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NAS-Navigator: Visual Steering for Explainable One-Shot Deep
Neural Network Synthesis

Anjul Tyagi, Cong Xie, Klaus Mueller
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Fig. 1. NAS-Navigator is visual analytics (VA) framework for explainable and human-in-the-loop neural network architecture search
(NAS). NAS-Navigator implements a one-shot NAS, using an iterative evolutionary search algorithm. The interface supports the
visualization of NAS with the human-in-the-loop search control. Analysts start by designing a large template network, through a
lego view (A); capable of emulating the search space of candidate neural networks. This network is then trained for a few epochs to
initialize meaningful weights, useful for candidate NN search, via a loss chart view (B). Following this, our evolutionary search algorithm
evaluates possible candidate NNs iteratively, with iteration counter (C); sampled from the large NN, and these accuracy evaluation
results are then presented in the form of a candidate NN projection on a scatterplot, via a search space view (D). Analysts can further
pause/stop the search and edit the template NN based on the fitness scores generated by our search algorithm, on the candidate
information view (E); to generate the final NN architecture, or to reduce the search space size. The fitness scores are calculated for
each node of the candidate neural networks which are sampled from the large template network during the search.

Abstract— The success of DL can be attributed to hours of parameter and architecture tuning by human experts. Neural Architecture
Search (NAS) techniques aim to solve this problem by automating the search procedure for DNN architectures making it possible
for non-experts to work with DNNs. Specifically, One-shot NAS techniques have recently gained popularity as they are known to
reduce the search time for NAS techniques. One-Shot NAS works by training a large template network through parameter sharing
which includes all the candidate NNs. This is followed by applying a procedure to rank its components through evaluating the possible
candidate architectures chosen randomly. However, as these search models become increasingly powerful and diverse, they become
harder to understand. Consequently, even though the search results work well, it is hard to identify search biases and control the
search progression, hence a need for explainability and human-in-the-loop (HIL) One-Shot NAS. To alleviate these problems, we
present NAS-Navigator, a visual analytics (VA) system aiming to solve three problems with One-Shot NAS; explainability, HIL design,
and performance improvements compared to existing state-of-the-art (SOTA) techniques. NAS-Navigator gives full control of NAS
back in the hands of the users while still keeping the perks of automated search, thus assisting non-expert users. Analysts can use
their domain knowledge aided by cues from the interface to guide the search. Evaluation results confirm the performance of our
improved One-Shot NAS algorithm is comparable to other SOTA techniques. While adding Visual Analytics (VA) using NAS-Navigator
shows further improvements in search time and performance. We designed our interface in collaboration with several deep learning
researchers and evaluated NAS-Navigator through a control experiment and expert interviews.

Index Terms—Deep Learning, Neural Network Architecture Search, Visual Analytics, Explainability
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1 INTRODUCTION

With the recent advances in computing power, deep learning (DL)
has made it possible to automate the problem of feature engineering
through neural networks (NNs). Highly complex features can be au-
tomatically learned from the data. However, this requires carefully
designed DNN architectures, which transform the problem of feature
engineering to architecture engineering [20]. Some well-studied DNNs
like AlexNet [29] and ResNet [24] have been the results of extensive
architecture search studies and required many hours of manual parame-
ter tuning by experts. Most of the current automated approaches find
the optimal solution of a NN architecture based on adaptive experi-
ments [42], and most of them rely on strong computing power. As a
result, these networks are hard to generalize because of the very high
hardware equipment demands and associated costs. Network Archi-
tecture Search (NAS) techniques aim at alleviating these problems for
deep learning researchers by automatically finding the best candidate
NN architectures based on validation accuracy. NAS designed methods
have outperformed manually curated networks as shown by Zoph et
al. [42], Real et. al [44] and the SMASH model [7].

Typical NAS algorithms apply techniques like Reinforcement Learn-
ing (RL) [58,62,63] or Evolutionary Search (EA) [33,44] to search for
candidate NNs directly. However, these approaches have been shown
to be computationally very expensive. One-Shot NAS techniques aim
at reducing the search time for NAS through training candidate neural
networks via weight sharing. The idea is that instead of training each
candidate NN separately, one trains a large template NN which is a
super-set network of all candidates, and then uses the same weights to
randomly sample candidate NN from this main network.

Most NAS algorithms use Recurrent NNs (RNNs) or DNNs as
the backbone to run the search. These types of algorithms typically
have a low capacity for explaining their actions and strategies [2,20].
Explainability, however, is critical when deploying real-world systems
which have a high need for process auditing and often also have high
legal liability [52]. In this work, we talk about explainability from the
context of NAS, and NAS-Navigator focuses on adding explainability
to the one-shot NAS process. Possible benefits of this procedure include
the reasoning behind why a particular NN architecture was chosen over
the others. Users can also compare how different candidate NNs behave
on the data. Human-in-the-loop (HIL) assistance in NAS approaches
can influence the choice of search in high stake decision making [22]
and so assist human users in building trust into the process. The need
for explainability and HIL is crucial for many situations and has been
the subject of a long debate in the HCI community, commonly referred
to as the control and automation trade-off [4,8,25,26,48,55,56].

