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Our goal is to quantify whether, and if so how, spatiotemporal patterns
in tropical cyclone (TC) satellite imagery signal an upcoming rapid intensity
change event. To address this question, we propose a new nonparametric test
of association between a time series of images and a series of binary event la-
bels. We ask whether there is a difference in distribution between (dependent
but identically distributed) 24-hour sequences of images preceding an event
vs. a nonevent. By rewriting the statistical test as a regression problem, we
leverage neural networks to infer modes of structural evolution of TC con-
vection that are representative of the lead-up to rapid intensity change events.
Dependencies between nearby sequences are handled by a bootstrap proce-
dure that estimates the marginal distribution of the label series. We prove that
type I error control is guaranteed as long as the distribution of the label series
is well estimated which is made easier by the extensive historical data for bi-
nary TC event labels. We show empirical evidence that our proposed method
identifies archetypes of infrared imagery associated with elevated rapid inten-
sification risk, typically marked by deep or deepening core convection over
time. Such results provide a foundation for improved forecasts of rapid inten-
sification.

1. Introduction. A broad array of problems in the physical, environmental and biolog-
ical sciences feature high-dimensional time series {Xt }t≥0, associated with binary “labels”
{Yt }t≥0 indicating an event of interest. Examples include sequences of satellite or other re-
mote sensing data paired with natural events like the occurrence of an earthquake, the rapid
intensification of a hurricane or multivariate electroencephalographic (EEG) and magnetoen-
cephalographic (MEG) data showing brain activity paired with physiological events like the
occurrence of a stroke. Most research on this front concerns prediction of events (Luo et al.
(2014)), measurement of event impact (Scharwächter and Müller (2020a, 2020b)) or detec-
tion of change points (Aminikhanghahi and Cook (2017), Evans and G’Sell (2020)) after
events occur. Furthermore, joint analyses of time and event series often assume that the
time series is univariate or model the relationship between multiple scalar quantities, as they
change over time. There is a lack of theoretically and computationally sound methods for
(nonparametric) association studies and statistical tests for dependent and high-dimensional
sequence data.

This work is motivated by the need to identify spatiotemporal patterns in the convec-
tive evolution of tropical cyclone satellite imagery prior to a rapid intensity change; see
“Motivating Application.” Our immediate goal is not operational forecasting or predic-
tion per se but rather gaining scientific insight into the spatiotemporal evolution S<t =
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{Xt−T ,Xt−T +1, . . . ,Xt } of convective structure or satellite imagery Xt , leading up to a rapid
intensity change event (Yt = 1), for some lead time T , and identifying whether it differs in
distribution from sequences S<t that precede a nonevent (Yt = 0).

From a statistical methodology standpoint, this problem amounts to a challenging
two-sample testing problem for high-dimensional dependent but identically distributed
(DID) data. From the observed time and event series, we extract labeled sequence data
{(S<t , Yt )}t≥0, which we assume is a stationary process. That is, both S<t and Yt are auto-
correlated and dependent for different instances of time t . By the assumption of stationarity,
the data (S<t , Yt ) are identically distributed. Given historical data, we test whether the distri-
butions of S<t |Yt = 1 and S<t |Yt = 0 are the same. The challenge is to construct an efficient
test of (1) that is valid (controls type I error) for DID data and that applies to different types
of sequence data (images, functions and sequentially observed data from multiple physical
probes) with a minimum of assumptions. Finally, for many problems of applied interest,
scientists want to know not just whether sequences preceding an event vs. nonevent are sig-
nificantly different in distribution, but if so, also how the two distributions are different. That
is, if the null hypothesis that the distributions of (stationary) sequences S|Y = 1 and S|Y = 0
are the same is rejected, the question is how to identify the patterns in the state space S of S
that contributed to the rejection.1 These patterns correspond to sequences s ∈ S that are more
or less likely to be associated with an event (Y = 1) than by chance.

1.1. Motivating application: Tropical cyclones. Tropical cyclones (TCs) are highly struc-
tured storms which rank among the deadliest and costliest natural disasters in the United
States (Klotzbach et al. (2018)). Cases of rapid intensification (RI) and rapid weakening (RW)
of such storms—defined for this work as a change in maximum wind speed of, at least, 25
knots within 24 hours, denoted by Y = 1—are notoriously difficult to forecast (Kaplan and
DeMaria (2003), Kaplan, DeMaria and Knaff (2010), Kaplan et al. (2015), Wood and Ritchie
(2015)). RI prediction has thus been the “highest-priority forecast challenge” identified by the
National Hurricane Center (NHC) in the last decade (Gall et al. (2013)). RW events, while a
lower priority than RI, are also associated with above-average forecast errors and are of great
interest to meteorologists.

Models, such as SHIPS-RII (Kaplan et al. (2015)), have made great progress on skillfully
forecasting RI events, but these approaches rely on scalar predictors (e.g., area-averaged ver-
tical wind shear) at fixed points in time and thus neglect the evolving spatial structure of
the TC; these structural changes often influence such events. To address this gap, meteorolo-
gists and forecasters seek interpretable patterns in the spatiotemporal structure of physically-
relevant 2D fields that could indicate an elevated risk of RI. The first step in this search is to
find interpretable temporally-evolving sequences of spatial structure S<t that differ in distri-
bution, depending on whether a TC is undergoing a rapid intensity change event (Yt = 1) or
not (Yt = 0).

Our application examines one such 2D field: deep convection within the storm. Convec-
tion, or deep thunderstorm-like clouds, is a key component of the mechanism through which
TCs extract energy from the ocean, meaning that convection, in both strength and distri-
bution, should be closely related to storm intensity. We quantify convective structure using
cloud-top temperature, as measured by infrared (IR) imagery from the Geostationary Opera-
tional Environmental Satellites (GOES). As convection strengthens, the cloud tops are pushed
higher into the atmosphere where temperatures are lower. The temperature of the cloud top
can, therefore, be used as a proxy for the strength of convection in the storm. We ask: “Do

1The stationarity assumption makes the state space S well defined and allows us to drop the subindex < t in
our notation.
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24-hour sequences of convective structure, {S<t }t≥0, contain information about upcoming
intensity change, {Yt }t≥0? If so, how do the spatiotemporal patterns of rapidly changing TCs
differ from that of not rapidly changing TCs?”

Both {S<t }t≥0 and {Yt }t≥0 are highly dependent (autocorrelated) time series in this appli-
cation: environmental fields, such as convection, change slowly, and rapid intensity change
events are, by definition, extended periods of change (typically, 12–48 hours), meaning that
successive measurements of these variables at short time intervals (e.g., three hours) will
be highly dependent. It is particularly challenging to perform traditional two-sample tests in
this DID setting due to the combination of low sample size (671 TCs between 2000–2020),
high-dimensional image data and strong temporal dependence.

1.2. Contribution and relevance. Our contribution is twofold: (i) On the methodology
side we present a new statistical framework for detecting arbitrary distributional differences
in a high-dimensional setting with labeled sequence data. The proposed two-sample test is
valid in a DID setting and provides local diagnostics as to the type of sequences s ∈ S that
contribute to rejection of H0 in equation (2). (ii) On the applied side we utilize our proposed
framework to identify and describe patterns of convective evolution in TCs prior to the onset
of rapid intensity change.

Figure 1 shows a flow chart of our overall approach. As indicated by the vertical blue arrow
to the left, we seek quantitative conclusions regarding how TC behavior relates to convective
structure, as observed by GOES imagery and extracted functions. We cast the two-sample test
as a prediction problem (Figure 1, right, for “Statistical Methods”). This allows us to leverage
powerful prediction techniques, such as convolutional neural nets (CNNs), to gain scientific
insight from high-dimensional functional or video data without a prior dimension reduction
(arrow back to “TC behavior” and “Intensity Guidance”). To account for dependence in the
labeled sequence {(S<t , Yt )}t≥0, we develop a bootstrap regression test (Algorithm 1) which
yields a valid p-value accompanied by interpretable diagnostics.

