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ABSTRACT: Methane emissions from oil and natural gas sources are Potential Differences in Emission Estimates among
often characterized as a methane emissions intensity, which is typically 10 Different Allocation Methods in the Eagle Ford Shale -
defined as methane emissions divided by natural gas production. 2 1 —— 20-year GWP applied =
Reporting methane emission intensities implicitly assigns all methane %100 ] —— 100-year GWP applied | =
emissions from production activities to natural gas, but many of the 2 %0 ] \ 40
regions that supply large amounts of natural gas to world markets “i 60 1 0
simultaneously produce natural gas, natural gas liquids, and oil. The g 40 - 20
importance of whether methane and other greenhouse gas emissions g 20 | 10
from production activities are allocated to natural gas alone or to ¢ o 0

multiple products was examined using data from the Eagle Ford Shale Oil regions —> Wet gas regions — Dry gas regions
production region in south central Texas. In the Eagle Ford, differences

in emission allocation methods can produce differences in estimated emissions of 50—110 g CO,e/MJ of natural gas. This is
comparable to the difference in combustion emissions between coal and natural gas.

B INTRODUCTION differences in the greenhouse gas emissions attributed to
natural gas from different types of sources.

Methane emissions from oil and natural gas sources are
often reported as a methane emission intensity. Methane
emission intensity has generally been defined either as methane

Natural gas production and use have increased substantially
over the past decade. In the United States, now the world’s
largest natural gas producer, approximately 40.9 trillion cubic
feet of natural gas was produced in 2019, providing more than

40 quadrillion BTU (quads) of energy. In contrast, 15 years emissions divided by methane production or as methane
earlier, in 2004, approximately 24 trillion cubic feet of natural emissions divided by natural gas production. This measure of
gas was produced, delivering ~25 quads of primary energy,1 methane emissions has been reported in many measurement
Globally, natural gas provides approximately 140 quads of studies, including “top-down” measurements, and “bottom-up”
primary energy, and the United States exported 4.6 trillion measurements”.” While this metric has the merit of being
cubic feet of gas to these markets, an amount that has readily understood, it also has the potential to lead to double
increased by a factor of 5 since 2004. This means that natural counting of methane emissions in oil and gas production
gas from the United States, now largely produced using regions that produce both natural gas and hydrocarbon liquid
horizontal drilling and hydraulic fracturing of shale formations, products. In the United States, the Permian, Bakken, Denver
is both an important domestic energy source and a global Julesburg (Niobrara), Eagle Ford, and southwestern Marcellus
product. production region all produce substantial quantities of
Increased use of natural gas can result in lower carbon hydrocarbon liquids along with natural gas, and the gas
dioxide emissions if it displaces the use of coal or petroleum; produced in these regions accounts for a substantial fraction of
however, these lower greenhouse gas emissions of natural gas total United States production.
can be eroded by emissions of methane. Methane, the principal For regions that produce liquid hydrocarbon products along
component of natural gas, is a greenhouse gas with a global with natural gas, methane emissions must be allocated to one

warming potential (GWP) 28—34 times higher than carbon
dioxide over a hundred year period.”

As global trade in natural gas increases, users of natural gas
are increasingly calling for accounting of greenhouse gas
emissions associated with producing the fuel, including
methane emissions. For global trade in natural gas to effectively
account for greenhouse gas emissions, clear, consistent, and
transparent metrics for greenhouse gas emission reporting are
needed. The emissions reporting systems currently in place,
however, are heterogeneous and can lead to significant

or more of the products. A methane emission intensity metric
implicitly assigns all methane emissions to natural gas. This
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Figure 1. Gas-to-oil ratios of Eagle Ford wells (a) and variation in greenhouse gas emission intensities (emissions divided by energy content of all

