
A GPU-accelerated Data Transformation

Framework Rooted in Pushdown Transducers

Tri Nguyen and Michela Becchi

NC State University

Raleigh, USA

{tmnguye7, mbecchi}@ncsu.edu

Abstract—With the rise of machine learning and data analytics,
the ability to process large and diverse sets of data efficiently has
become crucial. Research has shown that data transformation is
a key performance bottleneck for applications across a variety
of domains, from data analytics to scientific computing. Custom
hardware accelerators and GPU implementations targeting spe-
cific data transformation tasks can alleviate the problem, but
suffer from narrow applicability and lack of generality.

To tackle this problem, we propose a GPU-accelerated data
transformation engine grounded on pushdown transducers. We
define an extended pushdown transducer abstraction (effPDT)
that allows expressing a wide range of data transformations in
a memory-efficient fashion, and is thus amenable for GPU de-
ployment. The effPDT execution engine utilizes a data streaming
model that reduces the application’s memory requirements sig-
nificantly, facilitating deployment on high- and low-end systems.
We showcase our GPU-accelerated engine on a diverse set of
transformation tasks covering data encoding/decoding, parsing
and querying of structured data, and matrix transformation,
and we evaluate it against publicly available CPU and GPU
library implementations of the considered data transformation
tasks. To understand the benefits of the effPDT abstraction,
we extend our data transformation engine to also support
finite state transducers (FSTs), we map the considered data
transformation tasks on FSTs, and we compare the performance
and resource requirements of the FST-based and the effPDT-
based implementations.

Index Terms—Keywords - Finite state transducers, Pushdown
transducers, Data transformation, GPU acceleration

I. INTRODUCTION

In recent years, with the rise of machine learning and data

analytics, the ability to process and analyze large and diverse

sets of data efficiently has been crucial for performance of

applications in both the business and scientific realms. Many

of these applications require some form of data transformation

[1]–[4]. In addition, researchers have shown that data trans-

formation is a key performance bottleneck for in-memory data

analytics systems, especially at times when the data size can

scale to the order of petabytes [5]–[8].

Several classes of data transformation tasks are at the core of

popular applications. For example, consider extract-transform-

load (ETL) workloads. ETL applications require extracting

information from potentially large data sources using different

formats (e.g., CSV, XML, JSON), transforming the data

(e.g., by decoding, filtering, sanitizing, encoding), and loading

them into a destination data storage. Data transformation

kernels used by these applications encompass: parsing and

data query, data encoding and decoding, transformation into

a target format, and data analysis (e.g., generation of statistics

representations such as histograms). Further, data transforma-

tion is part of scientific applications. An important problem

for applications relying on sparse matrices or graphs is the

selection of an encoding format that allows for storing the data

compactly without introducing a performance bottleneck for

the application [9]. For example, consider sparse matrix vector

multiplication (SpMV), an important kernel in many scientific

applications [10]. Due to its memory access patterns, a sparse

matrix layout that maximizes compression might negatively

affect the performance of the computation. Furthermore, the

selection of the most suitable matrix format can be affected by

the hardware characteristics of the underlying system. There

has been a considerable amount of work on the design of

sparse matrix formats that can offer good storage, algorithmic

and system requirements [11]–[15]. The ability to transform

between these formats is crucial for achieving a good trade-off

between storage requirements and computation performance.

Due to high branch misprediction rate, poor cache locality

and irregular memory access patterns, many of these data

transformation kernels exhibit poor performance on CPU.

Past work has proposed accelerated CPU libraries, custom

GPU implementations, and hardware accelerators for specific

data transformation tasks, such as matrix transformation [16],

data encoding and decoding [17], parsing [18], and other

data transformation kernels from social media, audio, video

and bio-signal data [19]–[22]. These solutions, however, lack

generality and flexibility.

A more general approach consists of identifying the com-

putational abstraction at the core of these tasks and providing

an efficient implementation of that abstraction. This idea has

motivated a large of body of work on automata processing,

which has led to a number of GPU [23]–[25], FPGA [26]–

[28] and custom hardware designs [29]–[34]. Since finite

state automata recognize regular languages, those works ad-

dress search applications requiring various kinds of pattern

matching on textual data. Automata traversal accelerators,

however, cannot be simply adapted or extended to support

data transformation. By focusing on pattern search, they don’t

provide efficient support for dynamic output [27], [32], [35].

Nevertheless, the successes reported on automata processing

suggest that accelerating a computational abstraction can be

beneficial for an entire class of applications.

215

2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)

2640-0316/22/$31.00 ©2022 IEEE
DOI 10.1109/HiPC56025.2022.00038

2
0
2
2
 I

E
E

E
 2

9
th

 I
n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 H

ig
h
 P

er
fo

rm
an

ce
 C

o
m

p
u
ti

n
g
,
D

at
a,

 a
n
d
 A

n
al

y
ti

cs
 (

H
iP

C
)

| 9
7
8
-1

-6
6
5
4
-9

4
2
3
-6

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/H

iP
C

5
6
0
2
5
.2

0
2
2
.0

0
0
3
8

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.

In this work, we aim to provide a general and efficient

means to support data transformation kernels used by popular

applications and emerging workloads. To this end, we study

the effective GPU implementation of pushdown transducers,

a computational abstraction that covers a broad range of

data transformation tasks. We note that standard pushdown

transducers can exhibit memory requirements and complexities

that make them not amenable for GPU acceleration. To address

this problem, we propose effPDTs, a memory-efficient, GPU-

friendly extension of pushdown transducers. Compared to

previous works that explore theoretical and syntactical aspects

of various categories of transducers [36]–[38], our proposed

extensions arise from the goal of supporting a wide range of

data transformation kernels in an efficient manner.

The final outcome of this work is a flexible GPU-accelerated

data transformation framework. Our specific contributions are:

• The design of effPDT, a compact pushdown transducer

model suitable for GPU acceleration;

• A data transformation engine based on effPDTs, includ-

ing a set of pre- and post-processing kernels to partition

input and output streams across compute units;

• The mapping of a diverse set of data transformation tasks

on effPDTs and standard finite state transducers (FSTs);

• An evaluation of our GPU-accelerated data transforma-

tion framework against publicly available custom CPU

and GPU libraries;

• A performance comparison between an effPDT- and a

FST- based engine.

Our experiments show an average speedup of 17x over custom

CPU libraries, and performance on par with, and in some cases

better than, custom GPU libraries. In addition, our results

confirm that, due to their memory efficiency, not only are

effPDTs preferable to FSTs, but they also provide consistent

performance independent of algorithmic-specific parameters

settings.

Our framework will be available in open-source at the

following link: https://github.com/tringuyen0601/effPDT

II. BACKGROUND

In this section, we provide some background on finite

state transducers and pushdown transducers. In all cases, data

transformation is performed by traversing the transducer based

on the content of the input stream.

A. Finite State Transducers

Formally, a finite state transducer (FST) [39] is defined as

a quintuple N = (Q, Σ, δ, s, F) such that:

• Q is a finite set of states;

• Σ is an alphabet such that Σ = ΣI ∪ ΣO, where ΣI is the

input alphabet and ΣO is the output alphabet;

• δ ⊆ Q × (ΣI ∪ {ε}) × Q × (ΣO ∪ {ε}) is a finite state

transition relationship, ε being the empty string;

• s ∈ Q is the start state;

• F ⊆ Q is a set of final states.