Our bootstrap test is ideal for TC studies: the low number of unique TCs for which high-
resolution satellite imagery is available prohibits efficient inference via classical blocking
schemes, whereas our method can take advantage of the extensive historical record of event
(label) sequences. Theorem 1 shows that the bootstrap test is valid as long as we can estimate

FIG. 1. Leveraging prediction tools for statistical inference and scientific insight. In our application we seek
relationships between high-dimensional TC observations and TC behavior. We pose this as a two-sample testing
problem, but the high dimensionality and sequential correlation in our data make this hypothesis difficult to test.
By rewriting the test in terms of a prediction problem, we are able to leverage powerful prediction methods to
infer modes of structural evolution in TCs which indicate rapid intensity change.
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the distribution of the label sequences well; this is made easier by the fact that labels are
binary.

Section 7 provides evidence that deep and/or deepening convection is a necessary precur-
sor to RI but that other factors (e.g., low vertical shear) must be present. This elevated risk of
RI due to deepening convection is often present prior to the onset of intensification, demon-
strating value to forecasting pipelines. RW, meanwhile, is a more variable process and did
not return significant results.

1.3. Relation to other work. Here we review some related works.
Event impact and causal inference for time series. Our problem setup is closest in flavor

to association and causal inference studies for testing the relationship between a time and
event series (Luo et al. (2014), Scharwächter and Müller (2020b)). The vast majority of these
works assume univariate time series or test for each dimension in a multivariate time series
separately (Candès et al. (2018)). The recent paper by Scharwächter and Müller (2020b)
leverages a two-sample testing approach for high-dimensional data, as in this work, albeit to
study how a discrete binary event history impacts a multivariate time series rather than how
the evolution of a complex time series is associated with a later event. A key methodological
difference is that their work handles the lack of independence by sampling data points that are
far from each other, while our method allows for the use of all available data. This distinction
is key for applications with limited data. Their proposed multiple testing procedure also does
not control the false positive error rate exactly but heuristically.

Two-sample tests in high dimension. Recently, there has been a growing interest in non-
parametric two-sample tests in high dimension. Popular machine learning-based approaches
include classification accuracy tests (Kim et al. (2021)), kernel-based tests (Gretton et al.
(2012)) and divergence-based density ratio tests (Kandasamy et al. (2015), Moon and Hero
(2014)). We use the same regression test statistic (equation (4)) as Kim, Lee and Lei (2019) to
allow for interpretable local diagnostics. However, Kim, Lee and Lei (2019) and the above-
mentioned two-sample testing papers only handle the standard independent and identically
distributed (IID) data setting (Figure 2a), whereas the methods in this work apply to DID
sequence data (Figure 2c).

Also related to our paper are modern tests of conditional independence between two ran-
dom vectors Y and Z, given a third random vector X (see discussion in Section 8.2), and tests
of the conditional mean and quantile dependence of Y on X. Most high-dimensional research
on this front (including model-X knockoffs; Berrett et al. (2020), Candès et al. (2018), Sesia,
Sabatti and Candès (2019)) assumes IID data (Xi1, . . . ,Xip, Yi) ∼ FX,Y for i = 1, . . . , n and
also assumes that the distribution of Y , given X, depends on only a small fraction of the
p covariates. The latter sparsity assumption is reasonable for, for example, genome-wide
association studies but not for remote sensing applications with image and functional data.
Another key difference between our testing approach and so-called model-X methodologies,
which also use machine learning algorithms to approximate the distribution of Y given X
(Katsevich and Ramdas (2020)), is that model-X approaches estimate or make assumptions
regarding the distribution of X (or X given Z), whereas we instead estimate the distribution
of the response Y .

Bootstrap for time series. There exist many different types of bootstrap methods for de-
pendent data; see, for example, Bühlmann (2002), Horowitz (2003), Kreiss and Paparoditis
(2011) for a review. The goal is often to model the data distribution for parameter estimation,
rather than as here to test for an association between a label series and a high-dimensional
time series. Our framework also does not bootstrap the entire distribution of {(S<t , Yt )}t≥0
but only the distribution of labels {Yt }t≥0. For binary labels this is a much easier estimation
problem than, for example, block-bootstrap of high-dimensional time series.
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TC analyses. Many TC analysis tools incorporate information from 2D fields via scalar val-
ues such as area averages; for example, the operationally-used SHIPS and SHIPS-RII forecast
schemes include scalars for the fraction of pixels with IR temperatures below −30◦C within
the 50–200-km annulus (DeMaria and Kaplan (1999), Kaplan et al. (2015)). Such approaches
discard complex, time-evolving structure in the 2D fields. More recent analyses take spatial
information into account by applying dimension reduction techniques, like functional princi-
pal component analysis (PCA), to the field, such as for TC eye formation forecasts in (Knaff
and DeMaria (2017)). However, dimension reduction adds an extra layer of abstraction be-
tween TC structure and subsequent TC behavior and can reduce meteorologists’ ability to
interpret the information. The ORB framework (Organization, Radial structure, Bulk mor-
phology) was introduced in McNeely et al. (2020) to summarize convective structure into a
dictionary of functional features. The key objective was to utilize entire functions to quan-
tify structure rather than thresholded feature statistics, thereby enabling richer descriptions
of spatial structure while remaining interpretable. In this paper we leverage CNNs to model
the relationship between TC intensity change and the temporal evolution of one such contin-
uous ORB function—the radial profile of cloud-top temperatures, as observed by GOES-IR
imagery (McNeely et al. (2019), McNeely et al. (2020), Sanabia, Barrett and Fine (2014)).
Our bootstrap test then provides a powerful tool for directly assessing whether there is an
association between RI or RW events and TC structure or the TC environment in terms of
structural summaries (1D ORB functions) that are easily digestible to meteorologists.

1.4. Outline. We begin by defining the problem set up in Section 2, paying special at-
tention to different dependence structures in {(S<t , Yt )}t≥0. In Section 3 we describe the TC
data. In Section 4 we lay out the details of our bootstrap test for distributional differences in
dependent sequence data. In Section 5 we provide theoretical justification for validity of the
bootstrap test. In Section 6 we introduce a simulated toy example to empirically demonstrate
the advantage of a Markov chain-based bootstrap test over traditional permutation testing. In
Section 7 we apply our method to study the evolution of convective structure in TCs prior to
a rapid intensity change. Finally, in Section 8 we discuss limitations and potential extensions
of our method.

2. Setup. Our goal is to detect distributional differences in labeled sequence data
{(S<t , Yt )}t≥0, where the “labels” Yt ∈ {0,1} are binary, and the covariates S<t ∈ S can rep-
resent high-dimensional quantities. We formalize this question in the hypothesis

(1)
H0 : p(s<t |Yt = 1) = p(s<t |Yt = 0) for all t and s<t vs.

H1 : p(s<t |Yt = 1) &= p(s<t |Yt = 0) for some t and s<t .

We assume that the sequence {(S<t , Yt )}t≥0 is stationary (Assumption 1) which allows us to
rewrite the hypothesis as

(2)
H0 : p(s|Y = 1) = p(s|Y = 0) for all s ∈ S vs.

H1 : p(s|Y = 1) &= p(s|Y = 0) for some s ∈ S.

We will study three different settings (see Figure 2) which admit increasingly complex
dependence in {S<t }t≥0 and {Yt }t≥0. In Setting A (Figure 2a) there is no temporal depen-
dence, meaning the data {(S<t , Yt )} are IID. Testing equation (1) is still challenging in this
setting when S<t is high dimensional, but various methods and associated theory have been
developed to handle these challenges; see, for example, Kim, Lee and Lei (2019), Kim et al.
(2021). In Setting B (Figure 2b) there is temporal dependence in {S<t }, but {Yt } are con-
ditionally independent, given the associated value in {S<t }. In Setting C (Figure 2c) there
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FIG. 2. Dependence settings. Directed acyclic graphs (DAGs) illustrating the three dependence structures we
explore. Note that each variable S<t can itself represent a temporal sequence of high-dimensional functions or
images, as in Figure 3.

is temporal dependence in both {S<t } and {Yt }, regardless of the association between the
two variables. We expect the TC data to exhibit the structure of Setting C because intensity
change labels (Yt ) are not conditionally independent solely given the convective structure of
the storm (S<t ). The effect of convective activity on TC intensity change generally manifests
within 24 hours, so a 24-hour history in S<t should be sufficient (Rogers (2010)).