) 8,14

products) (b

emission allocation is not consistent, however, with emission
allocation schemes used for other types of fuels. The life cycle
assessment (LCA) community has developed approaches to
distributing emissions from multiproduct processes to
individual fuel products. As an example, consider the
evaluation of greenhouse gas emissions associated with
gasoline fuels, as they are evaluated for compliance with the
California Low Carbon Fuel Standard (LCFS)* or renewable
fuel standards for transportation fuels. In performing these
evaluations, emissions from petroleum refineries must be
allocated among the multiple products produced by a refinery.
For example, greenhouse gas emissions associated with the
energy consumed in a crude oil distillation column are
allocated among all of the products and product precursors
emerging from that column (gasoline, diesel, jet fuel,
lubricating oil, and others), based on the energy content of
the products.””” If straight run gasoline emerging from a crude
oil column accounts for 10% of the energy content of the
product and product precursor streams emerging from that
column, it would be assigned 10% of the emissions associated
with operating the column.
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Similarly, if an oil and gas production region generates
natural gas, natural gas liquids (NGLs, largely ethane, propane
and butanes), and petroleum liquids (crude oil and
condensate), then greenhouse gas emissions associated with
the production region would be assigned to all of the products
(natural gas, NGLs, and petroleum liquids), based on the total
energy content of each of the product flows. This distribution
of emissions among products is referred to as an allocation
method and is used in LCA tools, which in turn may be used in
evaluating compliance with regulations. While other allocation
methods, based on mass, or market value, are possible for
products from oil and gas production regions, energy allocation
is a rational choice given that the products are valued for their
energy content rather than their mass, and market values can
fluctuate over time. In regions such as the Eagle Ford Shale of
south central Texas, which produce substantial quantities of
natural gas, natural gas liquids, and oil, substantial fractions of
greenhouse gas emissions are attributed to each product. A
recent assessment concluded that approximately half of the
greenhouse gas emissions in the Eagle Ford region would be
assigned to natural gas and half to natural gas liquids and oil,
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Figure 2. (a) Emissions of methane assigned to natural gas in 12 subregions in the Eagle Ford oil and gas production region, assuming all emissions
are assigned to natural gas (Scenario 1). Emissions are allocated between natural gas and natural gas liquids (Scenario 2). Emissions are allocated to
oil, natural gas, and natural gas liquids (Scenario 3). (b) Carbon dioxide emissions attributed to natural gas for the same scenarios.

using energy-based allocations.” A similar assessment for the
Permian Basin would assign only about 30% of greenhouse gas
emissions to the natural gas product, if emissions were
attributed based on the energy content of the produced oil,
natural gas, and natural gas liquids. In contrast, almost all
emissions would be assigned to the natural gas product in
basins that produce few liquid products.

Consistency in allocation methods is important if different
routes to low carbon fuels are to be compared. Without
accounting for coproducts in oil and gas production regions,
greenhouse gas emissions associated with natural gas
production will be overestimated compared to peer fuel
pathways, including petroleum and biofuels, for which
coproducts have been allocated emissions (e.g., electricity in
the case of cellulosic ethanol or animal feed in the case of corn
grain ethanol).”'’ Further, should oil from a natural gas
production region be assigned greenhouse gas emissions
without considering that all methane or total greenhouse gas
emissions in that region had been assigned to natural gas,
double counting of emissions will be an inevitable outcome.
Double counting has been addressed for other coproduced
energy products but not in the instance of oil and gas region
products.'’ To illustrate the magnitudes of differences in
reported greenhouse gas emissions that can result from
different emissions allocation methods, this letter uses data
from the Eagle Ford Shale in south Central Texas.
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B MATERIALS AND METHODS

Case Study Region. The Eagle Ford Shale is an oil- and
gas-producing region in south central Texas that includes oil
wells, wet gas (oil and natural gas production) wells, and dry
gas wells. Data from 2013 are used in the assessment, since the
performance of a 2013 basin-wide emission inventory was
evaluated using observational data.'” In 2013, the Eagle Ford
Shale produced approximately 1 million barrels (bbl) of oil
(approximately 160 million liters) and 4 billion standard cubic
feet (scf) of gas per day (approximately 0.11 billion m* gas/
day), leading to an average gas-to-oil ratio (GOR) for the
region of 4000 scf/bbL."> However, GORs at individual wells,
and in subregions within the Eagle Ford, range from less than
2000 to more than 50,000."* This wide range in GORs makes
the subregions within the Eagle Ford representative of a broad
range of natural gas production regions.

Greenhouse Gas Emissions. Greenhouse gas emissions
for 12 subregions within the Eagle Ford have been reported by
Chen et al.® These subregions are shown in Figure 1a and have
GORs that range from less than 2000 in regions 1—5 (oil
wells) to >50,000 in region 12 (dry gas wells).'* Emissions
were estimated at the equipment level at well sites and at the
facility level for gathering and processing facilities. Production
of methane, ethane, propane, butanes, and liquid products
were estimated and tracked at the individual well level®
allowing emissions to be allocated to either single products or
multiple products. A mapping of greenhouse gas emission
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intensities, where the emissions are normalized by all of the
energy products, is provided in Figure 1b. Details of system
boundaries and sources of data are provided in the Supporting
Information (SI).

