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Abstract—With the rise of machine learning and data analytics,
the ability to process large and diverse sets of data efficiently has
become crucial. Research has shown that data transformation is
a key performance bottleneck for applications across a variety
of domains, from data analytics to scientific computing. Custom
hardware accelerators and GPU implementations targeting spe-
cific data transformation tasks can alleviate the problem, but
suffer from narrow applicability and lack of generality.

To tackle this problem, we propose a GPU-accelerated data
transformation engine grounded on pushdown transducers. We
define an extended pushdown transducer abstraction (effPDT)
that allows expressing a wide range of data transformations in
a memory-efficient fashion, and is thus amenable for GPU de-
ployment. The effPDT execution engine utilizes a data streaming
model that reduces the application’s memory requirements sig-
nificantly, facilitating deployment on high- and low-end systems.
We showcase our GPU-accelerated engine on a diverse set of
transformation tasks covering data encoding/decoding, parsing
and querying of structured data, and matrix transformation,
and we evaluate it against publicly available CPU and GPU
library implementations of the considered data transformation
tasks. To understand the benefits of the effPDT abstraction,
we extend our data transformation engine to also support
finite state transducers (FSTs), we map the considered data
transformation tasks on FSTs, and we compare the performance
and resource requirements of the FST-based and the effPDT-
based implementations.

Index Terms—Keywords - Finite state transducers, Pushdown
transducers, Data transformation, GPU acceleration

I. INTRODUCTION

In recent years, with the rise of machine learning and data
analytics, the ability to process and analyze large and diverse
sets of data efficiently has been crucial for performance of
applications in both the business and scientific realms. Many
of these applications require some form of data transformation
[1]-[4]. In addition, researchers have shown that data trans-
formation is a key performance bottleneck for in-memory data
analytics systems, especially at times when the data size can
scale to the order of petabytes [5]-[8].

Several classes of data transformation tasks are at the core of
popular applications. For example, consider extract-transform-
load (ETL) workloads. ETL applications require extracting
information from potentially large data sources using different
formats (e.g., CSV, XML, JSON), transforming the data
(e.g., by decoding, filtering, sanitizing, encoding), and loading
them into a destination data storage. Data transformation
kernels used by these applications encompass: parsing and

data query, data encoding and decoding, transformation into
a target format, and data analysis (e.g., generation of statistics
representations such as histograms). Further, data transforma-
tion is part of scientific applications. An important problem
for applications relying on sparse matrices or graphs is the
selection of an encoding format that allows for storing the data
compactly without introducing a performance bottleneck for
the application [9]. For example, consider sparse matrix vector
multiplication (SpMV), an important kernel in many scientific
applications [10]. Due to its memory access patterns, a sparse
matrix layout that maximizes compression might negatively
affect the performance of the computation. Furthermore, the
selection of the most suitable matrix format can be affected by
the hardware characteristics of the underlying system. There
has been a considerable amount of work on the design of
sparse matrix formats that can offer good storage, algorithmic
and system requirements [11]-[15]. The ability to transform
between these formats is crucial for achieving a good trade-off
between storage requirements and computation performance.

Due to high branch misprediction rate, poor cache locality
and irregular memory access patterns, many of these data
transformation kernels exhibit poor performance on CPU.
Past work has proposed accelerated CPU libraries, custom
GPU implementations, and hardware accelerators for specific
data transformation tasks, such as matrix transformation [16],
data encoding and decoding [17], parsing [18], and other
data transformation kernels from social media, audio, video
and bio-signal data [19]-[22]. These solutions, however, lack
generality and flexibility.

A more general approach consists of identifying the com-
putational abstraction at the core of these tasks and providing
an efficient implementation of that abstraction. This idea has
motivated a large of body of work on automata processing,
which has led to a number of GPU [23]-[25], FPGA [26]-
[28] and custom hardware designs [29]-[34]. Since finite
state automata recognize regular languages, those works ad-
dress search applications requiring various kinds of pattern
matching on textual data. Automata traversal accelerators,
however, cannot be simply adapted or extended to support
data transformation. By focusing on pattern search, they don’t
provide efficient support for dynamic output [27], [32], [35].
Nevertheless, the successes reported on automata processing
suggest that accelerating a computational abstraction can be
beneficial for an entire class of applications.
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In this work, we aim to provide a general and efficient
means to support data transformation kernels used by popular
applications and emerging workloads. To this end, we study
the effective GPU implementation of pushdown transducers,
a computational abstraction that covers a broad range of
data transformation tasks. We note that standard pushdown
transducers can exhibit memory requirements and complexities
that make them not amenable for GPU acceleration. To address
this problem, we propose effPDTs, a memory-efficient, GPU-
friendly extension of pushdown transducers. Compared to
previous works that explore theoretical and syntactical aspects
of various categories of transducers [36]-[38], our proposed
extensions arise from the goal of supporting a wide range of
data transformation kernels in an efficient manner.

The final outcome of this work is a flexible GPU-accelerated
data transformation framework. Our specific contributions are:

o The design of effPDT, a compact pushdown transducer
model suitable for GPU acceleration;

o A data transformation engine based on effPDTs, includ-
ing a set of pre- and post-processing kernels to partition
input and output streams across compute units;

« The mapping of a diverse set of data transformation tasks
on effPDTs and standard finite state transducers (FSTs);

¢ An evaluation of our GPU-accelerated data transforma-
tion framework against publicly available custom CPU
and GPU libraries;

¢ A performance comparison between an effPDT- and a
FST- based engine.

Our experiments show an average speedup of 17x over custom
CPU libraries, and performance on par with, and in some cases
better than, custom GPU libraries. In addition, our results
confirm that, due to their memory efficiency, not only are
effPDTs preferable to FSTs, but they also provide consistent
performance independent of algorithmic-specific parameters
settings.

Our framework will be available in open-source at the
following link: https://github.com/tringuyen0601/effPDT

II. BACKGROUND

In this section, we provide some background on finite
state transducers and pushdown transducers. In all cases, data
transformation is performed by traversing the transducer based
on the content of the input stream.

A. Finite State Transducers

Formally, a finite state transducer (FST) [39] is defined as
a quintuple N = (Q, %, 4, s, F) such that:
o Q is a finite set of states;
e X is an alphabet such that > = 3} U X, where ¥ is the
input alphabet and ¢ is the output alphabet;
e JCQ X (ZU{e}) x Q x (X0 U {e}) is a finite state
transition relationship, € being the empty string;
e s € Q is the start state;
e F C Qs a set of final states.
Operationally, an FST transforms a streaming input with
alphabet >; into a streaming output with alphabet >o based
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(b) PDT that reads a csv file containing a set of first and last names and generates
the anadromes of the first names.

Fig. 1: Examples of finite state and pushdown transducers (FST and PDT).
Final states are highlighted in red.

on the transition relationship J. Specifically, an FST transition
r = (q1, 001, Q2> 002) belonging to § is triggered when state
q: is active and input symbol oo is fed to the FST, and it
causes state g, to be activated and symbol o, to be generated.
Symbols are written to the output stream upon traversal of a
final state. For example, the FST in Figure 1(a) transforms
input “dog” into output “pet”.

