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Many technologically useful materials are polycrystals composed of small monocrys-
talline grains that are separated by grain boundaries of crystallites with different lattice
orientations. The energetics and connectivities of the grain boundaries play an essen-
tial role in defining the effective properties of materials across multiple scales. In this
paper we derive a Fokker—Planck model for the evolution of the planar grain bound-
ary network. The proposed model considers anisotropic grain boundary energy which
depends on lattice misorientation and takes into account mobility of the triple junctions,
as well as independent dynamics of the misorientations. We establish long time asymp-
totics of the Fokker—Planck solution, namely the joint probability density function of
misorientations and triple junctions, and closely related the marginal probability density
of misorientations. Moreover, for an equilibrium configuration of a boundary network,
we derive explicit local algebraic relations, a generalized Herring Condition formula, as
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well as formula that connects grain boundary energy density with the geometry of the
grain boundaries that share a triple junction. Although the stochastic model neglects
the explicit interactions and correlations among triple junctions, the considered specific
form of the noise, under the fluctuation—dissipation assumption, provides partial infor-
mation about evolution of a grain boundary network, and is consistent with presented
results of extensive grain growth simulations.

Keywords: Grain growth; grain boundary network; texture development; lattice misori-
entation; triple junction drag; Fokker—Planck equation; fluctuation—dissipation theorem;
weighted L2 space; long time asymptotics; sharp-interface grain growth simulations.
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1. Introduction

Most technologically useful materials are polycrystalline microstructures composed
of a myriad of small monocrystalline grains separated by grain boundaries. The
energetics and connectivities of grain boundaries play an important role in defin-
ing the main properties of materials across multiple scales. More recent mesoscale
experiments and simulations provide large amounts of information about both geo-
metric features and crystallography of the grain boundary network in material
microstructures.

A classical model, due to Mullins and Herring,26: 4%: 41 for the evolution of grain
boundaries in polycrystalline materials is based on the motion by mean curvature
as the local evolution law. Mathematical analysis of the motion by mean curvature
can be found, for instance in Refs. 11, 18, 19 and 23, and the study of the curvature
flow for networks can be found in e.g. Refs. 14, 28, 29, 36, 37 and 38. In addition,
to have a well-posed model of the evolution of the grain boundary network, one has
to impose a separate condition at the triple junctions where three grain boundaries
meet,16: 29

Grain growth is a very complex multiscale process. It involves, for example,
dynamics of grain boundaries, triple junctions (triple junctions are where three grain
boundaries meet) and the dynamics of lattice misorientations (difference in the ori-
entation between two neighboring grains that share the grain boundary) /possibility
of grains rotations. Recently, there are some studies that consider interactions
among grain boundaries and triple junctions, e.g. Refs. 8, 44, 45, 49, 50 and 51.
In our very recent work,?” ! we developed a new model for the evolution of the
2D grain-boundary network with finite mobility of the triple junctions and with
dynamic lattice misorientations (possibility of grain rotations). In Refs. 20 and 21,
using the energetic variational approach, we derived a system of geometric differen-
tial equations to describe the motion of such grain boundaries. Under assumption
of no curvature effect, we established a local well-posedness result, as well as large
time asymptotic behavior for the model. Our results included obtaining explicit
energy decay rate for the system in terms of mobility of the triple junction and
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the misorientation parameter (grains rotation relaxation time scale). In addition,
we conducted several numerical experiments for the 2D grain boundary network
in order to further understand/illustrate the effect of relaxation time scales of, for
example, the curvature of grain boundaries, mobility of triple junctions, and dynam-
ics of misorientations on how the grain boundary system decays energy and coarsens
with time.* 2° In Ref. 4, we also presented and discussed relevant experimental
results of grain growth in thin films. Note that in the work,2? 2! the mathematical
analysis of the model was done under assumption of no critical events/no disappear-
ance events, e.g. grain disappearance, facet/grain boundary disappearance, facet
interchange, splitting of unstable junctions (however, numerical simulations were
performed with critical events).

The current work is motivated and is closely related to the work in Refs. 3, 5
and 6 where a reduced 1D coarsening model based on the dynamical system was
studied for texture evolution and was used to identify texture evolution as a gradient
flow, see also the article®® for a perspective on the problem. In addition, this paper
is a further extension of our work in Refs. 4, 20 and 21, and the work in Refs. 9,
10, 12, 30 and 46 is also relevant. In this paper, we study a stochastic model for
the evolution of planar grain boundary network in order to be able to incorporate
and model the effect of the critical events. Note, in general, an interaction among
the grain boundaries and the triple junctions in a grain boundary network (includ-
ing modeling of critical/disappearance events, e.g. grain disappearance, facet/grain
boundary disappearance, facet interchange, splitting of unstable junctions) is a
very complex process. However, in this work, we start with a simplified and more
accessible for the mathematical analysis model and, hence, consider the Langevin
equation analog of the model from Ref. 21, with the interactions among triple junc-
tions and misorientations modeled as white noise. Next, we use the energetic vari-
ational approach to establish the associated fluctuation—dissipation theorem. The
fluctuation—dissipation property ensures that the free energy of the corresponding
Fokker—Planck system is dissipative. Moreover, the fluctuation—dissipation theorem
also gives the sufficient condition for the steady-state solution of the Fokker—Planck
equation to be given by the Boltzmann distribution.

Next, we study the well-posedness of the derived Fokker—Planck system under
assumption of the fluctuation—dissipation relation. In particular, we show that the
solution of the Fokker—Planck equation converges exponentially fast to the Boltz-
mann distribution for grain boundary energy of the system. Note that, the grain
boundary energy has degeneracy with respect to the misorientations (due to con-
straints on misorientations) and singularity with respect to the triple junction. To
overcome these difficulties, based on the idea of Ref. 39 (and see also a relevant
work??), we consider Fokker-Planck equation in a weighted L? space, and we use
the semigroup theory and the Poincaré inequality to obtain well-posedness and
long-time asymptotics of the solution.
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Finally, for an equilibrium configuration of a boundary network, we derive
explicit local algebraic relations, a generalized Herring Condition formula, as well
as formula that connects grain boundary energy density with the geometry of the
grain boundaries that share a triple junction. The later local algebraic relation gives
the condition for a steady-state solution of marginal probability density of misori-
entations to be the Boltzmann distribution with respect to a grain boundary energy
density. Such a steady-state solution for marginal probability density of misorienta-
tions is related to the observed Boltzmann distribution for the steady-state Grain
Boundary Character Distribution (GBCD) statistical metric of grain growth, e.g.
Refs. 3, 5 and 6. Although the investigated simplified stochastic model neglects the
explicit interactions and correlations among triple junctions, the considered specific
form of the noise, under the fluctuation—dissipation assumption, provides partial
information about evolution of a grain boundary network, and is consistent with
extensive grain growth simulations presented in this paper.

The paper is organized as follows. In Sec. 2.1, we discuss important details and
properties of the model for the grain boundary motion from Ref. 21. In Sec. 2.2, we
introduce the stochastic model of the grain boundary system. In Sec. 3, we estab-
lish well-posedness results of the associated Fokker—Planck equation and obtain the
long-time asymptotic behavior of the solution. In Sec. 4, we derive Fokker—Planck
type equation for the marginal probability density of the misorientations and study
long-time asymptotics of its solution. Finally, in Sec. 5, we present extensive numer-
ical experiments to show consistency among the obtained results for the simplified
stochastic model of a grain boundary network and the results of 2D grain growth
simulations based on sharp-interface approach?’ (and an earlier work® ©), including
numerical investigation of the derived local algebraic relations for an equilibrium
configuration of a boundary network.

2. The Fokker—Planck Equation and the Fluctuation—Dissipation
Principle

In this section, we first derive a Langevin equation, a stochastic differential equation
for the dynamics of misorientations and the triple junctions using the deterministic
model of grain boundary motion obtained in Ref. 21 and see also Ref. 20. After
that, we establish the fluctuation—dissipation theorem from associated Fokker—
Planck equation. Note, we use below notation |- | for a standard Euclidean vector

norm.

2.1. Review of the deterministic model and the gradient
flow structure

First, we review here the deterministic grain boundary motion model from Ref. 21.
Assume a single triple junction and consider the following grain boundary energy
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of the system:

3
E=Y o(ADa)ry), 2.1)
=1

where o : R — R is a given surface tension of a grain boundary, a'¥) = a(?) () :
[0,00) — R is a time-dependent orientation of the grains, # = AW g := a1 _a0)
is a lattice misorientation of the grain boundary ng ), and |F§j )| is the length of F](:j )
for j = 1,2,3. Here we put a(®) = o), In this work, we assume a grain boundary
energy density o(A(q) is only a function of misorientation A q. In addition, we
assume that o is a C! function on R.

Then, as a result of applying the maximal dissipation principle for the
energy (2.1), the following model was derived in Ref. 21:

’L‘gj) _ Ju,cr(A(j)a)ﬁ(j), on 1'1](:.?'), t>0, §=1,2,3,

da'P)
dt

= —’Y(JQ(A(J+1)Q)|F£J+1)| - Je(A(‘?)O:)lF.EJ)O, J = ]"’ 2’ 3’

da & b(®)
a(t):—n;J(A(k)a)lb(k”, t>0, at a,

P :¢0(s,t), 0<s<1, t>0, j=1,23,

la(t) =€D(1,6) =€D(1,6) =€D(1,1), and €D (0,) =2, j=1,23,
(2.2)

where AWa = ADq. In (2.2), uff), £\, and bl = 5&"‘) denote a normal velocity, a
curvature and a tangent vector of the grain boundary ng), respectively. Note that s
is not an arc length parameter of F](:j), namely, b(7) is not necessarily a unit tangent
vector. The vector a = a(t) : [0, 00) — R? denotes a position of the triple junction,
(), in a current context (see also numerical Sec. 5), is a position of the end point
of the grain boundary. The three independent relaxation time scales p,v,n > 0
(length, misorientation and position of the triple junction) are considered in this
work as positive constants.

Recall that in Ref. 21, to derive (2.2), we first computed energy dissipation rate,

cizf dtZ / (AW a(t))[b) (s,t)| ds

—Z / o(8Pa0) S €2 (5,0 ds

3
3 [ oaAPa@)APa@) b s, ] ds (2.3)
j=1"79
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Using 5(3) (& 3))5, integration by parts, £)(0,¢) = ) is independent of t, and
¢ (1,t) = a(t), we have

Z/ J(A(j)a(t))|g(j)ES 3| O)(s,¢)ds

_ b7 (s, ) @)
_—ZJ(A(J)a(t))/ (|b(3‘)( t)|) &7 (s,t)ds

+ZO’(A(J) (t))|g(j)8 3| a(t). (2.4)

Recall that AW a = ali—1) — a9 we replace index of sum for the misorientations
and we obtain

3 1
> / oo(ADa(t)(AD a(t)e|bY) (s, t)| ds
j=1"0

3
=" (oAU Va(@)IPTHY | = p(ADa(e)ITP]) o (1) (25)

=1

Inserting (2.4) and (2.5) into (2.3), we have

b9 (s, 1) ‘
®_ Zo(Ama(t)) [ (ard) s

b (1,1)

BTy Y

+ Z o(ADqa(t) ——2L

j=1
3
+3 (oA a@) L7 - ao(APa@)IIP ) o (1) (26)
i=1

After that, we ensured that the entire system is dissipative, that is % < 0. We
obtained (2.2) with a help of the Frenet—Serret formulas and with a help of the
energy dissipation principle which took a form as presented below:

dE (1 / da( 7 ‘
— = ()24 +
dt ; (,u €} el v ( )

where H! is the one-dimensional Hausdorff measure. More in-depth discussion and

da|?
dt

¥

complete details of the derivation of the model (2.2) can be found in our earlier

work (see Ref. 21, Sec. 2).
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Next, in Ref. 21, we relaxed curvature effect, by taking the limit 4 — oo, and
we obtained the reduced model:

() . ) ) .
Ao = —(co(AUVa)la(t) ~ 20V | —op(APa)la(t) ~ 2P), j=1,23
da > S at)—z@
) = — (7)

j=1

2.7)

where (%) = (1) Note, in Ref. 21, we first applied the maximal dissipation princi-
ple for the grain boundary energy of the system with curvature (2.1), and after that
we took the relaxation limit ¢ — oo. In fact, as the following proposition shows,
these operations are interchangeable.