Operationally, an FST transforms a streaming input with

alphabet ΣI into a streaming output with alphabet ΣO based

(a) FST transforming “dog” into “pet”.

(b) PDT that reads a csv file containing a set of first and last names and generates

the anadromes of the first names.

Fig. 1: Examples of finite state and pushdown transducers (FST and PDT).
Final states are highlighted in red.

on the transition relationship δ. Specifically, an FST transition

r = (q1, σO1, q2, σO2) belonging to δ is triggered when state

q1 is active and input symbol σO1 is fed to the FST, and it

causes state q2 to be activated and symbol σO2 to be generated.

Symbols are written to the output stream upon traversal of a

final state. For example, the FST in Figure 1(a) transforms

input “dog” into output “pet”.

We define execution context as the sequence of symbols

that were processed before the current input symbol. An FST

conveys its execution context through the currently activated

states. In a deterministic FST, the output generated at each step

depends solely on the execution context, and not on future

inputs. In practice, this means that the execution will never

diverge into two traversal paths.

FST have found application in speech and language process-

ing (for example, for the representation of large dictionaries,

grammars and in computational morphology) [40].

B. Pushdown Transducers

Formally, a pushdown transducer (PDT) [39] is defined as

a quintuple P = (Q, Σ, δ, s, F) such that:

• Q is a finite set of states;

• Σ is an alphabet such that Σ = ΣI ∪ ΣO ∪ ΣS, where ΣI

is the input alphabet, ΣO is the output alphabet and ΣS

is the stack alphabet;

• δ ⊆ Q × (ΣI ∪ {ε}) × (ΣS ∪ {ε}) × Q × (ΣO ∪ {ε})

× (ΣS ∪ {ε}) is a finite state transition relationship;

• s ∈ Q is the start state;

• F ⊆ Q is a set of final states.

A PDT is essentially a finite state transducer with a stack.

In addition to writing to an output stream, a PDT can pop

symbols from a stack and push symbols onto it. A PDT

transition r = (q1, σI1, σS1, q2, σO2 σS2) is triggered when

state q1 is active, the current input symbol is σI1, and symbol

σS1 is at the top of the stack. Upon traversal, the transition

will activate a new state q2, generate output symbol σO2, pop

symbol σS1 from the stack and push symbol σS2 onto it.

For example, Figure 1(b) shows a PDT that reads a comma-

separated values file of first and last names, extracts the

first names, and outputs their anadromes. The stack allows

recording the first names for later output generation.

A PDT conveys its execution context through the currently

activated states and the current top of the stack. By adding

memory to a FST, the stack leads to an increased expressive

216

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.

power and, if an equivalent FST exists, it allows to signifi-

cantly reduce the number of states. For example, a FST can

count a predefined number of occurrences of a symbol in an

input stream while a PDT can count an arbitrary number of

occurrences of that same symbol. Our proposed effPDT model

extends pushdown transducers.

III. EFFICIENT PUSHDOWN TRANSDUCERS

Pushdown transducers provide a solid theoretical foundation

for data transformation processes that involve deep contextual

evaluations, including various forms of data encoding, decod-

ing, and parsing. However, their expressive power and ability

to encode data transformations in a compact way are limited by

their reliance on a single stack, their use of a single input and

output stream, and their lack of arithmetic support. Our goal is

two-fold: on the one hand, we want to support a wide range

of data transformations; on the other, we aim at a compact

representation that can be efficiently deployed on GPU (and

potentially other hardware accelerators). With this in mind,

we introduce effPDT, a transducer model aimed to describe

a wide variety of data transformations in a memory-efficient

manner. To this end, we apply the following extensions to

PDTs: multiple stacks, multiple input and output streams, and

arithmetic operations associated to states.

A. Definition

Formally, a effPDT is defined as a 10-tuple TF = (Q, Σ, S,

I, O, ∆, δ, γ, s, F) such that:

• Q is a finite set of states;

• Σ is an alphabet such that Σ = ΣI ∪ ΣO ∪ ΣS, where ΣI

is the input alphabet, ΣO is the output alphabet and ΣS

is the stack alphabet;

• S is a finite set of stacks;

• I is a finite set of input streams;

• O is a finite set of output streams;

• ∆ is a finite set of arithmetic/logical operators;

• δ ⊆ Q × I × (ΣI∪{ε}) × S × (ΣS∪{ε}) × Q × O

× (ΣO∪{ε}) × S × (ΣS∪{ε}) is a finite state transition

relationship;

• γ ⊆ Q × (∆ ∪{⊥}) × P(S ∪{ε}) is the action relation-

ship, with ⊥ denoting a lack of action on a state;

• s ∈ Q is the start state;

• F ⊆ Q is a set of final states.

A effPDT transition r = (q1, i1, σI1, s1, σS1, q2, o2, σO2, s2,

σS2) is triggered when state q1 is active, the current symbol

on input stream i1 is σI1, and symbol σS1 is at the top of

stack s1. Upon traversal, the transition will activate state q2,

write symbol σO2 onto output stream o2, pop symbol σS1 from

stack s1, and push symbol σS2 onto stack s2. We assume a

deterministic transducer, where the execution never diverges

into multiple traversal paths. Action g=(q, ψ, s1,..,sk) indicates

that the activation of state q causes the top of stack s1 to be

assigned the result of applying operator ψ to the values on

top of stacks s2,..,sk. Without loss of generality, we assume

at most one action per state (a sequence of arithmetic/logic

operations can be implemented by associating the actions to

states connected by epsilon transitions).

B. Expressive Power of effPDTs

Here, we discuss the effect of the three PDT extensions

listed above on expressive power. Multiple stacks: It has

been proven that a two-stack pushdown automaton (and, by

extension, a k-stack pushdown automaton) is equivalent to

a Turing machine [39]. In fact, the two stacks effectively

create an addressable memory, which is equivalent to a Turing

machine’s two-way tape. Since PDTs are a generalization of

push-down automata, the multiple stacks extension provides to

effPDTs the expressive power of a Turing machine. Multiple

input and output streams: It has been proven that a multi-

tape Turing machine can be simulated through a single-tape

machine [41]. Therefore, the multiple input/output streams

extension does not add expressive power to effPDTs. Arith-

metic operations: Since arithmetic and boolean functions can

be simulated through Turing machines, this extension does

not add expressive power. In summary, while the multiple

stacks extension provides Turing equivalence, the other two

extensions are meant to reduce complexity and increase effi-

ciency/performance, but do not add expressive power.

C. Practical Considerations on PDT Extensions

Here, we motivate in a pragmatic fashion the extensions to

traditional transducers that we have introduced in effPDT.

Multiple stacks. The stack allows saving the input history.

