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Abstract—This paper presents a configurable binary design
library including fundamental arithmetic circuits like full-adder,
full-subtractor, binary multiplier, shifter, and more. The Chisel
Hardware Construction Language (HCL) is employed to build
the parameterizable designs with different precision including
half-word, word, double-word, and quad-word. Chisel HCL is
an open-source embedded domain-specific language that inherits
the object-oriented and functional programming aspects of Scala
for constructing hardware. Experimental results show the same
accuracy achieved by our proposed work compared with the
Verilog HDL implementations. The hardware cost in terms
of slice count, power consumption, and the maximum clock
frequency is further estimated. Compared with traditional design
intellectual properties (IPs) provided by IP vendors, our proposed
work is configurable and expandable to the other arithmetic
implementations and projects.

Index Terms—FPGA, arithmetic circuits, Chisel Hardware
Construction Language, Verilog Hardware Description Language

I. INTRODUCTION

The field-programmable gate array (FPGA) vendors like
Intel-Altera and AMD-Xilinx allow integrated circuit design-
ers creating complex circuits by instantiating and intercon-
necting intellectual properties (IPs) from their provided tools
like Altera Quartus [16] and Xilinx Vivado [17]. All these
IPs are hard cores which can be synthesized and implemented
through the FPGA design flow. Additionally, the design netlist
can be demonstrated on the selected FPGA board. Though
all the IPs are configurable and reusable by FPGA designs,
they are not open to the application-specific integrated circuit
(ASIC) tools, such as the simulators like Synopsys VCS [18],
Cadence NC [20], and Mentor Graphic Modelsim/Questa [22],
and synthesis tools like Synopsys Design Compiler [19] and
Cadence Genus Synthesis Solution [21].

No doubt that it is a big challenge for academia and industry
to start an integrated circuit design without existing IPs. An
open-source design library thus is crucial to ASIC designers as
well as the FPGA development groups. The other challenge for
the IP vendors is that the provided IPs must be configurable
and easy-to-use for different design specifications including

but not limited to precision needs, speed constraints, chip size
considerations, power dissipation, etc.

Under this context, this paper proposes a case study to
the configurable designs on a binary library including six
basic arithmetic operators. In industry, it is very common to
generate some Verilog Hardware Description Language (HDL)
designs using HDL generators instead of writing Verilog code
from scratch, particularly for the design projects of reusable
IPs, standardized interfaces, and bus protocol based wrappers
and bridges. Most of such generators were written by script
language such as Perl and/or some high-level synthesis tools.
The main concerns of such design approaches are: 1) there is
no powerful library behind the generators, making the design
on the generator very complicated; 2) most of the designs
are not parameterizable so that they are not configurable and
expandable to the other projects.

To overcome above-mentioned constraints, this paper fo-
cuses on exploring the Hardware Construction Language
(HCL) generation using Chisel language. Chisel HCL is
basically a hardware design language/generator created by
Lawrence Berkeley Research Lab that supports advanced hard-
ware design by using highly parameterized generators [10],
[11]. It provides circuit generation and reuse of design com-
ponents for both ASIC and FPGA-based digital circuit de-
signs [1]. Chisel adds hardware construction primitives to
Scala embedded programming language, providing designers
to construct parameterizable circuit generators that produce
synthesizable Verilog HDL.

Using the Chisel platform, it is able to make the binary
design library open to ASIC simulators and synthesis tools
like Synopsys VCS and Design Compiler, and Cadence NC
and Genus Synthesis Solution. The binary design library
includes the fundamental arithmetic circuits of full-adder, full-
subtractor, multiplier, shifter, leading one detector, and two’s
complement. After demonstrating the validity, the proposed
design library can be expanded into many other design mod-
ules like the floating-point arithmetic components and network
neurons. Below are the main contributions of this work:
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• This paper presents a design flow from Chisel HCL
description to Verilog HDL design to the final hardware
cost evaluation. As case studies, the binary design library
is implemented and evaluated in terms of accuracy, design
schematics, speed, slice count, and power consumption.

• Experimental results show the validity of the proposed
design library which is able to achieve 100% accuracy
of the binary design computation. By parameterizing the
precision of each design module, different designs with
different speed-area-power tradeoff can be obtained.

