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ABSTRACT: Because geostationary satellite (Geo) imagery provides a high temporal resolution
window into tropical cyclone (TC) behavior, we investigate the viability of its application to short-
term probabilistic forecasts of TC convective structure to subsequently predict TC intensity. Here,
we present a prototype model which is trained solely on two inputs: Geo infrared imagery leading
up to the synoptic time of interest and intensity estimates up to 6 hours prior to that time. To estimate
future TC structure, we compute cloud-top temperature radial profiles from infrared imagery and
then simulate the evolution of an ensemble of those profiles over the subsequent 12 hours by
applying a Deep Autoregressive Generative Model (PixelSNAIL). To forecast TC intensities at
hours 6 and 12, we input operational intensity estimates up to the current time (0 h) and simulated
future radial profiles up to +12 h into a “nowcasting” convolutional neural network. We limit our
inputs to demonstrate the viability of our approach and to enable quantification of value added by
the observed and simulated future radial profiles beyond operational intensity estimates alone. Our
prototype model achieves a marginally higher error than the National Hurricane Center’s official
forecasts despite excluding environmental factors, such as vertical wind shear and sea surface
temperature. We also demonstrate that it is possible to reasonably predict short-term evolution of
TC convective structure via radial profiles from Geo infrared imagery, resulting in interpretable

structural forecasts that may be valuable for TC operational guidance.
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SIGNIFICANCE STATEMENT: This work presents a new method of short-term probabilistic
forecasting for tropical cyclone (TC) convective structure and intensity using infrared geostationary
satellite observations. Our prototype model’s performance indicates that there is some value
in observed and simulated future cloud-top temperature radial profiles for short-term intensity
forecasting. The non-linear nature of machine learning tools can pose an interpretation challenge,
but structural forecasts produced by our model can be directly evaluated and thus may offer helpful
guidance to forecasters regarding short-term TC evolution. Since forecasters are time-limited in
producing each advisory package despite a growing wealth of satellite observations, a tool that
captures recent TC convective evolution and potential future changes may support their assessment

of TC behavior in crafting their forecasts.

1. Introduction

Tropical cyclones (TCs) are powerful, organized systems that pose a major risk to coastal
populations. Though many statistical models provide forecast guidance on future TC intensity
change (e.g., the Statistical Hurricane Intensity Prediction Scheme [SHIPS]; DeMaria and Kaplan
1999), direct measurement of most predictors such as relative humidity or vertical wind shear used
in such models is impossible due to the development of TCs over open ocean far from land-based
observing networks (Gray 1979). Many predictors must be inferred through a combination of
remote observation and dynamic models of ocean and atmospheric behavior.

Infrared (IR; 10.3-10.7um) imagery from geostationary (Geo) satellites such as the Geostationary
Operational Environmental Satellites (GOES) provides one of the few regular high-resolution
observations of TC behavior over the open ocean with a historical record spanning decades (Knapp
and Wilkins 2018; Janowiak et al. 2020). Furthermore, modern Geo IR platforms such as GOES-16
provide observations at even greater spatial and temporal resolution (Schmit et al. 2017). Since
cloud-top temperature is related to cloud-top height, low IR temperatures tend to indicate higher
cloud tops and thus stronger convection, and convective structures are known to be related to TC
intensity (Dvorak 1975; Olander and Velden 2007).

In light of this growing record of satellite observations, a broad array of recent works have
explored the wealth of information contained in the spatio-temporal structure of Geo IR imagery.

The Dvorak technique and more recent Advanced Dvorak Technique (ADT) have long related Geo
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IR imagery to TC intensity (Dvorak 1975; Olander and Velden 2007), and more recent work has
leveraged neural networks to improve the nowcasting accuracy of the ADT (Al enhanced Dvorak
Technique; Olander et al. 2021). Here, we define “nowcasting” as estimating the current TC
intensity based on intensity estimates up to 6 h prior and IR features up to the current time (0
h). Spatial analyses of IR imagery have been leveraged to improve forecasts of TC eye formation,
a process related to intensification (DeMaria 2015; Knaff and DeMaria 2017). The deviation
angle variance (DAV) technique, a measure of convective organization in IR imagery, contains
valuable information for short-term (<24 h) TC intensity guidance (Hu et al. 2020). The shape and
evolution of Geo IR radial profiles is known to relate to intensity and intensity change respectively
(Sanabia et al. 2014; McNeely et al. 2020). In this work, we utilize the evolution over time of
radial profiles (see Figure 1) to jointly forecast short-term TC intensity and structure changes.
We leverage deep auto-regressive (AR) generative models to construct interpretable and high-
resolution structural probabilistic forecasts, which display entire functions rather than time series
of thresholded quantities, such as pixel counts beneath a given temperature threshold.

Concurrent with the rise of high-resolution Geo IR imagery is the growing application of
convolutional neural networks (CNNs), powerful tools for performing prediction tasks with images
as input. Predicting TC intensity from Geo IR data is an obvious candidate application; indeed,
there are dozens of such works in the machine learning literature applying CNNs to this problem,
including Pradhan et al. (2017); Combinido et al. (2018); Lee et al. (2019); Tian et al. (2020); Wang
et al. (2020); and Zhang et al. (2021). These models achieve reasonable forecast accuracy via the
traditional machine learning framework with a CNN taking IR imagery as input to directly predict
intensity by, e.g., minimizing the average squared-error loss on independent test data. Explainable
Al approaches may then use methods such as layer-wise relevance propagation, saliency maps, and
activation maps to better understand #ow the model produced its point estimate (McGovern et al.
2019; Ebert-Uphoff and Hilburn 2020). For an example of explainable CNN-based TC intensity
forecasting in the meteorological literature, see Griffin et al. (2022).

Our proposed pipeline takes a different approach to explainability—one which remains compat-
ible with the above tools for insight into the relationships leveraged by CNNs. Our approach (i)
utilizes a dimensionality-reducing functional transformation of IR imagery prior to analysis, and

(i1) provides 12-hour ensemble forecasts of TC convective structure in addition to TC intensity.
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First, we extract scientifically-motivated functional features, reducing the dimension of the
problem (from 2-D images over time to 1-D functions over time) in a directly interpretable summary,
rather than directly relying on the CNN to extract salient features from (high-dimensional and low-
sample size) raw Geo IR imagery. These rich summary functions are derived from the ORB suite:
Organization (e.g., DAV as a function of radius), Radial structure (e.g., the radial profiles examined
in this work), and Bulk morphology (e.g., pixel counts as a function of a temperature threshold).
Temporal sequences of radial profiles are highly relevant to both intensity and intensity change
(Sanabia et al. 2014; McNeely et al. 2020, 2022). Temporal changes in these sequences of profiles
can be visualized via Hovmoller diagrams, which are more readily digestible by users than inferring
temporal patterns from animations of satellite imagery.