On each transition, a PDT can either compare the top of the

stack with the current input, or use the stack as a source for dy-

namic output creation. However, a PDT does not offer a mech-

anism to compare or modify symbols at different positions of

the stack. The extension of multiple stacks avoids this problem,

and allows the transducer to dynamically evaluate past symbols

regardless of the order they appear, while architecturally using

the same amount of memory as a shared stack. In addition,

stacks allow for more compact transducer representations,

resulting in space efficiency. To understand why, consider the

practical case where the PDT has a finite stack (an infinite

stack is simulated by using a stack large enough for the

considered problem). A PDT with a finite stack can support

the same transformations as a FST. However, the PDT does so

with significantly fewer states and transitions. To understand

why, consider the FST construction process [39]. Essentially,

FST construction requires: (i) enumerating the sequences of

outputs corresponding to admissible input subsequences for

the considered data transformation, (ii) generating a non-

deterministic FST where each input/output sequence pair is

mapped to a sequence of states (using ε transitions when the

two sequences have different length), and (iii) reducing the

FST by subset construction (optional optimization step). For

example, consider the PDT of Figure 1(b). A finite stack of

size n would support first names up to n character long. Thus,

an equivalent FST could be constructed by enumerating all

possible first names (i.e., all possible sequences of length n),

each leading to a chain of states of length n. As a result,

217

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.

using an FST rather than a PDT would cause a combinatorial

growth in the number of states. In practice, the use of stacks

allows for compact transducers with a number of states and

transitions that is independent of the alphabet size and other

data transformation specific parameters (see Section VII). On

GPU, this allows for compact transducer representations that

can make efficient use of the available memories.

Multiple input and output streams. FST and PDT assume

a single input and a single output stream. This model supports

well transformations that convert a single stream of data into

a single output stream. However, some data transformations

can be more effectively expressed using multiple input/output

streams. For example, sparse matrix layouts are often orga-

nized into separate arrays, and mapping different arrays onto

separate streams enables more efficient implementations. Gen-

erally, a system with a single output stream can accommodate

multiple outputs by interleaving the data corresponding to the

different outputs and then adding a post-processing step to split

the output stream, or by requiring multiple passes over the

input. Both approaches, however, limit efficiency. Similarly,

a system with a single input stream cannot handle efficiently

transformations where data belonging to an input can change

the processing decision of another input. For example, the

compressed sparse row (CSR) format consists of three arrays

(values, column indexes and row indexes); in the CSR-to-dense

matrix transformation, a value from each of these arrays must

be read before a dense matrix value can be produced.

Arithmetic/logic operations. effPDT associates actions (in

the form of arithmetic operations on stack values) to states.

In standard transducer models, states serve only as source and

destination of transitions, and can indicate input acceptance

(final states). Transitions read symbols from the input stream

and the stack, and they write symbols to the output stream

and the stack. Since transitions cannot modify values read,

they can only produce a static output in the case of FST

or an output including previously processed symbols in the

case of PDT. Adding arithmetic operations to states avoids

this limitation. Arithmetic operations on stack values can also

allow for a significant reduction in the transducer size. For

example, instead of enumerating all possible input values

on distinct transitions, each with a different output value, a

effPDT can save an input value to a stack, modify it and then

output it using a single transition. Furthermore, if a stack is

used to count the number of occurrences of a given symbol,

the use of arithmetic operations enables supporting the same

transformation using a single-element stack (a counter).

D. effPDT Construction

While providing a programming model for effPDT is out-

side the scope of this paper, here we describe briefly the

systematic approach we take to construct effPDT.

First, we break the data transformation algorithm into a

series of sequential steps, which include: initialize a stack,

push an input symbol on a stack, write a symbol (either

from a stack or from an input stream) into an output stream,

perform arithmetic operation on top of a stack. The sequential

(a) FST implementing RLE for alphabet {a,b} and maximum run-length of n

(b) effPDT implemeting RLE (generic alphabet size and maximum run-length)

Fig. 2: FST and effPDT for the run-length encoding (RLE) scheme, accepting
states are colored red.

program can contain if-statements (dependent on the value

of an input or of the top of a stack) and loops expressed

using goto-statements. The number of input/output streams

and of stacks required and the stacks’ size (which can be made

configurable) depend on the algorithmic needs. For example,

in the transformation in Figure 1(b) the size of the stack can be

limited to the maximum length of the names to be processed.

Second, we go through the sequential description and create

and connect states according to the algorithmic steps and the

control-flow of the program. For example: stack initialization

instructions are associated to the entry state, reading input and

writing output require one transition to a new state, sequences

of arithmetic instructions require a chain of states connected

through (non-consuming) epsilon transitions - one for each

arithmetic instructions, if-statements require adding multiple

outgoing transitions from a single state, goto-statements re-

quire backward transitions to a previously instantiated state.

For example, Figure 2 shows the FST and effPDT for run-

length encoding (RLE), a data transformation that compresses

an input text by storing runs of data (i.e., consecutive occur-

rences of the same symbol) as a single data value and count.

For example, input aaaabb is transformed into output a4b2.

FST Construction: As explained above, building an FST

requires enumerating all possible input/output sequence pairs

(for RLE: a/a1, aa/a2, aaa/a3, etc.) and creating a chain

of states for each pair. The ε symbol indicates that the

corresponding transition either does not consume any input

symbol, or does not generate any output. Transitions with

the same input and output can be combined, leading to the

corresponding target states to be merged.

effPDT Construction: The algorithm is broken down into

the following steps: (a) initialize a counter (stack S1), (b) read

an input symbol i; (c) save i on a stack (S0); (d) write i to

the output stream, (e) read a symbol i; (f) if i is equal to

the symbol recorded in S0 increment a counter (stack S1) and

read the next symbol (goto-statement to (e)), else save i on

S0 and write the counter S1 to the output; (g) write S0 to

the output stream; (h) read the next symbol (goto-statement

to (e)). Step (a) is associated to the entry state 0. Reading an

218

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.

State Action

0 ANDI, S[1],0,S[1]

1 ADDI, S[1],1,S[1]

2 ANDI, S[1],0,S[1]

(a) State Table

Tx Src st Input cond Stack cond Dst st Output Stack

0 0 I[0]==* ε-ε 1 O[0]=I[0] S[0]=I[0]

1 1 I[0]==* S[0]==I[0] 1 ε-ε ε-ε
2 1 I[0]==* S[0]==!I[0] 2 O[0]=S[1] S[0]=I[0]

3 2 ε-ε ε-ε 1 O[0]=S[0] ε-ε

(b) Transition Table

Fig. 3: State and transition tables for the RLE effPDT of Figure 2(b)

input and updating an output and a stack can be done in a

single transition. So, steps (b-d) can be combined in a single

transition causing the creation of a new state 1. Similarly, steps

(e-f) can be combined. The if-statement in step (f) leads to two

outgoing transitions from state 1 conditional on i being equal

to S0. The goto-statements cause the creation of transitions to

the already instantiated state 1.

IV. EFFPDT ENGINE

In this section, we describe the effPDT execution model.

A. Components

At its core, the effPDT engine comprises three data struc-

tures: topology, I/O buffers and contextual information. The

topology is static and encoded through state table, transition

table and stacks. Figures 3(a) and (b) show the state and

transition tables for the RLE effPDT of Figure 2(b). The

I/O component contains an input/output buffering system that

operates in parallel with the execution engine to ensure that

the effPDT engine never stalls waiting on an input or for the

output to clear up. Lastly, the contextual component describes

the effPDT’s current state, including: currently activated state,

stacks’ content, and number of symbols read from the input

and written to the output.