The organization of this paper is as follows: it first reviews
the related works in Section II. The proposed approach with
FPGA designs is discussed in Section III. Section IV intro-
duces the implementations of this research work and Section V
further demonstrates the experimental results in terms of
accuracy, slice count, maximum operational frequency, and
power consumption. In the last two sections the conclusion
and future works of this paper are summarized.

II. RELATED WORKS

The arithmetic logic units are the fundamental build-
ing blocks of system-level circuits and design applications.
A modern real-time application requires very powerful and
complex arithmetic operators in its design, from a basic
microprocessor to image/video processing unit to complex
neural networks [13]–[15].

Previous works on designing such arithmetic circuits have
mainly concentrated on building high-speed and/or power-
efficient circuits using HDL or other design methodologies
such as high-level synthesis [5], [12]. Based on different de-
sign specifications, configurable designs over different projects
are needed. For example, Chisel HCL was used as the register-
transfer level (RTL) generator to tape-out RISC-V based
SoC [3]. And one of the research projects introduced the
concept and implementation of a hardware compiler frame-
work that used an open-source hardware intermediate hard-
ware representation named flexible intermediate representation
for RTL (FIRRTL) to transform target-independent RTL into
technology specific RTL [2].

Further, the comparative study on designing with Chisel
HCL against Verilog HDL was carried out in [6]. A N-bit fixed
priority arbiter was designed in Chisel HCL and Verilog to
compare the timing, power, and area of the designed module.
The Chisel implementation required 250 lines of Chisel source
code whereas the Verilog implementation required 400 lines.
This article also showed that the Chisel implemented design
used less hardware resources compared to the Verilog design.

Therefore, this paper presents the binary arithmetic designs
using the abstractness and scalability of Chisel HCL. The
Chisel based design library demonstrates the ease of pro-
gramming hardware circuits as compared to Verilog/VHDL
and proves that generated Verilog has similar slice count,
maximum clock frequency, and on-chip dynamic power con-
sumption.

III. PROPOSED WORK

This section presents a configurable and reusable binary
design library that is developed with Chisel HCL. The In-
telliJ software from JetBrains is employed as the developing
environment with Scala plugins and Chisel HCL libraries. As
an example, Fig. 1 shows the design flow using the proposed
Chisel library, from the Chisel design and verification, then
the generated Verilog HDL. After the HDL generation, the
traditional FPGA design procedure including the synthesis,
implementation, and evaluation can be conducted.

Specifically, Fig. 1(a) shows the example of a Chisel HCL
design on a full adder. In what follows, Fig. 1(b) shows the
simulation result of the Chisel HCL design after running the
test script file by passing the input data. This result proves the
functionality of the HCL design.

After declaring the Chisel design module, the Chisel com-
piler is called to translate the HCL design module into Verilog
HDL. This elaboration process requires passing bit width as
a parameter to generate a synthesizable Verilog for the design
module. The generated Verilog HDL is written into a new
Verilog file which is added into a Vivado project as shown in
Fig. 1(c).

In Vivado, the FPGA design flow can be carried out includ-
ing synthesis and implementation. The synthesis circuit can be
shown in Fig. 1(d). Finally, the results of FPGA slice count
and power analysis after the implementation is successfully
completed as shown in Fig. 1(e).

IV. IMPLEMENTATION OF CONFIGURABLE MODULE
DESIGN

This section presents the implementations of six funda-
mental designs of binary arithmetic circuits, including full-
adder, full-subtractor, multiplier, shifter, 2’s complement op-
erator, and leading bit detector modules. The proposed work
is scalable to other arithmetic modules implementation. The
validity of the proposed work can be extended to many other
parameterizable circuit and system generations.

A. Full-adder module design

Full-adder is a basic arithmetic module used in mathemat-
ical computation. This module is built on the logic of binary
addition. Based on the requirement, the bit width for input
numbers and the output sum is selected and the Verilog code
is generated. It takes a single clock cycle to compute output
sum and carry for the selected bit width. The maximum clock
frequency that can be achieved for a 16-bit module is 604.96
MHz and the total on-chip power is 510 mW.

Notice that the evaluation results are based on the specific
FPGA platform and configuration. Different clock frequency
and power dissipation could be achieved with other selected
FPGA parts. More details will be discussed in the next section.

