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Trey McNeely,a,d Pavel Khokhlov, Niccolò Dalmasso,b Kimberly M. Wood,c and Ann B. Leea
2

a
Carnegie Mellon University Department of Statistics and Data Science3

b
J.P. Morgan AI Research4

c
Mississippi State University Department of Geosciences5

d
Microsoft AI Development Acceleration Program6

Corresponding author: Ann B. Lee, annlee@stat.cmu.edu7

1



ABSTRACT: Because geostationary satellite (Geo) imagery provides a high temporal resolution

window into tropical cyclone (TC) behavior, we investigate the viability of its application to short-

term probabilistic forecasts of TC convective structure to subsequently predict TC intensity. Here,

we present a prototype model which is trained solely on two inputs: Geo infrared imagery leading

up to the synoptic time of interest and intensity estimates up to 6 hours prior to that time. To estimate

future TC structure, we compute cloud-top temperature radial profiles from infrared imagery and

then simulate the evolution of an ensemble of those profiles over the subsequent 12 hours by

applying a Deep Autoregressive Generative Model (PixelSNAIL). To forecast TC intensities at

hours 6 and 12, we input operational intensity estimates up to the current time (0 h) and simulated

future radial profiles up to +12 h into a “nowcasting” convolutional neural network. We limit our

inputs to demonstrate the viability of our approach and to enable quantification of value added by

the observed and simulated future radial profiles beyond operational intensity estimates alone. Our

prototype model achieves a marginally higher error than the National Hurricane Center’s official

forecasts despite excluding environmental factors, such as vertical wind shear and sea surface

temperature. We also demonstrate that it is possible to reasonably predict short-term evolution of

TC convective structure via radial profiles from Geo infrared imagery, resulting in interpretable

structural forecasts that may be valuable for TC operational guidance.
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SIGNIFICANCE STATEMENT: This work presents a new method of short-term probabilistic25

forecasting for tropical cyclone (TC) convective structure and intensity using infrared geostationary26

satellite observations. Our prototype model’s performance indicates that there is some value27

in observed and simulated future cloud-top temperature radial profiles for short-term intensity28

forecasting. The non-linear nature of machine learning tools can pose an interpretation challenge,29

but structural forecasts produced by our model can be directly evaluated and thus may offer helpful30

guidance to forecasters regarding short-term TC evolution. Since forecasters are time-limited in31

producing each advisory package despite a growing wealth of satellite observations, a tool that32

captures recent TC convective evolution and potential future changes may support their assessment33

of TC behavior in crafting their forecasts.34

1. Introduction35

Tropical cyclones (TCs) are powerful, organized systems that pose a major risk to coastal36

populations. Though many statistical models provide forecast guidance on future TC intensity37

change (e.g., the Statistical Hurricane Intensity Prediction Scheme [SHIPS]; DeMaria and Kaplan38

1999), direct measurement of most predictors such as relative humidity or vertical wind shear used39

in such models is impossible due to the development of TCs over open ocean far from land-based40

observing networks (Gray 1979). Many predictors must be inferred through a combination of41

remote observation and dynamic models of ocean and atmospheric behavior.42

Infrared (IR; 10.3-10.7`m) imagery from geostationary (Geo) satellites such as the Geostationary43

Operational Environmental Satellites (GOES) provides one of the few regular high-resolution44

observations of TC behavior over the open ocean with a historical record spanning decades (Knapp45

and Wilkins 2018; Janowiak et al. 2020). Furthermore, modern Geo IR platforms such as GOES-1646

provide observations at even greater spatial and temporal resolution (Schmit et al. 2017). Since47

cloud-top temperature is related to cloud-top height, low IR temperatures tend to indicate higher48

cloud tops and thus stronger convection, and convective structures are known to be related to TC49

intensity (Dvorak 1975; Olander and Velden 2007).50

In light of this growing record of satellite observations, a broad array of recent works have51

explored the wealth of information contained in the spatio-temporal structure of Geo IR imagery.52

The Dvorak technique and more recent Advanced Dvorak Technique (ADT) have long related Geo53
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IR imagery to TC intensity (Dvorak 1975; Olander and Velden 2007), and more recent work has54

leveraged neural networks to improve the nowcasting accuracy of the ADT (AI enhanced Dvorak55

Technique; Olander et al. 2021). Here, we define “nowcasting” as estimating the current TC56

intensity based on intensity estimates up to 6 h prior and IR features up to the current time (057

h). Spatial analyses of IR imagery have been leveraged to improve forecasts of TC eye formation,58

a process related to intensification (DeMaria 2015; Knaff and DeMaria 2017). The deviation59

angle variance (DAV) technique, a measure of convective organization in IR imagery, contains60

valuable information for short-term (24 h) TC intensity guidance (Hu et al. 2020). The shape and61

evolution of Geo IR radial profiles is known to relate to intensity and intensity change respectively62

(Sanabia et al. 2014; McNeely et al. 2020). In this work, we utilize the evolution over time of63

radial profiles (see Figure 1) to jointly forecast short-term TC intensity and structure changes.64

We leverage deep auto-regressive (AR) generative models to construct interpretable and high-65

resolution structural probabilistic forecasts, which display entire functions rather than time series66

of thresholded quantities, such as pixel counts beneath a given temperature threshold.67

Concurrent with the rise of high-resolution Geo IR imagery is the growing application of68

convolutional neural networks (CNNs), powerful tools for performing prediction tasks with images69

as input. Predicting TC intensity from Geo IR data is an obvious candidate application; indeed,70

there are dozens of such works in the machine learning literature applying CNNs to this problem,71

including Pradhan et al. (2017); Combinido et al. (2018); Lee et al. (2019); Tian et al. (2020); Wang72

et al. (2020); and Zhang et al. (2021). These models achieve reasonable forecast accuracy via the73

traditional machine learning framework with a CNN taking IR imagery as input to directly predict74

intensity by, e.g., minimizing the average squared-error loss on independent test data. Explainable75

AI approaches may then use methods such as layer-wise relevance propagation, saliency maps, and76

activation maps to better understand how the model produced its point estimate (McGovern et al.77

2019; Ebert-Uphoff and Hilburn 2020). For an example of explainable CNN-based TC intensity78

forecasting in the meteorological literature, see Griffin et al. (2022).79

Our proposed pipeline takes a different approach to explainability—one which remains compat-80

ible with the above tools for insight into the relationships leveraged by CNNs. Our approach (i)81

utilizes a dimensionality-reducing functional transformation of IR imagery prior to analysis, and82