B. Execution Engine

The effPDT’s execution engine consists of three stages:

the action, matching and writing stages. The engine keeps

executing as long as it has an active state and an input

to process. At the beginning of execution, the transducer’s

entry state is active. At each execution step, the three stages

operate as follows. In the action stage, the engine executes the

arithmetic/logic instruction (if any) associated to the active

state. Then, it scans the transition table to determine the

transitions outgoing from that state (pending transitions). In

the matching stage, the engine evaluates the pending transi-

tions and, based on their input symbol and stack condition,

it determines the transition to be taken (matching transition).

We make the distinction between a pass-through (*) and an

empty (ε) symbol. While conditions on both these symbols

always evaluate to true, a *-symbol indicates an input/stack

symbol consumption, whereas an ε-symbol does not. In the

writing stage, the engine updates the selected output stream

and stack (if any) based on information on the matching

transition, and then sets the active state to the destination state

of that transition. If no matching transition is found, the writing

stage has no effect.

TABLE I: Summary of effPDT data structures

Domain Component Operation Access Location

Topology
State Table Read Only Global Const
Tx Table Read Only Global Const

I/O Input/Output streams Read/Write Global Global

Context

Stacks Read/Write Thread Shared
Pending Tx Read/Write Thread Local
Matching Tx Read/Write Thread Local
Active State Read/Write Thread Local
I/O status Read/Write Thread Local

C. Design Considerations

effPDT’s two-table layout (represented in Figure 3) aims to

keep transducer traversal cost low. To this end, the state table

is directly indexed using the state identifiers. In the transition

table, transitions outgoing from the same state are laid out

contiguously. Besides the information shown in Figure 3, each

row of the state table contains two additional fields: the index

of the first outgoing transition from the corresponding state,

and the number of its outgoing transitions.

The effPDT engine uses two circular buffers: one for the

input and the other for the output. In both cases, one buffer

interacts with the transducer while the other interacts with

the disk. On the input side, the inner buffer is read one

symbol at a time by the transducer while the outer buffer is

periodically filled with data from the disk. On the output side,

the transducer writes to the inner buffer symbol by symbol

while the execution engine transfers the content of the outer

buffer to disk once it is full. Periodic data transfers between

inner and outer buffers overlap with transducer’s accesses to

the inner buffers. On both input and output, the outer buffer

prevents execution from stalling waiting on the inner buffer

while still allowing bulk data transfers to and from disk or

between CPU and GPU memory.

V. GPU IMPLEMENTATION

In this section, we discuss effPDTs’ GPU deployment.

A. Processing Engine

Parallelization Approach: In order to allow for parallel

execution, the effPDT engine partitions the input, assigns

chunks of it to worker threads for processing, and then merges

the outputs of the threads. The design aims to partition

and place the data efficiently while minimizing inter-thread

dependencies. Context information is accessed locally by each

thread and is replicated across threads to ensure independent

execution environments without the need for synchronization.

Besides active state, stack content and pending/matching tran-

sitions, context information includes the per-thread starting

offset within the input and output streams, chunk size and

counters to manage each thread’s input/output coverage.

Data structures: Table I summarizes the data structures

used by the effPDT engine, their access type and granularity,

and their placement in the GPU’s memory hierarchy.

The state and transition tables are read-only data structures

globally accessed by all threads. Thus, they are stored in

constant memory, which is cached. We recall that the use of

stacks allows for reducing, in some cases significantly, the

219

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.

number of states and transitions necessary to express a data

transformation through a transducer. This allows topology data

of effPDTs to fit in the relatively small constant memory.

Stacks are read/write data structures. To allow for fast

access, they are stored in shared memory. We implement

each stack as a circular buffer. We provide basic push/pop
commands, as well as a popall command, which writes the

entire stack content to the output. This command allows for

more efficient support of transformations involving parsing

of structured data. We recall that arithmetic operations are

performed on the top of the stack (specified by the tail pointer).

The remaining thread-level context data include active state,

pending and matching transitions, number of symbols read and

written by each thread, and chunk offset and length. Pending

transitions are stored as base and offset into the transition table,

requiring two 32-bit variables. The other context data require

one variable each. Thus, we store this information in the low

latency, high bandwidth register file.

Input and output streams are stored in global memory.

B. Pre/Post-processing Kernels

Along with the transducers processing engine, the GPU im-

plementation includes a library of kernels to partition the input

stream across threads and consolidate the outputs generated

by the threads into a single output stream (pre-processing and

post-processing kernels, respectively).

Pre-processing kernels generate the offset and length of the

input chunks assigned to the threads. Our effPDT framework

supports static and dynamic partitioning. In static partitioning,

each thread is assigned an equal size chunk of the input.

In addition, the system allows defining specific algorithmic

requirements on the chunk size. For example, the run-length

decoding and bit-packing encoding schemes require the chunk

size to be a multiple of 2 and 4, respectively. Furthermore,

the variable length encoding/decoding schemes require chunks

to overlap. Dynamic partitioning, on the other hand, allows

threads to be assigned differently sized chunks. Chunk sizes

can be specified by the user or determined using an additional

transducer. Once the chunk sizes are determined, the pre-

processing kernels perform a prefix sum to quickly generate

each thread’s offset within the input stream.

Post-processing consists of two steps: post-compute and

post-copy. Post-compute refers to any additional processing

required before merging the output chunks. Our framework

includes methods to support common operations such as tail

reduction and head-tail merging. In addition, it includes an

interface for users to provide custom post-compute kernels.

Post-copy refers to the process of eliminating any holes in

the output stream. For some data transformations, the size of

the output chunks can be determined statically based on the

size of the input, the number of threads, and possibly other

parameters. For transformations where this is not possible,

buffers storing the output chunks must be over-provisioned,

leading to holes between output chunks. In these cases, the

post-processing kernel will perform a fragment copy, which

copies output chunks contiguously to the final output.

TABLE II: Benchmarks summary

Application Input dataset CPU Baseline GPU Baseline

Data
Enc/Dec

Cantebery Corpus,
Artifical Corpus [42]

Parquet [17]
Nvidia
Thrust [43]

Matrix
Transform

Texas A&M Sparse
Matrix [44]

Intel
MKL [16]

Nvidia
cuSparse [43]

Histogram
RDU Accident and
Crime Report [45]

GSL
Histogram [18]

Nvidia CUB
[43]

CSV
Query

RDU Accident and
Crime Report [45]

Pandas [46]
Rapids AI
[47]

For example, let us consider the pre- and post-processing

operations required by run-length encoding (RLE). During pre-

processing, the input offsets and chunk sizes can be determined

through static partitioning, and a simple Memset call is enough

to initialize the array of chunk sizes. During post-processing,

head-tail merging is required to handle cases where the last

symbol of one chunk is the same as the first symbol of the

next chunk. Finally, since for RLE the output size cannot be

determined a priori, a fragment copy is performed to eliminate

any holes within the output before transferring it back to CPU.

VI. EXPERIMENTAL SETUP

In this section, we detail the software and hardware setups

used in our experiments. We evaluated our effPDT engine on

11 data transformations from four application classes: data

encoding/decoding, matrix layout transformations, histogram

construction and structured data query (using the CSV format).

