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Abstract
Noise or fluctuations play an important role in the modeling and understanding
of the behavior of various complex systems in nature. Fokker—Planck equations
are powerful mathematical tools to study behavior of such systems subjected
to fluctuations. In this paper we establish local well-posedness result of a new
nonlinear Fokker—Planck equation. Such equations appear in the modeling of
the grain boundary dynamics during microstructure evolution in the polycrys-
talline materials and obey special energy laws.
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1. Introduction

Fluctuations play an essential role in the modeling and understanding of the behavior of vari-
ous complex processes. Many natural systems are affected by different external and internal
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mechanisms that are not known explicitly, and very often described as fluctuations or noise.
Fokker—Planck models are widely used as a versatile mathematical tool to describe the macro-
scopic behavior of the systems that undergo such fluctuations, see more detailed discussion and
examples in [6, 7, 14, 15, 20, 26, 27, 40], among many others. In our previous work we derived
Fokker—Planck type systems as a part of grain growth models of polycrystalline materials, e.g.
[1,2,4,18].

From the thermodynamical point of view, many Fokker—Planck type systems can be viewed
as special cases of general diffusion [23]. They can be derived from the kinematic continu-
ity equations, the conservation law, and the specific energy dissipation law, using the ener-
getic variational approaches [23, 37]. We want to point out that while the linear and nonlinear
Fokker—Planck models with the energy laws can be obtained using such energetic variational
approach, not all Fokker—Planck systems derived from stochastic differential equations (SDEs)
by the Ito process have underlying energy law principles [41].

First, consider the following conservation law subject to the natural boundary condition,

%:+V~(fu):07 t>0,x€Q,, (D
fll~V|9Q=07 t>0.

here Q2 C R” is a convex domain, f= f(x,#) :  x [0,T) — R is a probability density function,
u is the velocity vector which depends on x, 7, and the probability density function f, and v is an
outer unit normal to the boundary 052 of the domain 2. We assume that the above system (1.1)
also satisfies the following energy law,

9 (f)de=— / w(fye, 1) d, (1.2)

dt Jq

here, w = w(f,x) represents the free energy, which defines the equilibrium state of the system,
and 7(f,x,7) is the so-called mobility function which defines the evolution of the system to
the equilibrium state. The specific forms of these quantities will be discussed in more details
below. Now, take a formal time-derivative on the left-hand side of (1.2), then using integration
by parts together with system (1.1), we get,

d
a/ﬂw(f,x)dx:/ﬂwf(f,x)ﬁdx
—— [tV (wds = [ Valpn)- Gupar. 1)

Using relations (1.2) and (1.3), we have that,

—/w(ﬁx7t)|u|2dx:/Qwa(ﬁx)-(fu)dx.

Thus, the velocity field u of the model (1.1) and (1.2) should satisfy the following
relation,

—7(fix,t)u =fV (wi(f,x)). (1.4)

In fact (1.4) represents the force balance equation for the system. The left hand side repres-
ents the dissipative force and the right hand side is the conservative force obtained using the
free energy of the system. This derivation is consistent with the general energetic variational
approach in [23, 37].

Let us put this discussion in the context of linear and nonlinear Fokker—Planck models now.
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Figure 1. Illustration of the three grain boundaries that meet at a triple junction which
is positioned at the a(). Each grain boundary has a lattice misorientation which is the
difference between lattice (lined grids on the figure) orientations a ,J=1,2,3 of the
grains that share the grain boundary. In [18], a grain boundary network was considered
as a system of such triple junctions and the grain boundaries misorientations, and was
modeled by the Fokker—Planck equation for the joint distribution function of the position
of the triple junctions and the misorientations.