Proposition 2.1. Let E be a relazation energy associated with E (g — 00), given
by
3 a
E(Aa,a) =) o(AWa)la —z).

j=1

Then, equation (2.7) is a gradient flow associated with the energy E, namely, we

have,
oF (G+1) (G+1) %) %)
m:ffﬂ(AJ O{)|ﬂ.—ﬂ3‘1 |—09(A3a)|a—:1:3|,
(83
_ 2.8)

SE 3 L ooa—z@ (
= _ Gy &

sa ;”(A Na 200

Proof. The first equation of (2.8) can be obtained by taking the derivative of E
with respect to a9). The second equation of (2.8) can be deduced from,

)

d 3 a
la—z0) P

E|_, E(Aa,a +cp) = ; o(ADq)

for p € R2 O

To analyze the grain boundary motion in this work, Secs. 2.2—4, it will be conve-
nient to use the misorientation A¥a as a state variable, instead of the orientation
%), Thus, from the first equation of (2.7), we can derive

d(A(j)a) _

= = —(200(AP ) a(t) — V|

_ JQ(A(J’-FUQ,)M@) _ :I:(j+1)| _ C’s(AU_l)aNG(t) _ :c(j_l)|)1
(2.9)
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where A®a = ABa, AWg = AWa, A®@a = AB)q, and 29 is defined similarly.
From the definition of the misorientation, AW a = al¥=1) — o), it is easy to find

the constraint
AWa + AP + ABq =0. (2.10)

To consider (2.9) to be a gradient flow, we introduce the two-dimensional plane

3
Q= {(Ama, AP q, A(S)a) € (—g, %) :AWa + APq + ABq = 0} c R3.
(2.11)

For planar grain boundary network, it is reasonable to consider such range of the
misorientations. Note that the equation (2.7) is a system for the orientation and the
triple junction. Now, using (2.9), we are going to show next that it also possesses
the gradient flow structure of the misorientations.

Proposition 2.2. The equation (2.9) has the gradient flow structure of the mis-
oriention with the energy E.

Proof. We need to show that the right-hand side of (2.9) is a gradient of E
with respect to misorientation Aa on (). Using the fact that one of the nor-
mal vectors of 2 is ?(1,1,1), the tangential derivative for an arbitrary function

¢ = qb(A(l)a, AP, AG «) on (2 is given by

/1 00 11 1 PAMa
Vied=110 1 0 —% 111 NC
\0 0 1 11 1 PA®a
1( 2 -1 -1\ [dawmea
=3[t 2 1] |%aea |- (2.12)

\—1 -1 2 DA g
Thus, we have that
+209(AMa)la — 2| - 0p(APa)|a — @] — 0p(APa)|a — 2]
Vi E= % —op(AMa)la — 2| 4+ 205(APa)|a — 2@ | — 55(AP) a)|a — 2P|
—og(AWa)ja — 2W| — 05(APa)|a — 2P| + 209(APa)|a — 23|
(2.13)
Hence, Eq. (2.9) can be regarded as a gradient flow of the energy F, that is
AWy
A@q | = -37VI E. (2.14)
ABq O
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From Propositions 2.1 and 2.2, we have that

d(Aa) Q da
e 3WaeE, i nVaE,
where Aa = (AMa, A®a, A®)a). Thus, we obtain the following energy dissipa-
tion
aE __1|daa)f 1|daf
dt 3y | dt n | dt

2.2. Stochastic model and the fluctuation—dissipation theorem

Here, we propose a simplified (and more accessible for the mathematical analysis)
stochastic model to develop better understanding of dynamics of misorientations
and triple junctions in a network. In our model, we consider ensemble of triple
junctions and misorientations (without curvature effect), and we use white noise to
describe interactions among them. Therefore, we consider the following Langevin
equations, or stochastic differential equations,

d(Aa) = vaa dt + BaadB, vVaa =—-37VIE,

SE (2.15)
da =vedt+ BadB, vg= e = —nVE.

Here B denotes a Brownian motion, and Saq, 8¢ > 0 are fluctuation parameters for
misorientation Acy and triple junction a, respectively. The proposed model (2.15)
can be viewed as a stochastic analog of the “vertex model” (2.7). Thus, the asso-
ciated probability density function or joint distribution function of misorientations
Aa and positions of the triple junctions a, f = f(Aa,a,t) obeys the following
Fokker—Planck equation,
2 2

O V% (waah) +Va- waf) = BeaR r+ Panny, (226)
where Aga = Vﬁa . Vga, and A, is the standard Laplacian on Qr;. Hereafter
a bounded domain Qr; € R? denotes the state space for the triple junction a. In
addition, we impose the natural boundary conditions to preserve the total mass

of f,

fV2%a (logf + ;iE) VAa =0,
vB&a A0 xQry
(2.17)
2n
fVa lng+_2E *Va =0,
1813 Qx8QT;

where VAo and v, are an outer unit normal vector to 92 and 9Qr;, respectively.
Next, we state a condition for the fluctuation parameters Sao and 8, under which
the system described by the Fokker—Planck equation (2.16) and (2.17) is dissipative.
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Theorem 2.1. Let f be a solution of the Fokker—Planck equation (2.16) and (2.17)
with velocities Vaq, Va as defined in (2.15). If in addition, the relazation time scales
and the fluctuation parameters satisfy the relation,

6 2
7= (218)
PB&Q a
which in turn, determines the parameter D as
2 2
— Pha _ &, (2.19)
6~ 2n
then, the Fokker—Planck equation (2.16) and (2.17) satisfies the following energy

law:

d
- //ﬂ . (Dflog f + fB) dbeda

— 'Bﬁa o 2

_ //gxnm V2, (Dlog f + E)|* dAada

fa // f|Va(Dlog f + E)> dAada. (2.20)
2D JJaxar,

Here, ffnxﬂTJ(Df log f + fE)dAada rtepresents the (scaled) free energy of the
Fokker—Planck system (2.16) and (2.17).

Proof. First, we use expression (2.15) for the velocities vaq and v4 in the Fokker—
Planck equation (2.16), and we have

a 2
B (192 (1087 + 5L E)) + 229, (1. (g7 + 2E)).

Next, we multiply the Fokker—Planck equation (2.16) by D(1 + log f) + E and
integrate over ) x Q0. Note that

(D1 +log ) + B) = o-(Df log f + {E). (2.21)

Hence, using the natural boundary conditions (2.17), we have

d
a//Qxﬂm(pflogf+fE) dAada

=3 o, (1780 (e 7))

V34 (Dlog f + E)dAada

(e ) 0
2 /‘/ﬂxmJ (fVa (l gf+ 33E Va(Dlog f + E)dAada.
(2.22)
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Finally, using (2.19), we have energy dissipation

d
= //QXQTJ(Dflogf + fE)dAada

2
:_ﬁs_a// £|V8a (Dlog f + B)|” dAada
2D QXQTJ

B 2
@//mnﬂv“ (Dlog f + E)|? dAada. .

Remark 2.1. The condition (2.18) is related to the fluctuation—dissipation the-
orem.!” 32 The system will approach the equilibrium state of the free energy
I fQXQTJ (Dflog f + fE)dAada under the total mass constraint of f, which coin-
cides with the Boltzmann distribution for the grain boundary energy FE,

fo(BAa,a) = Cyexp (—w), (2.23)

for some constant C; > 0. Relation (2.18), which is also called the fluctuation—-
dissipation principle, ensures not only the dissipation structure (2.20), but also
that the solution of the Fokker—Planck equation (2.16) and (2.17) converges to the
Boltzmann distribution (2.23).

3. Well-Posedness of the Fokker—Planck Equation

In this section, we study well-posedness of the proposed Fokker—Planck model (2.16)
under the fluctuation—dissipation relation (2.18), and the natural boundary
conditions
(9 2 2

O Ve (vaaf) +Va- (vaf) = Beag f+22n,f,
ot 2 2

Aa e, a €y, t >0,

VAa = _SWVEQE)

oF
Vg = —"NF7—7=— VCI.E:
"5a g (3.1)

=0
BQXQTJ

¥

(’&i_avﬂ f—v )
2 Ac &Orf VAo

(ﬁ—svaf - Ua.f) ‘Va

| f(Aa,a,0) = fo(Aa, a).

=0
QXBQTJ

¥
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Here, we assume that bounded domain Qt; C R? is a domain with C? boundary
and that

Q= {Aa - (Ama, A@q, A(3)a) e (—%,%)3:

AWa + AP + ABq = 0} c RS (3.2)

As in Sec. 2, the parameters Saq, Ba, 77, and n are positive constants satisfying the
fluctuation—dissipation relation (2.18). The vectors ¥aq and 1/, are an outer unit
normal vector to €2 and 9€lt;, respectively. Recall from Sec. 2 that the energy of
the system FE is given by

3
E(Aa,a) =) o(ADa)|a —zV)|, (3.3)

=1

where grain boundary energy density o is a given C' function and ) € R? is a
fixed position for j = 1,2, 3. The initial data fy : 2 x Q73 — R is assumed to be
positive and

/ fo(Aa,a)dAada = 1. (3.4)
QXQTJ

From the energy law (2.20), one can expect that the asymptotic profile fo, =
foo(Aa,a) of (3.1) is given by

foo(Aa, @) = C; exp(—w), (3.5)

for some constant C; > 0, where D > 0 is defined by (2.19). Since f is a probability
density function, the constant C; satisfies

In order to show that solution of the Fokker—Planck equation (3.1) converges to
foo, we will introduce the change of variable g(Aa;, a,t),

f(Aa, a,t) = g(Aa, a,t) exp(—@), (3.7)

and we will prove that g converges to the constant C;.

It is important to note, that the grain boundary energy E may not belong to
H?(Q x Qr3), hence a solution of (3.1) will not be smooth in general. Thus, we will
introduce the notion of a weak solution of (3.1), similar to (cf. Ref. 33).
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Definition 3.1. A function f: Q x Qpy x [0,00) — R is a weak solution of (3.1)
if

t

f e L(0,00; L*(Q x Qpy)) with V$_f, Vaf € L*(0,00; L*(Q x Q1y)),

(3.8)
and
/ /Q . feddada /0 i f /ﬂ . hddada
L (Ctr- o) s
+ (%‘Q‘Vaf — vaf) - Vad)) dAada
_ / /ﬂ . Jopddadal (3.9)

for all ¢ € C°°(2 x Qr; % [0,00)) and almost every T > 0.