Evolving from a formative study done with deep learning and NAS
researchers, we developed NAS-Navigator to solve the issues revolving
around these problems. NAS-Navigator is a visual analytics (VA) sys-
tem that reconciles both automation and user control for NAS, where
expert knowledge and automated intelligent services can be combined
effectively. We present a One-Shot NAS algorithm developed using
evolutionary search (EA) to support our explainability and HIL use
cases. Evaluation results show that our EA algorithm is fast and more
effective than typical One-Shot NAS algorithms. It learns to sample
better candidates given the history of selected candidates and their
validation accuracy data. We find that our scheme performs better than
the random sampling strategy used in the existing One-Shot NAS tech-
niques. Overall, our contributions include solutions to three problems
with existing NAS techniques:

* One-Shot NAS search speed: Our One-Shot EA NAS algorithm
provides faster search results

« Explainability: Our VA interface NAS-Navigator supports
search tracking and progress, search space visualization, can-
didate ranking, and score visualizations to provide cues to the
users

¢ Human-in-the-loop control: NAS-Navigator provides a user-
controllable HIL NAS paradigm, where users can improve the
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Table 1. Comparison of NAS-Navigator with different NAS algorithms
based on five aspects. VA stands for Visual Analytics, showing whether
the technique supports HIL interaction with NAS. Eff shows if the search
algorithm is efficient, i.e. the search time is less than 5 GPU days for a
CNN. Sh stands for shared parameters, meaning whether the algorithm
supports search through a shared parameter template network. Exp
means explainable, comparing algorithms that support explainability in
NAS. No PT means no pre-training of the candidate networks is required
for the search algorithm. The table is divided into 4 sections of rows,
separating the manually designed DNNs, automated NAS techniques,
VA techniques for NAS, and our work (NAS-Navigator).

Method VA
ResNet [24] X

NASNet [63]
EAS [42]
PNAS [32]
SMASH [7]
DARTS [34]
SETN [17]

BEAMES [15]
REMAP [10]
TREEPOD [38]

NAS-Navigator

Eff Sh Exp NoPT

X

LaA XA X[ X
LAX XA X

<
X

STSSNSN| XXX XXX
STSSSN| XXX XXX
NSIXXX|SNSNASAXXX|[S

search through VA. Users can control the final NN architecture
depending on the resource-accuracy trade-off

Our evaluation through a user study and expert interviews show
that NAS-Navigator is effective in adding explainability and HIL to
NAS. We separately evaluate our EA One-Shot NAS algorithm for its
efficiency against SOTA methods. The results we obtained show better
search convergence at a similar accuracy to the final candidate model
compared to existing fully automated NAS techniques.

Our paper is organized as follows. Section 2 presents related work.
Section 3 describes our formative inquiry with deep learning researchers
and practitioners. Section 4 presents our Explainable One-Shot NAS
method. Section 5 describes our visual interface. Section 6 presents
our user study and its findings. Section 7 ends with conclusions.

2 RELATED WORK

We summarize several NAS research works by comparing them based
on five factors as shown in Table 1. Overall, these methods can be
divided into 3 categories; automated NAS, One-Shot NAS, and HIL
NAS.

Automated NAS. Automated NAS has a long history [37,46]. NAS
designed methods have outperformed manually curated networks as
shown by Zoph et al. [42], Real et al. [44] and the SMASH model [7].
They use several trained networks to provide the final architecture de-
sign after evaluating each network on a validation set. DARTS [34]
is another popular NAS algorithm that searches for good candidate
NNs through gradient descent. However, training networks with NAS
is expensive since many different networks have to be trained before
evaluation. Also, these methods lack the human-in-the-loop control
and visual analytics, supporting explainability, as shown in Table 1. To
overcome this, another technique called the MorphNet [23] uses a dif-
ferent approach where the final architecture design is decided directly
as a subset of a single hypernetwork where the candidate NNs share
the same parameters. Liu et al. [33] proposed an evolutionary search al-
gorithm for automated NAS without the weight sharing network search
method. Evolutionary search is used to generate model architectures
by manipulating operations and editing edges in the network.

One-Shot NAS. Following the work on MorphNets, a slightly differ-
ent approach known as One-Shot Architecture Search [6] has evolved,
which involves searching for the best neural network architecture as a
subset of a largely trained hypernetwork. The hypernetwork in One-
Shot NAS has a lesser number of parameters than training several
different architectures independently [6]. Our EA algorithm used in
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NAS-Navigator is similar to previous one-shot approaches [7,17,60]
where we train a hypernetwork to generate representative weights for
every network in the search space (shared parameters). Although these
algorithms are less resource-intensive than typical NAS algorithms,
they still lack in the explainability and HIL aspects. Our EA algorithm
is developed to sample optimal NN candidates along with explainability
and HIL support to the typical one-shot NAS pipeline. Real et al. [44]
proposed a one-shot algorithm specifically developed to generate a
model AmoebaNet-A for hand sketches. The model performance is
evaluated after generation by separate training. This is different in
NAS-Navigator where we refer to that information from the template
network and hence it is faster. The child models are generated by
mutating the NNs from the highest accuracy models, whereas in our
algorithm, children are generated from blocks with the highest fitness
scores. Fitness scores include the history of that block and how it
performed in all the previous models.

Interactive NAS. There has been significant research in the visu-
alization community to make NN model selection and search more
effective. Techniques exist to support NAS where the model parame-
ters are known, and the model has to be evaluated only with a single
dataset [9,39,47,61]. VA frameworks have also been proposed for HIL
ML applications [30,54]. BEAMES [15] helps the users to find the best
regression models for a given dataset iteratively. TreePOD [38] provides
an interface to manage the trade-off between accuracy and interpretabil-
ity of different existing ML models. REMAP [10] allows interactive
CNN NAS starting with a few pre-trained models. Besides designing
NNs, other tools allow interactive design and filtering of clustering
techniques [11,31,40,45] and dimension reduction [5, 14,27,35,41].
However, it is considerably harder to interactively optimize a DNN
compared to optimizing a regression, clustering, or dimension reduc-
tion model; NAS-Navigator contributes by adding a HIL VA interface
to one-shot NAS.

Out of all these existing techniques, the work by Cashman et al. [10],
REMAP is the most closely related to NAS-Navigator. However,
REMAP does a global search by evaluating some set of models in
a given search space where the accuracies of each model on a given
dataset are already known. Getting this initial data where accuracy
information is known is resource-intensive, and is not easily available
for different applications. Datasets like NAS benchmarks [19,49,59]
are not available for most applications where deep learning is applied.
Hence, in NAS-Navigator, using the one-shot technique, there is no re-
quirement for an initial dataset where every candidate is pre-evaluated.