Such systems arise in many physical and engineering applications, e.g. [1, 2, 4, 11, 12,
18, 34]. One example of the application of Fokker—Planck systems is the modeling of grain
growth in polycrystalline materials. Many technologically useful materials appear as polycrys-
talline microstructures, composed of small monocrystalline cells or grains, separated by inter-
faces, or grain boundaries of crystallites with different lattice orientations. In a planar grain
boundary network, a point where three grain boundaries meet is called a triple junction point,
see figure 1. Grain growth is a very complex multiscale and multiphysics process influenced
by the dynamics of grain boundaries, triple junctions and the dynamics of lattice misorienta-
tions (difference in the lattice orientations between two neighboring grains that share the grain
boundary, figure 1), e.g. [3, 38, 39]. In case of the grain growth modeling [18], in the Fokker—
Planck system, f may describe the joint distribution function of the lattice misorientation of the
grain boundaries and of the position of the triple junctions, ¢ may describe the grain boundary
energy density, and D is related to the absolute temperature of the entire system [32] (it can
be viewed as a function of the fluctuation parameters of the lattice misorientations and of the
position of the triple junctions due to fluctuation-dissipation principle [18]).

In the cases when w(f,x) = Df(logf— 1) 4+ f¢ (free energy density) and 7 (f,x,7) = f(x,1)
(mobility), where D > 0 is a positive constant and the potential function ¢ = ¢(x) is a given
function. D being a constant is the case of the system with homogeneous absolute temperature
[11, 19]. We will recover the corresponding linear Fokker—Planck model from conservation
and energy laws, (1.1) and (1.2). First, the direct computation yields,

fVwr=fV(Dlogf+ ¢(x)).
Hence, from (1.4), the velocity field u should be,

Vf
u=—V(Dlogf+ ¢(x)) = — (1)7 + w(x)). (1.5)
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Using vector field (1.5) in the conservation law (1.1), we obtain the following linear
Fokker—Planck equation,

of _

5=V (Vo)) +V - (DVf). (L6)
Note, that the linear Fokker—Planck equation has the associated Langevin equation [21, 41],
dx = =V ¢(x)dt+ v2DdB. (1.7

The linear Fokker—Planck equation (1.6) can also be derived from the corresponding
Langevin equation (1.7) (see [15]).

Some diffusion equations can be interpreted using the idea of Brownian motion [21]. Con-
sider random process:

dx = v(x)dt+ o (x)dB, (1.8)

where B is standard Brownian motion. With a Taylor expansion of probability density function
f(x,1), one can obtain the following PDEs:

e Ito calculus provides, f; + V - (vf) = 1 A(0%f).

e The derivation using Stratonovich integral yields, f;, + V - (vf) = 1V - [0V (af)].

e One can also derive PDE with self-adjoint diffusion term, namely, f; + V - (vf) = %V-
>V (£)]-

In many cases, these models can also be treated in the general framework of energetic
variational approach. Following the fluctuation-dissipation theorem [13, 30], taking the con-
vection coefficient, v(x) = —10(x)*V¢, and assuming that f satisfies the conservation law
fi+ V- (uf) = 0, the equations above satisfy and can also be obtained from variation of the

following energy laws [23],

e Forlto, 4 [, [fIn(30%f) + ¢f]dx = — fQ 2|u|2dx
e For Stratonovich, £ [. [fIn(af) + ¢f]dx = fQ L | dx.
e For self-adjoint case, 4 [, [fInf+ ¢f]dx = — fQ = |u|? dx,

where 2 C R? is a bounded domain, d > 1.

In this paper, instead of starting from the stochastic differential equations, we will derive
the system from the energetic aspects, by prescribing the kinematic conservation law and the
energy dissipation law. We will consider the case of the inhomogeneous absolute temperat-
ure and more general dissipation mechanism. In particular, we look at the case with w(f,x) =
D(x)f(logf— 1) +fb(x), and 7(f,x,t) = 2D(x)f/ (b(x,t))?, where D = D(x) and ¢ = ¢(x) are
positive functions. The function b(x,?) is also positive, and provides the extra freedom in the
dissipation mechanism. As discussed above, such systems may arise in the grain growth mod-
eling, e.g. [17, 18]. In particular, the temperature, in terms of D in this context, will account
for some information of the under-resolved mechanisms in the systems, such as critical event-
s/disappearance events (e.g. grain disappearance, facet/grain boundary disappearance, facet
interchange, splitting of unstable junctions and nucleation of the grains). The specific form
of the mobility function 7 (f;,x, ) here is the direct consequence of the fluctuation-dissipation
theorem [13, 18, 30], which ensures that the system under consideration will approach the
equilibrium configuration.
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Since, in this case, the conservative force takes the form:

Vwr=fV(D(x)logf+ ¢(x)).
Hence, from (1.4), the velocity field u will be,

(b(x,1)*

2D(x)

Using formula (1.9) in the conservation law (1.1), we obtain the nonlinear Fokker—Planck

equation (with energy law as defined in (1.2), see also discussion below in section 2),

2

g—v- <<bz<;’(;)>)fV(D(x)logf+ (b(x))) =0. (1.10)
Note, that the nonlinearity flogfin (1.10) comes as a result of inhomogeneity of the absolute
temperature D(x). In addition, in contrast with the linear Fokker—Planck model (1.6), the non-
linear Fokker—Planck model does not have the corresponding Langevin equation. Instead it has
the associated stochastic differential equation with coefficients that depend on the probability
density f(x,1).

This work establishes local well-posedness of the new nonlinear Fokker—Planck type
model (1.10) subject to the boundary and initial conditions. Note, inhomogeneity and resulting
non-linearity in the new model (1.10) are very different from the vast existing literature on the
Fokker—Planck type models. They come as a result of inhomogeneous absolute temperature
in a free energy for the system (2.2). Such absolute temperature gives rise to a nonstandard
nonlinearity of the form fVD(x)logf in the corresponding PDE model (see (1.10), or (2.1)
in section 2 below). For example, any conventional entropy methods, including Bakry-Emery
method [28] do not extend to such models in a standard or trivial way. In addition models
like (1.10) or (2.1) appear as subsystems in the much more complex systems in the grain
growth modeling in polycrystalline materials, and hence one needs to know properties of the
classical solutions to such PDEs.

The paper is organized as follows. In section 2, we first state the nonlinear Fokker—Planck
system and validate energy law using given partial differential equation and the boundary
conditions. After that we show local existence of the solution to the model. In section 3, we
establish uniqueness of the local solution. Some conclusions are given in section 4.

V(D(x)logf+ ¢(x)). (1.9)

2. Existence of a local solution

In this section, we will provide a constructive proof of the existence of a local classical solution
of the following nonlinear Fokker—Planck type equation with the natural boundary condition
(see also (1.10) in section 1):

AN (W

o 2D(x)

(b(x,1))

vota) - 20 v )

+ %V A((b(x,0)*Vf), x€Q, >0,

(b(xa t))z (b(xat»z 1 2
(G rvo) + G rtoarvn) + 5 6(x.)757) -
f(x,0) =fo(x), xeQ,
where  C RY is a bounded domain, d > 1. Here b = b(x,t) is a positive function on  x
[0,00), D = D(x) is a positive function on €, fy = fy(x) is a suitable (to be defined later through

» 2.1

=0, >0,
o0
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po in (2.18) and (2.19)) positive probability density function on €2 and ¢ = ¢(x) is a function
on . A function f = f(x,#) > 0 is an unknown probability density function.

The Fokker-Planck equation (2.1) has a dissipative structure for the following free
energy,

FIf) = /S (DY) logflx. 1)~ 1) +f(x.0() . 22)

Below, we validate an energy law for the Fokker—Planck equation (2.1) by performing formal
calculations.

Proposition 2.1. Let b = b(x,t), D = D(x), fo = fo(x), ¢ = ¢(x) be sufficiently smooth func-
tions. Then a classical solution f of the Fokker—Planck equation (2.1) satisfies the following
energy law,

d (b(x,1))? 2
—Flfl]=— | ———|V D(x)]1 )t ,1)dx. 2.3
it /Q D0 [V(6(x) + D(x) logf(x,1))|"f(x,1) (2.3)
Proof. Here, we will validate the energy law via calculation of the rate of change of the free
energy F (see also relevant discussion in section 1 where we postulated the energy law for
the model and derived the velocity field, and hence the PDE as a consequence). By direct
computation of ‘% and using the Fokker—Planck equation (2.1) together with Vf= fVlogf,
we have,

d

G = [ @ togstn + o) F ), »
=~ [ (Do) ogste.) + ) V - ()
where we introduced the velocity vector field as,
X 2 X 2
u:= (I;(D’(?)) Vo(x) — (I’Z(D’(;))) logf(x,)VD(x) — %(b(x, 1))*Vlogf(x,1). (2.5)