3. Sequence data from tropical cyclone satellite imagery. Analysis of TC convec-
tive structure relies on two types of observations: sequences of longwave infrared imagery
captured by GOES imagers and records of TC intensity and location recorded in NOAA’s
HURDAT2 database (Landsea and Franklin (2013)).

Longwave infrared (IR) imagery (∼10.3 µm wavelength) serves as a proxy for convective
strength: where IR-estimated cloud-top temperatures are low, convection is strong. GOES
longwave IR imagery is available through NOAA’s MERGIR database (Janowiak, Joyce and
Xie (2020)) at 30-minute × 4-km resolution over both the North Atlantic (NAL) and Eastern
North Pacific (ENP) basins from 2000–present. Every 30 minutes during the lifetime of a
storm, we download a ∼2000 km × 2000 km “stamp” of IR imagery surrounding the TC
location. Figure 3 (left) shows two such stamps after an 800-km radius mask is applied.

TC location and intensity are given by the NHC’s HURDAT2 best track database which
utilizes all available data on each TC (including data not available in real time) to estimate
critical characteristics over the lifetime of each TC. HURDAT2 best tracks are provided at six-
hour (or synoptic) time resolution; we linearly interpolate TC latitude and longitude between
HURDAT2 data points to estimate TC location at nonsynoptic times. Since we are interested
in the behavior of mature TCs (as opposed to, e.g., early development), we consider TC
genesis to be the first synoptic time at which intensity surpasses 35 kt and lysis to be the last
synoptic time at which intensity is at least 35 kt.

Structural trajectories via ORB. We have leveraged the ORB framework to analyze the
evolution of TC convective structure and demonstrated how projections of ORB functions
onto a PCA basis can be used to identify rapid intensification events (McNeely et al. (2020)),
but we have not yet directly utilized temporally evolving, continuous functions.

This work studies the temporal evolution of an entire ORB function; in this case the radial
profile, defined as T (r) = 1

2π

∫ 2π
0 Tb(r, θ) dθ . The radial profile T (r) captures the structure of

cloud-top temperatures Tb as a function of radius r from the TC center and serves as an easily
interpretable description of the depth and location of convection near the TC core (McNeely
et al. (2020), Sanabia, Barrett and Fine (2014)). The radial profiles are computed at five-km
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FIG. 3. Evolution of TC convection as structural trajectories. The raw data for each trajectory S<t is a se-
quence of a sequence of TC-centered cloud-top temperature images from GOES (Tb). We convert each GOES
image into a radial profile (Xt ). The 24-hour sequence of consecutive radial profiles, sampled every 30 minutes,
defines a structural trajectory or Hovmöller diagram (S<t ). These trajectories serve as high-dimensional inputs
to m̂post(s<t ).

resolution from zero to 400 km (d = 80) (Figure 3, center); we denote these summaries of
convective structure at each time t by Xt . Finally, at each time t we stack the preceding
24 hours (48 profiles) into a structural trajectory S<t = {Xt ,Xt−1, . . . ,Xt−48}. We visualize
these trajectories with Hovmöller diagrams (Hovmöller (1949); see Figure 3, right).

Labeling TC sequence data. HURDAT2 contains estimated TC intensities only at synoptic
times (0000 UTC, 0600 UTC, 1200 UTC and 1800 UTC). We thus begin by labeling these
points Yt ∈ {0,1}, based on whether the TC was undergoing RI (or RW, for those analyses)
at time t , where Y = 1 indicates occurrence of a rapid intensity change event. We then inter-
polate to nonsynoptic times by assigning label Yt = 1 if the an observation falls between two
consecutive synoptic Yt = 1 observations and Yt = 0 otherwise; see McNeely et al. (2023)
(Section B) for further details on this procedure.

There are three sample sizes of interest in this application: (i) the number of labeled train-
ing sequences S<t (further divided into 60% train/40% validation), (ii) the number of test
sequences S<t and (iii) the number of synoptic best track entries used when only labels Yt

are required (e.g., m̂seq in Algorithm 1(3)). These sample sizes and associated years are sum-
marized in Table 1.

4. Methods. Our TC problem setup is difficult because of: (i) the complexity of the data
themselves, with one observation representing an entire sequence S<t of functions, (ii) depen-
dence between labels Yt (and sequences S<t ) at nearby time points t and finally, (iii) the need
for scientific interpretability, or more precisely, statistical findings which are easily digestible
by TC scientists and forecasters.

We aim to test hypothesis (1) for DID sequence data {(S<t , Yt )}t≥0 that satisfy the DAG
of Setting C, Figure 2c. Our approach builds on Kim, Lee and Lei (2019), where the au-
thors present a regression approach for detecting differences in high-dimensional IID data
{(Si , Yi)}ni=1, where Si ∈ S := {s ∈ RD : p(s) > 0} for Yi ∈ {0,1}. Their setup is equivalent
to Setting A, Figure 2a. The main idea is to rewrite the two-sample test in the equivalent
formulation

(3)
H0 : P(Y = 1|S = s) = P(Y = 1) for all s ∈ S versus

H1 : P(Y = 1|S = s) &= P(Y = 1) for some s ∈ S.
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Algorithm 1: Test for distributional differences in labeled sequence data

These hypotheses involve a regression function for the “class posterior” mpost(s) := P(Y =
1|S = s) and a “class prior” mprior := P(Y = 1). One then tests H0 against H1, using the test
statistic

(4) λ =
∑

s∈V

(
m̂post(s) − m̂prior

)2
,

where m̂post(s) is an estimate of mpost(s), m̂prior = 1
n

∑n
i=1 I (Yi = 1) is the class proportion

of the training sample and V ⊂ S is a fixed finite set of evaluation data points. Depending
on the choice of regression method, the regression test based on λ can adapt to challenging
nonstandard data, like images and sequences of images or functions.

Because the null distribution of λ is typically unknown, Kim, Lee and Lei (2019) compute
p-values, based on λ, by using a permutation procedure. The procedure relies on the ex-
changeability of the labels Y under H0 in equation (3). However, there are, at least, two types
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TABLE 1
Sample sizes: Data set summary for each category: (i) labeled sequences (S<t ,Yt )

used in training, (ii) unlabeled test sequences S<t and (iii) synoptic labels Yt used
when complete trajectories are not needed

NAL ENP Total Year Range Years

(i) Training Data
All Sequences 47,502 31,549 79,051
RI Sequences 7015 6742 13,757
RW Sequences 5878 7298 13,176
Unique TCs 209 185 394 2000–2012 13

(ii) Test Data
All Sequences 28,368 32,817 61,185
RI Sequences 3965 6386 10,351
RW Sequences 3167 7182 10,349
Unique TCs 125 152 277 2013–2020 8

(iii) Synoptic Labels
All Labels 14,683 15,274 29,957
RI Labels 1850 2462 4312
RW Labels 1643 2534 4177
Unique TCs 532 589 1121 1979–2012 34

of dependence in our data {(S<t , Yt )}t≥0 which violate the assumption of exchangeability:
(i) autocorrelation in {Yt }t≥0 which is inherent or governed by unobserved quantities, as in
Setting C, Figure 2c, and (ii) the presence of an observed, correlated confounding sequence
{Zt }t≥0 (discussed in Section 8.2). In either case the theoretical guarantees of a valid test in
Kim, Lee and Lei (2019) no longer hold.

4.1. Accounting for dependence in Yt |S<t . How do we handle dependence in the labeled
sequence data {(S<t , Yt )}t≥0? Permutation tests essentially model the distribution of {Yt }t≥0
assuming IID labels. One way to admit dependence in the relabeling procedure is to instead
assume a Markov property of order k on {Yt }t≥0, that is, to assume that the random variable
Yt depends only on the previous k variables Yt−1, . . . , Yt−k . To estimate the null distribution
of the test statistic λ (3), we draw new labels from a Markov autoregressive model,

(5) Ỹt ∼ Bernoulli
(
P̂(Yt = 1|Yt−1 = Ỹt−1, . . . , Yt−k = Ỹt−k)

)
.