B. Full-subtractor module design

Similar to the full-adder module, the full subtractor is
developed on the logic of binary subtraction. This module
takes two numbers as input and computes the borrow out and
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Fig. 1. A Design Example between Chisel HCL to Verilog HDL Design Flow.

difference as the output. This module takes a single clock
cycle to compute the output. The bit width for the module can
be selected based on the requirement. The maximum clock
frequency that can be obtained from the 16-bit module is 868.8
MHz and the total on-chip power is 510 mW.

C. Multiplier module design

Similar to the multiplication of two decimal numbers, the
binary multiplier follows the same method for computing a
product result of the two binary numbers. The bit width for
the product result is double the size of the input numbers. The
product of two binary numbers is computed in a single clock
cycle. The advantage of using a fixed-point multiplier is that it
can be built using look-up-tables, saving DSP resources on the
FPGA. The maximum clock frequency that can be obtained
from the 16-bit module is 148.65 MHz and the total on-chip
power is 514 mW.

D. Shifter module design

The shifter module shifts the input number by a specified
number of bit positions to the right or left. The input to this
module is the number to be shifted, the number of bit positions,
and, the shift left or right. The output bit width is considered
to have the same bit width of the input number that is being
shifted. The maximum clock frequency that can be obtained
from the 16-bit module is 393.54 MHz and the total on-chip
power is 508 mW.

E. Two’s complement module design

Two’s complement of a number is used to store the negative
value of a number. This module involves functions such as bit
flipping and bitwise addition. The maximum clock frequency
that can be obtained from a 16-bit module is 708.71 MHz and
the total on-chip power is 510 mW.

F. Leading one detector module design

The leading one bit detector is designed to return the
bit position of the most significant bit in the number. It is
designed to be used in a floating-point arithmetic operation.
The specified bit widths are 11, 24, 53, and 113. The maximum
clock frequency that can be obtained from the 11-bit module
is 896.86 MHz and the total on-chip power is 505 mW.

V. EXPERIMENTAL RESULTS

In this section, the hardware cost and speed is estimated
using AMD-Xilinx Vivado 2019.2 with the target device
Kintex UltraScale xcku035-ffva1156-3-e.

A. Accuracy

Unlike conventional HDL descriptions such as Verilog and
VHDL designs, Chisel is used to generate synthesizable Ver-
ilog using pre-built libraries. Since the implementation does
not assume any approximation in computing the result, the
module computes the result with 100% accuracy in a single
clock cycle.
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TABLE I
MAXIMUM OPERATIONAL FREQUENCY (MHZ)

Designs 16/11-bit
Design

32/24-bit
Design

64/53-bit
Design

128/113-bit
Design

Full-adder 604.96 586.85 390.93 376.64
Full-subtractor 868.8 513.87 460.19 374.39
Multiplier 148.65 135.35 90.37 87.58
Shifter 393.54 342.81 240.21 239.06
Two’s compliment 708.71 900 564.65 546.14
MSB Detector 896.86 693.96 401.28 262.53

B. RTL Analysis Results

All the design modules with different bit width can be
synthesized into RTL analysis results. As examples, Fig. 2(a)-
(e) show the schematics of the 16-bit full adder, subtractor,
multiplier, shifter, and two’s complement implementations.
And in Fig. 2(f), it shows the result of the most significant
bit (MSB) detector with the 11-bit design.

For all the hardware results from Fig. 2, it can be observed
that both the input and output signals are from the output of
registers. Between the registers, the look-up-tables are insert to
implement the functionality of the designs. In such a way the
critical path between the two-stage registers can be evaluated,
which is used to estimate the maximum operational frequency
(MOF).

C. Speed Estimation

To estimate the MOF, the worst negative slack (WNS) is
needed in the implementation report. WNS is basically the
minimum timing slacks of all timing endpoints, which can be
represented as WNS = min(slack(τ)), where τ is the set
of the timing endpoints. The longest path delay determines
the maximum frequency at which the design can operate.
The MOF thus can be roughly estimated using the equation
MOF = 1

T−WNS , where the difference between the clock
period (denoted as T) and the WNS shows the critical path of
the combinational circuit between the registers [23].