Another variation of NAS-Navigator from REMAP is in the abla-
tion and variation phases. REMAP provides the user with options to
drop some layers in the original NN for evaluation of different con-
nections in the NN search space. In NAS-Navigator, we implement
this operation automatically using the dropout operation during the
search procedure. Also, users can still edit layers manually using the
lego-view. Similarly, in the variation step of REMAP, users generate
variations of different components of a candidate NN. NAS-Navigator
handles that automatically through repeated components in the template
network. Each layer in the template network consists of differently
parameterized components. And the search procedure searches through
all these combinations automatically.

Besides, there are other features in NAS-Navigator which are not
available in existing works. The fitness scores of each block visual-
ization allow the users to see which regions in the search space are
impactful. For networks with skip connections, the lego view provides
better visualization of the architecture. Also, users can easily set pa-
rameters using the parameter visualization sidebar, which can be easily
viewed for each block. The search space view provides a single view
to compare the accuracy and architectural similarities of the full search
space.

3 FORMATIVE STUDY

To systematically evolve our idea of an explainable and HIL NAS
framework, we first conducted a formative study to collect requirements
from deep learning researchers, their views of explainable NAS, and
general workflows. This approach helped concertize our framework and

tool design with a user-centered evaluation at an earlier development
stage.

The formative study participants were carefully chosen to be data
analysts and researchers with different experiences, working in deep
learning applications with a basic understanding of NAS techniques.
Out of ten participants, two were deep learning professionals work-
ing in the industry, two were professors working in computer vision
and NLP, and three were Ph.D. students working in computer vision
and NLP, categorized as experts for this study (E1-E7). Three were
graduate students in Computer Science studying deep learning with a
basic understanding of NAS, categorized as non-experts for this study
(NE1-NE3). Each participant was interviewed for about 45 minutes
discussing their experience in DNNs and NAS. We covered the follow-
ing topics during the interview, categorized as who proposed the design
ideas.

* Their experience with the general NAS and One-Shot NAS work-
flows.

* Principles, practices, and difficulties of NAS.
» Benefits and frustrations of existing VA machine learning tools.

3.1 Key Findings - Design Components

The purpose of the formative study was to gather a list of requirements
from domain experts and potential users, which are expected to be met
by our framework. Our many discussions culminated in the following
list of requirements.

e T1: HIL One-Shot NAS search. Develop a one-shot NAS al-
gorithm that can be controlled through user feedback. Complete
transparency on how the algorithm is searching through different
NN candidates is important for explainability. Users should be
given control of the search process via a VA interface. EI, E3,
NEI, NE2, NE3.

e T2: Template models VA. The design of hypernetworks (tem-
plate NNis) plays a crucial role in the results of One-Shot NAS
techniques. Through NAS-Navigator, users should be able to
design and edit template models, make choices based on their
experience and search progression feedback. E2, E4, ES5, NE2.

¢ T3: Candidate models VA. Through NAS-Navigator, users
should be able to see which parts of the template NN combine to
form a candidate NN for search. The interface should allow for
comparing and contrasting different candidate NNs. E3, E4, E6,
E7, NEI.

* T4: Search Space VA. Users should be able to see a visualization
of the candidate NNs search space. This is useful to compare
how different candidates are related to each other. Some cues to
validate candidate performance during search evaluation would
be useful. This can be used to cluster the search into different
regions based on validation accuracy. E4, E7, NE3.

4 OUR EXPLAINABLE ONE-SHOT NAS METHODOLOGY

In this section, we discuss the technical details of designing a One-
Shot NAS technique. NAS problems are often confined to predicting
the structure of different subsets of a large template NN (known as
cells) instead of the complete architecture designs. This strategy is
shown to be more effective than finding complete architectures of
DNNs [32,34,51,60]. These cells can be combined via an evaluation
strategy to form a complete DNN structure, where NAS aims to find
the structure of each of these cells in a DNN. A cell (in the context of
CNNss) is a fully convolutional structure that maps an input tensor to an
output tensor. Following the previous NAS works [33,50], two types
of cell structures have been found useful in the context of designing
CNNg, i.e. Normal Cells and Reduction Cells.

A normal cell has CNN components with a stride of 1, which maps
the input size feature map of a given height, width, and the number of
feature maps (H, W, F) to the same size output feature maps (H’, W’,
F’). A reduction cell is used to reduce the height and width of the input
feature map by a factor of 2, hence (H’, W’, F’) = (H/2, W/2, 2F).
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Each cell contains B number of nodes, with a default value of 4, they
can be changed through the interface. Each node is connected to every
other node through six operations (O’s). These values are kept similar
to past works in NAS [17,33] and are: 3x3 Max Pooling, 3x3 Average
Pooling, Skip connection, 3x3 Separable Conv, 5x5 Separable Cony,
and 1x3 then 3x1 Conv. Each node inside a cell takes two inputs (/],
) and returns a transformed tensor 7, = #| (I} ) + 2 () where ¢ refers
to the transformed input tensor through an operation O. The task is to
find which of these O’s work best for every pair of connected nodes for
every cell.

Once the cells are identified, the overall structure of the CNNs is cre-
ated using the structures identified in [63]. In a typical NAS algorithm,
the cell structures are fixed and users cannot change or skip the search
of particular cells/operations based on evaluated candidates. However,
NAS-Navigator through a VA interface, allows users to visualize these
structures and make changes at any stage of the search. Users can edit
the number of normal and reduction cells, and edit nodes (fix, remove
and add) inside cells in real-time based on search progression results
being displayed on the interface.

This idea of cell-based construction has been extended to transformer
models related to non computer vision tasks. Different templates for
transformer models have been suggested [21], which can be directly im-
ported into NAS-Navigator to perform the search as the other computer
vision model counterpart.

41

Figure 2 shows our methodology for implementing an explainable HIL
One-Shot NAS framework with NAS-Navigator. We explain all the five
stages of the process in the following text.