A. Input Datasets and Baseline CPU and GPU Kernels

Table II summarizes the data transformation kernels and in-

put datasets used in our experiments, and the custom CPU and

GPU library implementations we compared against. We note

that GPU libraries are available only for a subset of the data

transformation kernels considered. Data encoding/decoding

kernels include: bit-packing encoding and decoding (BPE

and BPD), variable-length encoding and decoding (VLE and

VLD), and run-length encoding and decoding (RLE and RLD).

Custom CPU code is from the C++ Parquet library [17],

custom GPU code is available only for RLE and RLD and

is part of Nvidia Thrust library [43]. Inputs are from the

Canterbury Corpus and Artificial Corpus Datasets [42] with

file sizes ranging from 4KB to 2MB. Matrix transforma-

tions kernels include: the transformation from coordinate

list to compressed sparse row format (COO-CSR), and the

transformation from dense to compressed sparse row format

(Dense-CSR). Custom CPU code is from Intel MKL Sparse

Matrix library [16], custom GPU code is from Nvidia cuSparse

library [43]. Input datasets are from Texas A&M Open Source

sparse matrix collection [44] with sparsity ranging from 0%

to 99% (g7jac160, xenon1, copter, imcol and trec). The

histogram construction kernel uses a 4-bin and a 10-bin

setup. Custom CPU code is from GNU GSL Histogram library

[18], GPU code is from Nvidia CUB library [43]. Datasets

are from Raleigh Sustainable Project (longitude, latitude) and

Crash Location (FeetFromRoad) [45]. CSV query kernels are

transformations that extract a subset of a CSV file based on a

220

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Benchmarks: topological characteristics and resource utilization.
Shared and constant memory utilization per thread-block (Sh-M and Const-M)
is measured in KB. We set the block size to 128 threads.

Topology Architecture
#State #Tx #S Registers Sh-M Const-M

BPD 15 15 4 23 3.07 1.51
BPE 17 17 3 23 2.56 1.66
VLD 14 15 6 23 4.10 1.48
VLE 6 7 2 23 2.05 0.91
RLD 3 4 2 23 2.05 0.69
RLE 3 4 2 23 2.05 0.69
COO-CSR 11 14 4 23 4.10 1.36
CSR-D 15 17 6 23 5.12 1.60
Histogram 6 10 4 23 3.58 1.1
CSV Encd 8 15 2 23 2.56 1.3
CSV Raw 10 17 2 23 18.9 1.4

specified user condition. We conduct our experiments on raw,

unedited CSV and dictionary-encoded CSV. Custom CPU code

is from Pandas [46], GPU code is from Nvidia’s RAPIDS AI

[47]. Datasets are Raleigh Sustainable Project (owner, status)

and Crash Location (FeetFromRoad, Day Of Week) [45]. For

each data transformation kernel, in Section VII we report the

average performance across the input datasets used.

B. EffPDTs Characteristics

Topological characteristics: Table III reports the number

of states, transitions and stacks of the resulting effPDTs, as

well as their resource requirements (registers, shared memory

and constant memory). We also encode a subset of these data

transformations using FSTs: Table V reports the FST-related

data for different parameters settings.

Number of streams: The effPDTs implementing the data

encoding/decoding, histogram and CSV querying kernels in-

clude one input and one output stream. The COO-CSR effPDT

uses three input and three output streams, while the Dense-

CSR effPDT uses one input and three output streams.

Considerations on CSV query kernels: CSV query re-

quires recording the content of one or more fields, and

subsequently writing the recorded fields to the output stream

if a particular condition is met. For example, consider a CSV

file that contains 3 columns: Name, Age, and Height. If a user

queries the Name of all people with a given Height, the effPDT

must temporarily record the content of the Name field until

the Height field is read and the condition on it is evaluated.

For a dictionary-encoded-CSV file (CSV encd), one-element

stacks are enough to record the value of a field. On the other

hand, CSV files with fields of arbitrary content (CSV Raw)

require deeper stacks. Thus, the effPDTs for CSV encd and

CSV raw have a similar number of states and transitions

and the same number of stacks. However, CSV raw requires

more shared memory to accommodate the stacks (Table III).

C. Pre/Post Processing

Table IV summarizes the type of pre- and post-processing

required by each transformation. Pre-processing: For all trans-

formations except COO-CSR and CSV query, we perform

static partitioning. Since static partitioning leads to equally

sized chunks, it only requires a simple CudaMemset to ini-

tialize the array storing the chunk sizes. The input offset

of each thread is then determined by multiplying the chunk

size by the thread identifier. For Dense-CSR, the rows of the

matrix are equally distributed across threads. COO-CSR and

CSV query use a custom primitive to calculate the per-thread

chunk size, and prefix sum (Scan) to set each thread’s input

offset. Post-processing: VLD, RLE, matrix transformations

and histogram construction require post-computation before

output merging. We recall that, for transformations whose

output size cannot be determined statically, a fragment copy is

required before the output is transferred to the CPU. Fragment

copy is implemented through a prefix sum followed by a

copy-to-offset operation. All kernels except BPD, BPE and

histogram construction require this extra copy.

D. System Configuration

We conducted our experiments on a system equipped with

two Intel Xeon E5-2630 processors running at 2.2GHz, each

with ten physical cores and a total 25MB of cache. The system

is also equipped with an NVIDIA TITAN XP GPU, which

has 12GB global memory, 64KB constant memory and 98KB

shared memory per streaming multi-processor (SM). The GPU

has 30 SMs operating at a maximum clock rate of 1.58GHz.

In addition, our system has 130GB RAM and a 1TB SSD.

The system has installed Ubuntu 18.04, gcc 7.5 and CUDA

toolkit 11.7. Our baseline CPU experiments are parallelized to

process multiple input streams in parallel and use all available

CPU cores. The effPDT- and FST-based kernels are configured

to use all the available SMs.

VII. PERFORMANCE EVALUATION

We performed two sets of experiments. In the first set

(Section VII-A), we evaluated the performance of our GPU-

accelerated effPDT engine over custom CPU and GPU li-

braries (whenever available). In the second set (Section VII-B),

we compared the performance of effPDTs and FSTs when

varying algorithmic parameters that affect the FST size.

A. Overall Performance of GPU-accelerated effPDT engine

1) Comparison with Custom CPU Libraries & Impact of

Data Placement on Performance: Figure 4 shows the speedup

reported by our effPDT engine over the custom CPU libraries

listed in Section VI-A. The first data series (CPU effPDT)

corresponds to a parallel CPU implementation of the effPDT

engine configured to use all available cores. For our GPU

TABLE IV: Pre/post-processing schemes. * indicates special requirements on
chunk size.

