured well by
synthetic traces (lack of significant correlation across traces at
different temporal points), and this can be a point of further
investigation in future work, to improve the modeling and the
closeness to real life of the synthetic traces generated from the
model. For instance, generating multiple traces simultaneously
and introducing further statistical dependencies across them as
part of our modeling could be one direction to pursue in this
regard. Moreover, it should be noted that though the navigation
likelihoods associated with synthetic traces achieve a fairly
accurate reproduction of those associated with actual traces
(see Figure 22), there are still some minor differences between
them, especially with respect to the magnitude of some lower
valued likelihoods on the 360° video panorama, which may
also contribute to a bigger performance difference between
the two cases in terms of delivered viewport quality when the
available network bandwidth considered by our optimization
framework is bigger, as observed from Figure 23. We believe
the latter outcome could be improved by having more actual
traces to train the proposed first order Markov navigation that
is used to generate the synthetic traces. Lastly, and at the same
time, the higher performance gains exhibited by Proposed in
the case of real navigation traces imply that having a bigger
real dataset for dynamic tile navigation likelihood assignment
will be expected to enable better navigation prediction and thus
higher delivered viewport quality and quality of experience for



the user.

We note for the convenience and recall of the reader that
only some results presented in this section are based on a
synthetic trace. The rest of the results presented throughout
Section VI are obtained based on actual navigation traces.

E. Tile Size Choice

Different tile sizes used in partitioning the panorama have
a direct effect on optimization since they alter the assigned
navigation likelihoods which affect the encoding gains. 2D
projected viewport has an arbitrary shape as seen in Figures
10 and 11 and therefore the tiles on the fringe of the viewport
end up having a residual area outside the viewport but en-
coded in high quality. This residual area results in suboptimal
use of bandwidth resources especially in the case of larger
tiles. Using finer tiles on the other hand, makes it easier to
have higher quality around the viewport with minimizing the
residual areas that would be out of the viewport. It, on the
other hand, can result in tiles with likelihood zero assigned to
be closer to the expected viewport and increases the possibility
of sudden quality drops.
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Fig. 24: 360° viewport quality for different tiling: Elephant 360° video.

Figure 24 shows the Y-PSNR differences of the Elephant
video using small 8x8 Tiles, large 6x4 Tiles and the corre-
sponding Monolithic case. 8x8 Tiles case has higher Y-PSNR
values in average due to better utilization of bandwidth in a
smaller expected viewport area. One disadvantage of using
small tiles is having more sudden and frequent drops. Having
a smaller expected viewport area (cf. Figures 7 and 9) allows
higher quality levels assigned to the most popular viewport
tiles and an average rise in quality, while it has very low or
zero quality assigned to some nearby but less popular tiles.
As a result there are more occasions of sudden quality drops
are observed in smaller tile case.

When we investigate the average quality levels, difference
between 6x4 Tiles and 8x8 Tiles is still observed even though
total Y-PSNR is decreased. In the case of scarce resources,
having a larger expected viewport area rapidly decreases
expected viewport quality. In minimum bandwidth levels both
of the proposed methods are doing worse than Monolithic due
to poor viewport prediction.

Video Quality vs. Network Bandwidth
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Fig. 25: Average 360° viewport tile comparison: Elephant.

G. 360° Video Quality Evaluation Metrics

In addition to the viewport Y-PSNR video quality evaluation
and comparison that we carry out here, we also investigate
the Multiscale - Structural Similarity Metric (MS-SSIM) [44]
applied to the delivered viewport video signal (its luminance
component) by each of the three methods under comparison,
in the case of the 360° video Roller Coaster. In particular, in
Figure 26, we compare the expected viewport quality delivered
to a VR client, measured through both metrics, for each of the
Proposed, Speed-based, and Monolithic methods, as a function
of the network streaming bandwidth available to compress and
deliver the 360° video content. It should be noted that under all
three methods, the viewport’s quality measured via MS-SSIM
and Y-PSNR exhibits closely similar characteristics. One dif-
ference worth noting is that particularly for higher network
bandwidth values examined in Figure 26, the viewport quality
measured via the Y-PSNR metric shows better improvement
and higher gains, since the blurred images used in the evalua-
tion of the MS-SSIM metric exhibit higher similarity when the
difference of content details become subtler. We also note that
subjective metrics have been widely explored for measuring
the QoE. However, although they provide inherently more
human-oriented results, they are highly resource-consuming
to evaluate. Moreover, according to [45], subjective metrics
such as the Mean Opinion Score (MOS) exhibit very similar
QoE results and characteristics with the Peak Signal to Noise
Ratio (PSNR) metric in traditional wireless video streaming.