Note that, V(D(x)logf(x,t)) =logf(x,1)VD(x) + D(x)Vlogf(x,t), hence formula (2.5)
becomes (1.9). Next, applying integration by parts with the natural boundary condition (2.1),
we obtain,

/Q (D() logflx, 1) + 6(x) V - (flx ) di 2.6)

- / V(D) logf(x,1) + $(x)) - (o, ) i

From (1.9), (2.4) and (2.6), we obtain the energy law,

X 2 2
G = [ GEOE 19 (600 + Deotoefin )P i)

O

One can observe from the energy law (2.3) that an equilibrium state f°¢ for the Fokker—
Planck equation (2.1) satisfies V(¢ (x) + D(x)logf?) = 0. Here, we derive the explicit rep-
resentation of the equilibrium solution for the Fokker—Planck equation (2.1).
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Proposition 2.2. Let b = b(x,t), D = D(x), fo =fo(x), ¢ = ¢(x) be sufficiently smooth func-
tions. Then the smooth equilibrium state f*1 for the Fokker—Planck equation (2.1) is given by,

£e9(x) = exp (—d’(’g(x)“) , 2.7)

where C; is a constant, which satisfies,

A“dimgbq)ﬂL

Proof. We have from the energy law (2.3) that,

X 2
0= ) == [ CEOE 19 (600 + D00 togs (e ()

hence V (¢(x) + D(x)logf?) = 0. Thus, there is a constant C; such that:

d(x) + D(x)logf*(x) = Cy,

and hence

Fat) —exp (-2

D(x)
O

Remark 2.3. Note that the nonlinear Fokker—Planck equation (2.1) can also be derived from
the dissipation property of the free energy F[f] (2.2) along with the Fokker-Planck equation,

o _

or
subject to the natural boundary condition, (a(x,?)f+ 1(b(x,1))*Vf) - v|aq =0, [17]. Let us
briefly review the derivation [17]. Indeed, by (2.8) and using the integration by parts, the rate
of change of the free energy 4 F/[f] is calculated as,

d of

P = | (Do) togst.) + () 3 5 ) s

LV (a(e0f) + %v. (b 1))2V). 2.8)

=— [ (D(x)logf(x,t) + ¢(x))V - | | a(x,t) — 1(b()c,t))ZVIng(x, 1) ) flx,1) | dx
o 2

= [ VoW ogfin + () <a<x,r> - () log t))f(x,t) dx.
Q
Since

V(D(x)logf(x,t) + ¢(x)) = logf(x,) VD(x) + D(x)Vlogf(x,) + V(x),

we obtain the energy dissipation estimate as,

x 2
= /Q B0 15D (x) logtr, ) + () P flx, 1) dx

dt 2D(x)
provided the following relation holds,
__ (bxn)? (b(x,1))?
a(x,t) == —“72251;3‘*‘7¢(Xj —'44525(;54'h)gj(x7t)‘7l)(x). (2.9)
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Note that when D(x) is independent of x, VD(x) = 0 and hence (2.1) becomes a linear Fokker—
Planck equation. The relation (2.9) is consistent with the fluctuation-dissipation relation,
which should guarantee not only the dissipation property of the free energy F[f], but also
that the solution of the nonlinear Fokker—Planck equation (2.1) converges to the equilibrium
state f°4 given by (2.7) (see also [18] for more detailed discussion).

Now, let us define the scaled function p by taking the ratio of f and /4 (2.7),

ol = 0 or o) = ) = plrer (-2 -). o)

This auxiliary function was also employed in [28, theorem 2.1] to study long-time asymptot-
ics of the solutions of linear Fokker—Planck equations. Here, we will use the scaled function
p as a part of local well-posedness study. Hence, below, we will reformulate the nonlinear
Fokker—Planck equation (2.1) into a model for the scaled function p. We have,

7390 =0 (G0 oy (V0(0) + oa(49) VD) + D) Vol %9) ).

Next, using the equilibrium state (2.7), we have,
VD(x)logf* + D(x)V(logf®?) + V¢(x) = 0.