(ii) provides 12-hour ensemble forecasts of TC convective structure in addition to TC intensity.83
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First, we extract scientifically-motivated functional features, reducing the dimension of the84

problem (from 2-D images over time to 1-D functions over time) in a directly interpretable summary,85

rather than directly relying on the CNN to extract salient features from (high-dimensional and low-86

sample size) raw Geo IR imagery. These rich summary functions are derived from the ORB suite:87

Organization (e.g., DAV as a function of radius), Radial structure (e.g., the radial profiles examined88

in this work), and Bulk morphology (e.g., pixel counts as a function of a temperature threshold).89

Temporal sequences of radial profiles are highly relevant to both intensity and intensity change90

(Sanabia et al. 2014; McNeely et al. 2020, 2022). Temporal changes in these sequences of profiles91

can be visualized via Hovmöller diagrams, which are more readily digestible by users than inferring92

temporal patterns from animations of satellite imagery.93

Second, we provide a probabilistic structural forecast, a prediction of an ensemble of possible94

TC convective evolution, rather than directly predicting future intensity from past IR structure and95

TC intensity. Our novel approach to intensity guidance via Geo IR imagery results in interpretable96

intensity forecasts such as “our model predicts short-term intensification due to the potential97

emergence of an eye-eyewall structure in the next 12 hours”. Though methods such as layer-wise98

relevance propagation can provide further insight into the CNN’s use of structural forecasts, the IR99

structural forecasts themselves are the core of our proposed intensity guidance pipeline.100

Figure 2 outlines Section 3 via a schematic diagram of the structural forecasting to intensity101

forecasting pipeline. There are three main subsections:102

(a) Structural trajectories via ORB. First, we apply the ORB framework (McNeely et al. 2019,103

2020) to observed IR imagery to create a “structural summary” (Figure 1) of the spatio-104

temporal evolution of the present and recent past TC structure.105

(b) Structural forecasting with a deep autoregressive generative model. Next, we propagate the106

observed IR structure up to 12 hours forward in time via a deep pixel-autoregressive model,107

which stochastically simulates an ensemble of possible trajectories of IR radial profiles.108

(c) Forecasting TC intensity via convolutional neural networks. Finally, we input the observed109

structure, the forecasted structure, and TC intensity up to 6 hours prior to the current time into110

a nowcasting model to estimate the current intensity; we choose CNNs because they are easy111

to train and commonly used for image data. By filling in the missing C +6 hour and C +12 hour112
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F��. 1. Evolution of TC IR Imagery as Structural Trajectories. The raw data at each time C is a sequence of

TC-centered cloud-top temperature images from GOES. We quantify the image at time C by its radial profile (-C ).

The sequence of consecutive radial profiles, sampled every 2 hours, defines a structural trajectory or Hovmöller

diagram ((<C ).

130

131

132

133

structure, we can then extend the nowcasting model from a nowcast for time C (i.e., hour 0) to113

a forecast at time C +6 hours and then to time C +12 hours.114

Section 4 details the results of our prototype forecasting pipeline. The final Geo IR-based TC115

intensity guidance provides inherent measures of uncertainty and insight into the potential TC116

structural changes that influence a given forecast. The results in this work use proof-of-concept117

structural forecasting and a pipeline that relies solely on persistence predictors (i.e., prior intensity118

estimates) together with observed past and simulated future radial profiles; no environmental factors119

such as vertical wind shear or ocean heat content are included at this time. We demonstrate that a120

purely autoregressive prototype achieves a useful degree of forecasting accuracy.121

2. Data122

Our model relies on two data sources: sequences of Geo IR imagery captured by GOES satellites123

and past TC intensity. For training and verification (that is, model selection), we use NOAA’s124

Hurricane Database 2 (HURDAT2; Landsea and Franklin 2013) because that database provides125

the post-season best estimates of TC intensities. For forecasting, we rely on operational TC126

intensity estimates, the CARQ entries from the Naval Research Laboratory’s Automated Tropical127

Cyclone Forecast (ATCF) operational “A-deck” files (Sampson and Schrader 2000) to assess model128

performance under real-time conditions.129
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F��. 2. TC Intensity Guidance via Structural Forecasting. Outline of the structural forecasting to intensity

guidance pipeline. (a) ORB functions are used to quantify the evolution of spatio-temporal convective structure,

linking IR imagery to Structural Summaries. (b) We generate structural forecasts by projecting the ORB functions

into the future via a deep autoregressive model, thereby filling in the missing +6 hour and +12 hour structure. (c)

A CNN nowcasting model then forecasts intensities at +6 to +12 hours from three sources of inputs: (i) observed

structure, (ii) forecasted structure, and (iii) operational intensity estimates up through the current time.

145

146

147

148

149

150

GOES IR imagery is available through NOAA’s Merged IR (MERGIR) database (Janowiak et al.134

2020) at 30-minute⇥4-km resolution over the North Atlantic (NAL) basin from 2000–2020. For135

each TC, we download ⇠2,000 km⇥2,000 km “stamps” of IR imagery centered on the TC location136

at a 30-minute temporal resolution. Figure 1 (left) shows two such stamps after an 800-km radius137

mask is applied. For this work, we sample the 30-minute data at 2-hour resolution because of138

periodic corruption of the imagery in the MERGIR database (Liu 2021).139

During training, we linearly interpolate TC location and intensity from HURDAT2 to obtain140

locations and intensities for non-synoptic times; however, model assessment is restricted to synoptic141

times. We include TC lifetimes between the first synoptic time at which intensity reaches at least142

35 kt and the last synoptic time at which intensity is at least 35 kt; note that this can result in the143

inclusion of TCs < 35 kt if the TC decays and then re-intensifies.144

Finally, we rely on NHC’s official forecast verification to assess our model’s performance.151

We also draw on the SHIPS developmental database’s 200-850-hPa vertical wind shear values152

calculated within a 200-800-km annulus from the TC center as reference during model validation153

due to the known impact of shear on TC convective structure (DeMaria 2018).154
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3. Methods155

As outlined in Figure 2, we first construct a summary of IR structural evolution (a; Section156

3a). We then train a stochastic autoregressive model, which is an explicit likelihood model (of157

structural trajectories) that we can use to simulate probable IR structural evolution (b; Section 3b).158

Finally, we combine observed and forecasted structure with operational intensity estimates up to159

and including the current time to provide interpretable short-term intensity guidance, based solely160

on Geo IR imagery and operational intensity estimates (c; Section 3c).161

a. Structural Trajectories via ORB162

Operational forecasting of TC intensity is a human-in-the-loop process and thus places a premium163

on guidance interpretability. In this spirit, the ORB framework (Organization, Radial structure,164