We also recall Holder’s inequality (Ref. 25, p. 77) and Gronwall’s inequality
(Ref. 22, Appendix B) that we will use in our analysis below.

Lemma 3.1. (Holder’s inequality) For functions u € LP(£2 x Qrj), v € LI(§2 x
Qr5), 1/p+1/qg =1, we have that

1/p 1/q
// uvdAada < (// |u|P dAada) (// |v]? dAo:da) .
QxQry QxQry QxQrs

Lemma 3.2. (Gronwall’s inequality) Let {(-) be a nonnegative, absolutely contin-
uous function on [0,T], which satisfies for a.e. t, the differential inequality

¢'(t) < ¢(t)¢(1),
where ¢(t) are summable function on [0,T]. Then,
() < el #9 % (o),

forall0 <t <T.

3.1. Uniqueness and existence of a weak solution to the
Fokker—Planck equation

Here, we establish uniqueness and existence of a weak solution to (3.1). First,
uniqueness of a weak solution to (3.1) is considered. Since the Fokker—Planck
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equation (3.1) is linear, it is enough to deduce that the solution is zero provided
that the initial data is zero.

Proposition 3.1. Let f: Q x Qpj x [0,00) = R be a weak solution of (3.1) with
fo =0. Assume that o is a C' function on R. Then f =0 in Q x Qp; x [0,00).

Proof. We give a formal proof. Take f as a test function for (3.1), namely, mul-
tiply (3.1) by f and integrate over {2 x Qrj. Then, using integration by parts and
the natural boundary conditions, we obtain that

2dt //nxnn |f|?dAada

2
= Pe [ Raspanadae [ (apranade
2 Q=1 2 QxQry

—1—// fvaa - Vi, fdAada + // fva-VafdAada. (3.10)
Qx Oy QxOrs

To estimate the third and the fourth terms on the right-hand side of (3.10), we use
Young’s inequality

// faa Vgaf dAada
QxOry
tgia Q 2 1 2 2
<=2 [Vaafl" dAada + ——5— |fI°|vaal” dAada
2 OQxQr3 23&0 x0Ty

2
< fga_a// V2. 72 dAada + 1P2elz // 72 dAada,
2 QxQ1s 287 o QxQ1;
(3.11)

and similarly,

2
// fvg - VaofdAada < & // |Vaof|? dAada
Qx Qg 2 QxQry

L [ vall2

252 //ﬂxﬂn |f?dAada,  (3.12)

where ||[vAa|lco = SUPgxar, VAl and ||Val|o = SupPgy gy, |Val- Thus, we have that

2 2
5// |2 dAada < (””‘5;” ””“" )/f 7|2 dAada.
dt JJaxar, Bia Qx Q13

(3.13)

Therefore, the assertion of the proposition follows from the application of Gronwall’s
inequality. O
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Next, we show existence of a weak solution to the Fokker—Planck equation (3.1).
To do that, we use change of variable (3.7) and we derive the equation of g. By direct

calculation of the derivative of f and the fluctuation—dissipation relation (2.18)
and (2.19), we obtain

of _ 99 F
ot ot :

E
V2o (vaaf) = (o(Va - vac) + 030 Vias = Foaa - V8aE) en( -3 )

3 E
= (—379AKQE —3yVRE - V3,9 + ﬁ|V E|2) exp(—ﬁ),

2
,8&0 A cxf JS&Q (Agag - EV Vﬁag D

(-3)
X exp D

3
~ (3102809~ 6VEE  VRag ~ 310888 + VR L)
wexo| - E

Similarly, we have that

FARE + 551V2a |?)

(3.14)

E
Va-(vaf) = (—?}gAaE —nVaE -Vag + %|VaE|2) exp(—B),

D
(3.15)

: E
ﬁQ—“Aaf - (quAag — 2VoE - Vag — ngAJE + %NGEF) exp(——).

Thus, using (3.7), (3.14) and (3.15) in the Fokker—Planck equation (3.1), we arrive

at the equation for the function g,
dg

B 3YDAR g+ 1DAsg —37VRE - Viag —1VeE - Vag. (3.16)

We also derive the boundary condition for g using expression for the boundary
conditions (3.1) for f. By direct computation and the fluctuation—dissipation rela-
tion (2.18) and (2.19), we have that

Jsﬁcx

Bra o Bra go 0 E
Pav8af —vaaf = (52 V800~ B80VEE + 310V8F ) exp ()

E
= ?ryDexp(—E) Vgag,
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Bavw ¢+ .. +_(Basg . Pa _E
?Vaf Vof = (?Va.g EQVQE+W.‘}V&E €xXp 5

=nDexp (—%) Vag.
(3.17)

Thus, the natural boundary conditions for f is transformed into the Neumann
boundary conditions for g. To study (3.16), we introduce a differential operator

Lg:=3yDAR o9 +1DAag —37VRoE - VRag —1VaE -Vag  (3.18)
subject to the Neumann boundary conditions

Vgag VAo = 0, on €1 x QTJ,

(3.19)
VQQ-VQ,ZO, 0DQX89TJ.

We will use the Lax—Milgram theorem below to show that L is a self-adjoint
operator (cf. Ref. 25, Theorem 5.8). For the reader’s convenience, we will state
theorem below.

Lemma 3.3. (Lax—Milgram) Let B be a bounded, coercive bilinear form on a
Hilbert space H. Then for every bounded linear functional F € H*, there exists a
unique element f € H such that B(z, f) = F(z) for all z € H.

Now, we proceed to show that L is a self-adjoint operator on the weighted L2
spaces,

L3(Q x Qpy, dm), dm =e D dAada. (3.20)
Proposition 3.2. Let dm = e~ B dAada and let L be defined by (3.18) on

L?(Q x Qr3,dm) with a domain D(L) := H*(Q x Q13,dm), and with the Newmann
boundary conditions (3.19). Then, L is a self-adjoint operator on L2(Q x Qrj,dm).

Proof. For g1, go € D(L), we have by the definition of L, that,

(Lgx, g?)LZ(QxQTJ ,dm)

=3~D // AR gi1goexp (—%) dAada
QXQTJ

—I—nD// Agag1g0 exp (—%) dAada
QXQTJ

E
— 3y // VgaE . Vgngng exp (_B) dAada
QXQTJ

- "’?// VaoF - Vagige exp (—E) dAada. (3.21)
QxOry D
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Using the integration by parts for the first and the second terms on the right-hand
side of (3.21), we obtain

// Agaglgg exp (—E) dAada
QxOry D
Q Q E
= —// Vaadl - Vaa (gg exp (_ﬁ)) dAada, and
OxQry
E
// Agg1go exp (_B) dAada
QxOry
E
=— // Vag1-Va (gg exp (——)) dAada.
QxQry D

(3.22)

Since,

E E E
A (gg exp (_ﬁ)) = GXP(_B) V2,92 — % exp (—5) V3,E, and

E E E
Va (92 €xXp (— ﬁ)) = exp (— 5) Vage — %2 exp (—B) VoE,

the integrals of VR, E - V29192 exp(—E) and Vo E - Vag192 exp(—%) cancel out.
Thus, by the definition of dm,

(Lgx, 92)L2(ﬂx Qrg,dm)

=—3vD / / Vaag1 - VAaga exp (—%) dAada
QXQTJ

—nD // Vag1 - Vago exp(—g) dAada
Q=013 D

=—3yD // V2a91 - VRag2dm —nD // Vag1 - Vaga dm,
Ox0ry 0xQT1;
(3.23)

hence L is a dissipative symmetric operator.
Next, we show that L is maximal operator: for fixed F' € L2(Q x Qr;, dm), we

show that there is g € H%(2 x Qrj, dm), such that —Lg+ g = F. Let us define for
g, € H(Q x Qr3,dm),

(—Lg+g,¢) =3yD / / VRa9 - Viapdm
QXQTJ

—I—nD// Vag-Va(pdm—l—// g dm.
Q%73 Q=13
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By Hoélder’s inequality and the definition of the Sobolev spaces, there is a positive
constant Cy > 0, such that for, g, o € H}(Q x Qrj,dm), we have that

[(=Lg + g, ¥)| < 3vD||VRadllL2(@xrs,am) I VRaPll L2(@0x 051 ,dm)
+nD|[VagllLz@xars.am)l|Vapll 2 (@xars.am)
+ 19l L2(ax @y am) |l L2 (x5 ,am)
< Caollgllz (@xars.am) 1@l a2 (@xQrs,am)-
Thus, (—Lg + g,¢) is a bounded bilinear form in H}(Q x Qrj,dm). Also, for g €
HY(Q x Qrj,dm), we can obtain
(—=Lg+9,9) = 37D|VR adll7 20 x 005 ,am) + 1P Va3l 72(ax0ry am)
+ ||9||%2(nxnm,dm)
> min{3yD, nD, 1}||9||,gfl(ﬂxnm,dm),

which shows that (—Lg + g,¢) is a coercive bilinear form. In addition, the inner
product (F,©)r2(0x0r;,dm) : L?(Q x Q13,dm) — R can be regarded as a bounded
linear functional in H!(2 x Qrj,dm), because for ¢ € H*(2 x Q1j3,dm), we have,

|(F, p)L2(0xars,dam)| < ||FllL2(@xars,am)ll¢ll2(@xars,dm)
< |IF||leziaxars am)ll@ll 51 (@x0rs ,dm)

by Hélder’s inequality. Thus, by the Lax—Milgram theorem, there exists g € H(£2x
Q15,dm) such that

(_Lg + g, “P) = (Fu L10)1:2(Q)(!.'ETJ,.dm)

for ¢ € HY(Q x Qrj, dm). Next, for arbitrary ¢ € H(2 x Qr;), take ¢ =
qbexp(%) € HYQ x Qrj, dm). Then, we find that g is a weak solution of
—Lg+ g = F with the Neumann boundary condition Vgag ‘Vaaloaxar, =0, and
Vag-Valaxoar, =0.In a similar manner as for Ref. 25, we have g € HQ(Q x Qrg).
Since exp(—%) is bounded, g belongs to H2(Q x Qr;,dm). O

By the semigroup theory (cf. Ref. 15), for any go € L?(Q x Qrj,dm), there
uniquely exists g € C([0, 00); L2(2 x Qr3,dm)) N C1((0,00); L2(Q x Q13,dm)) N
C((0,00); H2(Q2 x Q13,dm)) such that

gtng) t>0) (324)
9(0) = go. '

Furthermore g belongs to C*((0, 00); D(L')) for any positive integer k,l. Using the
existence of a solution of (3.24), one can obtain existence of a weak solution of (3.1).
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Proposition 3.3. Let fy € L?*(Q x Qry). Assume that o is a C' function on R.
Then, there exists a weak solution f of (3.1).