The marginal distribution of the labels, denoted by mseq, can be estimated from a holdout
sample of observed data {Yt }t≥0 with a variety of methods, including binary Markov chains
and random forests. As we shall see, as long as the marginal estimate of {Yt }t≥0 converges
in distribution to the true data-generating process as the size of the holdout sample increases,
then the bootstrap test detailed in Algorithm 1 will be asymptotically valid. The result holds,
even if mpost(s) and mprior are not well estimated. This is good news for TC analysis, as one
usually has ample access to label series data Yt , whereas sample sizes for the sequences S<t

derived from high-resolution satellite images are smaller.
Proof of the validity of our bootstrap test for equation (3) is given in Section 5, Theorem 1.

Section 6 includes empirical results on the power of the test for synthetic data with the DAG
structures in Figure 2.

4.2. Local diagnostics. Suppose H0 is rejected. That is, we detect that the two distribu-
tions p(s|Y = 0) and p(s|Y = 1) are indeed different. How do we then provide the scientist
with interpretable diagnostics that explain how the two distributions are different?
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Classification accuracy tests (Kim et al. (2021)) require a separate post hoc procedure
to identify local distributional differences (Chakravarti et al. (2021), Gretton et al. (2012)).
A key advantage of the regression test is that the test statistic in equation (4), by construction,
is a sum of local posterior differences. Indeed, for each evaluation point s ∈ V , we compute
the local posterior difference (LPD)

(6) λ(s) = m̂post(s) − m̂prior.

A large value of λ(s) indicates that the distributions p(s|Y = 0) and p(s|Y = 1) are very
different at s ∈ V which, in turn, contributes to a larger test statistic λ = ∑

s∈V λ2(s) and
potential rejection of H0.

REMARK 1. The posterior difference λ(s) = P(Y = 1|s) − P(Y = 1) can be viewed as a
scaled density difference,

(7) λ(s) = p(s|Y = 1) − p(s|Y = 0)

w(s)
,

where w(s) = 1
1−π p(s|Y = 1) + 1

π p(s|Y = 0) is a positive scaling function and π :=
P(Y = 1) denotes the prior class probability or mprior. This difference has several desired
properties for assessing local distributional differences: λ(s) is always bounded, unlike other
popular discrepancy measures, such as the density ratio, p(s|Y = 1)/p(s|Y = 0), and the
density difference, p(s|Y = 1) − p(s|Y = 0), itself. Furthermore, the posterior difference
does not decay to zero as fast as p(s) which leads to high sensitivity to detect differences
in low density regions; for example, in the case of balanced classes, λ(s) takes a value of
+1

2 , when p(s|Y = 1) ) p(s|Y = 0), and a value of −1
2 , when p(s|Y = 1) * p(s|Y = 0),

regardless of the actual magnitudes of p(s), p(s|Y = 1), and p(s|Y = 0).

In summary, our method tests for distributional differences in labeled sequence data as
follows:

1. Decide on a suitable model for the marginal distribution of {Yt }t≥0.
2. Apply Algorithm 1 to compute the p-value for testing the hypotheses in equation (3).
3. If H0 is rejected, then examine local posterior differences (6) to identify what patterns

s in the state space S of sequence data contributed the most to the rejection.

5. Theory. This section provides theoretical justification for our bootstrap procedure for
testing equation (3). In particular, we show that Algorithm 1 controls the type I error asymp-
totically.

ASSUMPTION 1 (Stationary sequence). {(S<t , Yt )}t≥0 is a stationary sequence, where
S<t ∈ S and Yt ∈ {0,1}

Assumption 1 is needed for the hypothesis in equation (2) to be well defined.

ASSUMPTION 2 (Conditional independence). {(S<t , Yt )}t≥0 satisfies the DAG of Set-
ting C (Figure 2).

Assumption 2 encodes the conditional independences required for our method to control
type I error.

In this section we denote the test statistic by

λ(D) =
∫ (

m̂post(s) − m̂prior
)2

dQ(s),(8)
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where Q is any fixed measure over S , and m̂post and m̂prior are obtained using a training set
D := {(S<t , Yt )}t∈T1 . In Algorithm 1, Q is the distribution that assigns mass 1/|V| for each
evaluation point s ∈ V , but the results we show here apply to any Q. We also assume that the
regression estimator we use is a continuous function of the training set.

ASSUMPTION 3 (Continuous regression method). m̂post is obtained by applying a re-
gression estimator that is a continuous function of D.

Moreover, let Dt2
0 := {(S<t , Y

0
t )}t∈T1 denote a random draw from the data set used to esti-

mate the null distribution of λ, where {Y 0
t }t∈T1 ∼ Gp̂t2

and G is a distribution over {0,1}|T1|,
indexed by the parameter p̂t2 , which is estimated using a holdout set D′ = {Yt }t∈T2 with
t2 = |T2|. In the method described in Section 4.1, Gp̂t2

is the Markov autoregressive model
m̂seq, but this model can be more general. We require it to converge to the true distribution of
the marginal process {Yt }t∈T1 when the null hypothesis holds:

ASSUMPTION 4 (Consistency of the marginal distribution estimator). The estimator p̂t2
is such that if the null hypothesis is true,

Gp̂t2

Dist−−−−→
t2−→∞ G∗,

where G∗ is the true generating process of {Yt }t∈T1 .

In the following we show two examples where Assumption 4 holds.

EXAMPLE 1. Under Settings A and B (Figure 2), Yt ’s are IID under the null hypothesis.
Thus, G∗ is necessarily a product of IID Bernoulli random variables with some parameter
p. Now, let Gp̂t2

be the product of IID Bernoulli random variables with parameter given

by pt2 := (t2)
−1 ∑

t∈T2
Yt . The law of large numbers implies that pt2

a.s.−−−−→
t2−→∞ p. Thus, the

cumulative distribution function of Y 0
t , given by

FY 0
t
(yt ) =






0 if yt < 0,

1 − pt2 if 0 ≤ yt < 1,

1 otherwise

is such that FY 0
t
(yt ) −−−−→

t2−→∞ FYt (yt ). It follows that

P
(
Y 0

t ≤ yt ,∀t ∈ T1
) =

∏

t∈T1

FY 0
t
(yt )

−−−−→
t2−→∞

∏

t∈T1

FYt (yt ) = P(Yt ≤ yt ,∀t ∈ T1),

and, therefore, Assumption 4 holds.

EXAMPLE 2 (Markov Chain). If (under H0) the process {Yt }t≥0 is an irreducible and
ergodic stationary k-order Markov chain, then the maximum likelihood estimators of the
transition probabilities converge almost surely to the true transition probabilities (Grimmett
and Stirzaker (2020)). The same reasoning of Example 1 then implies that Assumption 4
holds for such estimator under Setting C.

The following theorem shows that, under H0, the test statistic has approximately the same
distribution as the test statistic evaluated at the generated data Dt2

0 .
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THEOREM 1. Assume 1, 2, 3 and 4. Under the null hypothesis,

λ
(
Dt2

0
) Dist−−−−→

t2−→∞ λ(D).

It follows from Theorem 1 that type I error is controlled asymptotically.

COROLLARY 1 (Type I error control). Let

p̂
t2
B(D) := 1

B + 1

(

1 +
B∑

b=1

I
(
λ
(
D(b)) > λ(D)

)
)

be the Monte Carlo p-value for H0, where D(1), . . . ,D(B) IID∼ Dt2
0 . Assume that Assumptions

1, 2, 3 and 4 hold. Then, under the null hypothesis, for any 0 < α < 1,

lim
t2−→∞ lim

B−→∞
P

(
p̂

t2
B(D) ≤ α

) = α.

See McNeely et al. (2023) (Section C) for proofs.

6. Performance of tests on synthetic data. In this section we use synthetic data to
examine the performance (validity, power and diagnostics) of our Markov chain bootstrap
test for the data dependence settings in Figure 2c.