Bulk morphology) summarizes 2-D imagery via continuous 1-D functions to enable static vi-165

sualization of spatio-temporal patterns in TC development via Hovmöller diagrams (Hovmöller166

1949). Our past work focused on the rich quantification of spatial information in Geo IR imagery167

(McNeely et al. 2019, 2020). More recently, we demonstrated the value of temporal patterns in168

ORB functions (McNeely et al. 2022), specifically the radial profile.169

The radial profile of brightness temperature ⌫) (A) = 1
2c

Ø 2c
0 )1 (A, \)3\ captures the structure of170

cloud-top brightness temperature ()1) as a function of radius A from the TC center and serves as an171

easily interpretable description of the depth and location of convection near the TC core (Sanabia172

et al. 2014; McNeely et al. 2020). The radial profiles are computed at 5-km resolution from 0-400173

km (3 = 80) (Figure 1, center); we denote the summary of convective structure at each time C by174

BTC . The structural trajectory is then defined as the 24-hour sequence of present and 12 preceding175

radial profiles at a 2-hour resolution:176

S<C = (BTC�24⌘,BTC�22⌘, . . . ,BTC) (1)

We visualize such a trajectory with a Hovmöller diagram (see Figure 1, right).177

McNeely et al. (2022) demonstrated a relationship between TC intensity change and Hovmöller178

diagrams of radial profiles. However, the radial profile, if averaged over all angles, will disregard179

asymmetry within the original 2-D images, which can degrade performance for cases affected180
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by strong vertical wind shear. In this work, we instead compute a separate radial profile for181

each geographic quadrant (NE, NW, SE, SW) to capture asymmetries via the differences between182

quadrants. We use geographic quadrants instead of motion-relative or shear-relative quadrants183

because the directions of motion and shear are unstable when the magnitudes of those vectors are184

small.185

b. Structural Forecasting via Deep Autoregressive Generative Model186

The crucial step in our guidance framework is the propagation of radial profiles into the near187

future. The Hovmöller diagram captures the spatio-temporal evolution of the TC over an extended188

period of time; that is, we can summarize TC development by an easily-interpretable image. By189

treating the structural trajectory as an image, where the y-axis corresponds to the passage of time,190

forecasting radial profiles becomes equivalent to an image completion problem. That is, we predict191

the missing pixels at the bottom of an image (forecasted structure) given those at the top (observed192

structure). Image completion is an active research area in machine learning; here we focus on a193

state-of-the-art model in the class of pixel-autoregressive models (Van Oord et al. 2016).194

Pixel-autoregressive models impose an ordering on the pixels of an image, such as a raster-scan195

ordering (left-to-right, top-to-bottom). Let each pixel in a four-quadrant radial profile trajectory be196

represented by x8 := (G81,G82,G83,G84), where 8 is the index in the raster scan. The pixel-AR approach197

factors the joint distribution of pixel values in the image as a product of conditionals,198

?(x1, ...,x=) =
=÷
8=1

?(x8 |x8�1, ...,x1), (2)

where the probability of each pixel value is conditioned on all previous pixels in the raster scan.199

Then, to generate a new radial profile, one simulates repeatedly from ?(x8 |x8�1, ...,x1); due to the200

raster-scan ordering, the distribution of a given pixel is not influenced by elements further down201

the sequence, hence enforcing causality.202

The challenge of how to estimate the conditional likelihoods ?(x8 |x8�1, ...,x1) has given rise203

to many flavors of pixel-autoregressive models, including PixelRNN (Van Oord et al. 2016),204

PixelCNN (Van den Oord et al. 2016), PixelCNN++ (Salimans et al. 2017), and PixelSNAIL205

(Chen et al. 2018). This work utilizes the last model, PixelSNAIL. There are two main ingredients206
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in the model: (i) causal convolution and (ii) self-attention. Causal convolution utilizes the same207

convolutional feature extraction outlined in Section c but masks each convolution so that each208

element in the raster sequence only receives information from previously generated sequences209

(e.g., Figure 3). Purely convolutional models, however, are restricted to small neighborhoods210

of pixels, leading to only a finite receptive field (area of the source image involved in a given211

convolution), and thus struggle with long-range dependencies in the conditional ?(x8 |x8�1, ...,x1).212

PixelSNAIL, on the other hand, features a self-attention mechanism that leads to unbounded213

receptive fields with pinpointed access to information far away in the sequence; see Chen et al.214

(2018) for details on the PixelSNAIL architecture.215

To ensure that cloud-top temperatures remain bounded, we rescale the data to the range X 2 (0,1)4
216

and work in the logit-transformed space, Z = log(X/(1�X)); while values of Z are unbounded,217

X remains bounded in (0,1)4 and are then transformed back to the temperature range observed218

in the training data. We model the density ?(z8 |z8�1, ...,z1) as 4 independent mixtures of logistic219

distributions, one for each quadrant. That is, for pixel 8 in quadrant @,220

?(I8@ |z8�1, . . . ,z1) =
 ’
:=1

c@: 5 (I8@;`@: , B@: ) (mixture distribution),

where 5 (I8@;`@: , B@: ) =
6@: (I)

B@: (1�6@: (I))2 , (logistic distribution)

6@: (I) =exp
�
� (I� `@: )/B@:

�
,

and
 ’
:=1

c@: =1.

Thus, with four quadrants and  mixture components, the distribution ?(z8 |z8�1, ...,z1) has 4(3 �221

1) parameters: a mean `, a scale B, and a mixture coefficient c for each quadrant, with the constraint222

that the mixture coefficients in each quadrant sum to one. With  = 3 mixture components, this223

results in 32 parameters total. Each draw from the distribution is transformed back to the bounded224

space via the relationship X = 1
1+exp (�Z) , then rescaled to the range of values observed in the input225

radial profiles.226

This autoregressive model enables stochastic simulation of structural trajectories based on Geo227

IR persistence. For a given synoptic time, we can simulate many trajectories from the observed228
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F��. 3. Masking in Pixel Autoregression. Illustration of raster-scan ordering and the causal masking.

Convolutions at index 8 only have access to pixel values in previous rows (earlier time points, color coded by

yellow), and pixel values in the same row but to the left of pixel G8 (same time point, color coded by orange).