Second, we provide a probabilistic structural forecast, a prediction of an ensemble of possible
TC convective evolution, rather than directly predicting future intensity from past IR structure and
TC intensity. Our novel approach to intensity guidance via Geo IR imagery results in interpretable
intensity forecasts such as “our model predicts short-term intensification due to the potential
emergence of an eye-eyewall structure in the next 12 hours”. Though methods such as layer-wise
relevance propagation can provide further insight into the CNN’s use of structural forecasts, the IR
structural forecasts themselves are the core of our proposed intensity guidance pipeline.

Figure 2 outlines Section 3 via a schematic diagram of the structural forecasting to intensity

forecasting pipeline. There are three main subsections:

(a) Structural trajectories via ORB. First, we apply the ORB framework (McNeely et al. 2019,
2020) to observed IR imagery to create a “structural summary” (Figure 1) of the spatio-

temporal evolution of the present and recent past TC structure.

(b) Structural forecasting with a deep autoregressive generative model. Next, we propagate the
observed IR structure up to 12 hours forward in time via a deep pixel-autoregressive model,

which stochastically simulates an ensemble of possible trajectories of IR radial profiles.

(c) Forecasting TC intensity via convolutional neural networks. Finally, we input the observed
structure, the forecasted structure, and TC intensity up to 6 hours prior to the current time into
a nowcasting model to estimate the current intensity; we choose CNNs because they are easy

to train and commonly used for image data. By filling in the missing 7+ 6 hour and 7+ 12 hour
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130 Fic. 1. Evolution of TC IR Imagery as Structural Trajectories. The raw data at each time ¢ is a sequence of
1 TC-centered cloud-top temperature images from GOES. We quantify the image at time 7 by its radial profile (X;).
122 The sequence of consecutive radial profiles, sampled every 2 hours, defines a structural trajectory or Hovmoller

diagram (S<;).

133

structure, we can then extend the nowcasting model from a nowcast for time 7 (i.e., hour 0) to

13

a forecast at time ¢ + 6 hours and then to time 7+ 12 hours.
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Section 4 details the results of our prototype forecasting pipeline. The final Geo IR-based TC
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intensity guidance provides inherent measures of uncertainty and insight into the potential TC

structural changes that influence a given forecast. The results in this work use proof-of-concept

17

structural forecasting and a pipeline that relies solely on persistence predictors (i.e., prior intensity

118

e estimates) together with observed past and simulated future radial profiles; no environmental factors

such as vertical wind shear or ocean heat content are included at this time. We demonstrate that a

120

2 purely autoregressive prototype achieves a useful degree of forecasting accuracy.

2. Data

122

2 Our model relies on two data sources: sequences of Geo IR imagery captured by GOES satellites

and past TC intensity. For training and verification (that is, model selection), we use NOAA’s

Hurricane Database 2 (HURDAT?2; Landsea and Franklin 2013) because that database provides

124
125

s the post-season best estimates of TC intensities. For forecasting, we rely on operational TC

intensity estimates, the CARQ entries from the Naval Research Laboratory’s Automated Tropical

127
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Cyclone Forecast (ATCF) operational “A-deck” files (Sampson and Schrader 2000) to assess model

performance under real-time conditions.

129
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FiG. 2. TC Intensity Guidance via Structural Forecasting. Outline of the structural forecasting to intensity
guidance pipeline. (a) ORB functions are used to quantify the evolution of spatio-temporal convective structure,
linking IR imagery to Structural Summaries. (b) We generate structural forecasts by projecting the ORB functions
into the future via a deep autoregressive model, thereby filling in the missing +6 hour and +12 hour structure. (c)
A CNN nowcasting model then forecasts intensities at +6 to +12 hours from three sources of inputs: (i) observed

structure, (ii) forecasted structure, and (iii) operational intensity estimates up through the current time.

GOES IR imagery is available through NOAA’s Merged IR (MERGIR) database (Janowiak et al.
2020) at 30-minutex4-km resolution over the North Atlantic (NAL) basin from 2000-2020. For
each TC, we download ~2,000 kmx2,000 km “stamps” of IR imagery centered on the TC location
at a 30-minute temporal resolution. Figure 1 (left) shows two such stamps after an 800-km radius
mask is applied. For this work, we sample the 30-minute data at 2-hour resolution because of
periodic corruption of the imagery in the MERGIR database (Liu 2021).

During training, we linearly interpolate TC location and intensity from HURDAT?2 to obtain
locations and intensities for non-synoptic times; however, model assessment is restricted to synoptic
times. We include TC lifetimes between the first synoptic time at which intensity reaches at least
35 kt and the last synoptic time at which intensity is at least 35 kt; note that this can result in the
inclusion of TCs < 35 kt if the TC decays and then re-intensifies.

Finally, we rely on NHC’s official forecast verification to assess our model’s performance.
We also draw on the SHIPS developmental database’s 200-850-hPa vertical wind shear values
calculated within a 200-800-km annulus from the TC center as reference during model validation

due to the known impact of shear on TC convective structure (DeMaria 2018).
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3. Methods

As outlined in Figure 2, we first construct a summary of IR structural evolution (a; Section
3a). We then train a stochastic autoregressive model, which is an explicit likelihood model (of
structural trajectories) that we can use to simulate probable IR structural evolution (b; Section 3b).
Finally, we combine observed and forecasted structure with operational intensity estimates up to
and including the current time to provide interpretable short-term intensity guidance, based solely

on Geo IR imagery and operational intensity estimates (c; Section 3c).

a. Structural Trajectories via ORB

Operational forecasting of TC intensity is a human-in-the-loop process and thus places a premium
on guidance interpretability. In this spirit, the ORB framework (Organization, Radial structure,
Bulk morphology) summarizes 2-D imagery via continuous 1-D functions to enable static vi-
sualization of spatio-temporal patterns in TC development via Hovmoller diagrams (Hovmoller
1949). Our past work focused on the rich quantification of spatial information in Geo IR imagery
(McNeely et al. 2019, 2020). More recently, we demonstrated the value of temporal patterns in
ORB functions (McNeely et al. 2022), specifically the radial profile.