6.1. Synthetic univariate sequence data. For simplicity, we first consider a scalar covari-
ate St of interest. We then create dependent sequences {St , Yt }t≥0 with a logistic generative
model,

(9)

Yt |St ∼ Bernoulli(pt ),

pt = logistic
(
γHδ(St ) + Ut

)
,

Hδ(S) =
{

0 |S| < δ,

S |S| ≥ δ,

St = U ′
t , U ′

t ∼ ARφ′(1),

Ut ∼ ARφ(1).

The variables Ut and U ′
t are spurious variables (not included in the DAGs), which in-

duce autocorrelation in the binary response variable Yt and the covariate St , respectively.
In our toy example, we assume that both Ut and U ′

t are given by autoregressive models

of order 1; more specifically, by AR(1) models of the form Ut = φUt−1 +
√

1 − φ2εt and

U ′
t = φ′U ′

t−1 +
√

1 − φ′2ε′
t , where εt , ε

′
t

iid∼ N(0,1) and φ,φ′∈ [0,1] are parameters for the
1-lag autocorrelation in Ut and U ′

t , respectively. Increasing φ′ thus increases the autocorre-
lation (but not the variance) of the variable of interest St , while increasing φ′ increases the
autocorrelation (but not the variance) of the spurious variable Ut .

The parameter γ ≥ 0 determines the signal strength, or the strength of the dependence of
Yt on St . Testing H0 in equation (1) is equivalent to testing H0 : γ = 0. Ideally, our method
should also be able to identify local regions in the sample space S where the two distributions
are different or the same. To assess our method’s local performance, we hence include a hard
thresholding operator Hδ(·) in equation (9), which, regardless of the signal strength γ , creates
a region in S = R, where P(Y = 1|S = s) = P(Y = 1) for s ∈ (−δ, δ).
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The two parameters φ and φ′ allow us to create synthetic data with the dependence struc-
tures in Figure 2. More specifically:

Setting A: φ′ = φ = 0.
Setting B: φ′ > 0 induces autocorrelation in {St }t≥0 via U ′

t ; φ = 0.
Setting C: φ′ > 0 induces autocorrelation in {St }t≥0 via U ′

t , while φ > 0 induces autocor-
relation in {Yt }t≥0 via Ut .

REMARK 2. In this toy example, St = U ′
t with U ′

t observed. More generally, S<t can
depend on unmeasured variables U′

t as well as confounding variables Zt which are connected
to both S<t and Yt . The latter setting is discussed in Section 8.2. We also note that the spurious
variables Ut and U′

t can have more complex temporal dependence (than in the example), as
indicated by the fully connected sequences in Figure 2c.

6.2. Test results for synthetic data. The logistic generative model in equation (9) pro-
vides a variety of controls over the dependence structure of {(St , Yt )}t≥0. For our synthetic
experiments we implement Algorithm 1 with either the MC bootstrap or the permutation
test for |V| = 250 evaluation points. We estimate the regression function mpost(s) = P(Yt =
1|St = s) using train data {(St , Yt )}t∈T1 and a Nadaraya–Watson (NW) kernel estimator with
an Epanechnikov kernel and the bandwidth chosen as the sample standard deviation of s
divided by |T1|1/5 (Li and Racine (2007)). For the bootstrap test we estimate the label distri-
bution mseq using an order k = 4 Markov chain and labels {Yt }t∈T2 .

Validity: Testing H0 in equation (1) is equivalent to testing H0 : γ = 0 (no signal strength).
To examine validity, we set γ = 0 and simulate 500 independent data sets for each experi-
ment, or combination of “setting” (A, B, C) and “test method” (permutation or MC bootstrap
test with |T1| = |T2| = |V| = 250). That is, each experiment returns 500 p-values. If the test
controls type I error, we expect these p-values to be approximately uniformly distributed.
Figure 4 assesses validity by plotting the difference between the empirical and (uniform) the-
oretical quantiles against the theoretical quantiles; this is equivalent to a standard quantile-

FIG. 4. Synthetic sequence data: Validity of permutation test (left) vs. Markov chain bootstrap test (right). Under
H0 : γ = 0, a valid test is expected to return uniformly distributed p-values. Each curve corresponds to a different
experimental setting (A, B or C), and shows the difference between empirical and uniform theoretical quantiles
for 500 repetitions; see text for details. The gray region represents a 95% pointwise confidence interval derived
from Monte Carlo samples of 500 uniform deviates. Under Setting C (labels dependent even after conditioning on
predictors; purple curve), the permutation test (left panel) does not control the type I error, but the Markov chain
bootstrap test (right panel) does. (Setting A: φ = φ′ = 0. Setting B: φ = 0, φ′ = 0.8. Setting C: φ = φ′ = 0.8.
Sample sizes |T1| = |T2| = |V| = 250.)
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quantile plot with the diagonal subtracted. As a baseline, we provide a 95% confidence inter-
val of this difference based on 10,000 Monte Carlo simulations of 500 uniformly distributed
random variables.

The permutation test (left panel) is valid under Settings A and B, where Yt and Yt−1 are
independent after conditioning on St . However, under Setting C, the p-values tend to have
lower values than a uniform distribution, corresponding to higher-than-nominal type I errors
at most significance levels. The MC bootstrap test (right panel) controls the type I error at all
significance levels for all three dependence settings, indicating that our adjustment to account
for the dependence in Yt | St achieved the desired result.

Power: We next examine how the power of the test H0 : γ = 0 vs. H1 : γ &= 0 depends on:

i. signal strength γ (Figure 5, top),
ii. train sample size |T1| (Figure 5, bottom),

iii. autocorrelation φ in labels {Yt }t≥0 or, equivalently, correlation in {Yt |St }t≥0 (Figure 6,
left) and

iv. autocorrelation φ′ in predictors {St }t≥0 (Figure 6, right).

FIG. 5. Synthetic sequence data: Power as a function of signal strength and training sample size. Top: The
power of all tests increases with the signal strength γ , regardless of dependence setting. The MC bootstrap test
has similar power as the permutation test, but the former test can be applied to the more challenging Setting
C with dependent labels Yt |St . Sample sizes |T1| = |T2| = |V| = 250. Bottom: The power of all tests, at the
alternative γ = 0.5, increases with the train sample size |T1|, regardless of dependence setting. Sample sizes
|T2| = |V| = 250. The filled regions represent 95% pointwise confidence intervals for binomial proportions. (Set-
ting A: φ = φ′ = 0. Setting B: φ = 0, φ′ = 0.8. Setting C: φ = φ′ = 0.8.) Setting C is not shown for the permutation
test, as it is not valid.
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FIG. 6. Synthetic sequence data: Power of bootstrap test as function of autocorrelation of Y (left) and S (right).
The red diamond-shaped markers correspond to Setting A with IID data. The power to detect the signal γ = 0.5
is independent of the correlation in Yt |St (value of φ) but decreases with correlation in St (larger values of
φ′). The filled regions represent 95% pointwise confidence intervals for binomial proportions. (Sample sizes
|T1| = |T2| = |V| = 250.)

At each fixed value of γ , we perform 1000 simulations. Power is then estimated as the fraction
of rejected null hypotheses at the α = 0.05 level. To ensure validity, we choose |T1| ≥ 250, as
before for the MC bootstrap test. (The permutation test is valid by construction under Settings
A and B, but not Setting C.)

As expected, the power increases with the signal strength γ for all tests and dependence
settings (Figure 5, top). When both tests are valid, the MC test has the same power as the
permutation test. The practical implication is that, even if one thinks Setting B is a good
approximation to the problem at hand, there are benefits to applying the MC bootstrap test:
one can achieve similar power with the advantage of having robustness in the event that the
labels are dependent after conditioning on predictors.

Figure 5 (bottom) indicates that the power of the tests may be determined by the quality of
the regression estimator m̂post(s): indeed, Figure 5 (bottom) shows that the power at a fixed
alternative (γ = 0.5) increases with the train sample size |T1|. The latter result is consistent
with Theorem 3.3 of Kim, Lee and Lei (2019), which states for a regression permutation
test under Setting A, that if the chosen regression method m̂post(s) has a small mean inte-
grated squared error, then the power of testing (2) is large over a wide region of alternative
hypotheses.