H. Spatial Viewport Quality Variation

Spatial quality variation is one of the important metrics
in viewport quality. Having inconsistent spatial quality with
high and low quality regions in a viewport is not a desired
case and severely affect the user QoE. Exploiting unequal
rate-distortion characteristics is expected to yield a smoother
quality variation over viewport by assigning uniform distortion
levels to viewport tiles. Figure 27 compares the CDF of
standard deviation of per macroblock Y-PSNR in viewport
of Diving video over all frames. Proposed approach has an
average 2.5 dB standard deviation of Y-PSNR whereas the
Monolithic approach has 5.2 dB. In addition, steeper curve
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Fig. 26: Viewport video quality: A comparison of the Y-PSNR and Y-MS-
SSIM metrics for the Roller Coaster 360° video.

of Proposed implies that rate-distortion optimization allows a
more steady and limited spatial Y-PSNR distribution.
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When we examine the distribution of per macroblock Y-
PSNR over the user viewport we see that Proposed case
has a much smaller span (Figure 28). Lower Y-PSNR values
are observed less frequently in Proposed case and higher Y-

PSNR values has a steeper curve. Figure 29 compares the
per macroblock Y-PSNR values of viewport in their respective
positions. It is apparent that both of the cases have very similar
outlines. This outline of the quality distribution is caused by
the video content. We observe an overall quality increase
over the viewport due to better bandwidth utilization and a
smoother Y-PSNR distribution caused by exploiting the rate-
distortion characteristics to a uniform distortion level (Figure
29a). High quality regions of Monolithic case (upper half and
center) are all increased the same 48 dB Y-PSNR value in
Proposed case. Moreover, seemingly lower quality regions in
Proposed approach (lower left and lower right) has higher and
smoother quality than the Monolithic case.

VII. CONCLUSION

We have formulated a framework for viewport-driven rate
optimized 360° video streaming that integrates the user view
navigation patterns and the spatiotemporal rate-distortion char-
acteristics of the 360° video content to maximize the deliv-
ered user quality of experience for the given network/system
resources. Our framework comprises a methodology for com-
puting dynamic navigation likelihoods that capture the user
likelihood of navigating different spatial sectors of a 360°
video over time, an analysis and characterization of its spa-
tiotemporal rate-distortion characteristics that leverages pre-
processed spatial tilling of the 360° video panorama, and
an optimization problem formulation that characterizes the
delivered expected user viewport video quality, given the
user navigation patterns, 360° video encoding decisions, and
the available system/network resources. Moreover, we have
formulated a user navigation Markov model to analyze the user
navigation actions in greater detail and extend our navigation
dataset. Our experimental results demonstrate the advantages
of our framework over the conventional approach of streaming
a monolithic uniformly-encoded 360° video and a state-of-the-
art navigation-speed based reference method, enabling consid-
erable video quality of gains up to 5 dB in the case of five
popular 4K 360° videos. In addition, the proposed framework
achieves a substantially lower spatial video quality variation
in the delivered user viewport, compared to monolithic 360°
streaming, due to the optimization problem formulation we
introduce that implicitly aims for a minimum uniform ex-
pected user viewport spatial distortion. We also investigated
performance trade-offs associated with selecting the tile size
for 360° equirectangular panorama spatial tiling/partitioning.
Our experiments show that using finer tiles instead of large
tiles utilizes the available network bandwidth more efficiently
given enough user navigation history is available. Finally,
we explored the impact of two different popular 360° video
quality metrics applied to evaluate the streaming performance
of our system framework and the two reference methods.

There are multiple directions of future work that we con-
sider. In the present framework, we used two tiling scenarios
of the 360° view panorama. Will variable-size 360° tiling
provide additional gains, and at what cost, is one question
we will aim to investigate. Wireless HMD devices allow users
to enjoy VR without the inconvenience of cables yet lack high
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Fig. 29: Spatial variation of the delivered viewport quality for the Diving 360° video.

computational capacity and require a high throughput wireless
connection. Addressing how rate-distortion optimization will
affect untethered VR communication is another study we plan
to carry out in this context.
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