Using the design approach, Table. I summarizes the MOF
for all the design modules generated by the design library. The
results show that the lower complexity the faster the operating
clock speed achieved. Specifically, the highest speed of the
full-adder implementation is 604.96 MHz which is achieved
by the 16-bit design. And the 128-bit design on the full-adder
obtains the MOF of 376.64 MHz which is the lowest clock
frequency compared with the other implementations of the
full-adder.

Notice that an unexpected result occurs in the 2’s comple-
ment designs in the sixth row, where the 32-bit design obtains
higher MOF than the 16-bit implementation. Though the 16-
bit design spends more IOs and slice count, the critical path
could be higher than or similar to that of the 32-bit design,
depending on the placement & route of the synthesis results.

D. Area Estimation

As the practical result summarizes in Table II, it can be
observed that the hardware resource usage is increased with

(a) 16-bit full-adder synthesis result

(b) 16-bit full-subtractor synthesis result

(c) 16-bit multiplier synthesis result

(d) 16-bit shifter synthesis result

(e) 16-bit two’s complement synthesis result

(f) 11-bit Leading One Detector

Fig. 2. 16bit Synthesis Results.Authorized licensed use limited to: University of Houston Clear Lake. Downloaded on July 11,2023 at 18:35:11 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
LUT COUNT OF DIFFERENT DESIGNS

Designs 16/11-bit
Design

32/24-bit
Design

64/53-bit
Design

128/113-bit
Design

Full-adder 16 32 64 128
Full-subtractor 17 33 65 129
Multiplier 279 1,208 5,020 21,175
Shifter 66 158 397 953
Two’s compliment 11 31 63 127
MSB Detector 6 20 55 129

TABLE III
DYNAMIC POWER CONSUMPTION OF DIFFERENT DESIGNS (MW)

Designs 16/11-bit
Design

32/24-bit
Design

64/53-bit
Design

128/113-bit
Design

Full-adder 6 8 35 49
Full-subtractor 6 8 15 70
Multiplier 10 22 90 180
Shifter 4 8 12 49
Two’s compliment 3 6 14 37
MSB Detector 1 3 6 6

increase in bit width and complexity. For example, the 16-
bit full-adder takes 16 LUTs and the 128-bit design spends
128 LUTs. Notice that the binary multiplier spends a large
amount of LUTs compared with the other binary designs,
showing a potential to improve the hardware efficiency to the
approximate designs on multipliers.

E. Power Consumption

After the implementation, the power analysis is conducted
as the static and dynamic on-chip power consumption on the
FPGA board. Table III summarizes the dynamic on-chip power
usage while static power remains constant around 504 mW. As
the number of slice counts or hardware resources are more,
the FPGA draws more power during operation. The switching
activity can also lead to higher usage of an FPGA board.

VI. CONCLUSION

In this paper, Chisel HCL is employed to design the param-
eterizable binary modules including full-adder, full-subtractor,
multiplier, shifter, leading one detector, and two’s complement.
The implementations of the proposed work proves that Chisel
is a potential hardware circuit generator that can be used to
design a circuit with more complex arithmetic implementation.
Since Chisel HCL inherits object-oriented programming and
functional programming concepts from Scala, it reduces the
complexity of RTL designs on particular arithmetic circuits.
The availability to expand on the Chisel Application Program
Interface (API) using the constructs and syntax of Scala
embedded makes Chisel the perfect choice for performing
complex and scalable hardware design.

VII. FUTURE WORKS

Parameterizablity is one of the main advantages and moti-
vations of using the Chisel based design library. In this paper,
the binary designs on the fundamental arithmetic modules are
conducted to demonstrate the validity of the research work.

The future works will be focusing on the complicated designs
to extend the design library such as the floating-point operators
and network neurons.

REFERENCES

[1] J. Bachrach et al., “Chisel: Constructing hardware in a Scala embedded
language,” IEEE/ACM Design Automation Conference, PP. 1212-1221,
2012. doi: 10.1145/2228360.2228584.

[2] A. Izraelevitz et al., “Reusability is FIRRTL ground: Hardware con-
struction languages, compiler frameworks, and transformations,” 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD
2017), PP. 209-216, 2017. doi: 10.1109/ICCAD.2017.8203780.