S1: Dataset. Users can choose a dataset using the menu bar on
NAS-Navigator which controls the type of template networks the user
can choose through the interface. While designing a template network,
the structure of the network depends on the dataset and the global
structure of the DNN. For example, CNNs for CIFAR10 and ImageNet
have different template structures [63]. With the help of a formative
study discussed in Section 3, we have designed template networks for
10 common datasets.

S2: Design a template NN (T2). Through NAS-Navigator, users
can edit the number of normal and reduction cells in the default tem-
plate network; choose the number of nodes in a cell, and change the
number of cells to control the depth of the template NN. To support
the tasks where the default template network is not available, users can
create their template network by combining components available in
the sidebar (See F in Figure 1). The sidebar provides template struc-
tures for CNN and LSTM components which can be combined to create
template networks. This satisfies the design component requirement
(T2) discussed in Section 3.1.

S3: Train the template NN (T2). The next step after selecting
the template network structure is to train the template NN for a few
epochs. This is important to assign meaningful weights to each node
of the network. Users can choose when to stop the training, based on
time and resource usage demands. The template network train accuracy
affects the search results, hence more training will result in better search
results, but also higher training resource consumption. Also, using the
cues from the search iterations, users can edit the template network to
add or remove nodes or cells. This satisfies the design requirement (T2)
from Section 3.1.

S4: Search Algorithm (T1, T3, T4). Training the template net-
work assigns meaningful weights to each path (node and their respective
operations inside a cell) in the network. After training, the purpose of
the search algorithm is to evaluate these paths in the template NN cells
and choose the operations with the highest fitness scores. This can be
presented as a graph search algorithm where each candidate NN is a
path in the super-graph connecting the start and end nodes. In every
search iteration, a few of these subgraphs (candidate NNs) are evalu-
ated for validation accuracy and corresponding nodes and operations
contained in that candidate are ranked. This procedure ranks and helps
finalize the best performing cell structure, and hence the candidate NN.
Our EA-based search algorithm evaluates the candidate NNs in each

Methodology
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iteration and learns from their validation accuracies, thus using this
information to choose better candidates in the next iteration. The algo-
rithm updates the candidate information view (E) and the search space
view (D) as shown in Figure 1. More details on our search algorithm
are discussed in Section 4.2. This satisfied the design requirement (T1,
T3, and T4) formulated in Section 3.1.

S5: Final Architecture Evaluation. The last stage of this com-
plete procedure is to evaluate the best candidates found with the help
of the search algorithm. Users can choose to stop the search at any
iteration based on the intermediate results and the amount of search
space explored by the algorithm. The final model consists of one of the
final candidates with the highest validation accuracy.

4.2 Evolutionary Search Algorithm.

‘We devised an evolutionary search algorithm to search for the candidate
NN architectures with HIL and add explainability to the process. The
stages of our EA search algorithm are summarized in Figure 3 and are
discussed in detail below.

EA1: Selecting the candidate models. To select each candidate
NN, we generate a bitmask vector with each bit corresponding to a
path inside each cell, an example shown in Figure 3 for candidate NNs
A and B. Path refers to the connection between blocks in the network.
This mask represents a subgraph from the template NN which includes
the paths corresponding to set bits. We generate a candidate NN from
the mask by zeroing out the weights of the paths excluded from the
template network. This way, only the paths with a corresponding set
bit in the mask are activated. The number of candidate NNs in the
population is heuristically set to 1.5 times the number of cells in the
template neural network based on the studies shown in [12], that relate
the dataset dimensionality with the population size in EA algorithms.

EA2: Calculating the fitness scores. To calculate the fitness
of a candidate NN (subgraph), we calculate its validation accuracy
and use Equation 1 to alter the fitness scores of the paths existing
in the candidate NN. ¢ is an accuracy threshold that we fix for our
experiments, which serves as a tradeoff on how fast the search algorithm
learns from the current accuracy scores. Following this, all the fitness
scores for a particular cell are normalized by dividing the sum of all
fitness scores from individual node fitness values.

individual PathFitness = ValidationAccuracy — o D

EA3: Choose Parents. The choose parents procedure returns
the father and the mother candidate NNs from the fitness probability
distributions of the population. This means that there is a higher proba-
bility of choosing the models with better fitness scores, as shown in the
second block in Figure 3.

EA4: Cross-Over. To generate the child architectures from the
father and mother NN, a cross-over procedure is used, shown in Algo-
rithm 1 (Cross-Over). Firstly, a mask is generated with the procedure
described in the state EA/ above. This mask is compared to the masks
of the father and mother models to generate a child mask. Both the fa-
ther and mother models are chosen from the best performing candidates
in the population. Also, the mask is generated from the probability
density of the fitness scores, i.e. more probability of bits being set at
indices pointing to well-performing paths.

EAS5: Mutation. The child mask is mutated as shown in Algo-
rithm 1 (Mutation), to generate a final child candidate. We chose the
mutation rate to be 0.05 based on the work by Suganuma et al. [53].

EA6: Get Mask Probabilities. At each search iteration, when the
new population is updated, each path in the template network is given
a fitness score between 0 and 1, see part EA2 above. These values
combined, form the probability distribution of the paths from which
paths for the next candidate NNs are sampled.

Complete Evolutionary Search Algorithm. The complete search
algorithm combines all these different stages in each iteration with a
goal to find better candidates in each iteration, learning from previous
candidates’ performances. Algorithm 1 explains our complete EA
search, also shown in Figure 3.
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Fig. 2. Stages in a one-shot NAS search process are mainly divided into two parts, template network training, and the search algorithm to find
possible candidates from the trained template NN. After loading the dataset (1), a template network is trained (shown as the transition from dashed
lines to solid lines in the figure) with shared parameters (2). This template network consists of multiple repeated cells (normal and reduction cells, as
described in Section 4) which are initially randomly initialized and are assigned meaningful weights after training the template network (3). Then
one-shot search generates candidate NNs for evaluation from the template network (4), from which a final candidate is sampled iteratively; with the
search process. During the search, users can edit the template NN using the search feedback (5); to make changes to the template NN architecture,

which in-turn impacts the search progress and generation of candidate NNs (6).