Pre-processing Post-processing
Dependency Operation Compute Copy

BPD Input size Memset None Full
BPE Input size* Memset None Full
VLD Input size* Memset Tail-reduce Frag
VLE Input size Memset None Frag
RLD Input size* Memset None Frag
RLE Input size Memset Merge Frag
COO-CSR Row (Var) Cust+Scan Scan Frag
Dense-CSR Row (Const) Memset VectorAdd Frag
Histogram Input size Memset VectorAdd Full
CSV Encd Row (Var) Cust+Scan None Frag
CSV Raw Row (Var) Cust+Scan None Frag

221

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Speedup of effPDT engine (CPU, GPU/global memory only, GPU/shared+global memory, GPU/constant+global memory, GPU/all memories) over
custom CPU baselines in Table II. The values on the bars indicate the speedup. The last set of bars show the average speedup across the benchmarks.

implementation, we show the results reported using four

memory configurations. In the GPU effPDT gm configuration,

all effPDTs’ data structures are stored in global memory. In

the GPU effPDT sm and GPU effPDT cm configurations, we

either store the stacks in shared memory or the effPDT’s topol-

ogy in constant memory, respectively. Lastly, the GPU effPDT

configuration corresponds to the implementation described in

Section V-A, which utilizes both the constant and shared

memories to maximize the system throughput. The numbers on

the bars are the speedup values reported by each configuration.

The rightmost set of bars show the average results across the

benchmarks. We make the following observations.

First, our GPU engine (GPU effPDT) reports an average

speedup of 17x over the custom CPU library implementations,

which corresponds to an average 11 GB/sec throughput. The

most significant speedups are reported on CSV querying (30x

on average) and histogram construction (28x), followed by

matrix transformation kernels (16x on average), and lastly by

data encoding/decoding (10x on average).

Second, the use of all available GPU memories is key

to performance. When using global memory only, our GPU

engine achieves an average speedup of 2.5x over the custom

CPU libraries and an average throughput of 1 GB/sec. We

observe speedups ranging from 1.2x (VLE) to 5x (BPD)

and throughputs ranging from 309 MB/sec (GVE) to 4.3

GB/sec (dictionary-encoded-CSV querying). Using constant

and shared memory alone brings performance improvements

over the global memory-only setup, with speedups of 4.3x

and 8x over CPU execution. Across the board, shared memory

offers better performance than constant memory.

Finally, our CPU effPDT engine performs similarly or worse

than Parquet on data encoding and decoding (0.7x to 1.38x),

and noticeably worse than the custom CPU libraries for matrix

transformation and CSV querying. We expected to see this

slowdown, since these libraries contain custom implementa-

tions of the considered algorithms while the effPDT design

is generic and intended for GPU acceleration. In particular,

Intel MKL and Pandas are highly efficient libraries and are

the industry standard for their respective application class.

2) Comparison with Custom GPU Libraries: Figure 5 re-

ports the throughputs (in GB/sec) achieved by the custom GPU

libraries listed in Table II and by our GPU-accelerated effPDT

engine on a subset of the considered data transformations. We

did not find custom GPU implementations for BPD, BPE,

VLD and VLE. For the custom libraries, the throughputs

reported do not account for the memory transfers between

CPU and GPU, which would further reduce performance. Our

effPDT engine achieves performance similar to (or slightly

better than) the custom GPU libraries on RLD, RLE and

querying of raw CSV data, it underperforms Nvidia CUB

on histogram construction, and it outperforms cuSparse and

Rapids AI on matrix transformation kernels and querying of

dictionary-encoded-CSV data, respectively. We note that the

matrix transformation kernels provided in cuSparse performed

worse than effPDTs (2.9 and 3.5GB/s compared to 8.7 and

8.1 GB/s) due to the high library setup time. Ignoring the

setup step, cuSparse matrix transformations would achieve

throughputs close to 10GB/s, slightly higher than effPDTs’

results. On the other hand, histogram construction provided

in Nvidia cub performs 1.6x faster than effPDT (19.5 GB/s

compared to 11.76GB/s). This is because histogram construc-

tion is an embarrassingly parallel algorithm with no inter-

thread dependencies. Overall, our engine was able to achieve

an average throughput of 16GB/s across the considered data

transformation workloads, higher than the 11GB/s average

throughput reported by the custom GPU libraries. This result

suggests that our GPU effPDT engine has the potential for

accelerating a variety of data transformations without requiring

custom GPU implementations. In addition, we note that best

results are obtained on CSV query, suggesting that the effPDT

engine can be particularly suitable for parsing structured data.

Fig. 5: Throughputs of custom GPU libraries and GPU effPDT engine

222

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.

(a) Bit-packing Decoding (b) Variable-length Encoding (c) Run-length Encoding

(d) Run-length Decoding (e) COO-CSR (f) Dense-CSR

Fig. 6: Speedup of the effPDT and FST engines over Parquet and Intel MKL, with the parameter settings and FST memory requirements listed in Table V.
The values on the bars indicate the throughput in Gbytes/s.

TABLE V: Characteristics of FSTs implementing the considered data transfor-
mations. For compression, |Σ| is the alphabet size, r is the packing ratio, and l

is the maximum run-length; for matrix transformations, n is the square matrix
dimension. k, m and b indicate thousands, millions and billions, respectively.

Topology Architecture
|Σ|/n/r/l #State #Tx C-M(%) Size

BPD 64/4 322 385 50 27.8KB
St:|Σ|(r+1) + 2 128/4 642 769 100 53.7KB
Tx:|Σ|(r+2) + 1 256/4 1538 1793 200 122KB

512/4 3074 3585 400 243KB

VLE 90/2 372 462 50 32KB
St≈ |Σ|(r+1) +1 160/2 722 882 100 62KB
Tx≈ |Σ|(r+2) 315/2 1497 1812 200 124KB

630/2 3072 3702 400 250KB

RLE 8/10 89 648 50 29KB
St:l|Σ|+|Σ|+1 12/10 133 1452 100 62KB
Tx:|Σ|(|Σ|l +1) 17/10 188 2907 200 122KB

25/10 276 6275 400 256KB

RLD 7/10 393 462 50 32KB
St:|Σ|(l(l+1)/2+1)+1 14/10 785 924 100 64KB
Tx:|Σ|(l(l+3)/2+1) 28/10 1569 1848 200 124KB

57/10 3193 3762 400 253KB

DENSE-CSR 5000 25m 50m 31m 2GB

St: n2 10000 0.1b 0.2b 0.1b 10GB

Tx: 2n2 20000 0.4b 0.8b 0.6b 40GB
40000 1.6b 3.2b 1.8b 120GB

COO-CSR 500 250k 0.1b 78m 5GB

St: n2 600 0.3b 0.2b 0.1b 9GB
Tx: n(n(n-1) +2) 700 0.4b 0.3b 0.2b 15GB

1000 1m 1b 0.6b 43GB

B. Comparison of effPDT- and FST-based Engines

In this section, we compare the memory requirements and

performance of effPDT- and FST-based engines. To perform

this set of experiments, we built a lightweight GPU execution

engine supporting basic FST operations. Specifically, we re-

duced the effPDT engine by removing stack-related operations

and simplifying the state and transition tables. We select six

benchmarks (two encoding, two decoding and two matrix

transformations) that can be expressed through FSTs without

suffering from state explosion.

1) FST Characteristics: For all considered data transforma-

tions, the size of FST topology is dependent on algorithmic

parameters: alphabet size and packing ratio between input and

output for VLE and BPD, alphabet size and maximum run-

length for RLE and RLD, and dimensions of input matrix

for Dense-CSR and COO-CSR. Table V shows the formulas

expressing size of the FST encoding these transformations

(column 1), as well as the number of states, transitions

and memory requirements with different parameters settings

(columns 2-6). For compression/decompression, we selected

parameter settings corresponding to topologies requiring 50%,

100%, 200% and 400% of the available constant memory.