Methane Emission Allocation Scenarios. Energy-based
allocation is applied in this work since oil and gas products are
primarily energy products. Methane emissions allocated to
natural gas were calculated for three scenarios in each of the 12
subregions of the Eagle Ford: (1) assign all methane emissions
to the natural gas product, (2) assign all methane emissions to
the natural gas and the NGLs, allocating emissions between
the natural gas and NGLs based their energy content, and (3)
assign methane emissions to natural gas, NGLs, and oil,
allocating emissions among the three products based their
energy content. Scenario 1 is consistent with a methane
emission intensity reporting scheme. Scenario 3 is consistent
with commonly used LCA allocation approaches.” Scenario 2
is an intermediate choice that highlights the importance of
distinguishing between the natural gas product and all of the
produced gases (methane, ethane, propane, and butane).
Methane emissions will be reported in units of g of methane
emissions per MJ of energy content of the products. Results
also are reported as carbon dioxide equivalents (CO,e) per MJ
of energy content of the products, using global warming
potentials'® of 28 (100 year GWP) and 84 (20 year GWP).

Carbon Dioxide Allocation Scenarios. The emission
allocation scenarios used for methane were also applied to
carbon dioxide emissions in each subregion. A large fraction of
the carbon dioxide emissions in the Eagle Ford region are
associated with gas compression and gas processing. Scenario 1
assigns all of these emissions to natural gas. Scenario 2
allocates these emissions between the natural gas and NGL
products that are compressed and processed. Scenario 3
assigns some of these compression and processing emissions to
oil products.

B RESULTS AND DISCUSSION

Figure 2 reports methane emissions and carbon dioxide
emissions assigned to natural gas under the three allocation
scenarios. Scenario 1 assigns all of the emissions to natural gas.
Scenario 2 assigns the emissions to natural gas and natural gas
liquids based on their energy content. Scenario 3 assigns
emissions to oil, natural gas, and natural gas liquids based on
their energy content. For the methane contributions reported
in Figure 2a, multiple vertical scales are presented, using a 100-
year GWP for methane, a 20-year GWP for methane, and the
mass of methane, all normalized by the energy content of the
natural gas. If GWPs other than the 20-year and 100-year
values used in this work are preferred, the mass of methane can
be combined with alternate GWPs to calculate carbon dioxide
equivalents.

The fractions of emissions assigned to natural gas using the
three allocation scenarios are similar for methane and carbon
dioxide; however, the carbon dioxide equivalents associated
with the methane emissions are much larger than the carbon
dioxide emissions, making the choice for methane emission
allocation the most significant issue. The magnitude of the
difference in total emissions allocated to natural gas can be up
to 50—110 g CO,e/M]J fuel, depending on the GWP chosen
for methane. Since the difference in the combustion emissions
between a MJ of coal (85% (mass) C, 25 M]/kg heating value)
and a MJ of natural gas (75% (mass) C, SO MJ/kg) is
approximately 70 g CO,/M]J, the choice of allocation methods
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for upstream emissions will determine, for many natural gas
supply chains that involve multiple products, whether life cycle
greenhouse gas emissions for natural gas are greater or less
than those for coal. The differences between allocation
methods are largest for the oil-producing subregion of the
Eagle Ford (regions 1—5), smallest for the dry gas production
region (region 12), and intermediate for the wet gas regions
(regions 6—11). Because it has these different types of
production, the Eagle Ford and its subregions can be viewed
as broadly representative of many types of production regions.

As global systems for characterizing emissions from natural
gas value chains emerge, clarity and transparency are critical.
For natural gas from wet gas and oil production regions, the
choice of method for allocating emissions among the natural
gas, natural gas liquid, and oil will have a significant impact on
the greenhouse gas emissions attributed to these products.
This choice of allocation method is a policy decision, informed
by scientific and engineering analyses; it is not a purely
scientific decision since, for all of the choices, all emissions are
accounted for, and the choice merely determines how to assign
the emissions among different products. To promote clarity
and transparency, and until a global consensus is reached
regarding the most appropriate allocation method for upstream
oil and gas emissions, if normalized methane emissions are
reported, they should be reported on three bases: normalized
by the energy content of the natural gas produced, by the
energy content of the natural gas and natural gas liquids
produced, and by the energy content of the oil, natural gas, and
natural gas liquids produced. If a normalized emission unit
expressed as a percentage is desired, the methane emissions
could be reported based on their energy content. This type of
reporting requires knowledge of product flows in oil and gas
production regions, but these data are broadly available, as
described in the SI.
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