234

235

236

history and then feed each potential trajectory through the nowcasting model to obtain the associated229

intensity guidance. Via multiple simulations per forecast time, an ensemble forecast provides a230

measure of uncertainty in both structural trajectories and intensities while also offering insight231

into cases where the model over- or under-estimates intensity. For example, overestimates may be232

caused by too-low profile temperatures or overestimated symmetry between quadrants.233

The structural forecasting model is trained on TCs from 2000-2012, with 2013-2020 withheld237

for testing. We train the model using input radial profiles calculated every 2 hours but test on238

synoptic times. Because AR models are likelihood-based, we can directly calculate and minimize239

the negative log-likelihood (NLL), a measure of the model’s ability to generalize well on withheld240

data.241

c. Nowcasting TC Intensity via Convolutional Neural Networks242

Traditional linear models are attractive for reasons of interpretability and good performance in243

low sample size settings. However, linear models often struggle to capture the complex, time-244

varying processes which drive TCs. It is also unclear how to include the radial profile Hovmöller245

diagrams as inputs to a linear model without sacrificing interpretability. In this work, we instead246

consider a simple convolutional neural network to map observed IR trajectories (SC) to current247

intensities (.C). Because we treat time as a spatial dimension in these diagrams and a structural248

trajectory is represented as an image, a CNN will leverage both spatial and temporal patterns in249

the data.250
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Persistence
Conv1

82 x 18 x 32 1 x 1 x 2048

convolutional + ReLU

max pooling

fully connected + ReLU

input

80 x 16 x 6
41 x 9 x 32

Conv2

43 x 11 x 64
21 x 5 x 64

Conv3

23 x 7 x 32
11 x 3 x 32

FC1

Imagery

1 x 2 x 16

1 x 1 x 33

FC2 Output

1 x 1 x 1

F��. 4. Nowcasting Model Architecture. The convolutional neural network used for nowcasting consists

of three convolution-max pool layer pairs (Conv#), fully connected layers (FC#), and a concatenation with

persistence features between regressions.

258

259

260

CNNs operate by two main elements: convolutional layers and fully-connected layers. The251

convolutional layers first convolve each layer (here, each quadrant) with a library of filters (i.e.,252

matrices whose entries are learned parameters); some of these filters may resemble familiar253

matrices, such as gradient approximators (e.g., Sobel matrices). After each convolutional layer,254

the image is pooled to reduce the image size and increase the receptive field of the next set of255

convolutions. In the final step, the results of all convolutions are passed into a fully-connected layer256

which approximates the relationship between the convolutional feature map and the response.257

We augment the traditional CNN in two ways. First, we add two layers which encode the261

radial and temporal location of pixels within the image; regular CNNs are translation invariant,262

whereas patterns in TCs have different meaning depending on their location and time of occurrence263

(corresponding to column versus row index, respectively, in the Hovmöller diagram). Second, we264

augment the model output with relevant TC persistence features (intensities and intensity changes265

up to 6 hours prior to time C) before passing them to a second fully-connected layer. The final266

model is then267

.C = 5nwcst(S<C ,.C�30⌘,.C�24⌘, . . . ,.C�6⌘,�.C�30⌘,�.C�24⌘, . . . ,.C�6⌘) + nC , (3)
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where S<C is the 24-h structural trajectory up to current time (see Equation 1); the . ’s are intensity268

data at 6-h resolution; the �. ’s are intensity changes interpolated (ip) from 6-h data to a 2-h269

resolution (e.g., �.C�30⌘ = .C�30⌘ �. ip
C�32⌘), and n is the prediction error.270

Like the structural forecasting model, the nowcasting model is trained on TCs from 2000-2012,271

here by minimizing the mean squared error. The model is trained on data with a 2-hour resolution272

(rather than synoptic times alone) with intensities linearly interpolated to those times; we do not273

include non-synoptic times in the test TCs (2013-2020). The details of the CNN architecture are274

given in Figure 4.275

d. From Nowcasting to Forecasting276

Section 3c defines a nowcasting model for estimating intensity at time C (i.e., hour 0) by training277

on post-season (best-track or HURDAT2) intensities from -30 h to -6 h and imagery from -30 h278

to 0 h. After we have trained and validated the nowcasting model to estimate 0-h intensities, we279

apply the CNN nowcasting model to TC intensity forecasting. To forecast intensity at time C + 6280

h, we need the intensities at times  C (in this work, we use operational intensities drawn from281

CARQ in the A-deck files when generating TC intensity forecasts) and structural trajectories at282

times  C + 6 h (observed at times  C and simulated at times from C + 2 h to C + 6 h). Using the283

structural forecasting model in Section 3b, we simulate many possible trajectories from times C +2284

hr to C +6 hr. Each of these possible future trajectories is then passed to the nowcasting model to285

obtain a separate intensity forecast, giving an ensemble of possible intensities.286

Our proposed framework for intensity forecasts at +6 and +12 h has two primary benefits: (i) by287

providing an additional structural forecast, we provide insight into potential TC evolution predicted288

by the model, such as deepening convection or the emergence of an eye; (ii) because the structural289

forecast is stochastic, we can straightforwardly assess the uncertainty in structural evolution over290

time and the associated uncertainty in the intensity forecasts.291

4. Model Results292

We first demonstrate the performance of our proposed model on specific cases (Hurricanes Jose293

[2017], Nicole [2016], and Dorian [2019]) in Section a, discussing both accuracy and the insight294
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F��. 5. Case Studies: Comparison of the 6-hour (left) and 12-hour (right) intensity forecasts (gray) from the

structural forecasting model versus observed intensities (black). Vertical wind shear also shown (gold). The

solid gray lines indicate the mean of 64 simulations at each time point. Reported errors indicate the error of

the average model prediction, not individual simulations. The model captures the behavior of Hurricanes Jose

[2017; center] and Dorian [2019; bottom] fairly well, but struggles with both rapid weakening events exhibited

by Hurricane Nicole [2016; top] as well as low-intensity maintenance periods in Hurricanes Nicole and Dorian.

297

298

299

300

301

302

provided by structural forecasts at 6- and 12-hour lead times. We then assess the performance of295

the model during 2013-2020 in the North Atlantic basin at 6- and 12-hour lead times in Section b.296

a. Case Studies303

We examine Hurricane Jose (2017) due to the presence of high vertical wind shear which304

produces convective asymmetries not captured by the azimuthally-averaged radial profiles (i.e., not305

quadrant-based) of McNeely et al. (2022). Hurricane Nicole (2016) was selected due to undergoing306
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F��. 6. Observed and Simulated Trajectories, Hurricane Dorian [2019]: The observed structural trajectory

is shown in the top left corner. To the right, we see 10 individual simulations of radial profiles (averaged over

all quadrants) at 12-hour lead times. All radial profiles above the black horizontal line are observed, while

profiles below the black line are simulated. The bottom left corner shows the arithmetic mean over 64 simulated

trajectories.