The radial profile of brightness temperature BT (r) = % fozn T, (r,0)d0 captures the structure of
cloud-top brightness temperature (73 ) as a function of radius r from the TC center and serves as an
easily interpretable description of the depth and location of convection near the TC core (Sanabia
et al. 2014; McNeely et al. 2020). The radial profiles are computed at 5-km resolution from 0-400
km (d = 80) (Figure 1, center); we denote the summary of convective structure at each time ¢ by
BT,. The structural trajectory is then defined as the 24-hour sequence of present and 12 preceding

radial profiles at a 2-hour resolution:
S<i = (BT;-24, BT:-22p,...,BT)) (1)

We visualize such a trajectory with a Hovmoller diagram (see Figure 1, right).
McNeely et al. (2022) demonstrated a relationship between TC intensity change and Hovmoller
diagrams of radial profiles. However, the radial profile, if averaged over all angles, will disregard

asymmetry within the original 2-D images, which can degrade performance for cases affected
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by strong vertical wind shear. In this work, we instead compute a separate radial profile for
each geographic quadrant (NE, NW, SE, SW) to capture asymmetries via the differences between
quadrants. We use geographic quadrants instead of motion-relative or shear-relative quadrants
because the directions of motion and shear are unstable when the magnitudes of those vectors are

small.

b. Structural Forecasting via Deep Autoregressive Generative Model

The crucial step in our guidance framework is the propagation of radial profiles into the near
future. The Hovmoller diagram captures the spatio-temporal evolution of the TC over an extended
period of time; that is, we can summarize TC development by an easily-interpretable image. By
treating the structural trajectory as an image, where the y-axis corresponds to the passage of time,
forecasting radial profiles becomes equivalent to an image completion problem. That is, we predict
the missing pixels at the bottom of an image (forecasted structure) given those at the top (observed
structure). Image completion is an active research area in machine learning; here we focus on a
state-of-the-art model in the class of pixel-autoregressive models (Van Oord et al. 2016).

Pixel-autoregressive models impose an ordering on the pixels of an image, such as a raster-scan
ordering (left-to-right, top-to-bottom). Let each pixel in a four-quadrant radial profile trajectory be
represented by Xx; := (x;1,X;2,X;3,X4), Where i is the index in the raster scan. The pixel-AR approach

factors the joint distribution of pixel values in the image as a product of conditionals,
n
P(X1,--~,Xn)Zﬂp(xi|Xz’—1,.--,X1), (2)
i=1

where the probability of each pixel value is conditioned on all previous pixels in the raster scan.
Then, to generate a new radial profile, one simulates repeatedly from p(x;|X;_1,...,X1); due to the
raster-scan ordering, the distribution of a given pixel is not influenced by elements further down
the sequence, hence enforcing causality.

The challenge of how to estimate the conditional likelihoods p(x;|X;—1,...,X;) has given rise
to many flavors of pixel-autoregressive models, including PixelRNN (Van Oord et al. 2016),
PixelCNN (Van den Oord et al. 2016), PixelCNN++ (Salimans et al. 2017), and PixelSNAIL

(Chen et al. 2018). This work utilizes the last model, PixelSNAIL. There are two main ingredients
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in the model: (i) causal convolution and (ii) self-attention. Causal convolution utilizes the same
convolutional feature extraction outlined in Section ¢ but masks each convolution so that each
element in the raster sequence only receives information from previously generated sequences
(e.g., Figure 3). Purely convolutional models, however, are restricted to small neighborhoods
of pixels, leading to only a finite receptive field (area of the source image involved in a given
convolution), and thus struggle with long-range dependencies in the conditional p(x;|X;-1,...,X]).
PixelSNAIL, on the other hand, features a self-attention mechanism that leads to unbounded
receptive fields with pinpointed access to information far away in the sequence; see Chen et al.
(2018) for details on the PixelSNAIL architecture.

To ensure that cloud-top temperatures remain bounded, we rescale the data to the range X € (0, 1)*
and work in the logit-transformed space, Z = log(X/(1 —X)); while values of Z are unbounded,
X remains bounded in (0,1)* and are then transformed back to the temperature range observed
in the training data. We model the density p(z;|z;—1,...,Z1) as 4 independent mixtures of logistic

distributions, one for each quadrant. That is, for pixel i in quadrant ¢,

K
P (2iglzi-1,...,21) = Z mgi f (Zigs Mgks Sqk) (mixture distribution),
k=1

qu(Z)
sqk(1—gqk(2))%

gqk(2) =exp (— (z— pgk)/Sqi)s
K

and Z gk =1.
k=1

Thus, with four quadrants and K mixture components, the distribution p(z;|z;_1,...,Z;) has 4(3K —

where f(zig; UgksSqk) = (logistic distribution)

1) parameters: a mean u, a scale s, and a mixture coefficient  for each quadrant, with the constraint
that the mixture coefficients in each quadrant sum to one. With K = 3 mixture components, this
results in 32 parameters total. Each draw from the distribution is transformed back to the bounded

space via the relationship X = then rescaled to the range of values observed in the input

1
l+exp(-Z)°
radial profiles.

This autoregressive model enables stochastic simulation of structural trajectories based on Geo

IR persistence. For a given synoptic time, we can simulate many trajectories from the observed

10
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Fic. 3. Masking in Pixel Autoregression. Illustration of raster-scan ordering and the causal masking.
Convolutions at index i only have access to pixel values in previous rows (earlier time points, color coded by

yellow), and pixel values in the same row but to the left of pixel x; (same time point, color coded by orange).

history and then feed each potential trajectory through the nowcasting model to obtain the associated
intensity guidance. Via multiple simulations per forecast time, an ensemble forecast provides a
measure of uncertainty in both structural trajectories and intensities while also offering insight
into cases where the model over- or under-estimates intensity. For example, overestimates may be
caused by too-low profile temperatures or overestimated symmetry between quadrants.

The structural forecasting model is trained on TCs from 2000-2012, with 2013-2020 withheld
for testing. We train the model using input radial profiles calculated every 2 hours but test on
synoptic times. Because AR models are likelihood-based, we can directly calculate and minimize
the negative log-likelihood (NLL), a measure of the model’s ability to generalize well on withheld

data.