We define execution context as the sequence of symbols
that were processed before the current input symbol. An FST
conveys its execution context through the currently activated
states. In a deterministic FST, the output generated at each step
depends solely on the execution context, and not on future
inputs. In practice, this means that the execution will never
diverge into two traversal paths.

FST have found application in speech and language process-
ing (for example, for the representation of large dictionaries,
grammars and in computational morphology) [40].

B. Pushdown Transducers

Formally, a pushdown transducer (PDT) [39] is defined as
a quintuple P = (Q, X, 4, s, F) such that:

e Q is a finite set of states;

e X is an alphabet such that ¥ = 31 U ¥ U Xg, where ¥
is the input alphabet, ¢ is the output alphabet and X g
is the stack alphabet;

. (SQQX(Z]U{G})X(EsU{E})XQX(Eou{E})
x (Bs U {€}) is a finite state transition relationship;

e s € Q is the start state;

« F C Qs a set of final states.

A PDT is essentially a finite state transducer with a stack.
In addition to writing to an output stream, a PDT can pop
symbols from a stack and push symbols onto it. A PDT
transition r = (qi, oq, Osi, e, Oo2 Os2) is triggered when
state q; is active, the current input symbol is oy, and symbol
os) is at the top of the stack. Upon traversal, the transition
will activate a new state g, generate output symbol ooy, pop
symbol og; from the stack and push symbol og; onto it.
For example, Figure 1(b) shows a PDT that reads a comma-
separated values file of first and last names, extracts the
first names, and outputs their anadromes. The stack allows
recording the first names for later output generation.

A PDT conveys its execution context through the currently
activated states and the current top of the stack. By adding
memory to a FST, the stack leads to an increased expressive
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power and, if an equivalent FST exists, it allows to signifi-
cantly reduce the number of states. For example, a FST can
count a predefined number of occurrences of a symbol in an
input stream while a PDT can count an arbitrary number of
occurrences of that same symbol. Our proposed effPDT model
extends pushdown transducers.

III. EFFICIENT PUSHDOWN TRANSDUCERS

Pushdown transducers provide a solid theoretical foundation
for data transformation processes that involve deep contextual
evaluations, including various forms of data encoding, decod-
ing, and parsing. However, their expressive power and ability
to encode data transformations in a compact way are limited by
their reliance on a single stack, their use of a single input and
output stream, and their lack of arithmetic support. Our goal is
two-fold: on the one hand, we want to support a wide range
of data transformations; on the other, we aim at a compact
representation that can be efficiently deployed on GPU (and
potentially other hardware accelerators). With this in mind,
we introduce effPDT, a transducer model aimed to describe
a wide variety of data transformations in a memory-efficient
manner. To this end, we apply the following extensions to
PDTs: multiple stacks, multiple input and output streams, and
arithmetic operations associated to states.

A. Definition

Formally, a effPDT is defined as a 10-tuple TF = (Q, %, S,
I, 0, A, 6, v, s, F) such that:

o Q is a finite set of states;

e X is an alphabet such that ¥ = ¥; U ¥ U Xg, where ¥
is the input alphabet, ¥¢ is the output alphabet and g
is the stack alphabet;

e S is a finite set of stacks;

o [ is a finite set of input streams;

« O is a finite set of output streams;

« A is a finite set of arithmetic/logical operators;

e 0 CQ xIx (ZU{e}) xS x (BsU{e}) x Q x O
x (LoU{e}) x S x (XsU{e}) is a finite state transition
relationship;

e v CQ x (AU{L}) x P(S U{e}) is the action relation-
ship, with L denoting a lack of action on a state;

e s € Q is the start state;

« F C Qs a set of final states.

A effPDT transition r = (qy, i1, 011, S1, Os1> 2, 02, 002, S2,
osp) is triggered when state q; is active, the current symbol
on input stream i; is oy, and symbol og; is at the top of
stack s;. Upon traversal, the transition will activate state qp,
write symbol o, onto output stream 0,, pop symbol og; from
stack sj, and push symbol og; onto stack s;. We assume a
deterministic transducer, where the execution never diverges
into multiple traversal paths. Action g=(q, v, si,..,Sx) indicates
that the activation of state q causes the top of stack s; to be
assigned the result of applying operator 1) to the values on
top of stacks s;,..,sx. Without loss of generality, we assume
at most one action per state (a sequence of arithmetic/logic
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operations can be implemented by associating the actions to
states connected by epsilon transitions).

B. Expressive Power of effPDTs

Here, we discuss the effect of the three PDT extensions
listed above on expressive power. Multiple stacks: It has
been proven that a two-stack pushdown automaton (and, by
extension, a k-stack pushdown automaton) is equivalent to
a Turing machine [39]. In fact, the two stacks effectively
create an addressable memory, which is equivalent to a Turing
machine’s two-way tape. Since PDTs are a generalization of
push-down automata, the multiple stacks extension provides to
effPDTs the expressive power of a Turing machine. Multiple
input and output streams: It has been proven that a multi-
tape Turing machine can be simulated through a single-tape
machine [41]. Therefore, the multiple input/output streams
extension does not add expressive power to effPDTs. Arith-
metic operations: Since arithmetic and boolean functions can
be simulated through Turing machines, this extension does
not add expressive power. In summary, while the multiple
stacks extension provides Turing equivalence, the other two
extensions are meant to reduce complexity and increase effi-
ciency/performance, but do not add expressive power.

C. Practical Considerations on PDT Extensions

Here, we motivate in a pragmatic fashion the extensions to
traditional transducers that we have introduced in effPDT.

Multiple stacks. The stack allows saving the input history.
On each transition, a PDT can either compare the top of the
stack with the current input, or use the stack as a source for dy-
namic output creation. However, a PDT does not offer a mech-
anism to compare or modify symbols at different positions of
the stack. The extension of multiple stacks avoids this problem,
and allows the transducer to dynamically evaluate past symbols
regardless of the order they appear, while architecturally using
the same amount of memory as a shared stack. In addition,
stacks allow for more compact transducer representations,
resulting in space efficiency. To understand why, consider the
practical case where the PDT has a finite stack (an infinite
stack is simulated by using a stack large enough for the
considered problem). A PDT with a finite stack can support
the same transformations as a FST. However, the PDT does so
with significantly fewer states and transitions. To understand
why, consider the FST construction process [39]. Essentially,
FST construction requires: (i) enumerating the sequences of
outputs corresponding to admissible input subsequences for
the considered data transformation, (ii) generating a non-
deterministic FST where each input/output sequence pair is
mapped to a sequence of states (using e transitions when the
two sequences have different length), and (iii) reducing the
FST by subset construction (optional optimization step). For
example, consider the PDT of Figure 1(b). A finite stack of
size n would support first names up to n character long. Thus,
an equivalent FST could be constructed by enumerating all
possible first names (i.e., all possible sequences of length n),
each leading to a chain of states of length n. As a result,
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using an FST rather than a PDT would cause a combinatorial
growth in the number of states. In practice, the use of stacks
allows for compact transducers with a number of states and
transitions that is independent of the alphabet size and other
data transformation specific parameters (see Section VII). On
GPU, this allows for compact transducer representations that
can make efficient use of the available memories.