316

317

318

319

320

two rapid intensification and two rapid weakening events. Finally, Hurricane Dorian (2019) was a307

powerful TC with many in situ observations.308

(i) Intensities Figure 5 shows the 6-hour forecasts based on 64 independently simulated struc-309

tural trajectories per synoptic time. Because the structural forecasts are currently based entirely310

on persistence—no environmental fields, such as 200-850-hPa vertical wind shear, have been311

included—we expect the guidance to be most useful in the short term (6- to 12-hour time frame).312

The steadier development of Hurricanes Jose and Dorian are well-modeled, but the swift intensity313

changes exhibited by Hurricane Nicole as well as the rapid intensification period of Hurricane314

Dorian both prove challenging to capture.315

Extending lead time to 12 hours increases the variation among individual simulations, but the321

average simulated intensity continues to roughly track the observed intensities. The rapid intensity322

change events exhibited by Hurricane Nicole are challenging to forecast with only IR persistence.323

However, the model follows Hurricane Jose’s evolution relatively well, indicating that the model324

has value as-is at 12-hour lead times.325
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F��. 7. Hurricane Dorian [2019] 6-h Guidance: (Left) Distribution of forecasted intensities with observed

(black) and average forecast (red) intensities marked. The distribution of the 64 intensity forecasts in the ensemble

is approximated by a histogram (bar plot) and by a kernel density estimate (blue curve). (Right) Simulated profiles

by quadrant with observed profiles represented by solid black curves, and averaged simulated profiles represented

by dashed red curves.

329

330

331

332

333

(ii) Diagnostics While the end goal of intensity guidance models is ultimately prediction of TC326

intensity, our structural forecasting pipeline adds valuable diagnostic insight into structural factors327

contributing to its predictions.328

Figure 6 demonstrates the three-step (12-hour lead time) structural forecast for Hurricane Dorian340

valid for 18 UTC 27 August during a period in which it maintained 45-kt intensity. The final341
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F��. 8. Hurricane Dorian [2019] 12-h Guidance: Model bias during intensification (center row) is more

exaggerated at 12-hour lead times. (Left) Distribution of forecasted intensities with observed (black) and average

forecast (red) intensities marked. The distribution of the 64 intensity forecasts in the ensemble is approximated

by a histogram (bar plot) and by a kernel density estimate (blue curve). (Right) Simulated profiles by quadrant

with observed profiles represented by solid black curves, and averaged simulated profiles represented by dashed

red curves.

334

335

336

337

338

339

6 rows of each Hovmöller diagram are simulated from the structural forecast model; in this342

figure, we average the four quadrants for ease of visualization (see Appendix A, Figure B10, in343

the supplementary materials for Hurricane Dorian structural forecasts broken down by quadrant).344
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Cloud-top temperature magnitude tends to be underestimated, but the expansion of cloud coverage345

during this 12-h period is captured across most simulations.346

Figure 7 demonstrates the 6-hour forecasting guidance available at individual synoptic times.347

The average simulated profiles in each quadrant tend to track observed profiles reasonably well,348

although they tend to predict too flat a curve and too symmetric an eye. Figure 8 shows the same349

information but for the 12-hour lead time. Here, model biases tend to be amplified by longer lead350

times. We note that the emergence of an eye is captured in trajectory (B), even 12 hours out.351

Similar figures for Hurricanes Jose and Nicole are provided in the supplemental material. In352

general, the structural forecast follows the observed profile, even at 12-hour lead times. We did353

not perform any data augmentation during training (e.g,. rotation) in order to preserve dominant354

geographic patterns (e.g., the prevalence of TC convection sheared eastward and northeastward in355

the North Atlantic), but it is possible that augmentation by rotating TCs would improve simulation356

fidelity, as it has been shown to improve accuracy in other TC intensity forecasting applications357

such as Griffin et al. (2022).358

b. Model Verification359

The same models are used to produce 16 simulated trajectories with associated intensity guidance360

for each synoptic time from 2013-2020 at the 6- and 12-hour lead times. (We use 16 rather than361

64 simulations when validating over the entire 8-year period for computational reasons.) Intensity362

predictions provided via averaging the 16 simulations are validated against HURDAT2 best-track363

intensities, and past TC intensity values provided as input to the model come from operational364

estimates (CARQ) to emulate real-time performance.365

Table 1 (left) reports the performance of the simulated trajectories versus forecast lead time in366

terms of root mean variance (RMV), mean absolute deviation (MAD), and bias averaged over all367

quadrants and radii. Let ⌫)@8 (A) denote the 8th simulated profile in quadrant @ and g@ (A) denote368
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the true profile in quadrant @. Then,369

RMV =
⇣ 1
400 km

π 400

0

1
4=

4’
@=1

=’
8=1

(⌫)@8 (A)� g@ (A))23A
⌘ 1

2
, (4)
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1
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1
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8=1

⌫)@8 (A)� g@ (A)3A . (6)

The above are defined for simulations at a single simulation time; to combine over multiple370

simulation times, we average MAD and bias, and average RMV in quadrature. The measures371

of noise (RMV and MAD) are large even for the shortest forecast lead times; increasing the372

simulation size beyond 16 will reduce the impact of this noise on the average forecast. Bias,373

meanwhile, becomes steadily more negative with time for our structural forecasts (top left). This374

will lead to overestimates of intensity, as low IR temperatures are generally associated with stronger375

TCs. Persistence IR forecasts (bottom left) offer a less biased IR forecast on average but higher376

overall errors in structure at all lead times.377

Table 1 (right) reports verification statistics for intensity guidance using the traditional definitions378

for root mean squared error (RMSE), mean absolute error (MAE), and bias. As expected, the379

negative bias in structural forecasts manifests as a positive bias in intensity guidance.380

Tables 2 and 3 assess the performance of our intensity guidance via structural forecasting at399

12-hour lead times and compare it to the NHC’s official forecast verification from 2013-2019 due400

to availability of verification data at time of writing; note that this is a subset of the times reported401

in Table 1, consisting of cases where both our structural forecasts and NHC official verification402

are available. Overall, the RMSE of the structural forecast is about 1.1 kt larger than the NHC403

official forecast error as computed by RMSE, and structural forecasts produce roughly twice the404

bias (1.1 vs -0.6 kt). The structural forecast sees unchanged MSE with increasing 200-850-hPa405

vertical wind shear; the bias, however, increases with increasing wind shear (Table 2). This trend is406

expected, as the model does not include wind shear as a predictor but instead relies on the positive407

correlation between shear and asymmetry in IR imagery (as captured by radial profiles computed408

by quadrant). The NHC official forecast error exhibits a similar, if less pronounced, trend in bias409
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with increasing shear. The direction of shear seems more important, with both our model and the410