¢. Nowcasting TC Intensity via Convolutional Neural Networks

Traditional linear models are attractive for reasons of interpretability and good performance in
low sample size settings. However, linear models often struggle to capture the complex, time-
varying processes which drive TCs. It is also unclear how to include the radial profile Hovmoller
diagrams as inputs to a linear model without sacrificing interpretability. In this work, we instead
consider a simple convolutional neural network to map observed IR trajectories (S;) to current
intensities (¥;). Because we treat time as a spatial dimension in these diagrams and a structural
trajectory is represented as an image, a CNN will leverage both spatial and temporal patterns in

the data.

11
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Fic. 4. Nowcasting Model Architecture. The convolutional neural network used for nowcasting consists
of three convolution-max pool layer pairs (Conv#), fully connected layers (FC#), and a concatenation with

persistence features between regressions.

CNNs operate by two main elements: convolutional layers and fully-connected layers. The
convolutional layers first convolve each layer (here, each quadrant) with a library of filters (i.e.,
matrices whose entries are learned parameters); some of these filters may resemble familiar
matrices, such as gradient approximators (e.g., Sobel matrices). After each convolutional layer,
the image is pooled to reduce the image size and increase the receptive field of the next set of
convolutions. In the final step, the results of all convolutions are passed into a fully-connected layer
which approximates the relationship between the convolutional feature map and the response.

We augment the traditional CNN in two ways. First, we add two layers which encode the
radial and temporal location of pixels within the image; regular CNNs are translation invariant,
whereas patterns in TCs have different meaning depending on their location and time of occurrence
(corresponding to column versus row index, respectively, in the Hovmoller diagram). Second, we
augment the model output with relevant TC persistence features (intensities and intensity changes
up to 6 hours prior to time #) before passing them to a second fully-connected layer. The final

model is then

Y = fawest (S<ts Yi-30n, Yi—24h, - -, Yi—en, AYi—30n, AYi—24p, . . .. Yi—6pn) + &, 3)

12
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where S_; is the 24-h structural trajectory up to current time (see Equation 1); the Y’s are intensity
data at 6-h resolution; the AY’s are intensity changes interpolated (ip) from 6-h data to a 2-h
resolution (e.g., AY;_30n = Y;—30n — Yzifsz ,)» and € is the prediction error.

Like the structural forecasting model, the nowcasting model is trained on TCs from 2000-2012,
here by minimizing the mean squared error. The model is trained on data with a 2-hour resolution
(rather than synoptic times alone) with intensities linearly interpolated to those times; we do not
include non-synoptic times in the test TCs (2013-2020). The details of the CNN architecture are

given in Figure 4.

d. From Nowcasting to Forecasting

Section 3c defines a nowcasting model for estimating intensity at time ¢ (i.e., hour 0) by training
on post-season (best-track or HURDAT?2) intensities from -30 h to -6 h and imagery from -30 h
to 0 h. After we have trained and validated the nowcasting model to estimate O-h intensities, we
apply the CNN nowcasting model to TC intensity forecasting. To forecast intensity at time t + 6
h, we need the intensities at times < ¢ (in this work, we use operational intensities drawn from
CARQ in the A-deck files when generating TC intensity forecasts) and structural trajectories at
times < 7+6 h (observed at times < ¢ and simulated at times from #+2 h to 7+ 6 h). Using the
structural forecasting model in Section 3b, we simulate many possible trajectories from times 7 +2
hr to #+6 hr. Each of these possible future trajectories is then passed to the nowcasting model to
obtain a separate intensity forecast, giving an ensemble of possible intensities.

Our proposed framework for intensity forecasts at +6 and +12 h has two primary benefits: (i) by
providing an additional structural forecast, we provide insight into potential TC evolution predicted
by the model, such as deepening convection or the emergence of an eye; (i1) because the structural
forecast is stochastic, we can straightforwardly assess the uncertainty in structural evolution over

time and the associated uncertainty in the intensity forecasts.

4. Model Results

We first demonstrate the performance of our proposed model on specific cases (Hurricanes Jose

[2017], Nicole [2016], and Dorian [2019]) in Section a, discussing both accuracy and the insight

13
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FiG. 5. Case Studies: Comparison of the 6-hour (left) and 12-hour (right) intensity forecasts (gray) from the
structural forecasting model versus observed intensities (black). Vertical wind shear also shown (gold). The
solid gray lines indicate the mean of 64 simulations at each time point. Reported errors indicate the error of
the average model prediction, not individual simulations. The model captures the behavior of Hurricanes Jose
[2017; center] and Dorian [2019; bottom] fairly well, but struggles with both rapid weakening events exhibited

by Hurricane Nicole [2016; top] as well as low-intensity maintenance periods in Hurricanes Nicole and Dorian.

provided by structural forecasts at 6- and 12-hour lead times. We then assess the performance of

the model during 2013-2020 in the North Atlantic basin at 6- and 12-hour lead times in Section b.

a. Case Studies

We examine Hurricane Jose (2017) due to the presence of high vertical wind shear which
produces convective asymmetries not captured by the azimuthally-averaged radial profiles (i.e., not

quadrant-based) of McNeely et al. (2022). Hurricane Nicole (2016) was selected due to undergoing
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Fi1G. 6. Observed and Simulated Trajectories, Hurricane Dorian [2019]: The observed structural trajectory
is shown in the top left corner. To the right, we see 10 individual simulations of radial profiles (averaged over
all quadrants) at 12-hour lead times. All radial profiles above the black horizontal line are observed, while
profiles below the black line are simulated. The bottom left corner shows the arithmetic mean over 64 simulated

trajectories.

two rapid intensification and two rapid weakening events. Finally, Hurricane Dorian (2019) was a

powerful TC with many in situ observations.

(i) Intensities Figure 5 shows the 6-hour forecasts based on 64 independently simulated struc-
tural trajectories per synoptic time. Because the structural forecasts are currently based entirely
on persistence—no environmental fields, such as 200-850-hPa vertical wind shear, have been
included—we expect the guidance to be most useful in the short term (6- to 12-hour time frame).
The steadier development of Hurricanes Jose and Dorian are well-modeled, but the swift intensity
changes exhibited by Hurricane Nicole as well as the rapid intensification period of Hurricane
Dorian both prove challenging to capture.