Multiple input and output streams. FST and PDT assume
a single input and a single output stream. This model supports
well transformations that convert a single stream of data into
a single output stream. However, some data transformations
can be more effectively expressed using multiple input/output
streams. For example, sparse matrix layouts are often orga-
nized into separate arrays, and mapping different arrays onto
separate streams enables more efficient implementations. Gen-
erally, a system with a single output stream can accommodate
multiple outputs by interleaving the data corresponding to the
different outputs and then adding a post-processing step to split
the output stream, or by requiring multiple passes over the
input. Both approaches, however, limit efficiency. Similarly,
a system with a single input stream cannot handle efficiently
transformations where data belonging to an input can change
the processing decision of another input. For example, the
compressed sparse row (CSR) format consists of three arrays
(values, column indexes and row indexes); in the CSR-to-dense
matrix transformation, a value from each of these arrays must
be read before a dense matrix value can be produced.

Arithmetic/logic operations. effPDT associates actions (in
the form of arithmetic operations on stack values) to states.
In standard transducer models, states serve only as source and
destination of transitions, and can indicate input acceptance
(final states). Transitions read symbols from the input stream
and the stack, and they write symbols to the output stream
and the stack. Since transitions cannot modify values read,
they can only produce a static output in the case of FST
or an output including previously processed symbols in the
case of PDT. Adding arithmetic operations to states avoids
this limitation. Arithmetic operations on stack values can also
allow for a significant reduction in the transducer size. For
example, instead of enumerating all possible input values
on distinct transitions, each with a different output value, a
effPDT can save an input value to a stack, modify it and then
output it using a single transition. Furthermore, if a stack is
used to count the number of occurrences of a given symbol,
the use of arithmetic operations enables supporting the same
transformation using a single-element stack (a counter).

D. effPDT Construction

While providing a programming model for effPDT is out-
side the scope of this paper, here we describe briefly the
systematic approach we take to construct effPDT.

First, we break the data transformation algorithm into a
series of sequential steps, which include: initialize a stack,
push an input symbol on a stack, write a symbol (either
from a stack or from an input stream) into an output stream,
perform arithmetic operation on top of a stack. The sequential
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Fig. 2: FST and effPDT for the run-length encoding (RLE) scheme, accepting
states are colored red.

program can contain if-statements (dependent on the value
of an input or of the top of a stack) and loops expressed
using goto-statements. The number of input/output streams
and of stacks required and the stacks’ size (which can be made
configurable) depend on the algorithmic needs. For example,
in the transformation in Figure 1(b) the size of the stack can be
limited to the maximum length of the names to be processed.
Second, we go through the sequential description and create
and connect states according to the algorithmic steps and the
control-flow of the program. For example: stack initialization
instructions are associated to the entry state, reading input and
writing output require one transition to a new state, sequences
of arithmetic instructions require a chain of states connected
through (non-consuming) epsilon transitions - one for each
arithmetic instructions, if-statements require adding multiple
outgoing transitions from a single state, goto-statements re-
quire backward transitions to a previously instantiated state.

For example, Figure 2 shows the FST and effPDT for run-
length encoding (RLE), a data transformation that compresses
an input text by storing runs of data (i.e., consecutive occur-
rences of the same symbol) as a single data value and count.
For example, input aaaabb is transformed into output a4b2.

FST Construction: As explained above, building an FST
requires enumerating all possible input/output sequence pairs
(for RLE: a/al, aa/a2, aaa/a3, etc.) and creating a chain
of states for each pair. The e symbol indicates that the
corresponding transition either does not consume any input
symbol, or does not generate any output. Transitions with
the same input and output can be combined, leading to the
corresponding target states to be merged.

effPDT Construction: The algorithm is broken down into
the following steps: (a) initialize a counter (stack S), (b) read
an input symbol 4; (c) save ¢ on a stack (Sp); (d) write i to
the output stream, (e) read a symbol ¢; (f) if 4 is equal to
the symbol recorded in Sy increment a counter (stack S7) and
read the next symbol (goto-statement to (e)), else save ¢ on
So and write the counter S; to the output; (g) write Sy to
the output stream; (h) read the next symbol (goto-statement
to (e)). Step (a) is associated to the entry state 0. Reading an
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Fig. 3: State and transition tables for the RLE effPDT of Figure 2(b)

input and updating an output and a stack can be done in a
single transition. So, steps (b-d) can be combined in a single
transition causing the creation of a new state 1. Similarly, steps
(e-f) can be combined. The if-statement in step (f) leads to two
outgoing transitions from state 1 conditional on ¢ being equal
to Sp. The goto-statements cause the creation of transitions to
the already instantiated state 1.

IV. EFFPDT ENGINE

In this section, we describe the effPDT execution model.

A. Components

At its core, the effPDT engine comprises three data struc-
tures: topology, I/O buffers and contextual information. The
topology is static and encoded through state table, transition
table and stacks. Figures 3(a) and (b) show the state and
transition tables for the RLE effPDT of Figure 2(b). The
I/O component contains an input/output buffering system that
operates in parallel with the execution engine to ensure that
the effPDT engine never stalls waiting on an input or for the
output to clear up. Lastly, the contextual component describes
the effPDT’s current state, including: currently activated state,
stacks’ content, and number of symbols read from the input
and written to the output.

B. Execution Engine

The effPDT’s execution engine consists of three stages:
the action, matching and writing stages. The engine keeps
executing as long as it has an active state and an input
to process. At the beginning of execution, the transducer’s
entry state is active. At each execution step, the three stages
operate as follows. In the action stage, the engine executes the
arithmetic/logic instruction (if any) associated to the active
state. Then, it scans the transition table to determine the
transitions outgoing from that state (pending transitions). In
the matching stage, the engine evaluates the pending transi-
tions and, based on their input symbol and stack condition,
it determines the transition to be taken (matching transition).
We make the distinction between a pass-through (¥*) and an
empty (e) symbol. While conditions on both these symbols
always evaluate to true, a *-symbol indicates an input/stack
symbol consumption, whereas an e-symbol does not. In the
writing stage, the engine updates the selected output stream
and stack (if any) based on information on the matching
transition, and then sets the active state to the destination state
of that transition. If no matching transition is found, the writing
stage has no effect.
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TABLE I: Summary of effPDT data structures

Domain Component Operation Access | Location
Topology State Table Read Only | Global | Const
Tx Table Read Only Global | Const
/0 Input/Output streams | Read/Write | Global | Global
Stacks Read/Write | Thread | Shared
Pending Tx Read/Write | Thread | Local
Context Matching Tx Read/Write | Thread | Local
Active State Read/Write | Thread | Local
1/0 status Read/Write | Thread | Local

C. Design Considerations

effPDT’s two-table layout (represented in Figure 3) aims to
keep transducer traversal cost low. To this end, the state table
is directly indexed using the state identifiers. In the transition
table, transitions outgoing from the same state are laid out
contiguously. Besides the information shown in Figure 3, each
row of the state table contains two additional fields: the index
of the first outgoing transition from the corresponding state,
and the number of its outgoing transitions.