NHC official forecast performing most poorly for NW shear (6% of cases) and best for SW shear411

(9% of cases). The NE and SE cases dominate the overall model performance since they comprise412

the remaining 85% of the data set. The disparity between different shear magnitudes and directions413

could be alleviated in a model which utilizes environmental predictors.414

Table 3 demonstrates similar error trends for both official forecasts and our structural forecasts.415

Errors tend to increase with TC intensity and with rate of intensification or weakening. The416

structural model produces higher bias for weaker TCs and lower bias for stronger TCs. Similarly,417

the structural model tends to overestimate intensities during weakening and underestimate them418

during intensification. The model errors are comparable to NHC official forecast errors during419

periods of maintenance and intensification (although bias is higher); it is periods of weakening420

which tend to be poorly modeled by the structural forecast. We suspect that the inclusion of421

environmental information could improve fidelity in weakening cases; see Section 6 on Future422

Work Directions for a discussion of such avenues for model improvement.423

c. Variable Importance in Intensity Forecasts432

Our model results show that structural forecasts result in 6-hour and 12-hour intensity predictions433

of comparable accuracy to NHC official forecasts. For insight into how much our model relies434

Trajectory Verification
Model Lead time 2 h 4 h 6 h 8 h 10 h 12 h

Structural RMV 10.5C 14.7C 17.4C 22.2C 25.1C 26.9C

MAD 7.1C 10.5C 12.8C 15.6C 17.6C 19.0C

Bias -0.6C -2.2C -4.0C -6.3C -7.9C -9.3C

Persistence RMV 12.0C 16.2C 19.7C 22.7C 28.2C 31.7C

MAD 8.2C 11.1C 13.6C 15.8C 18.5C 20.5C

Bias -0.4C 0.6C 2.0C 3.5C 5.5C 6.8C

Intensity Verification
Lead time 6 h 12 h

RMSE 4.9kt 9.5kt

MAE 3.5kt 7.1kt

Bias 0.6kt 2.3kt

T���� 1. Overall Model Verification at n = 16: (Left) Trajectory verification of structural forecasts, compared

to IR persistence forecasts where the radial profiles are fixed at their 0 h values. Simulation noise (root mean

variance and mean absolute deviation) grows rapidly in the first 6 hours; bias increases in magnitude steadily.

We note that persistence offers a less biased IR forecast on average, but higher overall errors in structure at all

lead times. (Right) Intensity verification vs HURDAT2 best-track intensities from 2013-2020 at each lead time.

381

382

383

384

385
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Shear Magnitude
Structural NHC OFCL

Shear 12-h RMSE/MAE/Bias N

0-10kt 9.3/7.3/-0.7 kt 9.3/6.4/-1.1 kt 243

10-20kt 9.7/6.9/1.0 kt 8.1/5.7/-0.5 kt 509

20+kt 8.6/6.3/2.1 kt 7.5/5.1/-0.6 kt 439

Total 9.2/6.8/1.1 kt 8.1/5.6/-0.6 kt 1,191

Shear Direction
Structural NHC OFCL

Shear Direction 12-h RMSE/MAE/Bias N

SW 8.6/6.1/-0.1 kt 7.5/5.4/-1.1 kt 106

SE 9.1/6.9/0.3 kt 8.5/5.9/-0.5 kt 440

NE 9.3/6.6/2.2 kt 7.9/5.4/-0.6 kt 575

NW 10.6/8.2/-2.0 kt 8.9/6.1/-0.9 kt 70

Total 9.2/6.8/1.1 kt 8.1/5.6/-0.6 kt 1,191

T���� 2. Intensity Guidance Verification Relative to Shear: Model verification binned by 200-850-hPa

vertical wind shear, reported as RMSE/MAE/Bias. (Left) The performance of the structural forecasting model

does not change meaningfully relative to wind shear magnitude, while the NHC official forecast performs better

in higher shear environments. The structural forecast has comparable performance to the NHC official forecasts

in low-shear environments. (Right) The performance of the structural model does vary with shear direction.

Both the NHC forecasts and the structural model produce higher errors for NW shear (6% of cases).

386

387

388

389

390

391

TC Intensity
Structural NHC OFCL

Category 12-h RMSE/MAE/Bias N

Tropical Depression 5.5/4.4/3.0 kt 5.9/4.2/-3.1 kt 112

Tropical Storm 7.2/5.6/2.8 kt 6.4/4.4/-0.6 kt 567

Hurricane 10.3/7.7/0.6 kt 9.3/6.7/-0.6 kt 355

Major Hurricane 14.0/10.7/-5.5 kt 11.8/8.4/0.9 kt 157

Total 9.2/6.8/1.1 kt 8.1/5.6/-0.6 kt 1,208

Intensity Change
Structural NHC OFCL

Evolution 12-h RMSE/MAE/Bias N

Weakening 12.1/8.9/7.7 kt 7.8/5.4/2.9 kt 263

Maintenance 6.7/5.3/3.3 kt 6.1/4.3/-0.0 kt 497

Intensifying 9.8/7.3/-5.5 kt 10.2/7.2/-3.5 kt 431

Total 9.2/6.8/1.1 kt 8.1/5.6/-0.6 kt 1,208

T���� 3. Intensity Guidance Verification by TC Intensity: Model verification split out by intensity and

intensity change, reported as RMSE/MAE/Bias. (Left) Both the structural and NHC official forecasts struggle

more with intense storms, which are rarer. The structural forecast has much stronger bias, which is expected due

to the heavy influence of persistence features in the absence of environmental predictors. (Right) Similarly, both

forecasts perform best during maintenance periods (6-hour change  5 kt in magnitude), overestimate during

weakening, and underestimate during intensification. The bias is more pronounced in the structural forecast due

to the absence of environmental predictors.
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398

on IR inputs and prior intensities when making predictions, we compute a saliency map (also435

known as pixel attribution) for each input. There are varied definitions for saliency, including436

occlusion-based approaches such as SHAP explainability values (Lundberg and Lee 2017), LIME437

values (Ribeiro et al. 2016), and gradient-based approaches.438
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F��. 9. SHAP Variable Importance Map for 6-Hour Intensity Forecast: (Top) IR channels of CNN

nowcasting model for Hurricane Dorian [2019] with observed IR structure above the horizontal black lines

and +6 h forecasted structure from deep auto-regressive generative model below the horizontal lines. (Center)

Pixel-wise SHAP variable importance of IR inputs on the 6-h intensity forecast. (Bottom Left) SHAP variable

importance of VMax (linearly interpolated operational intensity estimates) and Delta V (2-h rate of change of

operational intensity estimates) on the 6-h intensity forecast. (Bottom Right) Aggregated SHAP values over each

channel, indicating IR features contributing to intensity forecasts to a degree comparable to persistence features.