5 THE INTERFACE

To implement our idea of explainable HIL NAS, we developed NAS-
Navigator with the help of principles discovered during the formative
study (Section 3). NAS-Navigator allows users to interactively control
the search algorithm of our framework. As shown in Figure 1, our
interface consists of six views, which we discuss in the following text.
The T# and S# next to each view show which of the formative study
requirement and the One-Shot NAS stage that view satisfies.

5.1 Lego View (T1, T2, T3, S2, S4)

Shown in Figure 1(A), the goal of the Lego view is to allow editing of
the template NN. Users can control the network depth, edit different
components and visualize how the components are placed in this view.
Controlling the template NN gives the power to the users to control the
search. Also, users can visualize candidate NNs, which are a subgraph

of the template NN in this view, where the cells and the nodes contained
inside a candidate NN can be highlighted over the template NN.

5.2 Loss Chart (T1, T2, S3, S5)

As shown in Figure 1 (B), the loss chart allows users to visualize and
control the training of template NN before running our EA search
algorithm. As discussed in Section 4.1 (S3), training of the template
NN is crucial to assign meaningful weights to the nodes. Users can
make choices on how much to train the template NN based on this loss
chart and depending on the resource availability for training. We can
also view the final evaluation of the selected candidate NN in this view.

5.3 Search Space View (T1, T4, S4)

As shown in Figure 1 (D), the search space view is a scatterplot pro-
jection of candidate NN space. This is one of the key components of
NAS-Navigator since it allows users to visualize and interact directly
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Fig. 3. Our EA One-Shot NAS search algorithm overview. Assuming two candidate NNs A and B sampled from a template NN cell, are evaluated in
the current search iteration. After the validation accuracies are available for these two candidates, the fithess scores associated with each path of
the template NN cell are updated. In this example, all the paths had equal fitness scores before the search iteration, which are updated after the
validation of candidate NNs. Based on these new fitness scores, a father and mother candidate NNs are a sample from the distribution of fithess
scores, and a child mask is generated using the cross-over algorithm. This child mask is the candidate NN for the next search iteration. This way, our
EA algorithm generates more child candidates coming from higher fitness score paths.

Algorithm 1 One-Shot Evolutionary Search Algorithm
1: procedure CROSSOVER(father, mother)

2: mask < Randomly generated mask

3: childMask < (mask == 0)  ( father.mask) + (mask == 1) %
(mother.mask)

4: return childMask

5:

6: procedure MUTATION(newModelMask)

7 mask <— Uniformly generated numbers from O to 1

8: mutationRate < 0.05

9: childMask < newModelMask AND (mask > mutationRate)
OR (1 — childMask) AND (mask <= mutationRate)

10: childModel < getModel(childMask)

11: return childModel

12:

13: procedure ARCHITECTURE SEARCH

14: population < Set of candidate models

15: loss < Set of loss values

16: for each iteration do

17: population,loss,maskProb <— EVOLVE(population)
18: loss.append ([max(loss), mean(loss), min(loss)])

19:

20: procedure EVOLVE(population)

21: fitness < fitness scores for each NN in population

22: newPop < Top k NN from population with highest fitness
23: k <length(population)

24: for i=0 to length(population)-k step 1 do

25: father,mother <+ chooseParents(population, fitness)
26: newModel <— crossOver(father,mother)

27: newModelMask < mutate(newModel)

28: newPop.append(newModelMask)

29: loss < getLoss(newPop)

30: maskProb < getMaskProb(newPop)

31: return newPop,loss,maskProb

with the candidate NN space. These projections are obtained using
t-SNE [36] and graph edit distance [1] on a randomly sampled set of
candidate NNs. The sampled candidate NNs are subgraphs of the tem-
plate NN with nodes labeled by the component or operation type, e.g. C
for convolution and R for Relu. Using these labeled directed subgraphs,
the distances between each of the sampled candidate architectures are
calculated using the graph edit distance which is stored in a distance
matrix. A t-SNE projection is generated from this distance matrix in
2-D shown as the search space view. This clusters the search space
based on the architectural similarity of the candidate models. As the
search algorithm progresses, these candidates are colored based on
their evaluation accuracy. Hence, the search space view acts as a dual
clustered space for architecture and accuracy similarity.

There are several user interactions supported in the search space
view. Hovering over each dot highlights the candidate NN in the lego
view. As the search iterations progress, the evaluated candidate NNs
are colored based on their evaluation scores, see Figure 1 (D). This is
useful to cluster the candidate search space, as more search iterations
(shown as C in Figure 1) are elapsed, the search space view will be
clustered based on the candidate performances. This can help the
users to separate the search space into high-scoring and low-scoring
candidate regions. Using this information, users can also select a region
in the search space, which then limits the search algorithm to select
candidates from the selected region for further iterations.

Another useful piece of information presented with the search space
view is the set operations on nodes and operations. Users can drag
areas on the scatterplot and find the Union, Intersection or Complement
of the nodes and operations in that region. This is a helpful operation to
find the most useful components of the search space which allows users
to edit the template NN, thus impacting the search algorithm directly.
For example, users can remove the most common cells (intersection)
from a low-scoring search space region from the template NN, which
reduces the search space, thus allowing for faster convergence of the
EA algorithm.

5.4 Candidate Information View (T1, T3, S4)

As shown in Figure 1 (E), the candidate information view is a scatterplot
showing the relationship between frequency and fitness scores of paths
in the template NN. The frequency shows how many candidate NNs
contain a particular path, hence more frequency score means higher
occurrence. The fitness scores are assigned during each search iteration.
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The idea behind the candidate information view is to show con-
fidence in the fitness scores of the paths. For example, removing
low-scoring, high-frequency paths from the template NN can prune
the search space and help converge the EA algorithm faster. Also, this
view helps analyze each operation path in the template NN and their
respective fitness scores which have been accumulated over the search
progression. Hovering over an operation in the lego view highlights
the corresponding dot on the candidate information view. Similarly,
dragging an area on the scatterplot highlights all the paths contained in
that area on the lego view.