For matrix transformations, however, the available constant

memory can only support matrices up to 1000 elements, far

smaller than the ones used in this work (see Section VI-A).

So, we generated smaller matrices and filled them with data

from the ones of Section VI-A.

2) Memory Requirements: By comparing Tables III and V,

we observe that using FSTs leads to a sizable increase in the

number of states and transitions. For example, in order to

support the 8-bit ASCII alphabet, a BPD FST would need

about 100 times the number of states and transitions of a

effPDT, leading to an increase in the required memory from

1.51KB to 122KB. Similar considerations apply for the other

data transformations. Recall that, differently from FSTs, the

size of effPDTs is independent of the alphabet size, maximum

run-length, etc. In contrast, the size of FSTs increases with

these parameters, leading to configurations that do not fit the

constant memory. In case of matrix transformations, memory

requirements of FST can even exceed the global memory

capacity. For example, with 12GB of GPU memory, a Dense-

CSR FST and a COO-CSR FST cannot support a square matrix

of more than 10000 and 600 rows, respectively. These require-

ments limit the usability of FSTs for matrix transformation.

We note that, while Unified Virtual Memory (UVM) would

allow supporting FSTs exceeding the GPU memory capacity,

using UVM would further decrease system performance due

to page faults overhead and on-the-fly memory transfers.

223

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.

3) System Throughput: Figure 6 shows the performance of

the effPDT and FST GPU engines on experiments conducted

using the parameter settings and FST memory requirements

listed in Table V. As can be seen, the use of FSTs causes a

performance slowdown (over effPDTs) across the board. With

small topologies that fit in constant memory, the slowdown

ranges from 0.02x (Dense-CSR) to 6x (BPD). With larger

topologies exceeding the constant memory capacity, the slow-

down is much more significant, ranging from 4x (RLE) to 22x

(BPD). In the case of matrix transformations (Dense-CSR and

COO-CSR), the FSTs for larger matrices cannot fit into GPU’s

memory. On average, not counting instances where it is not

possible to fit the topology onto GPU memory, we see a 15.7x

slowdown when using FSTs over effPDTs.

To conclude, effPDTs are more compact than FSTs, leading

to lower memory requirements and more data locality. All

these factors affect the throughput positively.

VIII. RELATED WORK

In the field of language theory, FSTs and PDTs have

been introduced by Elgot (1965) and Evey (1963) [39] to

define translation grammars. Since then, various theoretical

extensions have been proposed to support different classes of

application. For example, visibly pushdown transducers [36]

extend PDT with a input-aware stack to support structured

alphabet translation; weighted FSTs [37] assign weights to

transitions and support speech-to-text applications; symbolic

FSTs [38] extend FST transitions with rules over a set of

variables to express applications such as image blurring,

HTML decoding and malware finger printing. While previous

works proposing extensions to transducers primarily explored

their theoretical implications and syntactical definition, our

effPDT model extends PDTs to allow space and time efficient

implementations of a broad range of data transformations. So,

our proposed extensions are grounded in practical needs.

Recent works have investigated techniques to bring trans-

ducer theory to practice. Grathwohl et al. [48] have proposed

a nondeterministic FST language and compiler based on the

idea of decomposing transducers into two machines: an oracle

machine performing disambiguation of the input, and an action

machine triggering output actions. Raghothaman et al. [49]

have defined a transducer-based data query language. Zhao et

al. [50], [51] have introduced methods to accelerate processing

of finite state machines through speculative execution. To the

best of our knowledge, there is lack of work exploring the

hardware acceleration of transducers and their deployment at

scale. Our work represents an effort in this direction.

IX. CONCLUSION AND FUTURE WORK

This work has targeted the design of a flexible GPU-

accelerated data transformation engine. To this end, we have

proposed effPDTs, a computational model that extends PDTs,

can express a wide range of data transformations in a space-

efficient manner, and is amenable for GPU acceleration. We

have showcased our engine on a set of data transformations

covering data encoding and decoding, sparse matrix layout

transformations, histogram construction and query of struc-

tured data. Our evaluation shows significant speedups over

custom CPU implementations, and performance on par with,

or better than, custom GPU implementations. In addition,

we have shown the resource requirements and performance

advantages of effPDTs over FSTs.

Future research directions include: (1) extending our effPDT

engine to support nondeterministic behavior, enabling the

acceleration of compression/decompression (and other) tasks

that require back-tracking (e.g., snappy, deflate, and lz4); (2)

providing a programming model and compiler for effPDTs;

and (3) exploring alternative effPDT implementations.

X. ACKNOWLEDGMENTS

This work was supported by National Science Foundation

awards CNS-1812727 and CCF-1907863.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in OSDI’04: Sixth Symposium on Operating System

Design and Implementation, San Francisco, CA, 2004, pp. 137–150.

[2] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, p. 29–43, oct 2003.

[3] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling memcache at facebook,” in 10th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

13). Lombard, IL: USENIX Association, Apr. 2013, pp. 385–398.

[4] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999, previous number = SIDL-WP-1999-0120.

[5] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making sense of performance in data analytics frameworks,” in 12th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 15). Oakland, CA: USENIX Association, May 2015, pp. 293–
307.

[6] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A Fault-Tolerant abstraction for In-Memory cluster computing,” in 9th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 12). San Jose, CA: USENIX Association, Apr. 2012, pp. 15–28.

[7] S. Kanev, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-
Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” IEEE

Micro, vol. 36, no. 3, pp. 54–59, 2016.

[8] P. Stuedi, A. Trivedi, B. Metzler, and J. Pfefferle, “Darpc: Data center
rpc,” in Proceedings of the ACM Symposium on Cloud Computing,
ser. SOCC ’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 1–13.

[9] Y. Zhao, J. Li, C. Liao, and X. Shen, “Bridging the gap between deep
learning and sparse matrix format selection,” in Proceedings of the

23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, ser. PPoPP ’18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 94–108.

[10] M. F. Khairoutdinov and D. A. Randall, “A cloud resolving model as
a cloud parameterization in the ncar community climate system model:
Preliminary results,” Geophysical Research Letters, vol. 28, no. 18, pp.
3617–3620, 2001.

[11] N. Bell and M. Garland, “Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors,” in Proceedings of the

Conference on High Performance Computing Networking, Storage and

Analysis, 2009, pp. 1–11.

[12] K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “Csx: An extended
compression format for spmv on shared memory systems,” SIGPLAN

Not., vol. 46, no. 8, p. 247–256, feb 2011.

[13] D. Langr and P. Tvrdı́k, “Evaluation criteria for sparse matrix stor-
age formats,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 2, pp. 428–440, 2016.

224

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.

[14] W. Liu and B. Vinter, “Csr5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in Proceedings of the 29th

ACM on International Conference on Supercomputing. New York, NY,
USA: Association for Computing Machinery, 2015, p. 339–350.