Proof. Let gp = fo exp(%). Then go € L%(2 x Q13,dm) hence there is a solution

g € C([0,00); L2(2 x Q13,dm)) N C((0, 00); L2(2 x Qr3,dm)) N C((0, 00); H(2 x
Qry,dm)) to (3.24). Then by (3.23), for any ¢ € C*°(2 x Q1 x [0, 00)) and almost

every T' > 0, we have that
r E
—/ dt// gd)texp(——) dAada
t=T 0 QxOry D

// géexp(—%) dAada
= QTJ

T
—1—/ dt // (37DVR,9 - V2ad +1DVag - Vao) exp(—g) dAada
0 QxQr; D

_ / / guéexp(—g) dAada
QxQry D t=0

From (3.21), (3.22), and (3.23) with g1 = ¢, go = g, we deduce

(3.25)

// (37DVRag - VRa® +1DVag - Vad) exp (—E) dAada
QXQTJ D

=—(L¢, Q)Lﬂ(nxﬂn,dm)

=3+D / / Vei,6-VI, (g exp(—g)) dAada
QxQry D
E
+nD // Vad - Va (gexp(—ﬁ)) dAada
QxOry
Q Q E
Q=13
E
+n// VGE-Vaﬁf?gexp(——) dAada. (3.26)
QxOr; D

From the fluctuation—dissipation relation (2.19), 3yD = "S*%T“ and nD = %, we
have that

3vD / / VRa0-Via (gexp (—%)) dAada
OxQry
E
+nD f/ Vad-Va (gexp(—ﬁ)) dAada
QxOry
Q Q E
Qx Qs D

-l-n// VaoFE - Vaqbgexp(—g) dAada
QXQTJ ‘D
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2 2
_ BAa / / Vi, ¢ VL, fdAada + Pa / / Va¢ - VafdAada
2 JJaxar, 2 JJaxar;

— // Vaa - VRg0f dAada — // Vg - Voo f dAada,
QxOQr; Q=075

where we used vaa = —37VE_E, va = —nVoFE, and f = gexp(—E/D), (3.7).
Plugging (3.26), (3.27), and f = gexp(—FE/D) again into (3.25), we obtain that f
is a weak solution (3.9) to (3.1). m|

(3.27)

3.2. Exponential decay of f

We study the long-time asymptotics of the solution f of the Fokker—Planck equa-
tion (3.1). In order to derive that f converges to fu (3.5), we will show that
g = fexp(E /D) converges to some constant. Hereafter, we assume the 2-Poincaré-
Wirtinger inequality on  x Qrj, that is, there exists a positive constant C3 > 0
such that for g € C°°(Q2 x Qry),

J[le-gPasada<cs [[ (VR +IVagl) drada, (329
Qx0T QxQry

where

1
jg—= —— dAada 3.29
9710 % Qg //gxgm g (3.29)

is the integral mean on 2 x 1. For example, when (2 is a bounded convex domain,
2-Poincaré-Wirtinger inequality (3.28) holds (see Ref. 35, Lemma 6.12).

We now show that Q x Qrj supports the 2-Poincaré-Wirtinger inequality (3.28)
in the weighted L? space L2(2 x Q1j,dm).

Lemma 3.4. Assume (3.28) holds. Then, there exists Cy > 0 such that for g €
C(§2 x Qd7y), we have that

llg _§L2(QXQTJ,dm)Il%Z(QxQTJ,dm) <Cy /f (|Vg,;,.:g|2 + |Va9|2) dm,

QXQTJ
(3.30)

where a constant Cy is defined in (3.6) and
gr2(axQry,am) = C1 // gdm. (3.31)
Q=77

Proof. First, we notice that for g € C(Q x Q1;),

// lg — §L2(QxQTJ,dm)|2 dm = inf // lg — )\|2 dm. (3.32)
Qx Qg AER Ox Oy
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This is because, by (3.6), the quadratic form

// |g—)\|2dm:)\2// dm—?)\// gdm—l—// g% dm
QXQTJ QXQTJ QXQTJ QXQTJ

2
= )\— —2X // gdm—i—// g>dm, (3.33)
Cy QxQry Q%073

is minimized at A = gr2(0x0r;,dam). Thus, taking A as g, we have

// g — Gr2(@xrs,am)l” dm < // lg — g|? dm. (3.34)
0 xQry Qx Q73

Next, we let

E(Aa,a) E{Ac,a)
Cs= inf e 0, Ceg= sup e D (3.35)
(Ao,ar) (Ao,ex)

so that C5 < e~ D < Cg on 2 x Q7j. Then, CsdAada < dm < CgdAada, hence

_ 2 _12
llg —QLZ(ﬂxQTJ,dm)||L2(QxQTJ,,dm.) < // lg —g|" dm
QXQTJ

gca/] lg — g2dAada.  (3.36)
= QTJ

Next, we use the 2-Poincaré-Wirtinger inequality (3.28) and CsdAada < dm, then
we obtain

lg — Gr2(@xars.am) |72 @xapy,am) < Co // lg — 3> dAada
QXQTJ

< CeC3 // (IVaa9l® + | Vagl?) dAada
QXQTJ

CeC:
<2 [ (V8agP +[Vagl?) dm.
5 QXQTJ
(3.37)
Therefore, the inequality (3.30) holds for
Cp = G (3.38)
Cs 0

Now we are in position to derive the long-time asymptotic behavior for the
solution of the Fokker—Planck equation (3.1).

Theorem 3.1. Assume that o is a C' function on R and § x Qry supports the
2-Poincaré-Wirtinger inequality (3.28). Let fo € L*(Q x QTJ,B'E‘ dAada) be a
probability density function. Then, there erists a constant C; > 0 such that the
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associated solution f of (3.1) satisfies

// If(Aq, a,t) — foo(Aa, a)|? exp(M) dAada
QXQTJ D
S C7B_Emin{3::n!Dt (3‘39)

fort > 0, where fo, C1, and Cy are defined in (3.5), (3.6), and (3.38), respectively.

Proof. We multiply (3.24) by (¢ — §Lz(ngTJ,dm))exp(—§D) and integrate over
2 x Qrj. Since gr2(axar,,dm) and exp(—%) are independent of ¢, we obtain that

1d
5& /L o |g - §L2(QxQTJ,‘dm)|2 dm = (Lg,g — ng(ﬂxQTJ,dm))LZ(QXQTJ,dm)'
X3y
By (3.23) we get
(Lg, 9 — Gr2(axar,,dm))L2(QxQrs,dm)

_— // V2agl? dm — 7D // Vagl? dm.
OxQry QxQrg

Combining the above relations with the Poincaré inequality (3.30), we have that,

1d 2
—— —g d
o dt //ﬂxnm lg QLE(ﬂxQTJ,de m
min{3vy,n}D _
< - 04 ”g — 9r2(axQpy,dm) ”,%,Z(Qxﬂm,dm)‘ (3‘40)

Therefore, by Gronwall’s inequality, we deduce that

// lg — Gr2(@xars,dm)|> dm
Q=g

min{3y,n} D
< 6—2—0—)—':‘“ t//

Qx Q13
2 min{3vy,n} D
——C—LE
=:Che 1

where gy = foexp(—FE/D). Using that, g = fexp(E /D), we have

_ 2
// |§ - gLZ(QxQTJ,dm.)l dm
QXQTJ

“ Sl

Integrating (3.1) on 2 x {7, applying the integration by parts and using boundary
conditions (3.1), we obtain that

4 // fdAada = // of dAada = 0. (3.43)
dt QxQr; QxQrs ot

90 — Gr2(@xQry,am)|° dm

(3.41)

3

> (E
exp(B) dAada. (3.42)

E
f = 3r2(axar,,dm) €XP (— 5)
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Hence, due to the assumption on the initial data (3.4), it follows that

// f(t, Aa,a)dAada = // fo(Aa,a)dAada =1,
QxQr; Qx QT
for ¢ > 0. Since, f = gexp(—E /D) and dm = exp(—E/D)dAada, we have that

IL2(QxQry,dm) = Ch // gdm = C} // fdAada = Cy. (3.44)
Qx Q15 Qx QT

Combining (3.41), (3.44) and fo, = Cyexp(—E/D), we obtain (3.39). O

3.3. Exponential decay for fi

Next, we study finer asymptotics of the solution f of the Fokker—Planck equa-
tion (3.1). Due to the properties of self-adjointness of L, the solution f is smooth
in time even though f may not be smooth in space. Thus, we consider long-time
asymptotic behavior of f;.

Theorem 3.2. Assume that o is a C1 function on R and Q x Qry supports the
2-Poincaré-Wirtinger inequality (3.28). Let fo € L*(Q x QTJ,B'E‘ dAada) be a
probability density function. Then, for any tg > 0, there exists a constant Cg > 0,
such that the associated solution f of (3.1) satisfies

// |fe(Aa, a,t)[* exp (%) dAada < Cge 085 (3.45)
QxOry

for t > ty, where Cy is a constant defined in (3.38).

Proof. The equation g; = Lg, (3.16) can be written as

E E
exp (—5) 9: = 3vDV3q - (exp (—5) Vﬁag)
+nDVgq - (exp(—%) Vag) . (3.46)

Note that F(Aa, a) is a function of only misorientations and the positions of the
triple junctions. Take a derivative in time of (3.46), then,

E E
A
+nDV, - (exp(—%) Vagg). (3.47)

Multiplying (3.47) by g, integrating over {2 x Qrj, integrating by parts and using
the boundary conditions (3.19), it follows that

1d
1a / / \gel? dm = — / / (3vDIV2ogel> + 1D|Vagi?) dm.  (3.48)
2dt | Joxar, Qx Qs
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// gt dm = 0)
QXQTJ

thus, we obtain by the Poincaré inequality

min{ 3,
[ @DVl + nDIVaal?) dm > minth. ) J[ - tapm.
OxOry Qx Qg

Hence, one can obtain from (3.48) that

2 mm{3’¥: n} // 2
ge|*dm < — gt dm.
2 dt //Qxﬂm o Qx0r; el

Thus, by Gronwall’s inequality,

2 min{3y,n} D
[ a@aanpin < ([ ladaampan) ot
Q=g Qx Qg
_ 2min{3:,r,|!Dt' (3‘49)

for ¢ > tg. Note again, that f = gexp(—FE/D), dm = exp(—FE/D)dAada, and,

// lg:|? dm = // |f¢|2exp(g) dAada. (3.50)
QxQry QxQry D

Therefore, the estimate (3.45) follows. O

Next, note that

=i Cse

3.4. Ezxponential decay for the gradient of f

Here we establish the exponential decay for the gradient of f. To derive the asymp-
totics of the gradient of f, one may consider the equation for the derivative of f.
However, we cannot take a space derivative of the Fokker—Planck equation (3.1),
because of lack of regularity for the solution f. Nevertheless, from the exponential
decay for f; in Theorem 3.2, one can obtain a long time asymptotics for the gradient

of f.