5.5 Menu Bar, Properties Sidebar (T2, S1, S2)

Shown in Figure 1 (F,G), the menu bar provides buttons for selecting
the model, optimizers, loss functions, datasets, saving a model, and
set operations (discussed in Section 5.3). The properties sidebar is
linked with the lego view and displays the properties of each node and
operation in the template NN. Users can change the parameters for each
node through this sidebar.

6 EVALUATION

In this section, we evaluate NAS-Navigator for its effectiveness and
design efficiency through a fully automated One-Shot NAS comparison
with the state-of-the-art (SOTA), followed by case studies to show how
HIL and VA can support better NAS. Finally, we evaluate the design
experience of using NAS-Navigator through a user study and expert
user interviews.

6.1 Comparison of SOTA and our EA One-Shot NAS algo-
rithms

In this study, we evaluate the performance of our EA algorithm against
the existing NAS techniques on ImageNet [16]. ImageNet is a large-
scale image classification dataset that has been extensively used for
evaluating computer vision object detection research. The dataset
contains 1.28 million training images with 50k validation images. For
this study, we ran our EA algorithm for 1k iterations and experimented
with different fitness-scores threshold values to create our final NN.
Based on our experiments, the fitness-score threshold of 0.68 was
used to obtain maximum accuracy on ImageNet with our model. We
train our template network with a batch size of 256 for 400 epochs
using an SGD optimizer. We use the setting similar to previous NAS
training methods [17] for setting the learning rate to 0.025 and decay
to zero using the cosine scheduler. The probability of dropout for our
EA algorithm was set to 0.1. Table 2 shows the comparison of our
algorithm against the existing techniques. We separate the existing
techniques based on their efficiency of NAS along with human-derived
NNs, shown under Task Category.

As shown in the results, Table 2, our model obtained the best Top-5
Acc, the same as the previous best performing model GDAS [18] (best
of 5 experiment runs). Other parameters for our model are comparable
to the existing NAS techniques. Our search algorithm took about 1.7
GPU days on a Tesla V100 GPU to run for 200 iterations.

6.2 Case Studies

Compared to a fully automated study, we separately did case studies
with real users to see the impact of HIL and VA on One-Shot NAS. The
goal of this study was to compare the efficiency of our framework for
search time, resource usage, and usability. We set a baseline accuracy
range for our experiments which was devised based on the best per-
forming existing NAS techniques and our automated EA algorithm. For
each experiment, we noted the amount of GPU days it requires for our
users to achieve that accuracy through our system. For this study, we
used the CIFAR10 and CIFAR100 datasets [28] containing 60k images
categorized into 10 and 100 categories for object detection.
Participants. We worked with six participants for this study, who
were chosen based on their experience levels with Deep Learning
on Computer Vision tasks with NAS techniques. 3 were categorized
as experts and 3 as Non-experts according to their experience, with
experts having experience working with NAS and DL for more than
3 years. The experts were Ph.D. students in Computer Vision and
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non-experts were graduate students working in Computer Science with
basic knowledge of Deep Learning and Computer Vision. Out of the
six participants, 4 were males and 2 were females. 2 experts and 2
non-experts were the users from the formative study, who proposed the
design of the original system (See Sec 3). 3 experts used in the further
evaluation are listed as E1-E3.

Task Description. We initially informed the participants of the
concepts of NAS and related terminologies for our framework. Next,
we showed them a few examples from the template networks and
the filtering steps possible with our interface. The participants were
then allowed to experiment with the framework and ask clarifying
questions regarding the tasks. The task for the participants in this study
was to achieve a baseline accuracy range on both the CIFAR datasets.
The accuracy values were decided based on existing NAS techniques
and CNN models evaluated on these datasets, as shown in Table 3.
To get the accuracy baselines for the case study tasks, we used the
previous works from Table 1 and Table 2 which have published results
on CIFAR10 and CIFAR100 datasets, separated into three categories
of Human Experts, Older NAS techniques taking > 100 GPU days and
newer one-shot techniques taking < 5 GPU days. The task for the users
was to use NAS-Navigator and based on their knowledge and cues
provided in the interface, get the accuracy results within the baseline
range. The time taken for our expert and non-expert users to achieve
this task is reported in Table 3.

Results. Table 3 shows the comparison of time and accuracies
achieved by NAS-Navigator with Experts and non-expert users. We
can see that using NAS-Navigator both the expert and non-expert users
achieved the desired accuracies in 0.6 to 1.5 GPU days. For expert
users, using domain knowledge and search pruning helped achieve the
accuracies in 0.6-0.9 GPU days, which is considerably less than all the
existing NAS techniques. This evaluates the efficacy of VA and HIL
in NAS and the impact of domain knowledge in reducing the search
times. Even for non-expert users, the time taken is less than our fully
automated EA algorithm, achieving similar accuracies.