[15] B.-Y. Su and K. Keutzer, “Clspmv: A cross-platform opencl spmv
framework on gpus,” in Proceedings of the 26th ACM International

Conference on Supercomputing, ser. ICS ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 353–364.

[16] “Intel mkl.” [Online]. Available: https://www.intel.com/content/www/
us/en/develop/documentation/get-started-with-mkl-for-dpcpp/top.html

[17] A. Parquet. [Online]. Available: https://parquet.apache.org/

[18] “Gnu scientific library.” [Online]. Available: https://www.gnu.org/

[19] S. K. Moon and R. D. Raut, “Hardware-based application of data
security system using general modified secured diamond encoding
embedding approach for enhancing imperceptibility and authentication,”
Multimedia Tools and Applications, vol. 78, no. 15, pp. 22 045–22 076,
Aug 2019.

[20] T. Sugimoto, Y. Nakayama, and T. Komori, “22.2 ch audio encod-
ing/decoding hardware system based on mpeg-4 aac,” IEEE Transactions

on Broadcasting, vol. 63, no. 2, pp. 426–432, 2017.

[21] M. Safieh and J. Freudenberger, “Efficient vlsi architecture for the par-
allel dictionary lzw data compression algorithm,” IET Circuits, Devices

& Systems, vol. 13, no. 5, pp. 576–583, 2019.

[22] H. Wang, T. Wang, L. Liu, H. Sun, and N. Zheng, “Efficient
compression-based line buffer design for image/video processing cir-
cuits,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 27, no. 10, pp. 2423–2433, 2019.

[23] N. Cascarano, P. Rolando, F. Risso, and R. Sisto, “Infant: Nfa pat-
tern matching on gpgpu devices,” SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 5, p. 20–26, oct 2010.

[24] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, and Q. Dong, “Gpu-
based nfa implementation for memory efficient high speed regular ex-
pression matching,” ser. PPoPP ’12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 129–140.

[25] X. Yu and M. Becchi, “Gpu acceleration of regular expression matching
for large datasets: Exploring the implementation space,” in Proceedings

of the ACM International Conference on Computing Frontiers, ser. CF
’13. New York, NY, USA: Association for Computing Machinery,
2013.

[26] R. Sidhu and V. Prasanna, “Fast regular expression matching using
fpgas,” in The 9th Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM’01), 2001, pp. 227–238.

[27] M. Becchi and P. Crowley, “Efficient regular expression evaluation:
Theory to practice,” in Proceedings of the 4th ACM/IEEE Symposium on

Architectures for Networking and Communications Systems, ser. ANCS
’08. New York, NY, USA: Association for Computing Machinery,
2008, p. 50–59.

[28] A. Mitra, W. Najjar, and L. Bhuyan, “Compiling pcre to fpga for accel-
erating snort ids,” in Proceedings of the 3rd ACM/IEEE Symposium on

Architecture for Networking and Communications Systems, ser. ANCS
’07. New York, NY, USA: Association for Computing Machinery,
2007, p. 127–136.

[29] B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture for
high-throughput regular-expression pattern matching,” in Proceedings of

the 33rd Annual International Symposium on Computer Architecture, ser.
ISCA ’06. USA: IEEE Computer Society, 2006, p. 191–202.

[30] J. V. Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and
K. Atasu, “Designing a programmable wire-speed regular-expression
matching accelerator,” in 2012 45th Annual IEEE/ACM International

Symposium on Microarchitecture, 2012, pp. 461–472.

[31] Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien, “Fast support
for unstructured data processing: The unified automata processor,” in
Proceedings of the 48th International Symposium on Microarchitecture,
ser. MICRO-48. New York, NY, USA: Association for Computing
Machinery, 2015, p. 533–545.

[32] P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,
“An efficient and scalable semiconductor architecture for parallel au-
tomata processing,” IEEE Transactions on Parallel and Distributed

Systems, vol. 25, no. 12, pp. 3088–3098, 2014.

[33] E. Sadredini, R. Rahimi, V. Verma, M. Stan, and K. Skadron, “eap: A
scalable and efficient in-memory accelerator for automata processing,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO 2019, Columbus, OH, USA, October 12-

16, 2019. ACM, 2019, pp. 87–99.

[34] H. Liu, M. A. Ibrahim, O. Kayiran, S. Pai, and A. Jog, “Architectural
support for efficient large-scale automata processing,” in 51st Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO

2018, Fukuoka, Japan, October 20-24, 2018. IEEE Computer Society,
2018, pp. 908–920.

[35] J. Wadden, K. Angstadt, and K. Skadron, “Characterizing and mit-
igating output reporting bottlenecks in spatial automata processing
architectures,” in IEEE International Symposium on High Performance

Computer Architecture, HPCA 2018, Vienna, Austria, February 24-28,

2018. IEEE Computer Society, 2018, pp. 749–761.
[36] E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais, and J.-M. Talbot, “Vis-

ibly pushdown transducers,” Journal of Computer and System Sciences,
vol. 97, pp. 147–181, 2018.

[37] M. Mohri, F. Pereira, and M. Riley, “Weighted finite-state transducers
in speech recognition,” Computer Speech & Language, 2002.

[38] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner,
“Symbolic finite state transducers: Algorithms and applications,” in
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, ser. POPL ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 137–150.

[39] A. Meduna, Automata and languages: theory and applications.
Springer, 2000.

[40] M. Mohri, “Finite-state transducers in language and speech processing,”
Computational Linguistics, vol. 23, no. 2, pp. 269–311, 1997. [Online].
Available: https://aclanthology.org/J97-2003

[41] C. H. Papadimitriou, “Complexity theory,” Addison Wesley, 1994.
[42] “Canterbury cor.” [Online]. Available: https://corpus.canterbury.ac.nz/
[43] “Cuda toolkit.” [Online]. Available: https://docs.nvidia.com/cuda/
[44] T. A. University, “Suitesparse matrix collection.” [Online]. Available:

https://sparse.tamu.edu/
[45] “Raleigh open data.” [Online]. Available: https://data.raleighnc.gov/
[46] “Pandas.” [Online]. Available: https://pandas.pydata.org/
[47] “Open gpu data science.” [Online]. Available: https://rapids.ai/
[48] B. B. Grathwohl, F. Henglein, U. T. Rasmussen, K. A. Søholm, and

S. P. Tørholm, “Kleenex: Compiling nondeterministic transducers to
deterministic streaming transducers,” SIGPLAN Not., vol. 51, no. 1, p.
284–297, jan 2016.

[49] R. Alur, D. Fisman, K. Mamouras, M. Raghothaman, and C. Stanford,
“Streamable regular transductions,” THEORETICAL COMPUTER SCI-

ENCE, vol. 807, pp. 15–41, FEB 6 2020.
[50] Z. Zhao and X. Shen, “On-the-fly principled speculation for fsm

parallelization,” SIGARCH Comput. Archit. News, vol. 43, no. 1, p.
619–630, mar 2015.

[51] J. Qiu, X. Sun, A. H. N. Sabet, and Z. Zhao, “Scalable fsm parallelization
via path fusion and higher-order speculation,” in Proceedings of the 26th

ACM International Conference on Architectural Support for Program-

ming Languages and Operating Systems, ser. ASPLOS ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 887–901.

225

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.