In addition, note that log pVD(x) + D(x)Vlog p = V(D(x)log p). Thus, the scaled function
p satisfies,

9p (b(x,1))?
- =V. “pV (D(x)1 .
729 = (G 1oy (DG o)
Employing the property of the equilibrium state (2.7) again, the natural boundary condi-
tion (2.1) becomes,

(b(x,1) _
(ZD(x)f pV (D(x)logp)> v o 0.

Therefore, the nonlinear Fokker—Planck equation (2.1) transforms into the following initial-
boundary value problem for p defined in (2.10),

X 2
a5 = (G2 0pv dWoen ). xe 0,150,
<(b2(;’(;)))feq(x)pv (D(x)logp)) v o =0, >0, (2.11)
p(0.0) = i) = £ req.

Next, the free energy (2.2) and the energy law (2.3) can also be stated in terms of p. Using
D(x)logf®i(x) = —¢(x) + C; from (2.7), we obtain,

FIf) = /Q (D(x)(logp — 1) + C1) pf*(x) d, 2.12)
and,
X 2 2
arn=- “’Z(D’(;)))W(D(x)logpn pF () d. @.13)

Thus, it is clear from (2.12) and (2.13) that weighted L? space, L*(£2,f°I(x)dx) can play an
important role in studying the equation (2.11) (see for example, [18, 35]).
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However, hereafter, we study a classical solution for the problem (2.11), and we consider
Holder spaces and norms as defined below. We give now the notion of a classical solution of
the problem (2.11).

Definition 2.4. A function p = p(x,7) is a classical solution of the problem (2.11) in Q x
[0,7)if p e C*' (2 x (0,T)) N C"O(Q x [0,7)), p(x,t) > 0 for (x,2) € Q x [0, T), and satisfies
equation (2.11) in a classical sense.

To state assumptions and the main result, we also define the parabolic Holder spaces and
norms. For the Holder exponent 0 < o < 1, the time interval 7 >0, and the function f on
% [0,T), we define the supremum norm ||f|c(axo,7)), the Holder semi-norms [f]q x[0,7)»

and (f)a.0x[0,7) as,

Ifllccaxpo,my = sup  |Ax, 1),
x€Q, 1€[0,T)
‘f(xvt) _f(xlat)|
Sla,oxo,r) = sup —
[ ] X0 x,x’ €, t€[0,T) |x7x/‘o¢ 214
fo _fxat/
{(Nagoxorn = sup l()—“
x€Q, 1,t'€[0,T) |t_t |

here |x—x’| denotes the euclidean distance between the vector variables x and x’ and
|t —¢'| denotes the absolute value of ¢ — ¢'. For the Holder exponent 0 < v < 1, the deriv-
ative of order k =0, 1,2, and the time interval T > 0, we define the parabolic Holder spaces
Ck+a,(k+oz)/2(Q % [07 T)) as

Ck+a’(k+a)/2(9 X [07T)) = {f: Q x [07 T) - Ra ||f||C"+‘1>(’<+l~)/2(Q><[O,T)) < 00}3(215)
where

£l ceer2ax o) = Ifllccaxon) + [flaoxio,n + (Fasz.ax0.1)
||fHC‘+°‘>(‘+‘¥)/2(Q><[O,T)) = [ fllecxio,n) + IVAlccxo,n)
+ [Vfla.axion + ) a+a)2.0x0.0) + {Vas2.0x0,0)
1fllcatarraxion) = Iflccxpom + 1V Ac@xpon) + 1V flc@xo.m) (2.16)

[v2ﬂa,52><[0,T) + {8]
c(Qx[0,7)) 1] a,0x[0,7)

0
+ (V) (1+a)2,0x01) +(V f>a/2 Qx[0,T) <8f> .
U/ aj2.0x[0,T

H@t

It is well-known that the parabolic Holder space Ck+(+2)/2(Q) x [0, T)) is a Banach space.
More properties of the Holder spaces can be found in [29, 31, 33]. Next, we give assumptions
for the coefficients and the initial data. First, we assume the strong positivity for the coefficients
b and D, namely, there are constants C, C3 > 0 such that for x € Q2 and > 0:

b(x,1) > C,y, D(x) > Cs. (2.17)