Extending lead time to 12 hours increases the variation among individual simulations, but the
average simulated intensity continues to roughly track the observed intensities. The rapid intensity
change events exhibited by Hurricane Nicole are challenging to forecast with only IR persistence.
However, the model follows Hurricane Jose’s evolution relatively well, indicating that the model

has value as-is at 12-hour lead times.
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Fic. 7. Hurricane Dorian [2019] 6-h Guidance: (Left) Distribution of forecasted intensities with observed

(black) and average forecast (red) intensities marked. The distribution of the 64 intensity forecasts in the ensemble

is approximated by a histogram (bar plot) and by a kernel density estimate (blue curve). (Right) Simulated profiles

by quadrant with observed profiles represented by solid black curves, and averaged simulated profiles represented

by dashed red curves.

(ii) Diagnostics

While the end goal of intensity guidance models is ultimately prediction of TC

intensity, our structural forecasting pipeline adds valuable diagnostic insight into structural factors

contributing to its predictions.

Figure 6 demonstrates the three-step (12-hour lead time) structural forecast for Hurricane Dorian

valid for 18 UTC 27 August during a period in which it maintained 45-kt intensity. The final
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Fic. 8. Hurricane Dorian [2019] 12-h Guidance: Model bias during intensification (center row) is more

exaggerated at 12-hour lead times. (Left) Distribution of forecasted intensities with observed (black) and average

forecast (red) intensities marked. The distribution of the 64 intensity forecasts in the ensemble is approximated

by a histogram (bar plot) and by a kernel density estimate (blue curve). (Right) Simulated profiles by quadrant

with observed profiles represented by solid black curves, and averaged simulated profiles represented by dashed

red curves.

6 rows of each Hovmoller diagram are simulated from the structural forecast model; in this

figure, we average the four quadrants for ease of visualization (see Appendix A, Figure B10, in

the supplementary materials for Hurricane Dorian structural forecasts broken down by quadrant).
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Cloud-top temperature magnitude tends to be underestimated, but the expansion of cloud coverage
during this 12-h period is captured across most simulations.

Figure 7 demonstrates the 6-hour forecasting guidance available at individual synoptic times.
The average simulated profiles in each quadrant tend to track observed profiles reasonably well,
although they tend to predict too flat a curve and too symmetric an eye. Figure 8 shows the same
information but for the 12-hour lead time. Here, model biases tend to be amplified by longer lead
times. We note that the emergence of an eye is captured in trajectory (B), even 12 hours out.

Similar figures for Hurricanes Jose and Nicole are provided in the supplemental material. In
general, the structural forecast follows the observed profile, even at 12-hour lead times. We did
not perform any data augmentation during training (e.g,. rotation) in order to preserve dominant
geographic patterns (e.g., the prevalence of TC convection sheared eastward and northeastward in
the North Atlantic), but it is possible that augmentation by rotating TCs would improve simulation
fidelity, as it has been shown to improve accuracy in other TC intensity forecasting applications

such as Griffin et al. (2022).

b. Model Verification

The same models are used to produce 16 simulated trajectories with associated intensity guidance
for each synoptic time from 2013-2020 at the 6- and 12-hour lead times. (We use 16 rather than
64 simulations when validating over the entire 8-year period for computational reasons.) Intensity
predictions provided via averaging the 16 simulations are validated against HURDAT? best-track
intensities, and past TC intensity values provided as input to the model come from operational
estimates (CARQ) to emulate real-time performance.

Table 1 (left) reports the performance of the simulated trajectories versus forecast lead time in
terms of root mean variance (RMV), mean absolute deviation (MAD), and bias averaged over all

quadrants and radii. Let ﬁqi(r) denote the /™ simulated profile in quadrant ¢ and 7,(r) denote
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the true profile in quadrant g. Then,

1 &< 1
RMV= (400km 4_2 Z qi(r)—Tq(r))zdr) , (4)
1 S
MAD_4OOkm / 4_2;|3Tqi(")—fq(r)ldr, (5)
w00 | S
Blas_400km/ ; — Tqi(’”)—Tq(l”)dr. (6)

The above are defined for simulations at a single simulation time; to combine over multiple
simulation times, we average MAD and bias, and average RMV in quadrature. The measures
of noise (RMV and MAD) are large even for the shortest forecast lead times; increasing the
simulation size beyond 16 will reduce the impact of this noise on the average forecast. Bias,
meanwhile, becomes steadily more negative with time for our structural forecasts (top left). This
will lead to overestimates of intensity, as low IR temperatures are generally associated with stronger
TCs. Persistence IR forecasts (bottom left) offer a less biased IR forecast on average but higher
overall errors in structure at all lead times.

Table 1 (right) reports verification statistics for intensity guidance using the traditional definitions
for root mean squared error (RMSE), mean absolute error (MAE), and bias. As expected, the
negative bias in structural forecasts manifests as a positive bias in intensity guidance.

Tables 2 and 3 assess the performance of our intensity guidance via structural forecasting at
12-hour lead times and compare it to the NHC’s official forecast verification from 2013-2019 due
to availability of verification data at time of writing; note that this is a subset of the times reported
in Table 1, consisting of cases where both our structural forecasts and NHC official verification
are available. Overall, the RMSE of the structural forecast is about 1.1 kt larger than the NHC
official forecast error as computed by RMSE, and structural forecasts produce roughly twice the
bias (1.1 vs -0.6 kt). The structural forecast sees unchanged MSE with increasing 200-850-hPa
vertical wind shear; the bias, however, increases with increasing wind shear (Table 2). This trend is
expected, as the model does not include wind shear as a predictor but instead relies on the positive
correlation between shear and asymmetry in IR imagery (as captured by radial profiles computed

by quadrant). The NHC official forecast error exhibits a similar, if less pronounced, trend in bias
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with increasing shear. The direction of shear seems more important, with both our model and the
NHC official forecast performing most poorly for NW shear (6% of cases) and best for SW shear
(9% of cases). The NE and SE cases dominate the overall model performance since they comprise
the remaining 85% of the data set. The disparity between different shear magnitudes and directions
could be alleviated in a model which utilizes environmental predictors.