6.3 NAS-Navigator architecture search on
dataset

Imagenet

In this section, we discuss the architecture search process followed
by one of the experts in the study (E1) for architecture search on
Imagenet [29]. E1 was first given a short demonstration of using our
interface followed by an explanation of the task to be performed. All
search steps performed by E1 were logged along with the time taken
for each search step. E1 started by loading a customized AlexNet into
the interface, which has multiple options of blocks to choose from
and follows the basic architecture model of AlexNet. This customized
version of AlexNet contains the same number of layers as the original
network but each layer has multiple blocks. For example, layer 1 has
multiple convolutional blocks, i.e. Conv 3x3, Conv 5x5, and Conv7x7,
and similarly for other layers. E1 explained that the reason for choosing
the AlexNet template as a template network was his experience in using
AlexNet for image classification tasks. After a careful understanding
of the template AlexNet, E1 started by analyzing the results of the first
20 iterations of the evolutionary search algorithm, which gives a fitness
value for each block of the template network. After the search results
from the first four iterations, E1 decided to further analyze the 7x7
Conv blocks from Layers 1 and 2 because the fitness values of these
blocks dropped to zero. Focusing on the search space view, E1 was
able to find a subspace where the most common block was a7x7 Conv
block in Layerl. E1 then dragged this region on the search space view
which forced the search algorithm to sample candidate architectures
from this search space. After 5 more search iterations, it was confirmed
that the presence of this block resulted in a below-par performance
of the neural networks; E1 decided to remove this block from the
search space using the lego view and then continued the search further.
Another 5 iterations of the evolutionary search suggested the removal
of 3x3 convolution from Layer 1 and 5x5 convolution from Layer 2;
these blocks were removed by E1. Additionally, the search results
also suggested that 7x7 convolution was the best at Layer 3 on the
evaluation dataset but E1 wasnt convinced about this result because of
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Table 2. Comparing our EA algorithm to existing State-of-the-art NAS techniques and human designed CNNs on ImageNet. Task Category groups
the models based on their NAS effectiveness, separately placing the human designed CNNs. We run our EA algorithm on Testla V100 GPUs for 200
iterations, achieving best Top-5 Acc with our experiments, similar to GDAS. The experiments took approximately 5 hrs on NAS-Navigator with 8
GPUs.

Task Category Method GPU Parameters (MB)  Top-1 Acc Top-5 Acc
days
ResNet [24] - 11.7 69.8 89.1
Human Experts Inception-v1 [3] - 6.6 69.8 89.9
Progressive NAS [32] 150 5.1 74.2 91.9
NAS with more than 100 GPU days NASNet [43] 2000 573 72.8 913
DARTS [34] 4 4.9 73.1 91
SNAS [57] 14 4.3 72.7 90.8
NAS with less than 5 GPU days GDAS [18] 0.85 >3 4 915
SETN [17] 1.8 53 74.1 91.4
NAS-Navigator (T=200) 1.7 53 73.9 91.5

Table 3. Evaluating our HIL One-Shot NAS framework with fully automated NAS techniques. We categorize existing NAS techniques and CNNs
into three categories shown as first three rows in Methods. The time taken by users through NAS-Navigator to achieve comparable accuracies
on CIFAR10 and CIFAR100 datasets is less than existing fully automated techniques. This shows the importance of HIL and VA in reducing the

resource footprint of NAS. The experiments took approximately 3.5 hrs on NAS-Navigator with 8 Tesla V100 GPUs.

Method GPU days range Params (MB) Error on CIFAR 10 Error on CIFAR 100
range
Human Experts - 24-30 338£0.38 21.76 £ 6.14
NAS > 100 GPU days 150-2000 3.3-10.6 3.52+0.34 21.62 +6.34
NAS < 5 GPU days 0.84-50 3.3-5.7 325+0.8 185 +£2.7
NAS-Navigator (No VA) 1.4-2.0 33 2.6 +0.1 17.8 £ 0.3
(T=1K)
NAS-Navigator (Experts) 0.6-0.9 3.1-3.7 2.83 +£0.2 17.82 + 0.7
NAS-Navigator (Non- 0.8-1.5 2.9-4 324+03 18.6 £0.5
Experts)
User Study Results — Median IQR

his experience. Hence, E1 selected a region in the search space view
where the most common block was the 7x7 Conv block at Layer 3 to
evaluate more candidate neural networks from this subspace. It was
confirmed after a single search iteration that most neural networks from
this search space had high accuracy, hence, giving further evidence that
7x7 convolution was the best option among the other blocks at layer
3. The search also suggested that the linear block with 2,304 input and
4,096 output parameters worked the best at layer 6. This yielded the
final architecture of the suggested neural network.

Results: E1 compared the results of the suggested network with a
baseline of AlexNet performance on the Imagenet dataset after training
for 10 epochs. While the baseline AlexNet has an accuracy of 72.70%
on the test data, the network derived from our interface had an accuracy
of 74.72%. This accuracy was further improved to 76.34% after E1
used his expertise and added batch normalization layer after every con-
volutional layer in the network. E1 was satisfied with the final network
since it resulted in better accuracy than the baseline AlexNet model.
This study confirmed that our tool can help computer vision researchers
effectively search for and identify high-performing convolutional neural
network architectures.

6.4

In this study, we evaluated NAS-Navigator for its support for multiple
factors of usability and creativity. Considering that the main goal of
creating NAS-Navigator was to add VA and HIL in NAS, we carefully
evaluated our interface for its ability to support user thought processes
and creativity. Since there are no existing frameworks publicly available
that can be used as a suitable baseline for this task (see Table 1), this

Interface Evaluation Through User Study
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Fig. 4. The user study results to evaluate our framework with the Creative
Support Index [13], on a five-point Likert scale. We asked 7 questions to
the participants, covering different aspects of usability.

user study helped us to explore the strengths and weaknesses of our
interface through user feedback.

Participants. The same participants, as described in Section 6.2
performed this user study. A total of six people participated, out of
which three were considered Experts and three were non-experts.

Task and Procedure. The task was to answer questions regarding
the procedure they applied in the Case Study discussed in Section 6.2
and rate their experience on a five-point Likert Scale from 1 (Strongly
Disagree) to 5 (Strongly Agree).

The questionnaire was based on 7 factors, 5 of which are taken from
the work by Cherry et al. [13] for quantifying the creativity support for
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design tools (Q1 to Q5 in Figure 4). We added two additional factors in
the questionnaire to rate the domain-specific questions (Q6 and Q7 in
Figure 4). The whole study took about 45 minutes for each participant.