[3] Khan, Muhammad Hadir, et. al., “IBTIDA: Fully open-source ASIC
implementation of Chisel-generated System on a Chip,” TechRxiv, 2021,
doi: 10.36227/techrxiv.16663738.v1

[4] M. L. Petrovic and V. M. Milovanovic, “A Chisel Generator of Parame-
terizable and Runtime Reconfigurable Linear Insertion Streaming Sorters,“
2021 IEEE 32nd International Conference on Microelectronics (MIEL), PP.
251-254, 2021. doi: 10.1109/MIEL52794.2021.9569153.

[5] D. Zoni, A. Galimberti and W. Fornaciari, “Flexible and Scalable FPGA-
Oriented Design of Multipliers for Large Binary Polynomials,” in IEEE Ac-
cess, Vol. 8, PP. 75809-75821, 2020. doi: 10.1109/ACCESS.2020.2989423.

[6] P. Lennon and R. Gahan, “A Comparative Study of Chisel for FPGA
Design,” 2018 29th Irish Signals and Systems Conference (ISSC 2018),
PP. 1-6, 2018. doi: 10.1109/ISSC.2018.8585292.

[7] J. Bachrach, et al., “Chisel: Constructing hardware in a Scala embedded
language”, 49th ACM/IEEE Design Automation Conference (DAC 2012),
PP. 1212-1221, Jun 2012.

[8] F. Heilmann et al., “Investigate the high-level HDL Chisel” in Ger-
many:Kaiserslautern, 2013.

[9] V. M. Milovanovic and M. L. Petrovic, “A Highly Parametrizable Chisel
HCL Generator of Single-Path Delay Feedback FFT Processors,” 2019
IEEE 31st International Conference on Microelectronics (MIEL 2019), PP.
247-250, 2019. doi: 10.1109/MIEL.2019.8889581.

[10] “Chisel/FIRRTL Hardware Compiler Framework”, 2019. [Online].
Available: https://www.chisel-lang.org/

[11] “Chisel Github”, 2019. [Online]. Available:
https://github.com/chipsalliance/chisel3

[12] X. Chen, et al. “ThunderGP: Resource-Efficient Graph Processing
Framework on FPGAs with HLS,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS), In press, 2022.

[13] A. L. Reed and X. Yang, “Lightweight Neural Network Architectures
for Resource-Limited Devices,” 23rd IEEE Intl. Symposium on Quality
Electronic Design (ISQED 2022), Accepted, 2022.

[14] I. Westby, X. Yang, T. Liu, and H. Xu, “Exploring FPGA Acceler-
ation on a Multi-Layer Perceptron Neural Network for Digit Recogni-
tion,” The Journal of Supercomputing, PP. 1-18, May 13, 2021. DOI:
10.1007/S11227-021-03849-7

[15] X. Yang, Y. Zhang, and L. Wu, “A Scalable Image/Video Processing
Platform with Open Source Design and Verification Environment,” 20th
Intl. Symposium on Quality Electronic Design (ISQED 2019) , PP. 110-
116, Santa Clara, CA, USA, 2019.

[16] “Intel-Altera Quartus”. [Online]. Available:
https://www.intel.com/content/www/us/en/software/programmable/quartus-
prime/download.html

[17] “AMD-Xilinx Vivado”. [Online]. Available:
https://www.xilinx.com/products/design-tools/vivado.html

[18] “Synopsys VCS Simulator”. [Online]. Available:
https://www.synopsys.com/verification/simulation/vcs.html

[19] “Synopsys Design Compiler”. [Online]. Available:
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-
test/dc-ultra.html

[20] “Cadence Software”. [Online]. Available:
https://www.cadence.com/en US/home/support/software-downloads.html

[21] “Cadence Genus Synthesis Solution”. [Online]. Available:
https://www.cadence.com/en US/home/tools/digital-design-and-
signoff/synthesis/genus-synthesis-solution.html

[22] “Siemens-Mentor Graphic Modelsim”. [Online]. Available:
https://eda.sw.siemens.com/en-US/ic/modelsim/

[23] “Vivado Timing - Where can I find the Fmax in the timing report?”.
[Online]. Available: https://support.xilinx.com/s/article/57304

Authorized licensed use limited to: University of Houston Clear Lake. Downloaded on July 11,2023 at 18:35:11 UTC from IEEE Xplore.  Restrictions apply. 