Table 3 demonstrates similar error trends for both official forecasts and our structural forecasts.
Errors tend to increase with TC intensity and with rate of intensification or weakening. The
structural model produces higher bias for weaker TCs and lower bias for stronger TCs. Similarly,
the structural model tends to overestimate intensities during weakening and underestimate them
during intensification. The model errors are comparable to NHC official forecast errors during
periods of maintenance and intensification (although bias is higher); it is periods of weakening
which tend to be poorly modeled by the structural forecast. We suspect that the inclusion of
environmental information could improve fidelity in weakening cases; see Section 6 on Future

Work Directions for a discussion of such avenues for model improvement.

c. Variable Importance in Intensity Forecasts

Our model results show that structural forecasts result in 6-hour and 12-hour intensity predictions

of comparable accuracy to NHC official forecasts. For insight into how much our model relies

Trajectory Verification

Model Leadtime | 2h  4h  6h  8h 10h  I12h . . :
Intensity Verification

Structural RMV | 10.5C 147C 174C 222C 25.1C 26.9C
MAD 7.1C  10.5C 12.8C 156C 17.6C 19.0C
Bias | -0.6C -22C -4.0C -63C -79C -93C

Lead time 6h 12h

RMSE | 4.9kt 9.5kt
MAE | 3.5kt 7.1kt
Bias | 0.6kt 2.3kt

Persistence RMV | 12.0C 162C 19.7C 227C 282C 31.7C
MAD 82C 11.1C 13.6C 158C 185C 20.5C
Bias | -0.4C 0.6C 2.0C 3.5C 5.5C 6.8C

TaBLE 1. Overall Model Verification at n = 16: (Left) Trajectory verification of structural forecasts, compared
to IR persistence forecasts where the radial profiles are fixed at their 0 h values. Simulation noise (root mean
variance and mean absolute deviation) grows rapidly in the first 6 hours; bias increases in magnitude steadily.
We note that persistence offers a less biased IR forecast on average, but higher overall errors in structure at all

lead times. (Right) Intensity verification vs HURDAT? best-track intensities from 2013-2020 at each lead time.
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Shear Direction

Shear Magnitude
Structural NHC OFCL
Structural NHC OFCL L .
Shear Direction 12-h RMSE/MAE/Bias N
Shear 12-h RMSE/MAE/Bias N

SW | 8.6/6.1/-0.1kt  7.5/5.4/-1.1 kt 106

SE 9.1/6.9/0.3 kt 8.5/5.9/-0.5 kt 440
NE 9.3/6.6/2.2 kt 7.9/5.4/-0.6 kt 575
NW | 10.6/8.2/-2.0kt  8.9/6.1/-0.9 kt 70

0-10kt | 9.3/7.3/-0.7kt  9.3/6.4/-1.1 kt 243
10-20kt | 9.7/6.9/1.0kt  8.1/5.7/-0.5 kt 509
20+kt | 8.6/6.3/2.1kt  7.5/5.1/-0.6 kt 439

Total | 9.2/6.8/1.1kt  8.1/5.6/-0.6kt 1,191
Total 9.2/6.8/1.1 kt 8.1/5.6/-0.6 kt 1,191

TaBLE 2. Intensity Guidance Verification Relative to Shear: Model verification binned by 200-850-hPa
vertical wind shear, reported as RMSE/MAE/Bias. (Left) The performance of the structural forecasting model
does not change meaningfully relative to wind shear magnitude, while the NHC official forecast performs better
in higher shear environments. The structural forecast has comparable performance to the NHC official forecasts
in low-shear environments. (Right) The performance of the structural model does vary with shear direction.

Both the NHC forecasts and the structural model produce higher errors for NW shear (6% of cases).

TC Intensit .
Y Intensity Change
Structural NHC OFCL
Structural NHC OFCL
Category 12-h RMSE/MAE/Bias N
Evolution 12-h RMSE/MAE/Bias N

Tropical Depression 5.5/4.4/3.0 kt 5.9/4.2/-3.1 kt 112
Weakening | 12.1/8.9/7.7 kt 7.8/5.4/12.9 kt 263

Tropical Storm 7.2/5.6/2.8 kt 6.4/4.4/-0.6 kt 567
Maintenance | 6.7/5.3/3.3 kt 6.1/4.3/-0.0 kt 497

Hurricane 10.3/7.7/0.6 kt 9.3/6.7/-0.6 kt 355
Intensifying | 9.8/7.3/-5.5kt  10.2/7.2/-3.5 kt 431

Major Hurricane 14.0/10.7/-5.5kt ~ 11.8/8.4/0.9 kt 157
Total | 9.2/6.8/1.1 kt 8.1/5.6/-0.6 kt 1,208

Total 9.2/6.8/1.1 kt 8.1/5.6/-0.6 kt 1,208

TasLE 3. Intensity Guidance Verification by TC Intensity: Model verification split out by intensity and
intensity change, reported as RMSE/MAE/Bias. (Left) Both the structural and NHC official forecasts struggle
more with intense storms, which are rarer. The structural forecast has much stronger bias, which is expected due
to the heavy influence of persistence features in the absence of environmental predictors. (Right) Similarly, both
forecasts perform best during maintenance periods (6-hour change < 5 kt in magnitude), overestimate during
weakening, and underestimate during intensification. The bias is more pronounced in the structural forecast due

to the absence of environmental predictors.

on IR inputs and prior intensities when making predictions, we compute a saliency map (also
known as pixel attribution) for each input. There are varied definitions for saliency, including
occlusion-based approaches such as SHAP explainability values (Lundberg and Lee 2017), LIME

values (Ribeiro et al. 2016), and gradient-based approaches.
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Fic. 9. SHAP Variable Importance Map for 6-Hour Intensity Forecast: (Top) IR channels of CNN

nowcasting model for Hurricane Dorian [2019] with observed IR structure above the horizontal black lines

and +6 h forecasted structure from deep auto-regressive generative model below the horizontal lines. (Center)

Pixel-wise SHAP variable importance of IR inputs on the 6-h intensity forecast. (Bottom Left) SHAP variable

importance of VMax (linearly interpolated operational intensity estimates) and Delta V (2-h rate of change of

operational intensity estimates) on the 6-h intensity forecast. (Bottom Right) Aggregated SHAP values over each

channel, indicating IR features contributing to intensity forecasts to a degree comparable to persistence features.

Figure 9 (center) shows a map of the SHAP importance or contribution of each pixel of the IR

observed and forecasted imagery on the 6-hour intensity forecast for Hurricane Dorian [2019].