Theorem 3.3. Assume that o is a C* function on R and Q x Qp; supports the
2-Poincaré-Wirtinger inequality (3.28). Let fo € L%(Q x QTJ,E{:;j dAada) be a
probability density function. Then, for any ty > 0, there is a constant Cy > 0, such
that the associated solution f of (3.1) satisfies,

//ﬂ . (3YDIVRalf = fo)I> +nD|Va(f - fm)|2)exp(W) dAada

2min{3y,n} D
<Coe™ Gt (3.51)

for t > ty, where Cy is a constant (3.38).
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Proof. Multiplying (3.46) by g:, integrating over 2 x Qrj, and using the integration
by parts with the boundary conditions (3.19), one can show

It dm
QXQTJ
Q E Q
= // (37Dvﬁa : (exp(__) Vﬁag)
QXQTJ ‘D

+nDV, - (exp(—f—)) Vag)) gt dAada

— / / (?wD (eXP( )Vmg) - VR3ag:
QXQTJ

+nD (exp(——) Vag) - Vﬂgt) dAada. (3.52)

On the other hand, by direct computation and dm = e~ £/P dAada, we have

/ [ (31DIV&agP + DIVagl?) dm
2dt QxQr13

// (3““9 (*’XP (— —) Vaag) Vat

+nD (exp(—ﬁ) Vﬂg) - Vagt) dAada.

Thus, we arrive at

J[ talam=-3% [[  (32D9%asl +nDIVagl?) dm
Qx0T; 2dt QxQry

Using (3.49) and non-negativity of the integral of |g;|?, one can obtain, for ¢t > to,

2min{3y,n}D
—2Cge” @ '< %// (37D|Vaag|® + nD|Vag|?) dm < 0. (3.53)
QXQTJ

Specifically, 3'}'D||Vga§”i2(gxgm,dm) + T?D”Vﬂgniﬂ(ﬂxﬂm,dm) is monotone

decreasing in time. On the other hand, multiplying (3.46) by g, integrating by parts
and using the boundary conditions (3.19), we have

d
—// lg|2 dm +// (37D|VR 49|° + 1D|Vag|?) dm =0. (3.54)
dt x0Ty QxQry

Now, integrating over 0 <t < T for T > 0, we arrive at

T
[[tatam|  + [ i [[  (3DIVal? +nDIVagP) dm
OxQry t=T 0 QxQTs

://ﬂ . lg|? dm (3.55)
HAUTT

t=0
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Thus, there is a positive monotone increasing sequence {¢;} such that t; — oo and

// (37DIV3 o9l* + 1D|Vag|?) dm —0 ast; >oo. (3.56)
QXQTJ

t=t;

Using the monotonicity in time of 3yD|V%_g ||%2(QXQT sam) T
T:.'_DHVﬂ.g”iz(ﬂXﬂTJ,dm), we can take a full limit in time of (3.56), namely

// (3vD|VRagl® + 1D|Vagl?) dm — 0 ast— co. (3.57)
ﬂXﬂTJ

Next, for 0 < T < T”, we obtain

‘ J[ (9DI9%ag + DIV agP) dm
QXQTJ

t=T"

- / / (39D|V2 gl + nD|Vagl?) dm
QXQTJ

t=T

T d
L (a //Q Q (37D|Vgag|2+?}D|vﬂg|2) dm) dt
x4y

/I
S

G [ @DIVRag 4 DIV agl?) dmf @t (358)
QXQTJ
Using (3.53), we deduce

dt

2min{'3"r:1'}}Dt

d p—
a// (37D|VZagl* +71D|Vag|?) dm’ <2Cge G
QxQry

Hence, we arrive at

/ / (3yD|Vgf + nD|Vagl?) dm
QXQTJ

t=T"

~[[ (31DIVZagl + 1DIVagP) dm
HALTS

t=T

T’ .
min{3y,n} D
< / 2Cge™ G gt

T
_ 0804 (e_Zmin{:i:,r}}DT B B_Emin{3::r,|}DT:). (3‘59)
min{3y,n}D
Taking a limit T/ — co, we obtain that
0804 _Emin{ﬁ'y,n!DT

Cya

3vD|V2 > + nD|Vag|?) dm <———¢
.[/Qxﬂrm ( Vaagl™ + 1D ) cop _ min{3y,n}D

(3.60)
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In addition, by direct calculation, we have that
V(f  fxo) = (Vg — (g C1)VE L
(f = fo) = (Vo - 5lg-C1) exp |~

~ Vgexp (—%) — L(f - 12)VE.

where V is V2, or V,. Thus,
Q 2 E
// Vaa(f — fo)|" exp (5) dAada
Qx Q13

< 2// |VR o0l exp (—%) dAada
QXQTJ

T2 //Qxﬂ-” |f — fo*IVRQE? exp( ) dAada.

Therefore, from (3.39), (3.60), and boundedness of the gradient of E, there is a
constant Cyg > 0, such that

// IVZRalf = foo)|? exp (E) dAada < Cloe_zm—m{g:imt.
QxQrg D

Similarly, there is a constant C7; > 0 such that

2 E _2min{3'y:n}Dt
// [Val(f — foo)|“exp| = | dAada < Cyie Cq ,
Q=13 D

hence, we obtain (3.51). O

Remark 3.1. Since E is not C? for a € 7y, it is not known that g is in C® on
{15, hence one cannot take a derivative in a of (3.24). However, g is smooth in
time so we can take a derivative in time. Note that, we do not use third derivative
in a in the proof of Theorem 3.3 (cf. Refs. 34 and 43).

Remark 3.2. In Theorems 3.1-3.3, decay rate of solutions to (3.1) may not be
optimal. It will be part of a future work to obtain optimal decay orders and depen-
dence on the relaxation time scales v,n > 0.

Remark 3.3. In this paper, we have used the Poincaré inequality to obtain the
large-time asymptotics of the solution in the weighted L? framework. The specific
difficulties for our system are related to the fact that the potential VgQE is degener-
ate and V4 F is not smooth enough. When the potential has better properties, such
as non-degeneracy and smoothness, one could try to employ the logarithmic-Sobolev
inequality or the higher order energy estimates’ % 27 2 to obtain the results in
weaker spaces. This is currently under study, and one of the subjects of our forth-
coming work would be to study the logarithmic-Sobolev type of inequalities and
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Bakry—Emery theory to construct the L! theory of the system discussed in this
paper.

In this section, we obtained long-time asymptotics for joint distribution f on
Q) x Qs in the weighted L? space. In particular, we established that distribution
f converges to the Boltzmann distribution f.(Aa,a) = C; exp(—%) with
respect to the grain boundary energy E on ) x Qrj. In the next section, we will
study long-time asymptotics of the marginal probability density.

4. Marginal Probability Distribution
In this section, for a solution f of the Fokker—Planck equation (3.1), which is a

joint distribution on £ x 0r;, we consider the marginal probability density of mis-
orientations, p; of (2. The probability density p; is related to the Grain Boundary
Character Distribution (GBCD). The GBCD (in 2D context and with the grain
boundary energy density which only depends on the misorientation Aa) is an empir-
ical statistical measure of the relative length (in 2D) of the grain boundary interface
with a given lattice misorientation. GBCD can be viewed as a primary statistical
descriptor to characterize texture of the grain boundary network, and is inversely
related to the grain boundary energy density as discovered in experiments and sim-
ulations. The reader can consult, for instance, see Refs. 3, 5, 6 and 7 for more details
about GBCD and the theory of the GBCD, and also Sec. 5.

In this section, we compare the long-time asymptotics for the marginal distribu-
tion p1 o and the Boltzmann distributions on ). Hence, let us define the marginal
distributions for a misorientation Aa = (Aa"), Aa®, Aa®)) € Q, and for a posi-
tion of the triple junction a € Qry,

pl(Aa,t):/ f(Aa, a,t)da, pg(a,t):/s}f(Aa,a,t)dAa, (4.1)

QT3

Proc(B) = [ foo(Aav,a)da,  pyo(a) = /Q fo(Ma,a)dda.  (42)

Qrs

From Theorems 3.1, 3.2, and 3.3 in Sec. 3, we can obtain long time asymptotics of
p1 and pa.

Proposition 4.1. Assume that o is a C! function on R and Q x Qry supports
the 2-Poincaré-Wirtinger inequality (3.28). Let fo € L?(2 x Qr;, eb dAada) be a
probability density function. Let p1 be defined in (4.1). Then, for any tg > 0, there
are positive constants C1g, C13, and C14 > 0, such that for t > iy,

/ lp1(Aa, t) — pl,oo(ACfi)lz dAa < Clge—Zm_“'{g:‘JBt,
Q
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/ |(p1)e(Acr, t)[* dAc < 0138_”—"'{6:":_:“}2"
0

¥

/ V2o (p1(Aa, ) — proo(Ba))2dAa < Crye™ 55,
0

(4.3)
where Cy > 0 is a constant defined in (3.38).
Proof. We get by Holder’s inequality that,
2
(B0 t) = prc(BeOF = | [ (F(Bev,a,0) = fu(B @) da
Qs
<[Qul | |1f(Ae,a,t) ~ fu(Da, @) da.  (4.4)

QT3

Next, note that C5 < e B < Cs on ) x Q1y, where the constants C5,Cg > 0 are
defined in (3.35). Thus, we obtain

[ 1saa0 - fu(@a, @) da
Qrs

< CG/Q |f(Ae, a,t) —foo(Aa,aM?exp(W) da. (4.5)

Then, using (3.39), we have

[ 1p1(808) = pr (B da
0

<cilon [[ if6aan— fu(da,0f ep( Y ) dadaa
QXQTJ D
< O7OG|QTJ|€_2min{g:m Dt: (4.6)
hence the exponential decay estimate for p; is derived. Similarly, the estimates for
(p1): and V¢ p1 can be deduced. O

Remark 4.1. Using the same argument as in the proof of Proposition 4.1, one can
obtain similar long-time asymptotics for the probability density ps. In this work,
we are more interested in the analysis of the marginal probability density of the
misorientations Aa, p1 = p1(Aa,t) due to the relation to the GBCD statistical
metric.

Next, we compare p1 o and the Boltzmann distribution of the misorientations
Aca. We first derive the evolution equation for the marginal distribution p;.

Proposition 4.2. Let f be a solution of (3.1), and let p1 = p1(Aa, t) be a marginal
distribution defined by (4.1). Then, p1 satisfies

a 2
o _ fs’aTaAgapl _ve.. (/ (vaaf) da), Aae@ t>0. (47)
QT3
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Proof. Integrate (3.1) in a € {dp;, hence we obtain

9p1 +V2_ . (/ (vaaf) da) + [ Va-(vaf) da
ot QT3 Qry

2 2
- ’SﬁTaAgapl +52 [ Aufda. (4.8)
Qrs

Due to the boundary conditions of (3.1), it follows

@ Aqfda— Va - (vaf) da:/

2 QT Qry f2le5 8

(’B—ngﬂf—vaf) “VadSqe =10

(4.9)

for Aa € Q, where 1/, is an outer unit normal on dQ7;, and dS, is a length element
on d{dr;. From (4.8) and (4.9), one can obtain (4.7). m|

To proceed with the analysis of p1, we first consider the Taylor expansion of the
grain boundary energy E around arbitrarily selected point a, € Qrj, namely

3
j=1
where
3
Fi(Aa) = Y o(ADa)la, — 2], and
=1 (4.11)

E>(Aa,a) = E(Aa,a) — E1(Aa).

Note that we formulated the grain boundary energy F in the form above (4.10) to
investigate effect of the position of the triple junction @ = a, on the distribution
of the misorientations p;(Aa,t) and its steady-state distribution py o (Aa).