424

425

426

427

428

429

430

431

Figure 9 (center) shows a map of the SHAP importance or contribution of each pixel of the IR439

observed and forecasted imagery on the 6-hour intensity forecast for Hurricane Dorian [2019].440

The bottom-left panel shows the SHAP values for prior intensity and prior intensity change. The441
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bottom-right panel shows aggregated SHAP values for each input channel. From this result and442

a similar analysis with SHAP variable importance maps for Hurricane Jose [2017] and Hurricane443

Nicole [2016] in Appendix A and gradient-based saliency maps in Appendix B of Supplementary444

Materials, we conclude that (i) IR imagery contributes to the intensity forecasts to a degree445

comparable to persistence features, (ii) forecasted infrared imagery from our deep autoregressive446

generative model plays a more important role than observed past imagery in the TC intensity447

forecasts, (iii) the current and past presence/absence of an eye is generally the key feature of448

a storm, and (iv) the core temperatures outside of the eye play a signifcant role for intensity449

forecasting.450

5. Discussion and Conclusion451

This paper demonstrates a novel interpretable approach to short-term TC intensity guidance452

trained solely on intensity estimates up to 6 hours prior to the current time and IR observations453

up to 0 h. We specifically leverage spatial characteristics of TC convection as captured by radial454

IR profiles. By forecasting an ensemble of +6 h and +12 h trajectories of TC IR structure with455

radial profiles computed over four geographic quadrants, we obtain reasonable estimates of future456

+6 h and +12 h TC intensity while simultaneously capturing and enabling visualization of signals457

in convective structure relevant to those future intensities. We focus on interpretable, physically-458

based factors to facilitate understanding of the model’s performance (e.g., upcoming intensification459

corresponds with decreasing cloud-top temperatures in the structural forecast). The approach460

outlined here has the potential for further improvement by adopting other network architectures461

for structural forecasts and by including environmental predictors provided in real time by SHIPS462

guidance. Though testing on years of cases takes time, an individual forecast for a single TC can463

be obtained in minutes on a single GPU, indicating the potential for the eventual use of this model464

as part of the available TC guidance suite in an operational setting.465

6. Future Work Directions466

a. Improving the Network Architecture for Structural Forecasts467

The PixelSNAIL approach provides reasonable simulations of TC IR structural evolution up to468

12-hour lead times. However, there exists a wealth of alternate deep autoregressive generative469
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models, each of which can be designed and trained in innumerable ways. Likewise, deep autore-470

gressive models are not the only generative models available. Simulation could be carried out471

via vector autoregression on a low-dimensional projection of profiles (e.g., principal component472

analysis, Fourier bases, etc.), generative adversarial networks (GANs; Creswell et al. 2018), or473

transformers (e.g., temporal fusion transformers for multihorizon forecasting (Lim et al. 2021) and474

spatiotemporal transformers (Grigsby et al. 2021)). The PixelSNAIL architecture was chosen to475

demonstrate the value and feasibility of structural forecasting for intensity guidance.476

b. Calibrating the Probability Distribution of Structural Forecasts477

Our structural forecasts are probabilistic in nature, taking the form of probability distributions478

over future structural trajectories S>C . In the current work, we apply a standard machine learning479

approach of fitting a model by minimizing a loss function (in this case the negative log likelihood).480

A good probabilistic forecast, however, should be conditionally calibrated. That is, the probability481

of a particular event (in our case, specific radial profiles 6-12 hours into the future), given or482

“conditional on” a particular history of evolution and other predictors, should match the predicted483

probability of the same event. This is essentially saying that draws from the forecasting model484

should be indistinguishable from actual observations, if all relevant conditions are the same. Dey485

et al. (2022) recently proposed a new method for adjusting or “recalibrating” probabilistic forecasts,486

so that they will have his property. Indeed, one can potentially apply their procedure sequentially to487

each autoregressive component ?(/8@ |Z8�1, . . . ,Z1), for pixel 8 = 1, . . . ,=, and quadrant @ = 1,2,3,4,488

so as to obtain a conditionally calibrated density over structural trajectories S>C given present and489

past observations; see Discussion in Dey et al. (2022).490

c. Inclusion of Environmental Variables491

The PixelSNAIL model presented here is a purely autoregressive process; that is, it simulates492

future structural features using only past IR imagery as an input. The inclusion of environmental493

variables known to impact TCs such as vertical wind shear, atmospheric moisture, or sea surface494

temperature may improve the accuracy of the forward simulation of radial profiles, particularly of495

structural evolution beyond 12 hours. Such factors can be added to the PixelSNAIL architecture as496

additional input layers via values provided by SHIPS which are not forecasted by the model. These497
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inputs would then serve as “guiderails” for simulated structural evolution with potential to better498

capture the effects of such factors on profile asymmetry. Despite these limitations, our prototype499

model (which is derived solely from prior and present TC intensity estimates and Geo IR imagery500

alongside forecasted TC structure using a very simple network architecture) provides reasonable501

short-term structural and intensity forecasts comparable to NHC forecasts at 6- and 12-h lead times.502

The inclusion of environmental variables in the nowcasting model is likely to improve its intensity503

forecasts, which would then be compared to SHIPS forecasts as well as NHC official forecasts, the504

latter of which are crafted using SHIPS and other guidance.505
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APPENDIX A9

Additional SHAP Variable Importance Maps for TC Intensity Forecasts10

F��. A1. SHAP Variable Importance Map for 6-Hour Intensity Forecast: (Top) IR channels of CNN

“nowcasting” model for Hurricane Jose [2017] with observed IR structure above the horizontal black lines, and

+6 hour forecasted structure from deep auto-regressive generative model below the horizontal lines. (Center)

Pixel-wise SHAP variable importance of IR inputs on 6-hour intensity forecast. (Bottom Left) SHAP variable

importance of VMax (linearly interpolated operational intensity estimates) and Delta V (2-h rate of change of

operational intensity estimates) on the 6-h intensity forecast. (Bottom Right) Aggregated SHAP values over each

channel showing IR features contributing significantly to the intensity forecasts.
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F��. A2. IR Channels and SHAP Variable Importance Map for 6-Hour Intensity Forecast: As figure A1,

but for Hurricane Nicole [2016].
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APPENDIX B20