Figure 6 brings insight on how dependence in {(St , Yt )}t≥0 affect the power of the MC
bootstrap test. The red diamond-shaped markers represent Setting A with IID sequence data
(φ = φ′ = 0). Increasing correlation in the labels Yt |St (larger values of φ) has no effect
on power, while the test remains valid as long as m̂seq is accurate; this further emphasizes
the previous result that the bootstrap test is robust to correlation in Yt |St without sacrific-
ing power. Meanwhile, increasing correlation in St (larger values of φ′) reduces power; this
follows from a reduced effective sample size which, in turn, reduces the quality of m̂post.

Local posterior differences: For our synthetic example the hard thresholding operator
Hδ(·) induces a region s ∈ (−δ,+δ), where p(s|Y = 1) = p(s|Y = 0). If the null hypoth-
esis in equation (2) is rejected, then the estimated LPDs can identify the regions of large vs.
small distributional differences, as long as the regression estimator m̂post is consistent and
the train sample size |T1| is sufficiently large. Figure 7 shows the average and one standard
deviation estimates of the LPD for a NW kernel estimator over 200 simulations.
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FIG. 7. Synthetic sequence data: Local posterior difference in null region. The gray curves in each panel/setting
show the true LPD which is zero in the local null (no signal) region s ∈ (−0.25,0.25). The solid and dashed
colored curves represent the mean and one standard deviation estimates of the LPD over 200 simulated data sets.
These estimates are, on average, close to the true LPD, with the dispersion decreasing for a local nonparametric
estimator (like the NW kernel estimator) as the train sample size increases. The gray bar at the bottom marks
the standard deviation of s; the large variance of the estimated LPDs far from s = 0 is partially due to the
concentration of data near s = 0. (Setting A: φ = φ′ = 0. Setting B: φ = 0, φ′ = 0.8. Setting C: φ = φ′ = 0.8.
Sample sizes |T1| vary, |T2| = |V| = 250.)

7. Relating evolution of TC convection to rapid intensity change. In our TC study,
each observation consists of: (i) a 24-hour sequence S<t = {Xt ,Xt−1, . . . ,Xt−48} of one-
dimensional radial profile functions Xt = 1

2π

∫ 2π
0 Tb,t (r, θ) dθ , sampled every 30 minutes for

a total of 48 profiles (see Figure 3) and (ii) a binary label Yt ∈ {0,1} for the entire sequence.2

Since all individual sample points that are part of a rapid intensity change event are labeled as
Y = 1, a 24-hour sequence S<t with sequence label Yt = 1 could either be part of an ongoing
RI/RW event (if Yt = 1 falls near the end of an event) or be part of the lead-up to RI/RW (if
Yt = 1 falls near the beginning of an event). Analyses of the latter case, such as approaches
that can identify archetypal modes of structural evolution preceding the onset of RI/RW, are
particularly valuable to forecasting of RI/RW events.

We divide our TC study into three parts:

1. Analysis by event type (RI vs. not RI, or RW vs. not RW) within each basin, North
Atlantic (NAL) or eastern North Pacific (ENP) for a total of four different two-sample tests.

2. Case studies of three tropical cyclones (Hurricanes Nicole, Jose and Rosa).
3. Analysis of a subset of our data that consists of sequences immediately preceding RI

onset. (We ask whether our regression two-sample test can find archetypical evolutionary
modes preceding RI onset, and if so, what the “lead time” between typical patterns and the
RI onset would be.)

As in the synthetic example, we estimate mseq in Algorithm 1 with a Markov chain of order
k = 8. The sequence data S<t are, however, much more complex than in our synthetic exam-
ple. This is where we benefit from a more complex regression method for estimating mpost;

2We check that the dominant principal components of Xt and the continuous intensities used to derive Yt are
stationary via augmented Dickey–Fuller tests; the p-value of each test (including tests of the first three ORB
coefficients in McNeely et al. (2020)) are all < 10−20. We conclude that Assumption 1 is reasonable for these
data.
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here, we fit a convolutional neural network to the 24-hour sequence data. Further details on
how we estimate mseq and mpost can be found in McNeely et al. (2023) (Section A).

7.1. Analysis by event type and basin. Significance test. We start by testing H0 :
p(st |Yt = 1) = p(st |Yt = 0) by event type and basin. For rapid intensification (RI) the MC
bootstrap test rejects H0 at level 0.05 for both the NAL and ENP basins, meaning that we
indeed detect a significant difference (p < 0.01) in 24-hour sequences S<t of convective
structure leading up to RI vs. not-RI events. For rapid weakening (RW) the MC bootstrap test
rejects H0 in the ENP basin, but not in the NAL basin.

Our results are consistent with scientists’ understanding of TCs; for rapid intensification, a
TC exhibits a narrow range of convective patterns “primed” to efficiently convert heat energy
to mechanical energy across the storm, hence the structural difference in convection for RI
vs. not-RI events. Rapid weakening, on the other hand, is a more complex process driven
by several factors external to the TC, such as vertical wind shear, which may not be fully
captured by convective structure. In addition, RW is expected to be more difficult to detect
in the NAL basin due to the broader range of possible environmental configurations and the
increased rarity of over-water RW in the basin.

Local posterior difference. Next, we investigate what kind of structural patterns lead to
the rejection of H0 for the RI-NAL, RI-ENP and RW-ENP models. Figure 8 (left) shows a
two-dimensional embedding of the sequence data via principal component analysis (PCA:
computed separately for each basin). Each point represents a 24-hour sequence S<t colored
by its local posterior different (LPD). Note that PCA is only used for purposes of visual-
ization; the test itself is performed on the entire sequence of radial profiles without a prior
dimension reduction step. Figure 8 (right) shows examples of Hovmöller diagrams for six
24-hour sequences S<t sorted by LPD and TC intensity.

TCs are known to have different distributions of S<t for different basins. Nevertheless, we
identify the same type of evolutionary patterns of convective structure for RI-NAL (panel i)
and RI-ENP (panel ii): Positive LPD or “high chance of RI” (see diagrams

!" #$A –
!" #$C for i and

ii) tends to occur for cold cloud tops near the core (dark blue at smaller radius), growing in
coverage and depth of convection with time (dark blue region extending to larger radii when
going from −24 to 0 hours). Meanwhile, negative LPD or “low chance of RI” (see diagrams!" #$D –

!" #$F for i and ii) tends to occur when TCs already possess a well-defined eye (narrow yellow
region near the center) or exhibit decaying core convection (dark blue region decreasing in
size when going from −24 to 0 hours). While such patterns can be directly quantified and
studied in future works, this work remains focused on exploration of entire radial profiles.

Finally, RW-ENP results (panel iii) are not exactly opposite of the RI-ENP results (panel
ii), meaning that “high chance of RW” patterns might not mirror “low chance of RI” pat-
terns, and vice versa. In particular, TCs commonly form strong convective cores without eyes
(iii-

!" #$E ) prior to intensification, form an eye (end of i-
!" #$C ) during RI, then rapidly weaken

by dissipating entirely (ii-
!" #$D , iii-

!" #$A , iii-
!" #$B ) without reforming a cold, eyeless core because

the reduction of intensity is accompanied by a collapse of convection throughout the TC.
Thus, RI/RW-ENP results are not symmetric. Unfortunately, the RW-ENP model also pre-
dominantly captures the trivial result that currently-intense TCs are more likely to weaken;
see Section 8.2 for a discussion of potential corrections.