The bottom-left panel shows the SHAP values for prior intensity and prior intensity change. The
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bottom-right panel shows aggregated SHAP values for each input channel. From this result and
a similar analysis with SHAP variable importance maps for Hurricane Jose [2017] and Hurricane
Nicole [2016] in Appendix A and gradient-based saliency maps in Appendix B of Supplementary
Materials, we conclude that (i) IR imagery contributes to the intensity forecasts to a degree
comparable to persistence features, (ii) forecasted infrared imagery from our deep autoregressive
generative model plays a more important role than observed past imagery in the TC intensity
forecasts, (iii) the current and past presence/absence of an eye is generally the key feature of
a storm, and (iv) the core temperatures outside of the eye play a signifcant role for intensity

forecasting.

5. Discussion and Conclusion

This paper demonstrates a novel interpretable approach to short-term TC intensity guidance
trained solely on intensity estimates up to 6 hours prior to the current time and IR observations
up to 0 h. We specifically leverage spatial characteristics of TC convection as captured by radial
IR profiles. By forecasting an ensemble of +6 h and +12 h trajectories of TC IR structure with
radial profiles computed over four geographic quadrants, we obtain reasonable estimates of future
+6 h and +12 h TC intensity while simultaneously capturing and enabling visualization of signals
in convective structure relevant to those future intensities. We focus on interpretable, physically-
based factors to facilitate understanding of the model’s performance (e.g., upcoming intensification
corresponds with decreasing cloud-top temperatures in the structural forecast). The approach
outlined here has the potential for further improvement by adopting other network architectures
for structural forecasts and by including environmental predictors provided in real time by SHIPS
guidance. Though testing on years of cases takes time, an individual forecast for a single TC can
be obtained in minutes on a single GPU, indicating the potential for the eventual use of this model

as part of the available TC guidance suite in an operational setting.

6. Future Work Directions

a. Improving the Network Architecture for Structural Forecasts

The PixelSNAIL approach provides reasonable simulations of TC IR structural evolution up to

12-hour lead times. However, there exists a wealth of alternate deep autoregressive generative
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models, each of which can be designed and trained in innumerable ways. Likewise, deep autore-
gressive models are not the only generative models available. Simulation could be carried out
via vector autoregression on a low-dimensional projection of profiles (e.g., principal component
analysis, Fourier bases, etc.), generative adversarial networks (GANs; Creswell et al. 2018), or
transformers (e.g., temporal fusion transformers for multihorizon forecasting (Lim et al. 2021) and
spatiotemporal transformers (Grigsby et al. 2021)). The PixelSNAIL architecture was chosen to

demonstrate the value and feasibility of structural forecasting for intensity guidance.

b. Calibrating the Probability Distribution of Structural Forecasts

Our structural forecasts are probabilistic in nature, taking the form of probability distributions
over future structural trajectories S-;. In the current work, we apply a standard machine learning
approach of fitting a model by minimizing a loss function (in this case the negative log likelihood).
A good probabilistic forecast, however, should be conditionally calibrated. That is, the probability
of a particular event (in our case, specific radial profiles 6-12 hours into the future), given or
“conditional on” a particular history of evolution and other predictors, should match the predicted
probability of the same event. This is essentially saying that draws from the forecasting model
should be indistinguishable from actual observations, if all relevant conditions are the same. Dey
et al. (2022) recently proposed a new method for adjusting or “recalibrating” probabilistic forecasts,
so that they will have his property. Indeed, one can potentially apply their procedure sequentially to
each autoregressive component p(Ziq |Zi-1,...,Zy),forpixeli=1,...,n,and quadrantg = 1,2,3,4,
so as to obtain a conditionally calibrated density over structural trajectories S-; given present and

past observations; see Discussion in Dey et al. (2022).

c. Inclusion of Environmental Variables

The PixelSNAIL model presented here is a purely autoregressive process; that is, it simulates
future structural features using only past IR imagery as an input. The inclusion of environmental
variables known to impact TCs such as vertical wind shear, atmospheric moisture, or sea surface
temperature may improve the accuracy of the forward simulation of radial profiles, particularly of
structural evolution beyond 12 hours. Such factors can be added to the Pixel SNAIL architecture as

additional input layers via values provided by SHIPS which are not forecasted by the model. These
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inputs would then serve as “guiderails” for simulated structural evolution with potential to better
capture the effects of such factors on profile asymmetry. Despite these limitations, our prototype
model (which is derived solely from prior and present TC intensity estimates and Geo IR imagery
alongside forecasted TC structure using a very simple network architecture) provides reasonable
short-term structural and intensity forecasts comparable to NHC forecasts at 6- and 12-h lead times.
The inclusion of environmental variables in the nowcasting model is likely to improve its intensity
forecasts, which would then be compared to SHIPS forecasts as well as NHC official forecasts, the

latter of which are crafted using SHIPS and other guidance.
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o APPENDIX A

10 Additional SHAP Variable Importance Maps for TC Intensity Forecasts

SHAP Values for Hurricane Jose [2017] at 2017-09-13T06:00:00z
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SHAP Values for Hurricane Nicole [2016] at 2016-10-12T18:00:00z
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APPENDIX B

Input Saliency for Forecasting Model

Our model results in Section 4 showed that structural forecasts result in 12-hour intensity
predictions of comparable accuracy to NHC official forecasts. Here we apply a simple gradient-
based approach to provide some insight as to how much the model relies on different IR inputs
when making predictions. The gradient describes how much a feature contributes to the model

response Y. More specifically, we define the saliency S;(x) of the i’ pixel or feature by

oY

Si(x) =
(x) e

; (BI)

X

where x denotes the total input.

In order to visualize the overall impact of each input channel (four IR quadrants, the radius
channel, the time channel, the observed prior intensity, and the observed prior intensity change) on
the forecasted future intensity, we “aggregate” the saliency, summing over all pixels in each channel.
Figure B1 shows the saliency aggregated by channel over time for each of our three example TCs.
Note that because prior intensity/intensity change are not included in the convolutional layers, they
are linear, and thus have a fixed saliency; because the model is nonlinear in the other channels, the
saliency varies over time with the IR inputs. Of particular note is that the aggregated saliency of
the IR input channels is comparable to the persistence features, indicating that the model does not
simply rely on persistence to make its predictions but instead makes use of the structural forecasts.
Figure B2 shows the same values for IR channels with the mean and trend removed, demonstrating
that the model tends to rely more heavily on convective structure in the southern quadrants, and

particularly the southeast quadrant.
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Trend- and Mean-removed Aggregated Saliency of Imagery
over Time for Hurricane Nicole [2016]
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APPENDIX C