Next, we assume the Holder regularity for 0 < a < 1: coefficients b(x, 1), ¢(x), D(x), an initial
datum py(x) and a domain (2 satisfy,

p? e CHHU+I2(Q % [0,7)), ¢ € CPH(Q), D e C*T2(Q), 9Q is C*+,
and py € C*T(Q). (2.18)
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As a consequence of the above assumptions, £°4 is in C>*(2). Finally, assume the com-
patibility condition for the initial data pg:

V(D(x)logpo)-v| =0. (2.19)
o0
Since b(x,t), D(x), 9, and p are positive, (2.19) is sufficient for the compatibility condition
of (2.11).
Now we are ready to state the main theorem about existence of a classical solution of (2.11).

Theorem 2.5. Let coefficients b(x,t), ¢(x), D(x), a positive probability density function py(x)
and a bounded domain <) satisfy the strong positivity (2.17), the Holder regularity (2.18) for
0 < a < 1, and the compatibility for the initial data (2.19), respectively. Then, there exist a
time interval T> 0 and a classical solution p = p(x,t) of (2.11) on Q x [0, T) with the Holder
regularity p € C*+1+9/2(Q x [0, 7).

Corollary 2.6. Let coefficients b(x,t), ¢(x), D(x), and a bounded domain S satisfy the strong
positivity (2.17) and the Holder regularity (2.18) for 0 < « < 1, respectively. Let fy be a posit-
ive probability density function from C***(Q), which is positive everywhere, and satisfies the
compatibility condition,

V (6(x) + log(D()fy)-v| =0,
o9
Then, there exist a time interval T > 0 and a classical solution f = f(x,) of (2.1) on Q x [0,T)
with the Holder regularity f € C>T172/2(Q x [0, T)).

Before we proceed with a proof of the theorem 2.5, and hence corollary 2.6, we give a brief
overview of the main ideas of the proof:

(a) Insection 2.1, we consider the change of variables £ in (2.20) and £ in (2.25). We will derive
evolution equations in terms of ~ and £ in lemmas 2.7 and 2.10. Note that, £ vanishes at
t =0, namely, we have, {(x,0) = 0.

(b) In section 2.2, we give the decay properties of the Holder norms [|VE|[ca.a/2(q)x[o,7)
and [|€|| ca-ar2(q)x[o,7) in terms of &, see (2.33) and (2.40). Thanks to the condition that
§(x,0) = 0, we can obtain explicit decay of || V|| caar2(0)x (0,7 @0d [[€][ ca-ar2()xjo,1)-

(c) In section 2.3, we study a linear parabolic equation (2.32) associated with the nonlinear
problem (2.26). We show that for the appropriate choice of constants M, T > 0 and for
1 € Xy, where Xy ris defined in (2.31), a solution £ of (2.32) belongs to Xy, 1, see lemma
2.20. Thus, we can define a solution map A : ¢ — & on Xy 7.

(d) In section 2.4, we show that the solution map has the contraction property, see lemma 2.22.
In order to show that the Lipschitz constant is less than 1, we use the decay properties of
the Holder norms (2.33) and (2.40).

(e) Since the solution map is a contraction mapping on X r, there is a fixed point & € Xpy 7.
The fixed point is a classical solution of (2.26), hence we can find a classical solution
of (2.11). Once we find a solution p of (2.11), by the definition of the scaled function (2.10),
we obtain a solution of (2.1). Note, that in section 3, we show uniqueness of a local solution
of the problem (2.11), and hence of a local solution of the problem (2.1).

2.1 Change of variables

The problem (2.11) is well defined only when p > 0. However, it is difficult to prove the pos-
itivity of p using (2.11) directly due to lack of maximum principle for the nonlinear models.
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Instead, we will construct a solution p of (2.11), and will guarantee the positivity of p, by
introducing a new auxiliary variable 4 as follows,

h(x,t
h(x,) = D(x)logp(x,), or plxf)=exp | D). (2.20)
D(x)
Once we find a solution 4, then we can obtain a solution p of (2.11) using the change of
variables as in (2.20). Furthermore, we will show uniqueness of a local solution p in section 3.
Let us derive the evolution equation in terms of the new variable 4 in (2.20).