7.2. Hurricane case studies. Thus far, we have analyzed the collection of 24-hour se-
quences in the 2013–2020 test sample as a whole; however, forecasters monitor individual
storms in real time for signals of RI. Here, we take an in-depth look at our results for three
individual TCs in the test set: Hurricanes Nicole, Jose and Rosa. Each of these storms dis-
play distinct evolutionary modes. We track each TC through its lifetime to investigate the
relationship between the evolution of convective structure, the LPDs and intensity change.
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FIG. 8. Analysis by event type and basin. The MC bootstrap test rejects H0 (i.e., it detects significant differ-
ences in convection) for the RI-NAL, RI-ENP and RW-ENP models; the test is not rejected for the RW-NAL model.
Analyses of local posterior difference (LPD) are shown for the first three models (see panels i–iii). Left column:
Two-dimensional PCA map of sequence data. One point in the map represents a 24-hour structural trajectory (se-
quence of radial profiles) S<t with the color coding for the estimated LPD. Right column: Six 24-hour structural
trajectories at locations

!" #$A –
!" #$F in the PCA map, shown as Hovmöller diagrams (recall Figure 3). The examples

for each study are selected at random from each combination of LPD sign (positive LPD:
!" #$A –

!" #$C ; negative LPD:!" #$D –
!" #$F ) and TC intensity (Tropical Storm:

!" #$A ,
!" #$D ; Category 1–2:

!" #$B ,
!" #$E ; Category 3–5:

!" #$C ,
!" #$F ); see text for a

discussion of the results.
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FIG. 9. Case studies of Hurricanes Nicole [NAL 2016, i], Jose [NAL 2017, ii] and Rosa [ENP 2018, iii]. Left:
Structural trajectories of each storm through its entire lifetime, with the sidebar to the right showing the LPD at
each 30-minute observation; each LPD value is evaluated using the preceding 24-hour sequence for an RI model
(trained on the train sample for that basin) with positive values in red and negative values in blue. Right: Storm
intensity over time, where filled vs. empty circles mark RI and RW events, respectively. The physical track of the
storm across the North Atlantic is shown inset, with the same time points labeled. Panel (i): For Hurricane Nicole,
the LPDs capture rapidly intensifying periods (

!" #$A ,
!" #$C ,

!" #$D ), collapsing convection
!" #$B and the decay of the TC

eye
!" #$E . Panel (ii): Hurricane Jose was subjected to high vertical wind shear near September 9, which our model

does not account for; while the core convection of the TC remained poised for RI, high shear instead caused
rapid weakening. Panel (iii): Hurricane Rosa exhibited two interesting phenomena captured by the LPDs. First, it
experienced a pause in its rapid intensification

!" #$A ; the LPDs indicate an ongoing RI threat at this time, consistent
with the resumption of intensification 18 hours later. Second, beginning on September 28, the TC underwent an
eyewall replacement cycle, associated with weakening. The LPDs mark this shift at the TC’s peak intensity as well
as the brief period (following

!" #$C ) where eyewall replacement is completed prior to landfall.
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Figure 9 (left) shows the evolution of radial profiles for each storm. Appended to the right
of these profiles is a sidebar showing the LPDs from the RI model for the associated basin.
The right panels display the evolution of each storm’s intensity, where filled and hollow
markers indicate RI and RW events, respectively. The storm’s physical track over the ocean
is shown as an inset. These three hurricane case studies respectively highlight: (i) signals
which lead RI, (ii) the effect of vertical wind shear and (iii) the appearance of an eyewall
replacement cycle (a process by which a second eyewall forms, robbing the TC of energy as
it shrinks to replace the original eyewall).

Panel (i) depicts Hurricane Nicole [2016]. The TC underwent RI
!" #$A on October 6 before

its intensity stalled while influenced by the outflow from Hurricane Matthew [2016] which
induced vertical wind shear

!" #$B . Several days later, Nicole reintensified
!" #$C ,

!" #$D before again
weakening and then transitioning into an extratropical system

!" #$E . The LPDs in Figure 9 ap-
pear to align with intensity changes and the emergence of deep convection

!" #$A ,
!" #$C and eye

formation
!" #$D . The structural trajectories immediately preceding

!" #$A and
!" #$C are particularly

interesting: the TC has not yet begun to intensify rapidly, but 24-hour sequences, including
and prior to

!" #$A and
!" #$C , have strongly positive LPDs. These results indicate that structural

trajectories of radial profiles in the North Atlantic may contain signals of RI prior to on-
set.

Panel (ii) shows Hurricane Jose [2017] and highlights the importance of vertical wind
shear. This TC exhibited deep convection in the core for nearly two weeks, remaining at
elevated RI risk according to the RI-NAL posterior differences. However, after an initial
period of RI, high vertical wind shear disrupted the TC structure around September 9. The
TC decayed from 135 kt to about 70 kt and never appreciably intensified again, despite several
periods of elevated LPDs prior to

!" #$D . The underlying regression m̂post does not account for the
vertical wind shear which prevented the TC’s intensification; see Section 8.2 for a discussion
about how to potentially account for external factors such as vertical wind shear.

Finally, panel (iii) depicts the short-lived eastern North Pacific TC Hurricane Rosa [2018]
which underwent an extended period of RI before beginning an eyewall replacement cycle.
This evolution included two interesting phenomena. First, the TC experienced a pause in
its rapid intensification

!" #$A ; the LPDs indicate an ongoing RI threat at this time, consistent
with the resumption of intensification 12–18 hours later. Second, beginning on September
28, the TC underwent an eyewall replacement cycle which manifests as a expansion of the
eye accompanied by an evening out of convection across the storm. Such cycles typically
result in a decrease of the TC’s maximum sustained winds. The LPDs mark this shift at the
TC’s peak intensity as well as the brief period

!" #$C where eyewall replacement is completed
prior to landfall.

7.3. Structural trajectories preceding rapid intensification. In the previous section, case
studies indicated that positive LPDs can lead RI events. That is, they may signal convective
structure primed for RI prior to RI onset. That core convection can predict RI is known; at
least one RII forecast model, used by the NHC, includes the fraction of GOES pixels between
50 and 200 km with temperatures below −30◦C as a predictor (Kaplan et al. (2015)). We
would thus expect our LPDs to contain some signal leading RI.

In this section we hone in on a subset of the RI-NAL test sample, which represents com-
plete 24-hour sequences S<t , leading up to RI onset points (such as points i-

!" #$A and i-
!" #$C in

Figure 9). This leaves us with a total of 36 sequences, visualized in the PCA map of Figure 10
(left). We then investigate whether we are able to detect RI within the 48 hours prior to onset,
and if so, what the lead time might be. As before, a positive posterior difference indicates
p(st |Yt = 1) > p(st |Yt = 0). Because S<t here encodes the recent evolution of convective
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FIG. 10. Detecting RI prior to onset. Left: PCA map of a subset of the RI-NAL test sample, representing 24-hour
sequences prior to RI onset. We show 36 events with at least 24 hours of nonmissing radial profiles Xt (i.e., at least
one sequence S<t ). Right: Examples of 48-hour structural trajectories preceding RI onset. The local posterior
differences, shown in the bar to the left of each map, largely signal TCs with deep core convection in the last 24
hours as “primed for RI.”

structure, we interpret LPD λ(st ) ) 0 prior to RI as an indication that the TC at time t ex-
hibits convective structures primed for RI onset. That is, λ(st ) ) 0 in these cases indicates
an elevated risk of RI based on convective evolution alone.

In 30 (83%) out of 36 onsets, the RI-NAL LPDs indicate an above-average RI threat at
onset. In 28 (78%) and 24 (66%) onsets, LPDs indicate an above-average RI threat six or 12
hours prior to onset, respectively. Some example trajectories are shown in Figure 10 (right).
Prior to RI onset, TCs tend to exhibit deep core convection, evidence of strong outflow (in-
dicated by the downward slant of S<t ) and often pronounced diurnal cycles (oscillations
in S<t over time). These results indicate that structural trajectories or LPDs from our test
could serve as valuable inputs to RI forecast models such as the SHIPS-RII (Kaplan et al.
(2015)).

8. Limitations and potential extensions of methods.

8.1. Adding multiple data sources, environmental variables and other functional features.
Deep convection, as revealed by IR imagery, is only one ingredient required for RI onset.
Our current analysis does not include environmental variables, such as vertical wind shear,
which are known to affect RI. Our analysis also neglects asymmetric patterns in the radial
structure of convection and other key ORB functional features. Although these features were
omitted from the presented analysis, our testing framework for distributional differences of a
binary response variable can be extended to handle these settings with multiple data sources
and different data types.