Additional Forecast Materials for Case Studies
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Fic. C1. Hurricane Jose [2017] 6-hr Guidance: Hurricane Jose was subjected to vertical wind shear out of
the west/northwest due to Hurricane Irma; the structural forecasts tend to underestimate temperatures in the NW
quadrant and thus overestimate TC intensity. (Left) Distribution of forecasted intensities with observed (black)
and average forecast (red) intensities marked. (Right) Simulated profiles by quadrant with observed profiles

represented by solid black curves, and averaged simulated profiles represented by dashed red curves.
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Fic. C2. Hurricane Jose [2017] 12-hr Guidance: At 12-hour lead times, this TC’s evolution is still
well modeled save for a handful of individual overestimates. (Left) Distribution of forecasted intensities with
observed (black) and average forecast (red) intensities marked. (Right) Simulated profiles by quadrant with
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curves.
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of forecasted intensities with observed (black) and average forecast (red) intensities marked. (Right) Simulated

profiles by quadrant with observed profiles represented by solid black curves, and averaged simulated profiles

represented by dashed red curves.



63

64

65

66

67

» OSimuIated 12-hour Intensities at 2016-10-07T12:00:00z 12-hour Simulated & Observed Profiles at 2016-10-07T712:00:00z

Observed Mean Forecast] (A) g,
17.5 Intensity Intemsity| @
~1 A
15.0 / -
o
12.5 g
=
[
% 10.0 = 100
o Q
7.5 o
@
5.0 =
=%
25 g
0.0 =
60 70 80 90 100 110 [ 100 200 300 0 100 200 300
Intensity [kt] Radius [km] Radius [km]
. . 12-hour Simulated & Observed Profiles at 2016-10-10T18:00:00z
50 0Slmulated 12-hour Intensities at 2016-10-10T18:00:00z
Observed | Mean Forecast (B) (E;,
17.5 Intensity | | Intensity g
15.0 =
o
12.5 VR £
" o
g 10.0 —
o Q
7.5 o
[}
5.0 — o
25 g
0.0 [ A @
50 55 60 65 70 75 80 0 100 200 300 0 100 200 300
Intensity [kt] Radius [km] Radius [km]
. . 12-hour Simulated & Observed Profiles at 2016-10-12T18:00:00z
20 0Slmulated 12-hour Intensities at 2016-10-12T18:00:00z
Mean Forecast (C) Observed L;.,
17.5 Inteni Intensity %
15.0 | =
o
125 £
. @
g 10.0 -
o Q
7.5 o
@
5.0 =
=%
2.5 c
0.0 &
70 75 80 85 90 95 100 105 0 100 200 300 0 100 200 300
Intensity [kt] Radius [km] Radius [km]
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profiles by quadrant with observed profiles represented by solid black curves, and averaged simulated profiles

represented by dashed red curves.
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(A) 12-hour Simulated & Observed Trajectories at 2016-10-07T12:00:00z
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(B) 12-hour Simulated & Observed Trajectories at 2016-10-10T18:00:00z
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(C) 12-hour Simulated & Observed Trajectories at 2016-10-12T718:00:00z
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FiG. C5. Hurricane Nicole [2016] 12-hr Structural Forecasts: The observed structural trajectory is shown in
the top left corner of each row. To the right, we see 10 individual simulations of radial profiles (averaged over all
quadrants) at 12-hour lead times. All radial profiles above the black horizontal line are observed, while profiles
below the black line are simulated. The bottom left corner shows the average simulation over 64 simulated

trajectories.
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12-hour Simulated & Observed Trajectories at 2016-10-10T18:00:00z
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Fic. C6. Hurricane Nicole [2016] Forecasts By Quadrant (B): As Figure C5, but broken down by quadrant
for example (B) only. The observed structural trajectory is shown in the top left corner. To the right, we see four
individual simulations of radial profiles by quadrant at 12-hour lead times. All radial profiles above the black
horizontal line are observed, while profiles below the black line are simulated. The bottom left corner shows the

average simulation over 64 simulated trajectories.
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(A) 12-hour Simulated & Observed Trajectories at 2017-09-06T18:00:00z
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(B) 12-hour Simulated & Observed Trajectories at 2017-09-10T12:00:00z

|iiiiiii!§l

Average
Simulation

Time [hr]

Individual Simulations

Time [hr]

(C) 12-hour Simulated & Observed Trajectories at 2017-09-13T06:00:00z
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FiG. C7. Hurricane Jose [2017] 12-hr Structural Forecasts: The observed structural trajectory is shown in
the top left corner of each row. To the right, we see 10 individual simulations of radial profiles (averaged over all
quadrants) at 12-hour lead times. All radial profiles above the black horizontal line are observed, while profiles
below the black line are simulated. The bottom left corner, shows the average simulation over 64 simulated

trajectories.
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12-hour Simulated & Observed Trajectories at 2017-09-06T18:00:00z
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Fic. C8. Hurricane Jose [2017] Forecasts By Quadrant (A): As Figure C7, but broken down by quadrant
for example (A) only. The observed structural trajectory is shown in the top left corner. To the right, we see four
individual simulations of radial profiles by quadrant at 12-hour lead times. All radial profiles above the black
horizontal line are observed, while profiles below the black line are simulated. The bottom left corner shows the

average simulation over 64 simulated trajectories.
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(A) 12-hour Simulated & Observed Trajectories at 2019-08-27T18:00:00z
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(B) 12-hour Simulated & Observed Trajectories at 2019-08-31T18:00:00z
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(C) 12-hour Simulated & Observed Trajectories at 2019-09-03T06:00:00z
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FiG. C9. Hurricane Dorian [2019] 12-hr Structural Forecasts: The observed structural trajectory is shown
in the top left corner of each row. To the right, we see 10 individual simulations of radial profiles (averaged over
all quadrants) at 12-hour lead times. All radial profiles above the black horizontal line are observed, while profiles
below the black line are simulated. The bottom left corner, shows the average simulation over 64 simulated

trajectories.
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12-hour Simulated & Observed Trajectories at 2019-08-27T18:00:00z
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Fic. C10. Hurricane Dorian [2019] Forecasts By Quadrant (A): As Figure C9, but broken down by quadrant
for example (A) only. The observed structural trajectory is shown in the top left corner. To the right, we see four
individual simulations of radial profiles by quadrant at 12-hour lead times. All radial profiles above the black
horizontal line are observed, while profiles below the black line are simulated. The bottom left corner shows the

average simulation over 64 simulated trajectories.
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