Remark 4.2. From Proposition 4.1, marginal distribution p; may not converge to
the Boltzmann distribution, in general. This is because

p1.0o(Acr) = (cl /Q - exp(—W) da) exp(—%), (4.12)

and the coefficient of exp(—FE; /D) generally depend on Aa.
Using (4.10), Eq. (4.7) becomes

d Bla
% - %Agapl - Vga : ((—3'}'VgaE1(AC¥))Pl)

+ 3,V - ( [ (V2aExaa,a))s) da), (4.13)

hence p; satisfies the Fokker—Planck type equation with an extra term.
Next, we explore the effects of the triple junction position, a = a, on (4.7).
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Remark 4.3. In Refs. 3, 5, 6 and 7, Fokker—Planck equation was derived for the
evolution of the GBCD using a novel implementation of the iterative scheme for
the Fokker—Planck equation in terms of the system free energy and a Kantorovich—
Rubinstein—Wasserstein metric. Equation for probability density of misorientations
p1, (4.7) or (4.13) is a Fokker—Planck type equation which also takes into account
the effect of the mobility of the triple junctions.

Remark 4.4. Because of

(4)
j ap — T
Qucla — 2| = G5y
4.14
82,0 W= L s a—zd a—a (4.14)
bule =201 =5 (%~ e —abTa =207

where 6y, is the Kronecker delta, a = (a1, ag), and () = (:L'gj ), Igj )), by the Taylor
expansion for |a — ()| around a. we obtain the following expansion for Es;

3
Ex(Aa,a) =3 o(Aal) (|a —z@| —|a, - a:(ﬂ|)
j=1
3 — 2@
_ oy [ @ —2P)
— Zg(Aa )( . 20 (a—a.)
j=1
. 2
1 ) (ay —x))
T e, — 20| ('“‘ -l ( @, a0 (@)
+o(|la — a,.,|2)) (4.15)

as a — .

4.1. The weighted Fermat—Torricelli point as a triple
junction point

Let a, be the minimizer of F'(Aa, a), which is called the weighted Fermat—Torricelli
point aywpr, for fixed Aa € Q) (cf. Ref. 13), that is

3 3

Y oAV a)|awpr — 2| = inf o(AYa)la — 9| = inf E(Aa,a).
= acfdT; = acry

(4.16)

Let 4/ be an angle formed by a — £ and a — x(*+1) at the triple junction a.
Now we give an equivalent condition that the triple junction coincides with aypr.

Proposition 4.3. Assume that weighted Fermat—Torricelli point awpr does not
coincide with %) for j =1,2,3. Then, the triple junction coincides with awpr, if
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and only if,
| eosp  (@(A00) + oA — oA
20(ADa)o (A ) '
fori=1,2,3.
Remark 4.5. A condition that for &k =1, 2, 3,
. ) _ (k)
Y o(APa) 2T |5 o(APa) (4.18)
15523 |;}3(3) — )|
7k
is equivalent to the condition that awpr does not coincide with @) for j =1,2,3
and
3
0=VaeE(Aa,awrr) =) o(ADa)e,
=1 (4.19)
eV = ——
|awFT — ;1;(.?)|
holds (see Ref. 13, Theorem 18.37).
Because, by (4.18),
20 _ ® 2 _g®

(k) (@) ()
o(AWa) < |o(AYa) 2 — 2] +o(AYV a) 20 — 2]

for different 1 < i, 7,k < 3, one can obtain the following condition,
o(A®a) < o(ADa) +o(ADa). (4.20)
Proof of Proposition 4.3. When aypr does not coincide with =) for j = 1,2, 3,

the weighted Fermat—Torricelli point aypr satisfies (4.19). Taking the inner product
of (4.19) with e(® for k = 1,2, 3, we obtain

J(A(ma)(e(l), 9(2)) + J(A(3)a)(e(3),e“)) = _J(A(l)a),
a(AMa)(eM, e?@) + a(AB)(e@,e?®) = —a(AP)q), (4.21)
o(APa)(e?,eB) + o(AWa)(e®,eM) = —c(A®a).
Next, we can solve (e®), () from (4.21) and, thus, obtain
(e, o) _ ~(0(BV0) — (o(ADa)? + ((AVa)?
’ 20(AMa)a(Aa) ’
—(0(APa))? — (0(A®a))? + (U(N”ﬂ'))2
20(A@a)a(AB) )
—(0(A®a))? — (6(AM@))? + (0(APa))?
20(AGa)o(AMa)

(4.22)

(8(2)18(3)) _

(9(3),\9(1)) —
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Note that (e(k),e(n) is the cosine of the angle at awpr formed by e®) and e®.
Thus, we have

~(0(AMa))? — (0(APa))? + (o(APa))?

cosq’;(l) =
20(AMa)o (AP a) :
—(0(APa))? — (0(AP)a))? + (0(AVa))?
cos1,b(2) — 35 (AP 2o (ADa) , (4.23)
cosp® = BV ~ (0(AD))? + (0(ADa))”
20(AB®)a)o(AMa) :

hence we arrive at (4.17) by direct calculation of 1 — cos ¢(®).

Conversely, when (4.17) holds for the triple junction a, then the triple junction
a satisfies the same conditions as aywpr in (4.19) and in (4.21). Since the weighted
Fermat—Torricelli point is unique (see Ref. 13, Theorem 18.37), awpr coincides with
the triple junction a. O

Remark 4.6. The relation (4.17) is a force balance condition at the triple junction,

the generalized Herring condition. When ¢ = 1, then from (4.17) we have cos(?) =

—1/2, hence three angles at the triple junction are the same, %ﬂ

Next, we study the behavior of the reminder term E5 when a, = awpr. Thanks
to Vo E(Aa,a,) = 0, one can obtain the following result.

Proposition 4.4. Assume that weighted Fermat—Torricelli point awpr does not
coincide with 9 for j =1,2,3. Let ay, = awpr. Then,

> - 1 (a, — %)) ?
Ey(Aa,a) = ;J(A(j)a)(m (|a —a.*— (m (a— a,))
+of|la— a,.,|2)) (4.24)

as a —» Ay.

Proof. Since VoE(Aa, a.) =0, by (4.19) we have that

3 _ —z®
ZJ(AQ(:"))L:B(.)) =0

Using this in (4.15), we obtain (4.24). O

The above Proposition 4.4 is a reason of why we choose aypr as a., namely,

we can show that Es is asymptotically of order |a — a.|? as @ — a..



Math. Models Methods Appl. Sci. Downloaded from www.worldscientific.com
by Yekaterina Epshteyn on 12/07/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

34 Y. Epshteyn, C. Liu, & M. Mizuno

4.2. The circumcenter as a triple junction point

Next, we introduce the circumcenter ac. of (9. The circumcircle of () is the
unique circle that passes through all (%), and the circumcenter ac of (7) is the
center of the circumcircle, namely

|ace — 20| = |ace — 2P| = |@ee — z®)). (4.25)

If a triple junction a coincides with the circumcenter then, Boltzmann distribution
exp(—%) becomes Boltzmann distribution for a grain boundary energy density
o(AYq) (instead of Boltzmann distribution for the grain boundary energy E),
namely

3
Ei(Aa) = |ac — =) o(AWDa). (4.26)
j=1
This is reminiscent of the result for the steady-state GBCD which is given by

the Boltzmann distribution for the grain boundary energy density, see for instance
Refs. 3, 5, 6 and 7. When a, coincides with @cc, from (4.12) and (4.26), p1 o is

&%) )
similar to exp(—lﬂ%fl Z§=1 a(ADa)).
We now give a relation between the angle at the circumcenter point and the

point x,

Proposition 4.5. If the triple junction coincides with the circumcenter agc, then

1— cosyp® 1 — cosy? 1—cosyp®

2D —2OF ~ [a® — 2O ~ [20® — g0 (4.27)

Proof. By the cosine formula, for i =1, 2, 3,

|w(%’) _ w(i+1)|2 = |@ec — m(!’)|2 + |Gee — m(i+1)|2

—2|Gee — 2@ ||@ee — m(!’-ﬁ-l)l(e(i), e(i-i-l))
= 2R%(1 — cosy?),

where R = |ace — V| = |ace — 2P| = |@ec — ®)|. Thus,

L 1 —cosyp(M) 1 — cos (@ 1 —cos (3

2R? |z —z@2  |z@) —z®2 |z — D2
hence (4.27) holds. m|

Next we look at a necessary condition for awpr = @¢e. By combining the rela-
tions (4.17) and (4.27), we have the following corollary.

Corollary 4.1. Assume that weighted Fermat—Torricelli point awpr does not coin-
cide with *9) for j = 1,2, 3. If the triple junction, Gwpr, and circumcenter @ are
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all the same, then,

(0(AWa) + 0(APa))? —a(A®a)?  (0(APa) + 0(APa))? — o(AMa)?
20(AMa)o(A@a)|x) — 2|2 - 20(A@a)o(AB) )|z — 2(3)|2
_ (0(APa) + 0(AMa))? — 0(APa)?
- 20(AB®a)e(ADa)[z®) — D)2
(4.28)

Remark 4.7. When o = 1, then the relation (4.28) gives

|m(1) _ $(2)| — |$(2) _ :13(3)| _ |:I,(3) _ $(1)|,

hence (M), (), £3) are vertices of some equilateral triangle. Thus, (4.28) is a
more general “geometric” condition on £¥) and the grain boundary energy density
o(Aa) to observe Boltzmann distribution for a grain boundary energy density as
a steady-state distribution for p;(Aa;,t).

5. Numerical Experiments

Here, we present several numerical experiments to illustrate consistency of the
proposed stochastic model (2.15) with a grain growth model (2.2) applied to a
grain boundary network that undergoes critical/disappearance events, e.g. grain
disappearance, facet/grain boundary disappearance, facet interchange, splitting of
unstable junctions. We define the total grain boundary energy of the network, like

E(t) =Y o(ADa) LY, (5.1)

J

where AU)q is a misorientation, a difference between the lattice orientation of the
two neighboring grains which form the grain boundary F](:J). Then, the energetic
variational principle implies

v = po(ADa)e®, on TV, ¢ >0,
da® 0F
—:—"}'—,
) Td Sa®) (5.2)
da(” i b(j)

_ )y —
=1 ¥ (vaaggy). =0

a”}el"ij)

First, we will test “generalized” Herring condition (4.17), as well as relations (4.27)
and (4.28) for the grain boundary network (5.2). Next, in our numerics, using
grain boundary character distribution (GBCD) statistics (see for example Refs. 3,
5, 6 and 7), we will illustrate that the grain growth system (5.2) exhibits some
fluctuation—dissipation principles (see Sec. 2.2).
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Therefore, to verify first “generalized” Herring condition (4.17), we define ratio
Rl 3

_ (0(ADa) + o(AHDa))? — o(Al+D) )2

1 T A cos 0o (ADa)o (AT Va)
To verify relations (4.27) and (4.28), we define ratio R» and Rs respectively for
each triple junction a,

o |z® — $(1)|2\/(1 —cos(1))(1 — cos1p(?)

i=1,2,3,.... (53)

- (1 —cosyp®)|zM) — 2@ ||2@ — @) (54)
and
Ri1-Rq
Ry i=——7F-— 5.5
e (55)
where R; := (@AY a) oAV a))? —o(AH D a)? and (Y # a are any node along

220 —a D 2o (A a)o (AT Da)
grain boundary with triple junction a. Note that formulas for R» and R3 (5.4)-
(5.5) require selection of the node z; along the grain boundary different from the
triple junction a, see for example Figs. 1 and 2. Note also that for j = 1,2,3,
R; is a dimensionless quantity with respect to the length of grain boundaries. If
the formula (4.17), (4.27), or (4.28) holds, then R; =1 (j = 1,2, 3), respectively.
Moreover, since (4.17), (4.27), and (4.28) are local relations (and not the property
of the network), we don’t expect for these relations to hold exactly, and hence, in
our numerical experiments we compute probability densities for Ry, as well as for
Ry and Rj3 (using two choices of the node z; to compute Ky and R3). In Figs. 5,

aM(e)

a®(¢)
(1) Yo
I i

Fig. 1. Grain boundaries/curves I‘g‘” that meet at a triple junction a(t). Lattice orientations

are angles (scalars) a(7)(t). Misorientation A(Pa(t) of I‘g‘” is the difference between two lattice

orientations of grains that share grain boundary ng)_
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£
a® { ]

Fig. 2. The angles 11, 12, U3 are defined as the above figure.