6.4.1

As shown in Figure 4, out of the total 42 ratings on 7 questions, only
4 ratings had a low score of 1 or 2. Overall, 81% of the votes rated
the questions with a 4 or 5, with Q4 and Q5 being the highest-rated
questions with the most Agree votes. Overall, positive feedback and
high ratings for design and usability questions show the efficacy of
our interface in supporting user creativity in NAS. However, detailed
feedback was collected from the experts about the low-scoring ques-
tions and some directions of possible improvement in NAS-Navigator,
discussed in the following text.

Questionnaire Results

6.4.2 Expert Interview Results

Besides the general results, we separately collected detailed feedback
from two of the experts (E2 and E3) about their experience in working
with NAS-Navigator. This interview helped compare NAS-Navigator
with the existing works from an expert’s perspective and helped us
gather deeper insights into the VA aspect of our framework. We discuss
our results organized by the themes of the questionnaire in the following
text.

Enjoyment (Q1). Both the participants found NAS-Navigator to be
useful in their tasks. E2 explained “Drag and drop on the template NN
was a great way to edit the search and get desired results”. E3 added

“I like that there are template NN provided for major DL tasks, which we
can directly load on the interface and start playing with them.”

Exploration (Q2). Both the participants liked the search space view
to exploring the candidate NN search space. E2 commented “Search
Space view is a great idea and the fact that we can see clusters in the
candidate NN search space shows how the structures of candidate NN
can change the performance of the NNs.” E3 suggested an improvement
to NAS-Navigator commenting “A useful feature can be to suggest
changes in the NN model based on current fitness scores for some non-
experts or in case the user has no prior idea on what NN will perform
better on a given dataset.”

Expressiveness (Q3). Both the experts suggested improvements in
the expressiveness aspects of NAS-Navigator. E2 suggested “the user
has great power to do pretty much any change with the interface, which
can be great if they know what they are doing. However, in many cases,
this can be a disaster if the user mistakenly updates something which
later turned out to be useful.” Adding on to this, E3 suggested, “it’s a
good idea for future will be to see the impact of user changes on the
search results compared to the fully automated EA algorithm. This will
allow the users to know the impact of their decision and will make the
process more transparent.”

Immersion (Q4). The participants were positive about the immer-
sion part, suggesting a few improvements on top of the existing inter-
actions. E2 commented “NAS processes are slower than the common
design tasks, which are more commonly done through dashboards.
Hence, the users cannot see immediate results of their actions in this
case.” E3 added to this comment and mentioned “While the users are
waiting for the search iteration to complete, a notification will be useful
to see if a particular search iteration has found something useful which
can have some impact on the NN performance. Every search result, if it
can be linked with user action and its impact, will be useful information
to have on the interface.”

Results worth effort (QS). Both the participants agreed that even
small interactions if done correctly, can have a great impact on the
search convergence time and the final NN performance.

Interactions (Q6). The participants had mixed reactions to the
interaction effects of NAS-Navigator. E2 commented “It would be
great if we could track and visualize how the scores have changed over
the search iterations. It’ll further add to the decision-making as we
will be able to see the history of changing scores and not just the last
timestamp.” E3 was satisfied with the interactions in NAS-Navigator
and commented “The search space interactions are useful in controlling
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the areas to search from. This is a great idea and the fact that I can see
all the candidate NNs in a single space is very useful.”

Results Quality (Q7). Both the participants were satisfied with the
quality of the results. An improvement was suggested by E2 who said
“Sometimes the clusters in the search space view scatterplot are not very
clear, maybe adding supporting plots to show further details of each
network architecture would be useful.”

7 DISCUSSION

Several important lessons were learned while designing this framework.
Our initial discussion with domain experts was decisive in pinning
down the main interface design. After all, tasks were formulated
within comprehensive discussions with the experts, it was easier to
design the visual interface and its components. Also, we realized that
adding strong user interaction facilities was important, as a means to
allow users to infuse their domain knowledge into the search process
to accelerate convergence to the final solution. This design allows
analysts to use their domain knowledge and the one-shot search results
to quickly converge to the best performing neural network architecture
for a given task. Analysts also have the freedom to apply certain soft
constraints at their discretion, for example trading off between neural
network size and accuracy, for example, different Resnet [24] sizes.

8 CONCLUSION

This paper presents a visual analytics framework to assist in deep neural
network architecture search. Our interface combines the automated
one-shot neural network architecture search approach with a human-
in-the-loop design. Our interface is also less resource-intensive than
conventional automatic neural network architecture search algorithms.
Analysts can quickly load a template neural network along with their
dataset and explore different subset neural network architectures to
find the best one. Our evolutionary search algorithm allows for quick
sampling of well-performing candidate architectures which can then be
further evaluated for their performance. A design study was conducted
in collaboration with several researchers working in the deep learning
domain to lay down the tasks to be performed by our interface. We
evaluated our framework for its ability to better search for the best
performing neural network architecture with the help of a user study,
case studies, and expert interviews.

However, besides the effectiveness of our present interface, there
remains some scope for improvement, which will be taken on in future
work for this project. First, we would like to run comparison experi-
ments to compare the performance of our EA algorithm against other
solutions including reinforcement learning and bayesian optimization.
Taking some points from our interview evaluation, we will add sup-
porting visualization to the search space view to better present the
clusters and candidate NN architectures inside these clusters. We will
work on identifying user actions for each search iteration result, that
will predict and suggest these actions to the non-expert users. Also,
tracking of search iteration results and changes in the fitness scores
will be added. We would also like to evaluate NAS-Navigator on lan-
guage models to extend its applicability. Currently, all our evaluation
is based on computer vision networks, but as more NAS algorithms
start to come from the language domain, it will be interesting to see
how NAS-Navigator compares against the state-of-the-art transformer
models. These features are not yet supported and we will continue to
work on our interface to incorporate them in the future. We plan to
deploy NAS-Navigator for real users as a long-term study to collect
in-depth feedback and usage scenarios.
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