The effPDT engine uses two circular buffers: one for the
input and the other for the output. In both cases, one buffer
interacts with the transducer while the other interacts with
the disk. On the input side, the inner buffer is read one
symbol at a time by the transducer while the outer buffer is
periodically filled with data from the disk. On the output side,
the transducer writes to the inner buffer symbol by symbol
while the execution engine transfers the content of the outer
buffer to disk once it is full. Periodic data transfers between
inner and outer buffers overlap with transducer’s accesses to
the inner buffers. On both input and output, the outer buffer
prevents execution from stalling waiting on the inner buffer
while still allowing bulk data transfers to and from disk or
between CPU and GPU memory.

V. GPU IMPLEMENTATION
In this section, we discuss effPDTs’ GPU deployment.

A. Processing Engine

Parallelization Approach: In order to allow for parallel
execution, the effPDT engine partitions the input, assigns
chunks of it to worker threads for processing, and then merges
the outputs of the threads. The design aims to partition
and place the data efficiently while minimizing inter-thread
dependencies. Context information is accessed locally by each
thread and is replicated across threads to ensure independent
execution environments without the need for synchronization.
Besides active state, stack content and pending/matching tran-
sitions, context information includes the per-thread starting
offset within the input and output streams, chunk size and
counters to manage each thread’s input/output coverage.

Data structures: Table I summarizes the data structures
used by the effPDT engine, their access type and granularity,
and their placement in the GPU’s memory hierarchy.

The state and transition tables are read-only data structures
globally accessed by all threads. Thus, they are stored in
constant memory, which is cached. We recall that the use of
stacks allows for reducing, in some cases significantly, the
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number of states and transitions necessary to express a data
transformation through a transducer. This allows topology data
of effPDTs to fit in the relatively small constant memory.

Stacks are read/write data structures. To allow for fast
access, they are stored in shared memory. We implement
each stack as a circular buffer. We provide basic push/pop
commands, as well as a popall command, which writes the
entire stack content to the output. This command allows for
more efficient support of transformations involving parsing
of structured data. We recall that arithmetic operations are
performed on the top of the stack (specified by the tail pointer).

The remaining thread-level context data include active state,
pending and matching transitions, number of symbols read and
written by each thread, and chunk offset and length. Pending
transitions are stored as base and offset into the transition table,
requiring two 32-bit variables. The other context data require
one variable each. Thus, we store this information in the low
latency, high bandwidth register file.

Input and output streams are stored in global memory.

B. Pre/Post-processing Kernels

Along with the transducers processing engine, the GPU im-
plementation includes a library of kernels to partition the input
stream across threads and consolidate the outputs generated
by the threads into a single output stream (pre-processing and
post-processing kernels, respectively).

Pre-processing kernels generate the offset and length of the
input chunks assigned to the threads. Our effPDT framework
supports static and dynamic partitioning. In static partitioning,
each thread is assigned an equal size chunk of the input.
In addition, the system allows defining specific algorithmic
requirements on the chunk size. For example, the run-length
decoding and bit-packing encoding schemes require the chunk
size to be a multiple of 2 and 4, respectively. Furthermore,
the variable length encoding/decoding schemes require chunks
to overlap. Dynamic partitioning, on the other hand, allows
threads to be assigned differently sized chunks. Chunk sizes
can be specified by the user or determined using an additional
transducer. Once the chunk sizes are determined, the pre-
processing kernels perform a prefix sum to quickly generate
each thread’s offset within the input stream.

Post-processing consists of two steps: post-compute and
post-copy. Post-compute refers to any additional processing
required before merging the output chunks. Our framework
includes methods to support common operations such as tail
reduction and head-tail merging. In addition, it includes an
interface for users to provide custom post-compute kernels.
Post-copy refers to the process of eliminating any holes in
the output stream. For some data transformations, the size of
the output chunks can be determined statically based on the
size of the input, the number of threads, and possibly other
parameters. For transformations where this is not possible,
buffers storing the output chunks must be over-provisioned,
leading to holes between output chunks. In these cases, the
post-processing kernel will perform a fragment copy, which
copies output chunks contiguously to the final output.
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TABLE II: Benchmarks summary

Application | Input dataset CPU Baseline GPU Baseline
Data Cantebery Corpus, y Nvidia
Enc/Dec Artifical Corpus [42] | Farauet (17] Thrust [43]
Matrix Texas A&M Sparse Intel Nvidia
Transform Matrix [44] MKL [16] cuSparse [43]
Histogram RDU Accident and GSL Nvidia CUB
Istogra Crime Report [45] Histogram [18] | [43]
CSvV RDU Accident and Rapids Al
Query Crime Report [45] Pandas [46] [47]

For example, let us consider the pre- and post-processing
operations required by run-length encoding (RLE). During pre-
processing, the input offsets and chunk sizes can be determined
through static partitioning, and a simple Memset call is enough
to initialize the array of chunk sizes. During post-processing,
head-tail merging is required to handle cases where the last
symbol of one chunk is the same as the first symbol of the
next chunk. Finally, since for RLE the output size cannot be
determined a priori, a fragment copy is performed to eliminate
any holes within the output before transferring it back to CPU.

VI. EXPERIMENTAL SETUP

In this section, we detail the software and hardware setups
used in our experiments. We evaluated our effPDT engine on
11 data transformations from four application classes: data
encoding/decoding, matrix layout transformations, histogram
construction and structured data query (using the CSV format).

A. Input Datasets and Baseline CPU and GPU Kernels

Table II summarizes the data transformation kernels and in-
put datasets used in our experiments, and the custom CPU and
GPU library implementations we compared against. We note
that GPU libraries are available only for a subset of the data
transformation kernels considered. Data encoding/decoding
kernels include: bit-packing encoding and decoding (BPE
and BPD), variable-length encoding and decoding (VLE and
VLD), and run-length encoding and decoding (RLE and RLD).
Custom CPU code is from the C++ Parquet library [17],
custom GPU code is available only for RLE and RLD and
is part of Nvidia Thrust library [43]. Inputs are from the
Canterbury Corpus and Artificial Corpus Datasets [42] with
file sizes ranging from 4KB to 2MB. Matrix transforma-
tions kernels include: the transformation from coordinate
list to compressed sparse row format (COO-CSR), and the
transformation from dense to compressed sparse row format
(Dense-CSR). Custom CPU code is from Intel MKL Sparse
Matrix library [16], custom GPU code is from Nvidia cuSparse
library [43]. Input datasets are from Texas A&M Open Source
sparse matrix collection [44] with sparsity ranging from 0%
to 99% (g7jac160, xenonl, copter, imcol and trec). The
histogram construction kernel uses a 4-bin and a 10-bin
setup. Custom CPU code is from GNU GSL Histogram library
[18], GPU code is from Nvidia CUB library [43]. Datasets
are from Raleigh Sustainable Project (longitude, latitude) and
Crash Location (FeetFromRoad) [45]. CSV query kernels are
transformations that extract a subset of a CSV file based on a
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TABLE III: Benchmarks: topological characteristics and resource utilization.
Shared and constant memory utilization per thread-block (Sh-M and Const-M)
is measured in KB. We set the block size to 128 threads.