For a joint analysis of several variables, additional predictors can be added to the regres-
sion model m̂post so that the sequence S<t consists of, for example, both structural features
(e.g., ORB functions) and environmental features (e.g., vertical wind shear or sea surface tem-
peratures). Furthermore, the CNN model can easily handle multiple inputs, including other
observation bands (e.g., the water vapor-sensitive 6.9 µm GOES band or microwave imagery
from polar-orbiting satellites) and ORB functions, other than radial profiles (e.g., the size of
temperature level sets as a function of the temperature threshold; see McNeely et al. (2019),
McNeely et al. (2020)). These inputs could be included as isolated channels that combine at
either the dense layer (with separate feature extraction layers) or at the logistic layer (with
separate feature extraction and dense layers).
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In particular, the current TC analysis of GOES IR-imagery can be extended to capture
asymmetry in convective structure by separating the radial profiles into four quadrants. Our
ongoing work on structural forecasting illustrates the promise of such an approach (McNeely
et al. (2022)).

8.2. Adjusting for other variables. Our presented framework detects potential associa-
tions between high-dimensional time series and binary labels. Any detected association could
be caused by variables that confound the relationship between the label and the covariates of
interest. Our methodology can be adjusted to account for confounding variables by: (1) gen-
eralizing the test of independence to a test of conditional independence and (2) including
additional covariates in the regression problem:

Suppose that we want to detect distributional differences in sequence data {S<t }t≥0, pre-
ceding an event Yt = 1 vs. a nonevent Yt = 0, after adjusting for the effect of other variables
with sequence data {Z<t }t≥0. For example, wind shear might confound the relationship be-
tween convective structures and RI or RW. Assuming a stationary process {(S<t ,Z<t , Yt )}t≥0,
hence omitting t , we test conditional independence

(10)
H0 : p(s|Y = 1,Z = z) = p(s|Y = 0,Z = z) for all s ∈ S and all z vs.

H1 : p(s|Y = 1,Z = z) &= p(s|Y = 0,Z = z) for some s ∈ S or z.

These hypotheses are equivalent to

(11)
H0 : P(Y = 1|S = s,Z = z) = P(Y = 1|Z = z) for all s ∈ S and all z vs.

H1 : P(Y = 1|S = s,Z = z) &= P(Y = 1|Z = z) for some s ∈ S or z.

Analogous to equation (4), we can define a regression test statistic λ based on the difference
between an estimate of P(Y = 1|S = s,Z = z) and P(Y = 1|Z = z). Note that if Z is associ-
ated with both S and Y , then a permutation test is not valid, even for Setting A with IID data,
because of lack of exchangeability under H0. One solution for (IID as well as DID) sequence
data {(S<t ,Z<t , Yt )}t≥0 is to extend our bootstrap test to a procedure where one estimates
the distribution of the label series {Yt }t≥0 conditional on Z.

Regarding TC rapid intensity change, the admission of confounders would improve the
interpretability of both the RI and RW tests. In the case of RI, wind shear (Z) is a powerful
environmental predictor and can inhibit intensification Y of a TC with otherwise favorable
structure S (e.g., Hurricane Jose [2017], Figure 9, ii-C). Meanwhile, the results for RW (Fig-
ure 8(iii)) appear to weakly capture the obvious relationship: stronger storms are more likely
to rapidly weaken. By accounting for the effect of current intensity (Z), we could better assess
the relationship between structural evolution (S) and intensity change (Y ).

8.3. Local P-values. In this work we refer to the local posterior difference (equation (6))
as a local diagnostic, rather than as a local p-value, because empirical results show that we do
not control the type I error of a pointwise test H0(s) : P(Y = 1|S = s) = P(Y = 1) at current
sample sizes. The LPD value can, however, in principle, be used to test the local null

H ε
0 (s) : P

(
Y = 1|S = s′) = P(Y = 1) for all s′ ∈ B(s; ε),(12)

where B is a ball of radius ε centered at s. In McNeely et al. (2023) we show that, under DAG
B, the local p-values (12) are valid if the regression estimator m̂post only uses the observations
in D such that S ∈ B(s; ε). The latter assumption holds for regression estimators that are
based on partitions, such as tree-based estimators (random forests, boosting methods) as well
as smoothing kernel estimators with finite support.
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8.4. Bootstrapping the label series. To estimate the null distribution of the test statistic
λ (3), we currently assume a k-step Markov chain and draw new labels from the Markov
autoregressive model (5). There are other ways one can bootstrap the label distribution, in-
cluding adopting sampling schemes that model long-range dependence in the label sequences.
For a review of bootstrap methods for dependent data, see, for example, Bühlmann (2002),
Horowitz (2003), and Kreiss and Paparoditis (2011).

9. Conclusions. We describe a statistical framework for analyzing the relationship be-
tween complex high-dimensional data {Xt }t≥0 and labels {Yt }t≥0. For DID sequence data
{(St , Yt )}t≥0, where S<t = {Xt−T ,Xt−T +1, . . . ,Xt } and T > 0, we propose a two-sample
test (equation (2) and Algorithm 1) with minimal assumptions beyond stationarity. The test
relies on two simple key ideas: (i) a test statistic based on the posterior difference P(Y =
1|S) − P(S), which we estimate using a machine learning algorithm suitable for the data at
hand (empirical results indicate that the test power depends on the quality of the regression
estimate, Section 6 and Figure 5) and (ii) a bootstrap test, where we estimate the marginal
distribution of {Yt }t≥0 (consistency guarantees asymptotic validity, Theorem 1). Our frame-
work provides interpretable diagnostics in local posterior differences (Section 7) and can be
extended to include longer-range dependence structures (Section 8.4), multiple data sources
(Section 8.1) and potential confounding variables (Section 8.2).

9.1. TC results. We detect a distributional difference between sequences leading up to RI
vs. not-RI events in both the North Atlantic and eastern North Pacific basins (p < 0.01). Local
posterior differences for RI-NAL and RI-ENP indicate that specific types of convection—
deep and deepening core convection—are present both before and during RI (Figures 8
and 9). Furthermore, we observe that particular convective structures are necessary for RI
(Figure 10) and thus useful indicators of future RI, but they are not sufficient to trigger RI
on their own (Figure 9, ii), as the TC environment (e.g., vertical wind shear and ocean heat
content) must also support intensification. Thus, while our current results have apparent value
for RI forecasting, an analysis of structural trajectories alongside environmental factors, such
as vertical wind shear, promises better understanding of RI and may improve analysis of RW
events as well.

When posing the same question regarding RW vs. not-RW events, we do not detect a
difference in the NAL basin (p = 0.18); this is expected, as RW is more likely to be driven by
a variety of internal and external factors not well captured by convective distribution, whereas
RI generally requires TC convective structure to be capable of sustaining rapid energy uptake.
However, the ENP basin is characterized by a narrow spatial region of conditions favorable
to TC development such as warm ocean waters and moist air; this homogeneity leads to a
significant signal for RW in the ENP basin (p < 0.01).

9.2. Broader impact. While we apply our methods to meteorology, the proposed sta-
tistical framework is applicable to any labeled DID sequence data. Labeled video or other
sequence data are common in automation, medical monitoring and multiple domains in the
physical sciences; in many of these areas, the ability to identify high-risk patterns in spa-
tiotemporal data could prove transformative. The flexibility of our framework in admitting a
fusion of multiple data sources and adjustment for other variables is also vital to analyzing
the complex systems in the environmental and physical sciences and many other domains.
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SUPPLEMENTARY MATERIAL

Supplemental text (DOI: 10.1214/22-AOAS1668SUPPA; .pdf). The online supplement
contains a description of our CNN regressor in Section 7, our algorithm for labeling RI and
RW events, and a proof of Theorem 1.

Code files (DOI: 10.1214/22-AOAS1668SUPPB; .zip). All code used to produce the re-
sults in this paper is available at https://github.com/ihmcneely/ORB2sample and as online
supplementary material. All data used are publicly available: HURDAT2 at https://www.nhc.
noaa.gov/data/#hurdat and MERGIR at https://disc.gsfc.nasa.gov/datasets/GPM_MERGIR_
1/summary, which can both be accessed via provided code.
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