6, 8, 10, 11 (left plot) and 13 (left and middle plots) we selected z; to be a mesh
node on the grain boundary which is the closest to the triple junction a (note,
we discretize each grain boundary using linear line segments, hence, end points of
these line segments form mesh nodes on each grain boundary). As a second choice
for the node x;, see Fig. 7, we selected z; to be the other end point of the grain
boundary/the “other triple junction” (different from the triple junction of a) of
the considered grain boundary that shares a. As our results show, choice of x;
affects the distributions for B9 and R3. However, the choice of x; does not affect
consistency property reflected by distributions for Ry and R3 between developed
stochastic model (2.15) and the simulated grain growth system (5.2), see Figs. 5,
6, 8, 10, 11 (left plot), 13 (left and middle plots) and Fig. 7.

Further, we will investigate the distribution of the grain boundary character dis-
tribution (GBCD) p(A@a) at Ty, (Tw is defined below), and we will use GBCD to
illustrate that the grain growth system (5.2) exhibits some fluctuation—dissipation
principles (see Sec. 2.2). The GBCD (in our context) is an empirical statistical
measure of the relative length (in 2D) of the grain boundary interface with a given
lattice misorientation,

p(AYa, t) = relative length of interface of lattice misorientation A at time ¢,

normalized so that / pdADa =1, (5.6)

Qpli) a

where we consider QA ), = [—7, 7] in the numerical experiments below (for planar
grain boundary network, it is reasonable to consider such range for the misorienta-
tions). For more details, see for example Ref. 5. In all our tests below, we compare
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GBCD at T, to the stationary solution of the Fokker—Planck equation, the Boltz-
mann distribution for the grain boundary energy density J(A(j)a),

. 1 s a
pD(A(J)a): Ee_ (a ),

with partition function, i.e. normalization factor (5.7)

Zp = / e—“—“é’)—“‘d&ﬂa,
NEW

see Refs. 3, 5, 6 and 7 and Sec. 4. We employ Kullback—Leibler relative entropy
test to obtain a unique “temperature-like” parameter D and to construct the cor-
responding Boltzmann distribution for the GBCD at T, as it was originally done
in Refs. 3, 5, 6 and 7. Kullback-Leibler (KL) relative entropy test® 57 is based
on the idea that if we know that the GBCD p(A@Wa,t) evolves according to the
Fokker—Planck equation, then it must converge exponentially fast to pp(A@a) in
KL relative entropy as ¢ — oo. Note that the GBCD is a primary candidate to
characterize texture of the grain boundary network, and is inversely related to the
grain boundary energy density as discovered in experiments and simulations. The
reader can consult for example Refs. 3, 5, 6 and 7 for more details about GBCD and
the theory of the GBCD. In the numerical experiments in this paper, we consider
the grain boundary energy density as plotted in Fig. 3 and given below:

o(APa) =1+ 0.25sin%(2A9 ).

Our simulation of 2D grain boundary network?® is a further extension of the
algorithm based on sharp interface approach® 6 (note, that in Refs. 3 and 6, only
Herring conditions at triple junctions were considered, i.e. 5 — oo, and dynamic
orientations/misorientations (“rotation of grains” ) was absent, i.e. v = 0). We recall
that in the numerical scheme we work with a variational principle. The cornerstone
of the algorithm, which assures its stability, is the discrete dissipation inequality

@

Energy density

-1 05 o 0.5 1
Misorientation

Fig. 3. Grain boundary energy density function o(Aa).
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for the total grain boundary energy that holds when either the discrete Herring
boundary condition (n — oo) or discrete “dynamic boundary condition” (finite
mobility 7 of the triple junctions, third equation of (5.2)) is satisfied at the triple
junctions. We also recall that in the numerical algorithm we impose Mullins theory
(first equation of (5.2)) as the local evolution law for the grain boundaries (and the
relaxation time scale p is kept finite). For more details about computational model
based on Mullins equations (curvature driven growth), the reader can consult for
example Refs. 3, 6 and 20. In addition, in our final test Fig. 13, we also compare
results of “curvature model” (u is finite) (5.2) with the results of “vertex model”
(¢ — o0), grain boundaries are straight lines, and hence, only second and third
evolution equations of (5.2) are considered for the vertex model, namely model (2.7)
which is applied to the grain boundary network is studied.

In all the numerical tests below we initialized our system with A grains
cells/grains with normally distributed misorientation angles at initial time £ = 0.
We also assume that the final time of the simulations T, is the time when approxi-
mately 80% of grains disappeared from the system. The final time is selected based
on the system with no dynamic misorientations (v = 0) and with Herring condi-
tion at the triple junctions (7 — oo) and, it is selected to ensure that statistically
significant number of grains still remain in the system and the system reached
its statistical stead-state. Therefore, all the numerical results which are presented
below are for the grain boundary system that undergoes critical/disappearance
events. We also denote by T the initial time (before first time step) and by 17 we
denote a time after a first time step.

First, we consider grain growth model with curvature (5.2) and we study three
systems with A/ = 10,000 initial grains, the first system has v = 10 and n = 100,
the second system has v = 100 and n = 1000, and the third system has v = 1000
and n — oo (Herring condition). We check “generalized” Herring condition for-
mula (4.17) by computing probability density for ratio Ry, (5.3) and by computing
time evolution of frequency of dihedral angles that satisfy ratio Ry with 0.01 accu-
racy. The results for R; are plotted on Fig. 4. We observe that all three distributions
of Ry (left and middle plots) for all three grain growth systems have peak at 1 which
is consistent with the “generalized” Herring condition formula (4.17). In addition,
larger values of v and of 5 provide a higher accuracy for ratio R; and, in addi-
tion, produce a higher peak of the distribution at 1. The distribution of R; for
system with v = 1000 and n — oo (Herring condition) looks like a delta function
positioned at 1 which is again consistent with results for the developed stochastic
model Secs. 2.2-4. Next, we check relations (4.27) and (4.28) for the same three
grain growth systems (5.2) by computing probability densities for ratio R and Rj,
(5.4) and (5.5). The results are presented in Figs. 5-8. Again, we observe that the
peaks of the distributions for Ry and Rj3 for all three systems are near 1. Moreover,
the agreement between distributions R and Rj3 is better for grain growth systems
with larger values of v and 7 (for v = 1000 and 1 — oo, the plots for Rs and R3 are
almost indistinguishable, see Figs. 6 (left plot) and 7 (right plot)), which is again
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Fig. 4. (Color online) Grain growth system (5.2) with finite g (with curvature), one run of
2D trial with 10,000 initial grains: (a) Left plot, distribution of ratio Ry (5.3) for grain growth
systems with mobility of triple junctions = 100 and the misorientation parameter -y = 10 (solid
blue), with mobility of triple junctions 17 = 1000 and the misorientation parameter v = 100 (solid
red) and with mobility of triple junctions 5 — oo (Herring condition) and the misorientation
parameter v = 1000 (dashed point black). (b) Middle plot, comparison of the two distributions
of ratio R; (5.3) for grain growth systems with mobility of triple junctions 7 = 100 and the
misorientation parameter v = 10 (solid blue) and with mobility of triple junctions n = 1000 and
the misorientation parameter v = 100 (dashed red). The distributions are plotted at Tw. (c) Right
plot, time evolution of frequency of dihedral angles that satisfy ratio Ry with 0.01 accuracy for
grain growth systems with mobility of triple junctions 17 = 100 and the misorientation parameter
v = 10 (solid blue), with mobility of triple junctions 7 = 1000 and the misorientation parameter
7 = 100 (solid red) and with mobility of triple junctions  — oc (Herring condition) and the
misorientation parameter v = 1000 (solid black).

e Diibiction of rwia R 2 7290, 00 e Diribction of s . 7108, 1008
= = Ditibdion of e R, 790, =100, = = Disibudion of e R ,: 7=908, =003

Distribution
Distribution

[ 05 1 15 F] 25 3 a5 [] o8 1 15 2 28 E}
Ratic Ratic

(a) (b)

Fig. 5. (Color online) Grain growth system (5.2) with finite p (with curvature), one run of 2D
trial with 10, 000 initial grains: (a) Left plot, comparison of distributions of ratio Rz (5.4) (solid
blue) and Rj (5.5) (dashed blue) for grain growth system with mobility of triple junctions 7 = 100
and the misorientation parameter v = 10. (b) Right plot, comparison of distributions of ratio
R (5.4) (solid red) and R3 (5.5) (dashed red) for grain growth system with mobility of triple
junctions 77 = 1000 and the misorientation parameter v = 100. The closest mesh node of the grain
boundary to the triple junction a is used as z;. The distributions are plotted at T..

consistent with a developed theory, see Sec. 4. In addition, on Fig. 8, we illustrate
how distribution for ratio R3 evolves with time for grain growth system with v = 10
and 7 = 100, Fig. 8 (left plot) and with v = 1000 and i — oo (Herring condition)
Fig. 8 (right plot). The results illustrate that the distributions are “defined” by the
grain growth evolution equations and not by the initial distribution. Finally, in the
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Fig. 6. (Color online) Grain growth system (5.2) with finite p (with curvature), one run of 2D
trial with 10, 000 initial grains: (a) Left plot, comparison of distributions of ratio Rz (5.4) (solid
black) and Ry (5.5) (dashed black) for grain growth system with mobility of triple junctions  — oo
(Herring condition) and the misorientation parameter v = 1000. (b) Right plot, comparison of
distributions of ratio Rz (5.4) for grain growth systems with mobility of triple junctions 1 = 100
and the misorientation parameter v = 10 (solid blue), with mobility of triple junctions n = 1000
and the misorientation parameter v = 100 (solid red), and with mobility of triple junctions  — oo
(Herring condition) and the misorientation parameter v = 1000 (dashed point black). The closest
mesh node of the grain boundary to the triple junction a is used as x;. The distributions are
plotted at T.

Dhveton o1, 71898,
o g .