Topology Architecture

#State #Tx #S | Registers Sh-M  Const-M
BPD 15 15 4 23 3.07 1.51
BPE 17 17 3 23 2.56 1.66
VLD 14 15 6 23 4.10 1.48
VLE 6 7 2 23 2.05 0.91
RLD 3 4 2 23 2.05 0.69
RLE 3 4 2 23 2.05 0.69
COO-CSR 11 14 4 23 4.10 1.36
CSR-D 15 17 6 23 5.12 1.60
Histogram 6 10 4 23 3.58 1.1
CSV_Encd 8 15 2 23 2.56 1.3
CSV_Raw 10 17 2 23 18.9 1.4

specified user condition. We conduct our experiments on raw,
unedited CSV and dictionary-encoded CSV. Custom CPU code
is from Pandas [46], GPU code is from Nvidia’s RAPIDS Al
[47]. Datasets are Raleigh Sustainable Project (owner, status)
and Crash Location (FeetFromRoad, Day_Of_Week) [45]. For
each data transformation kernel, in Section VII we report the
average performance across the input datasets used.

B. EffPDTs Characteristics

Topological characteristics: Table III reports the number
of states, transitions and stacks of the resulting effPDTs, as
well as their resource requirements (registers, shared memory
and constant memory). We also encode a subset of these data
transformations using FSTs: Table V reports the FST-related
data for different parameters settings.

Number of streams: The effPDTs implementing the data
encoding/decoding, histogram and CSV querying kernels in-
clude one input and one output stream. The COO-CSR effPDT
uses three input and three output streams, while the Dense-
CSR effPDT uses one input and three output streams.

Considerations on CSV query kernels: CSV query re-
quires recording the content of one or more fields, and
subsequently writing the recorded fields to the output stream
if a particular condition is met. For example, consider a CSV
file that contains 3 columns: Name, Age, and Height. If a user
queries the Name of all people with a given Height, the effPDT
must temporarily record the content of the Name field until
the Height field is read and the condition on it is evaluated.
For a dictionary-encoded-CSV file (C'SV _encd), one-element
stacks are enough to record the value of a field. On the other
hand, CSV files with fields of arbitrary content (C'SV _Raw)
require deeper stacks. Thus, the effPDTs for C'SV_encd and
CSV_raw have a similar number of states and transitions
and the same number of stacks. However, C'SV _raw requires
more shared memory to accommodate the stacks (Table III).

C. Pre/Post Processing

Table IV summarizes the type of pre- and post-processing
required by each transformation. Pre-processing: For all trans-
formations except COO-CSR and CSV query, we perform
static partitioning. Since static partitioning leads to equally
sized chunks, it only requires a simple CudaMemset to ini-
tialize the array storing the chunk sizes. The input offset
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of each thread is then determined by multiplying the chunk
size by the thread identifier. For Dense-CSR, the rows of the
matrix are equally distributed across threads. COO-CSR and
CSV query use a custom primitive to calculate the per-thread
chunk size, and prefix sum (Scan) to set each thread’s input
offset. Post-processing: VLD, RLE, matrix transformations
and histogram construction require post-computation before
output merging. We recall that, for transformations whose
output size cannot be determined statically, a fragment copy is
required before the output is transferred to the CPU. Fragment
copy is implemented through a prefix sum followed by a
copy-to-offset operation. All kernels except BPD, BPE and
histogram construction require this extra copy.

D. System Configuration

We conducted our experiments on a system equipped with
two Intel Xeon E5-2630 processors running at 2.2GHz, each
with ten physical cores and a total 25MB of cache. The system
is also equipped with an NVIDIA TITAN XP GPU, which
has 12GB global memory, 64KB constant memory and 98KB
shared memory per streaming multi-processor (SM). The GPU
has 30 SMs operating at a maximum clock rate of 1.58GHz.
In addition, our system has 130GB RAM and a 1TB SSD.

The system has installed Ubuntu 18.04, gcc 7.5 and CUDA
toolkit 11.7. Our baseline CPU experiments are parallelized to
process multiple input streams in parallel and use all available
CPU cores. The effPDT- and FST-based kernels are configured
to use all the available SMs.

VII. PERFORMANCE EVALUATION

We performed two sets of experiments. In the first set
(Section VII-A), we evaluated the performance of our GPU-
accelerated effPDT engine over custom CPU and GPU li-
braries (whenever available). In the second set (Section VII-B),
we compared the performance of effPDTs and FSTs when
varying algorithmic parameters that affect the FST size.

A. Overall Performance of GPU-accelerated effPDT engine

1) Comparison with Custom CPU Libraries & Impact of
Data Placement on Performance: Figure 4 shows the speedup
reported by our effPDT engine over the custom CPU libraries
listed in Section VI-A. The first data series (CPU effPDT)
corresponds to a parallel CPU implementation of the effPDT
engine configured to use all available cores. For our GPU

TABLE IV: Pre/post-processing schemes. * indicates special requirements on
chunk size.

Pre-processing Post-processing

Dependency  Operation | Compute Copy
BPD Input size Memset None Full
BPE Input size* Memset None Full
VLD Input size* Memset Tail-reduce  Frag
VLE Input size Memset None Frag
RLD Input size* Memset None Frag
RLE Input size Memset Merge Frag
COO-CSR Row (Var) Cust+Scan | Scan Frag
Dense-CSR | Row (Const)  Memset VectorAdd  Frag
Histogram Input size Memset VectorAdd  Full
CSV_Encd | Row (Var) Cust+Scan | None Frag
CSV_Raw Row (Var) Cust+Scan | None Frag
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Fig. 4: Speedup of effPDT engine (CPU, GPU/global memory only, GPU/shared+global memory, GPU/constant+global memory, GPU/all memories) over
custom CPU baselines in Table II. The values on the bars indicate the speedup. The last set of bars show the average speedup across the benchmarks.

implementation, we show the results reported using four
memory configurations. In the GPU effPDT_gm configuration,
all effPDTs’ data structures are stored in global memory. In
the GPU effPDT_sm and GPU effPDT_cm configurations, we
either store the stacks in shared memory or the effPDT’s topol-
ogy in constant memory, respectively. Lastly, the GPU effPDT
configuration corresponds to the implementation described in
Section V-A, which utilizes both the constant and shared
memories to maximize the system throughput. The numbers on
the bars are the speedup values reported by each configuration.
The rightmost set of bars show the average results across the
benchmarks. We make the following observations.