Input Saliency for Forecasting Model21

Our model results in Section 4 showed that structural forecasts result in 12-hour intensity22

predictions of comparable accuracy to NHC official forecasts. Here we apply a simple gradient-23

based approach to provide some insight as to how much the model relies on different IR inputs24

when making predictions. The gradient describes how much a feature contributes to the model25

response . . More specifically, we define the saliency (8 (x) of the 8C⌘ pixel or feature by26

(8 (x) =
�����
m.

mG8

���
x

�����, (B1)

where x denotes the total input.27

In order to visualize the overall impact of each input channel (four IR quadrants, the radius28

channel, the time channel, the observed prior intensity, and the observed prior intensity change) on29

the forecasted future intensity, we “aggregate” the saliency, summing over all pixels in each channel.30

Figure B1 shows the saliency aggregated by channel over time for each of our three example TCs.31

Note that because prior intensity/intensity change are not included in the convolutional layers, they32

are linear, and thus have a fixed saliency; because the model is nonlinear in the other channels, the33

saliency varies over time with the IR inputs. Of particular note is that the aggregated saliency of34

the IR input channels is comparable to the persistence features, indicating that the model does not35

simply rely on persistence to make its predictions but instead makes use of the structural forecasts.36

Figure B2 shows the same values for IR channels with the mean and trend removed, demonstrating37

that the model tends to rely more heavily on convective structure in the southern quadrants, and38

particularly the southeast quadrant.39
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F��. B1. Saliency per input layer in the model. Saliency values over time indicate that the model for TC

intensity forecasts utilizes image inputs to a degree comparable to prior intensity values.
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F��. B2. Trend- and mean-removed saliency for image inputs. Comparing the saliency values over time

indicates 1) the southern quadrants are more heavily utilized by the forecasting model, and 2) the degree to which

the model relies on one quadrant over another is not constant (e.g. Hurricane Jose [2017] around Sept. 14, 2017).
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APPENDIX C45

Additional Forecast Materials for Case Studies46

F��. C1. Hurricane Jose [2017] 6-hr Guidance: Hurricane Jose was subjected to vertical wind shear out of

the west/northwest due to Hurricane Irma; the structural forecasts tend to underestimate temperatures in the NW

quadrant and thus overestimate TC intensity. (Left) Distribution of forecasted intensities with observed (black)

and average forecast (red) intensities marked. (Right) Simulated profiles by quadrant with observed profiles

represented by solid black curves, and averaged simulated profiles represented by dashed red curves.
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F��. C2. Hurricane Jose [2017] 12-hr Guidance: At 12-hour lead times, this TC’s evolution is still

well modeled save for a handful of individual overestimates. (Left) Distribution of forecasted intensities with

observed (black) and average forecast (red) intensities marked. (Right) Simulated profiles by quadrant with

observed profiles represented by solid black curves, and averaged simulated profiles represented by dashed red

curves.
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F��. C3. Hurricane Nicole [2016] 6-hr Guidance: Hurricane Nicole underwent several rapid intenity change

events. At 6 UTC 7 October, the structural forecast models the cloud top temperatures well, but this is insufficient

to predict the extreme change from intensification to weakening even at 6-hour lead times. (Left) Distribution

of forecasted intensities with observed (black) and average forecast (red) intensities marked. (Right) Simulated

profiles by quadrant with observed profiles represented by solid black curves, and averaged simulated profiles

represented by dashed red curves.
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F��. C4. Hurricane Nicole [2016] 12-hr Guidance: Model biases during the quick shifts from intensification

to weakening and during stead intensification are exacerbated at 12-hour lead times. (Left) Distribution of

forecasted intensities with observed (black) and average forecast (red) intensities marked. (Right) Simulated

profiles by quadrant with observed profiles represented by solid black curves, and averaged simulated profiles

represented by dashed red curves.
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(A)

(B)

(C)

F��. C5. Hurricane Nicole [2016] 12-hr Structural Forecasts: The observed structural trajectory is shown in

the top left corner of each row. To the right, we see 10 individual simulations of radial profiles (averaged over all

quadrants) at 12-hour lead times. All radial profiles above the black horizontal line are observed, while profiles

below the black line are simulated. The bottom left corner shows the average simulation over 64 simulated

trajectories.
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F��. C6. Hurricane Nicole [2016] Forecasts By Quadrant (B): As Figure C5, but broken down by quadrant

for example (B) only. The observed structural trajectory is shown in the top left corner. To the right, we see four

individual simulations of radial profiles by quadrant at 12-hour lead times. All radial profiles above the black

horizontal line are observed, while profiles below the black line are simulated. The bottom left corner shows the

average simulation over 64 simulated trajectories.
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(A)

(B)

(C)

F��. C7. Hurricane Jose [2017] 12-hr Structural Forecasts: The observed structural trajectory is shown in

the top left corner of each row. To the right, we see 10 individual simulations of radial profiles (averaged over all

quadrants) at 12-hour lead times. All radial profiles above the black horizontal line are observed, while profiles

below the black line are simulated. The bottom left corner, shows the average simulation over 64 simulated

trajectories.
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F��. C8. Hurricane Jose [2017] Forecasts By Quadrant (A): As Figure C7, but broken down by quadrant

for example (A) only. The observed structural trajectory is shown in the top left corner. To the right, we see four

individual simulations of radial profiles by quadrant at 12-hour lead times. All radial profiles above the black

horizontal line are observed, while profiles below the black line are simulated. The bottom left corner shows the

average simulation over 64 simulated trajectories.
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(A)

(B)

(C)

F��. C9. Hurricane Dorian [2019] 12-hr Structural Forecasts: The observed structural trajectory is shown

in the top left corner of each row. To the right, we see 10 individual simulations of radial profiles (averaged over

all quadrants) at 12-hour lead times. All radial profiles above the black horizontal line are observed, while profiles

below the black line are simulated. The bottom left corner, shows the average simulation over 64 simulated

trajectories.
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F��. C10. Hurricane Dorian [2019] Forecasts By Quadrant (A): As Figure C9, but broken down by quadrant

for example (A) only. The observed structural trajectory is shown in the top left corner. To the right, we see four

individual simulations of radial profiles by quadrant at 12-hour lead times. All radial profiles above the black

horizontal line are observed, while profiles below the black line are simulated. The bottom left corner shows the

average simulation over 64 simulated trajectories.
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