= o e 1o
o g

(a) (b) (c)

Fig. 7. (Color online) Grain growth system (5.2) with finite p (with curvature), one run of 2D
trial with 10, 000 initial grains: (a) Left plot, comparison of distributions of ratio Ry (5.4) (solid
blue) and R3 (5.5) (dashed blue) for grain growth system with mobility of triple junctions = 100
and the misorientation parameter v = 10. (b) Middle plot, comparison of distributions of ratio
Ry (5.4) (solid red) and Ry (5.5) (dashed red) for grain growth systems with mobility of triple
junctions 7 = 1000 and the misorientation parameter v = 100. (c) Right plot, comparison of
distributions of ratio Rz (5.4) (solid black) and Rz (5.5) (dashed black) for grain growth system
with mobility of triple junctions 7 — oo and the misorientation parameter v = 1000. The other
triple junction (different from a) of the given grain boundary is used as x; here. The distributions
are plotted at T .

last test for the considered three grain growth systems, we compute GBCD statis-
tics at time T. First, we observe that the GBCD at T, is well-approximated by
the Boltzmann distribution for the grain boundary energy density see Fig. 9, which

k* 57 and is consistent with

is consistent with the theory developed in the wor
the stochastic model and theory developed in this work, Secs. 2.2-4. Furthermore,

as concluded from our numerical results Fig. 9, grain growth systems with larger



Math. Models Methods Appl. Sci. Downloaded from www.worldscientific.com
by Yekaterina Epshteyn on 12/07/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

42 Y. Epshteyn, C. Liu, & M. Mizuno

e Disbeution of raia ., a1 Ty =10, =100 ¥ Ty 1008, -
e st of i ., 0 T, =10, =100 ST 1008, 3
e Disbution of alia B, 1 T =10, =180 | 12 #7000,

(a) (b)

Fig. 8. (Color online) Grain growth system (5.2) with finite p (with curvature), one run of 2D
trial with 10, 000 initial grains: (a) Left plot, distributions of ratio Ry (5.5) at initial time T} (solid
green), at a time T after a first time step (solid magenta) and at a final time T (dashed point
blue) for grain growth system with mobility of triple junctions 7 = 100 and the misorientation
parameter v = 10. (b) Right plot, distributions of ratio R3 (5.5) at initial time Tp (solid green),
at a time T after a first time step (solid magenta) and at a final time T (dashed point black)
for grain growth system with mobility of triple junctions 7 — oo (Herring condition) and the
misorientation parameter v = 1000. The closest mesh node of the grain boundary to the triple
junction a is used as x;.

(a) (b) (e)

Fig. 9. (Color online) Grain growth system (5.2) with finite p (with curvature), one run of
2D trial with 10,000 initial grains: (a) Left plot, GBCD (blue curve) at Tw. versus Boltzmann
distribution with “temperature” — D = 0.064 (magenta curve), grain growth system with mobility
of triple junctions y = 100 and the misorientation parameter v = 10. (b) Middle plot, GBCD
(red curve) at T versus Boltzmann distribution with “temperature” — D = 0.058 (magenta
curve), grain growth system with mobility of triple junctions n = 1000 and the misorientation
parameter 7 = 100. (c) Right plot, GBCD (black curve) at Twe versus Boltzmann distribution
with “temperature” — D = 0.026 (magenta curve), grain growth system with mobility of triple
junctions n — oo (Herring condition) and the misorientation parameter - = 1000.

values of v and 7, give smaller diffusion coefficient/ “temperature” — like parameter
D for the GBCD at T, and hence higher GBCD peak near misorientation 0. This
is in agreement with dissipation—fluctuation relations (2.19), Sec. 2.2.

Next, we consider grain growth systems with different number of grains at initial
time Tp, Figs. 10 and 11. Namely, we consider grain growth systems (5.2) with A" =
1000, " = 2500, A" = 10,000 and with A" = 20,000 grains initially, at time Tj. For
these systems, we assume no dynamic misorientation (v = 0) and Herring condition
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(a) (b) (c)

Fig. 10. (Color online) Grain growth system (5.2) with finite p (with curvature): (a) Left plot,
distributions of ratio Ra (5.5) system with 1000 grains initially (solid green), system with 2500
grains initially (solid magenta), system with 10,000 grains initially (dashed point black), and
system with 20,000 grains initially (solid black). (b) Middle plot, comparison of distributions of
ratio Ry (5.4) (solid green) and R (5.5) (dashed green) for system with 1000 grains initially. (c)
Right plot, comparison of distributions of ratio Rz (5.4) (solid black) and Ra (5.5) (dashed black)
system with 20,000 grains initially. Grain growth systems are considered with mobility of triple
junctions 1 — oo (Herring condition) and no dynamic misorientation (y = 0). The closest mesh
node of the grain boundary to the triple junction a is used as x;. The distributions are plotted
at Too.
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Fig. 11. (Color online) Grain growth system (5.2) with finite g (with curvature): (a) Left plot,
one run of 2D trial with 10, 000 initial grains, comparison of distributions of ratio Rz (5.4) (solid
black) and R3 (5.5) (dashed black), grain growth system with mobility of triple junctions  — oo
(Herring condition) and vy = 1000. Comparison of distributions of ratio R (5.4) (solid red) and
R3 (5.5) (dashed red), grain growth system with mobility of triple junctions n — co (Herring
condition) and no dynamic misorientations (v = 0). The closest mesh node of the grain boundary
to the triple junction a is used as x;. The distributions are plotted at Tw. (b) Middle plot, one run
of 2D trial with 10, 000 initial grains, GBCD (black curve) at T versus Boltzmann distribution
with “temperature” — D = 0.068 (magenta curve). (c) Right plot, one run of 2D trial with 20, 000
initial grains, GBCD (black curve) at T versus Boltzmann distribution with “temperature” —
D == 0.069 (magenta curve). Grain growth system with mobility of triple junctions 7 — oo (Herring
condition) and no dynamic misorientation (v = 0).

(n — o0) at the triple junctions. From the results, Figs. 10 and 11 (middle and right
plots) we observe that distributions for Ro, R3 and GBCD exhibit convergence to
limiting distributions with increase in N. In addition, result on Fig. 11 (left plot),
indicates that there is a closer agreement between distributions Ry and R3 for larger
value of misorientation parameter . Again, this is consistent with the developed
theory (Sec. 4). In Fig. 12, we investigate effect of the mobility of the triple junctions
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Fig. 12. (Color online) Grain growth system (5.2) with finite g (with curvature), one run of
2D trial with 10,000 initial grains: (a) Left plot, GBCD (blue curve) at Tw. versus Boltzmann
distribution with “temperature” — D = 0.066 (magenta curve), grain growth system with mobility
of triple junctions 7 = 100 and no dynamic misorientation (y = 0). (b) Right plot, GBCD (red
curve) at Twe versus Boltzmann distribution with “temperature” — D = 0.071 (magenta curve),
grain growth system with mobility of triple junctions 5 = 1000 and no dynamic misorientation

(y=0).

7 on the GBCD, however we do not observe as much effect of  on the GBCD as
we observed for the misorientation parameter ~, see Figs. 9 and 12. This can be
due to more profound effect of the interactions among triple junctions/correlations
effects among triple junctions that should be taken into account as a part of future
extension of the proposed stochastic model (2.15).

=
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Fig. 13. (Color online) One run of 2D trial with 10, 000 initial grains: (a) Left plot: Comparison
of distributions of ratio R; (5.3) (solid blue) for model with curvature (finite i) (5.2) and R; (5.3)
(solid magenta) “vertex model” with (4 — oc) (5.2). (b) Middle plot: comparison of distributions
of ratio B2 (5.4) (solid blue) and R3 (5.5) (dashed blue) for model with curvature (finite ) (5.2),
and comparison of distributions of ratio Rz (5.4) (solid magenta) and R3 (5.5) (dashed magenta)
for “vertex model” with (4 — o) (5.2). The closest mesh node of the grain boundary to the
triple junction a is used as x;. The distributions are plotted at Tc. (¢) Right plot: One run of
2D trial with 10, 000 initial grains, GBCD (blue curve) “curvature model” (finite p) (5.2), GBCD
(dark magenta curve) “vertex model” (g — oc) (5.2) at T versus Boltzmann distribution with
“temperature” — D == 0.064 (magenta curve). Grain growth “curvature model” is considered with
mobility of triple junctions n = 100 and « = 10, and grain growth “vertex model” is considered
with mobility of triple junctions = 100 and v = 15.



Math. Models Methods Appl. Sci. Downloaded from www.worldscientific.com
by Yekaterina Epshteyn on 12/07/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

A stochastic model of grain boundary dynamics: A Fokker—Planck perspective 45

Finally, in the last test, Fig. 13, we compare results of “curvature model” (u
is finite) (5.2) with the results of “vertex model” (p — o0), grain boundaries are
straight lines, and hence, only second and third evolution equations of (5.2) are
considered for the vertex model, namely model (2.7) which is applied to the grain
boundary network is studied. As can be seen from results in Fig. 13, there is not
much effect on the GBCD. However, we observe significant effect on the distri-
butions of Ry and Rs, Fig. 13 (left and middle plots), namely “curvature model”
appears to be in closer agreement with the developed stochastic model (2.15) than
“vertex model”. This again highlights the importance of correlations and their
effects on grain growth. Therefore, as a part of future work, we will study interac-
tions/correlations and their effects on coarsening in polycrystalline materials.

6. Conclusion

In this paper, we study a stochastic model for the evolution of planar grain boundary
network in order to be able to incorporate and model the effect of the critical
events during grain growth (coarsening). We start with a simplified model and,
hence, consider the Langevin equation analog of the model from Ref. 21, with the
interactions among triple junctions and misorientations modeled as white noise.
The proposed system considers anisotropic grain boundary energy which depends
on lattice misorientation and takes into account mobility of the triple junctions,
as well as independent dynamics of the misorientations. We derive the associated
Fokker—Planck equation and establish fluctuation—dissipation principle. Next, due
to degeneracy and singularity of the system energy, we use weighted L? space to
establish long time asymptotics of the solution to the Fokker—Planck equation, the
joint probability density function of misorientations and triple junctions, as well as
of the closely related marginal probability density of misorientations (the results
are obtained under fluctuation—dissipation assumption). As a part of our future

1,2, 27, 42 51d construct the

work, we will study the logarithmic-Sobolev inequality
L' theory of the system.

Furthermore, for an equilibrium configuration of a boundary network, we derive
explicit local algebraic relations, a generalized Herring Condition formula, as well
as formula that connects grain boundary energy density with the geometry of the
grain boundaries that share a triple junction. Even though the considered sim-
plified stochastic model neglects the explicit interactions and correlations among
triple junctions, the considered specific form of the noise, under the fluctuation—
dissipation assumption, provides partial information about evolution of a grain
boundary network, and is consistent with presented results of extensive grain growth
simulations. As a part of our future research, we also plan to identify and model

47, 48 and interactions among triple junc-

explicitly correlations, including nucleation
tions, as well as extend the theory and mathematical analysis techniques developed

in this work to different statistical metrics of grain growth. In addition, we note
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that the developed analysis tools can be further adapted to the study of other
complementary models of grain growth, e.g. Refs. 46, 50 and 51.
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