First, our GPU engine (GPU ¢ffPDT) reports an average
speedup of 17x over the custom CPU library implementations,
which corresponds to an average 11 GB/sec throughput. The
most significant speedups are reported on CSV querying (30x
on average) and histogram construction (28x), followed by
matrix transformation kernels (16x on average), and lastly by
data encoding/decoding (10x on average).

Second, the use of all available GPU memories is key
to performance. When using global memory only, our GPU
engine achieves an average speedup of 2.5x over the custom
CPU libraries and an average throughput of 1 GB/sec. We
observe speedups ranging from 1.2x (VLE) to 5x (BPD)
and throughputs ranging from 309 MB/sec (GVE) to 4.3
GB/sec (dictionary-encoded-CSV querying). Using constant
and shared memory alone brings performance improvements
over the global memory-only setup, with speedups of 4.3x
and 8x over CPU execution. Across the board, shared memory
offers better performance than constant memory.

Finally, our CPU effPDT engine performs similarly or worse
than Parquet on data encoding and decoding (0.7x to 1.38x),
and noticeably worse than the custom CPU libraries for matrix
transformation and CSV querying. We expected to see this
slowdown, since these libraries contain custom implementa-
tions of the considered algorithms while the effPDT design
is generic and intended for GPU acceleration. In particular,
Intel MKL and Pandas are highly efficient libraries and are
the industry standard for their respective application class.

2) Comparison with Custom GPU Libraries: Figure 5 re-

ports the throughputs (in GB/sec) achieved by the custom GPU
libraries listed in Table II and by our GPU-accelerated effPDT
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engine on a subset of the considered data transformations. We
did not find custom GPU implementations for BPD, BPE,
VLD and VLE. For the custom libraries, the throughputs
reported do not account for the memory transfers between
CPU and GPU, which would further reduce performance. Our
effPDT engine achieves performance similar to (or slightly
better than) the custom GPU libraries on RLD, RLE and
querying of raw CSV data, it underperforms Nvidia CUB
on histogram construction, and it outperforms cuSparse and
Rapids AI on matrix transformation kernels and querying of
dictionary-encoded-CSV data, respectively. We note that the
matrix transformation kernels provided in cuSparse performed
worse than effPDTs (2.9 and 3.5GB/s compared to 8.7 and
8.1 GB/s) due to the high library setup time. Ignoring the
setup step, cuSparse matrix transformations would achieve
throughputs close to 10GB/s, slightly higher than effPDTs’
results. On the other hand, histogram construction provided
in Nvidia cub performs 1.6x faster than effPDT (19.5 GB/s
compared to 11.76GB/s). This is because histogram construc-
tion is an embarrassingly parallel algorithm with no inter-
thread dependencies. Overall, our engine was able to achieve
an average throughput of 16GB/s across the considered data
transformation workloads, higher than the 11GB/s average
throughput reported by the custom GPU libraries. This result
suggests that our GPU effPDT engine has the potential for
accelerating a variety of data transformations without requiring
custom GPU implementations. In addition, we note that best
results are obtained on CSV query, suggesting that the effPDT
engine can be particularly suitable for parsing structured data.

GPU Custom Library effPDT
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Fig. 5: Throughputs of custom GPU libraries and GPU effPDT engine
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The values on the bars indicate the throughput in Gbytes/s.

TABLE V: Characteristics of FSTs implementing the considered data transfor-
mations. For compression, |X| is the alphabet size, 7 is the packing ratio, and [
is the maximum run-length; for matrix transformations, n is the square matrix
dimension. k, m and b indicate thousands, millions and billions, respectively.

Topology Architecture
[Si/m/rl - #State  #Tx C-M(%) Size
BPD 64/4 322 385 50 27.8KB
St:|Z|(r+1) + 2 128/4 642 769 100 53.7KB
Tx:|Z|(r+2) + 1 256/4 1538 1793 | 200 122KB
512/4 3074 3585 | 400 243KB
VLE 90/2 372 462 50 32KB
St || (r+1) +1 160/2 722 882 100 62KB
Tx~ |Z|(r+2) 31572 1497 1812 | 200 124KB
630/2 3072 3702 | 400 250KB
RLE 8/10 89 648 50 29KB
St1|3]+|3]+1 12/10 133 1452 | 100 62KB
Tx:|S|(|Z]1 +1) 17/10 188 2907 | 200 122KB
25/10 276 6275 | 400 256KB
RLD 7/10 393 462 50 32KB
St|Z|Ad+D/2+1)+1 | 14/10 785 924 100 64KB
Tx:|X|(1(1+3)/2+1) 28/10 1569 1848 | 200 124KB
57/10 3193 3762 | 400 253KB
DENSE-CSR 5000 25m 50m | 3Im 2GB
St: n? 10000 0.1b 0.2b | 0.1b 10GB
Tx: 2n? 20000 0.4b 0.8b | 0.6b 40GB
40000 1.6b 3.2b 1.8b 120GB
COO-CSR 500 250k 0.1b | 78m 5GB
St: n? 600 0.3b 0.2b | 0.1b 9GB
Tx: n(n(n-1) +2) 700 0.4b 0.3b | 0.2b 15GB
1000 Im 1b 0.6b 43GB

B. Comparison of effPDT- and FST-based Engines

In this section, we compare the memory requirements and
performance of effPDT- and FST-based engines. To perform
this set of experiments, we built a lightweight GPU execution
engine supporting basic FST operations. Specifically, we re-
duced the effPDT engine by removing stack-related operations
and simplifying the state and transition tables. We select six
benchmarks (two encoding, two decoding and two matrix
transformations) that can be expressed through FSTs without
suffering from state explosion.

1) FST Characteristics: For all considered data transforma-
tions, the size of FST topology is dependent on algorithmic
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parameters: alphabet size and packing ratio between input and
output for VLE and BPD, alphabet size and maximum run-
length for RLE and RLD, and dimensions of input matrix
for Dense-CSR and COO-CSR. Table V shows the formulas
expressing size of the FST encoding these transformations
(column 1), as well as the number of states, transitions
and memory requirements with different parameters settings
(columns 2-6). For compression/decompression, we selected
parameter settings corresponding to topologies requiring 50%,
100%, 200% and 400% of the available constant memory.
For matrix transformations, however, the available constant
memory can only support matrices up to 1000 elements, far
smaller than the ones used in this work (see Section VI-A).
So, we generated smaller matrices and filled them with data
from the ones of Section VI-A.

2) Memory Requirements: By comparing Tables III and V,
we observe that using FSTs leads to a sizable increase in the
number of states and transitions. For example, in order to
support the 8-bit ASCII alphabet, a BPD FST would need
about 100 times the number of states and transitions of a
effPDT, leading to an increase in the required memory from
1.51KB to 122KB. Similar considerations apply for the other
data transformations. Recall that, differently from FSTs, the
size of effPDTs is independent of the alphabet size, maximum
run-length, etc. In contrast, the size of FSTs increases with
these parameters, leading to configurations that do not fit the
constant memory. In case of matrix transformations, memory
requirements of FST can even exceed the global memory
capacity. For example, with 12GB of GPU memory, a Dense-
CSR FST and a COO-CSR FST cannot support a square matrix
of more than 10000 and 600 rows, respectively. These require-
ments limit the usability of FSTs for matrix transformation.
We note that, while Unified Virtual Memory (UVM) would
allow supporting FSTs exceeding the GPU memory capacity,
using UVM would further decrease system performance due
to page faults overhead and on-the-fly memory transfers.
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3) System Throughput: Figure 6 shows the performance of
the effPDT and FST GPU engines on experiments conducted
using the parameter settings and FST memory requirements
listed in Table V. As can be seen, the use of FSTs causes a
performance slowdown (over effPDTs) across the board. With
small topologies that fit in constant memory, the slowdown
ranges from 0.02x (Dense-CSR) to 6x (BPD). With larger
topologies exceeding the constant memory capacity, the slow-
down is much more significant, ranging from 4x (RLE) to 22x
(BPD). In the case of matrix transformations (Dense-CSR and
COO-CSR), the FSTs for larger matrices cannot fit into GPU’s
memory. On average, not counting instances where it is not
possible to fit the topology onto GPU memory, we see a 15.7x
slowdown when using FSTs over effPDTs.

To conclude, effPDTs are more compact than FSTs, leading
to lower memory requirements and more data locality. All
these factors affect the throughput positively.

VIII. RELATED WORK

In the field of language theory, FSTs and PDTs have
been introduced by Elgot (1965) and Evey (1963) [39] to
define translation grammars. Since then, various theoretical
extensions have been proposed to support different classes of
application. For example, visibly pushdown transducers [36]
extend PDT with a input-aware stack to support structured
alphabet translation; weighted FSTs [37] assign weights to
transitions and support speech-to-text applications; symbolic
FSTs [38] extend FST transitions with rules over a set of
variables to express applications such as image blurring,
HTML decoding and malware finger printing. While previous
works proposing extensions to transducers primarily explored
their theoretical implications and syntactical definition, our
effPDT model extends PDTs to allow space and time efficient
implementations of a broad range of data transformations. So,
our proposed extensions are grounded in practical needs.

Recent works have investigated techniques to bring trans-
ducer theory to practice. Grathwohl et al. [48] have proposed
a nondeterministic FST language and compiler based on the
idea of decomposing transducers into two machines: an oracle
machine performing disambiguation of the input, and an action
machine triggering output actions. Raghothaman et al. [49]
have defined a transducer-based data query language. Zhao et
al. [50], [51] have introduced methods to accelerate processing
of finite state machines through speculative execution. To the
best of our knowledge, there is lack of work exploring the
hardware acceleration of transducers and their deployment at
scale. Our work represents an effort in this direction.

IX. CONCLUSION AND FUTURE WORK

This work has targeted the design of a flexible GPU-
accelerated data transformation engine. To this end, we have
proposed effPDTs, a computational model that extends PDTs,
can express a wide range of data transformations in a space-
efficient manner, and is amenable for GPU acceleration. We
have showcased our engine on a set of data transformations
covering data encoding and decoding, sparse matrix layout
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transformations, histogram construction and query of struc-
tured data. Our evaluation shows significant speedups over
custom CPU implementations, and performance on par with,
or better than, custom GPU implementations. In addition,
we have shown the resource requirements and performance
advantages of effPDTs over FSTs.

Future research directions include: (1) extending our effPDT
engine to support nondeterministic behavior, enabling the
acceleration of compression/decompression (and other) tasks
that require back-tracking (e.g., snappy, deflate, and 1z4); (2)
providing a programming model and compiler for effPDTs;
and (3) exploring alternative effPDT implementations.

X. ACKNOWLEDGMENTS

This work was supported by National Science Foundation
awards CNS-1812727 and CCF-1907863.

REFERENCES
[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in OSDI’04: Sixth Symposium on Operating System
Design and Implementation, San Francisco, CA, 2004, pp. 137-150.
S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, p. 2943, oct 2003.
R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski, H. Lee, H. C. Li,
R. McElroy, M. Paleczny, D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani, “Scaling memcache at facebook,” in /0th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
13). Lombard, IL: USENIX Association, Apr. 2013, pp. 385-398.
L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation
ranking: Bringing order to the web.” Stanford InfoLab, Technical Report
1999-66, November 1999, previous number = SIDL-WP-1999-0120.
K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun,
“Making sense of performance in data analytics frameworks,” in 12th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15). Oakland, CA: USENIX Association, May 2015, pp. 293—
307.
M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets:
A Fault-Tolerant abstraction for In-Memory cluster computing,” in 9th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12). San Jose, CA: USENIX Association, Apr. 2012, pp. 15-28.
S. Kaneyv, J. P. Darago, K. Hazelwood, P. Ranganathan, T. Moseley, G.-
Y. Wei, and D. Brooks, “Profiling a warehouse-scale computer,” /[EEE
Micro, vol. 36, no. 3, pp. 54-59, 2016.
P. Stuedi, A. Trivedi, B. Metzler, and J. Pfefferle, “Darpc: Data center
rpe,” in Proceedings of the ACM Symposium on Cloud Computing,
ser. SOCC ’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 1-13.
Y. Zhao, J. Li, C. Liao, and X. Shen, “Bridging the gap between deep
learning and sparse matrix format selection,” in Proceedings of the
23rd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP "18. New York, NY, USA: Association for
Computing Machinery, 2018, p. 94-108.
M. F. Khairoutdinov and D. A. Randall, “A cloud resolving model as
a cloud parameterization in the ncar community climate system model:
Preliminary results,” Geophysical Research Letters, vol. 28, no. 18, pp.
3617-3620, 2001.
N. Bell and M. Garland, “Implementing sparse matrix-vector mul-
tiplication on throughput-oriented processors,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, 2009, pp. 1-11.
K. Kourtis, V. Karakasis, G. Goumas, and N. Koziris, “Csx: An extended
compression format for spmv on shared memory systems,” SIGPLAN
Not., vol. 46, no. 8, p. 247-256, feb 2011.
D. Langr and P. Tvrdik, “Evaluation criteria for sparse matrix stor-
age formats,” IEEE Transactions on Parallel and Distributed Systems,
vol. 27, no. 2, pp. 428-440, 2016.

[2]
[3]

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.



[14]

[15]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on July 11,2023 at 17:45:52 UTC from IEEE Xplore. Restrictions apply.

W. Liu and B. Vinter, “Csr5: An efficient storage format for cross-
platform sparse matrix-vector multiplication,” in Proceedings of the 29th
ACM on International Conference on Supercomputing. New York, NY,
USA: Association for Computing Machinery, 2015, p. 339-350.

B.-Y. Su and K. Keutzer, “Clspmv: A cross-platform opencl spmv
framework on gpus,” in Proceedings of the 26th ACM International
Conference on Supercomputing, ser. ICS 12.  New York, NY, USA:
Association for Computing Machinery, 2012, p. 353-364.

“Intel mkl.” [Online]. Available: https://www.intel.com/content/www/
us/en/develop/documentation/get- started- with-mkl-for-dpcpp/top.html
A. Parquet. [Online]. Available: https://parquet.apache.org/

“Gnu scientific library.” [Online]. Available: https://www.gnu.org/

S. K. Moon and R. D. Raut, “Hardware-based application of data
security system using general modified secured diamond encoding
embedding approach for enhancing imperceptibility and authentication,”
Multimedia Tools and Applications, vol. 78, no. 15, pp. 22 045-22 076,
Aug 2019.

T. Sugimoto, Y. Nakayama, and T. Komori, “22.2 ch audio encod-
ing/decoding hardware system based on mpeg-4 aac,” IEEE Transactions
on Broadcasting, vol. 63, no. 2, pp. 426-432, 2017.

M. Safieh and J. Freudenberger, “Efficient vlsi architecture for the par-
allel dictionary lzw data compression algorithm,” IET Circuits, Devices
& Systems, vol. 13, no. 5, pp. 576-583, 2019.

H. Wang, T. Wang, L. Liu, H. Sun, and N. Zheng, “Efficient
compression-based line buffer design for image/video processing cir-
cuits,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 27, no. 10, pp. 2423-2433, 2019.

N. Cascarano, P. Rolando, F. Risso, and R. Sisto, “Infant: Nfa pat-
tern matching on gpgpu devices,” SIGCOMM Comput. Commun. Rev.,
vol. 40, no. 5, p. 20-26, oct 2010.

Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, and Q. Dong, “Gpu-
based nfa implementation for memory efficient high speed regular ex-
pression matching,” ser. PPoPP *12. New York, NY, USA: Association
for Computing Machinery, 2012, p. 129-140.

X. Yu and M. Becchi, “Gpu acceleration of regular expression matching
for large datasets: Exploring the implementation space,” in Proceedings
of the ACM International Conference on Computing Frontiers, ser. CF
’13. New York, NY, USA: Association for Computing Machinery,
2013.

R. Sidhu and V. Prasanna, “Fast regular expression matching using
fpgas,” in The 9th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM’01), 2001, pp. 227-238.

M. Becchi and P. Crowley, “Efficient regular expression evaluation:
Theory to practice,” in Proceedings of the 4th ACM/IEEE Symposium on
Architectures for Networking and Communications Systems, ser. ANCS
’08.  New York, NY, USA: Association for Computing Machinery,
2008, p. 50-59.

A. Mitra, W. Najjar, and L. Bhuyan, “Compiling pcre to fpga for accel-
erating snort ids,” in Proceedings of the 3rd ACM/IEEE Symposium on
Architecture for Networking and Communications Systems, ser. ANCS
’07. New York, NY, USA: Association for Computing Machinery,
2007, p. 127-136.

B. C. Brodie, D. E. Taylor, and R. K. Cytron, “A scalable architecture for
high-throughput regular-expression pattern matching,” in Proceedings of
the 33rd Annual International Symposium on Computer Architecture, ser.
ISCA °06. USA: IEEE Computer Society, 2006, p. 191-202.

J. V. Lunteren, C. Hagleitner, T. Heil, G. Biran, U. Shvadron, and
K. Atasu, “Designing a programmable wire-speed regular-expression
matching accelerator,” in 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, 2012, pp. 461-472.

Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien, “Fast support
for unstructured data processing: The unified automata processor,” in
Proceedings of the 48th International Symposium on Microarchitecture,
ser. MICRO-48. New York, NY, USA: Association for Computing
Machinery, 2015, p. 533-545.

P. Dlugosch, D. Brown, P. Glendenning, M. Leventhal, and H. Noyes,
“An efficient and scalable semiconductor architecture for parallel au-
tomata processing,” IEEE Transactions on Parallel and Distributed
Systems, vol. 25, no. 12, pp. 3088-3098, 2014.

E. Sadredini, R. Rahimi, V. Verma, M. Stan, and K. Skadron, “eap: A
scalable and efficient in-memory accelerator for automata processing,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO 2019, Columbus, OH, USA, October 12-
16, 2019. ACM, 2019, pp. 87-99.

225

[34]

[35]

[36]

[37]

[38]

[50]

[51]

H. Liu, M. A. Ibrahim, O. Kayiran, S. Pai, and A. Jog, “Architectural
support for efficient large-scale automata processing,” in 5/st Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
2018, Fukuoka, Japan, October 20-24, 2018. IEEE Computer Society,
2018, pp. 908-920.

J. Wadden, K. Angstadt, and K. Skadron, “Characterizing and mit-
igating output reporting bottlenecks in spatial automata processing
architectures,” in IEEE International Symposium on High Performance
Computer Architecture, HPCA 2018, Vienna, Austria, February 24-28,
2018. IEEE Computer Society, 2018, pp. 749-761.

E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais, and J.-M. Talbot, “Vis-
ibly pushdown transducers,” Journal of Computer and System Sciences,
vol. 97, pp. 147-181, 2018.

M. Mohri, FE. Pereira, and M. Riley, “Weighted finite-state transducers
in speech recognition,” Computer Speech & Language, 2002.

M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjorner,
“Symbolic finite state transducers: Algorithms and applications,” in
Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, ser. POPL ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 137-150.
A. Meduna, Automata and languages: theory and applications.
Springer, 2000.

M. Mohri, “Finite-state transducers in language and speech processing,”
Computational Linguistics, vol. 23, no. 2, pp. 269-311, 1997. [Online].
Available: https://aclanthology.org/J97-2003

C. H. Papadimitriou, “Complexity theory,” Addison Wesley, 1994.
“Canterbury cor.” [Online]. Available: https://corpus.canterbury.ac.nz/
“Cuda toolkit.” [Online]. Available: https://docs.nvidia.com/cuda/

T. A. University, “Suitesparse matrix collection.” [Online]. Available:
https://sparse.tamu.edu/

“Raleigh open data.” [Online]. Available: https://data.raleighnc.gov/
“Pandas.” [Online]. Available: https://pandas.pydata.org/

“Open gpu data science.” [Online]. Available: https://rapids.ai/

B. B. Grathwohl, F. Henglein, U. T. Rasmussen, K. A. Sgholm, and
S. P. Tgrholm, “Kleenex: Compiling nondeterministic transducers to
deterministic streaming transducers,” SIGPLAN Not., vol. 51, no. 1, p.
284-297, jan 2016.

R. Alur, D. Fisman, K. Mamouras, M. Raghothaman, and C. Stanford,
“Streamable regular transductions,” THEORETICAL COMPUTER SCI-
ENCE, vol. 807, pp. 1541, FEB 6 2020.

Z. Zhao and X. Shen, “On-the-fly principled speculation for fsm
parallelization,” SIGARCH Comput. Archit. News, vol. 43, no. 1, p.
619-630, mar 2015.

J. Qiu, X. Sun, A. H. N. Sabet, and Z. Zhao, “Scalable fsm parallelization
via path fusion and higher-order speculation,” in Proceedings of the 26th
ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ser. ASPLOS *21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 887-901.