Lemma 2.7. Let p be a classical solution of (2.11) and define h as in (2.20). Then, the auxiliary
variable h satisfies the following equation in a classical sense,

U b (B0 (0P oo [
D) o " ( () ! ”V”)+ 20 1V V(D(x))’
xeN, >0, (221)
Vh-v| =0, t>0,
o0

h(0,x) = ho(x) = D(x)log po(x), x € .

Conversely, let h € C' (2 x (0,T)) N C"°(Q x [0,T)) be a solution of (2.21) in a classical
sense and define p as (2.20). Then, p is a classical solution of (2.11).

Proof. By straightforward calculation of the derivative of p using (2.20), we have that p, =

%h,, as well as,
()% (D) togp) = 0 a2,
and,
(b(x.1))? .
v (w(x)f (1) (D) logp>)
X 2 X 2
=Py . <(bz(1)’(2)) feq(x)Vh> + (bz(D’(;))) fe(x)e"POVR- v <D’(lx)> :

Note that b, D, f¢9, and ¢"/P are positive functions, hence the boundary condition of the
model (2.11) is equivalent to the Neumann boundary condition for the function 4. Using these
relations, we obtain result of lemma 2.7. O

Remark 2.8. Note, employing the change of the variable for p in terms of & (2.20), the free
energy F[f] (2.12) and the dissipation law (2.13) are transformed into,

Flf] = /Q (h(x,f) — D(x) + Cy) exp (%}Ext)) > £o9(x) dx, (2.22)
and,
X 2 X
%F[f] = /Q “’;D’(;))) |Vh(x,1)|* exp (M) £o9(x) dx. (2.23)

1900



Nonlinearity 36 (2023) 1890 Y Epshteyn et al

Remark 2.9. The non-linearity of the problem (2.21) is the so-called scale critical. The dif-
fusion term Ak and the nonlinear term |VA|? have the same scale. To see this, for v >0 we
consider the following equation,

0
%(x, 1) = Au(x,0) + |Vu(x, )], xeR? >0, (2.24)

For a positive scaling parameter A > 0 and (xo, %) € R? x (0,00), let us consider the change
of variables x — xo = \y, t — to = \’s, and a scale transformation v(y,s) = u(x,). Then,

Ou 1 ov 1 1
ou 9 - Y ¥
o (x,1) 2 By (v,s), Au(x,1) 2 Ap(y,s), |Vau(x,1)] X |Vyv(y,s)|7,

hence the scale transformation v satisfies,

%(y,s) =Ap(y,8) + AT Vu(y,s)[7, yERY 0<s<t.

When we take A | 0, the function u(x,7) will blow-up at x = xo, and is regarded as a per-
turbation of a linear function around x = xq. If v <2, which is called scale sub-critical, then
A*=7 — 0 as v} 0. Hence, the non-linearity |Vu(x,t)|” can be regarded as a small perturb-
ation in terms of the diffusion term Au(x,?). If > 2, which is called scale super-critical,
then A\Y =2 — 0 as ~y | 0. In this case, the non-linear term |Vu(x,#)|” becomes a principal term.
Thus the behavior of u may be different from solutions of the linear problem, namely, the
solutions of the heat equation. If v =2, which is called scale critical case, then A7 =1
(like in our model (2.21)). The diffusion term Au(x,) and the nonlinear term |Vu(x,)|* are
balanced, hence the non-linearity | Vu(x,f)|* cannot be regarded as the small perturbation any-
more, especially for the study of the global existence and long-time asymptotic behavior. Thus,
in the problem (2.21), we need to consider the interaction between the diffusion term and the
nonlinear term accurately. For the importance of the scale transformation, see for instance [22,
24]. The scale critical case for (2.24) is related to the heat flow for harmonic maps. See for
instance, [8—10, 36]. See also [16, 42] for the steady-state case.

Our goal is to use the Schauder estimates for linear parabolic equations, therefore we
rewrite (2.21) in the non-divergence form,

Oh _ (b(x,1))> D(x) o [ (b(x,1)* .
g = s 2o (G )
R CIC0)) S (10 %))
Vh+ 2D(x) |Vh| 2(D(x))2th VD(x)
Next, we introduce a new variable £ as,
h(x,1) = ho(x) + £(x, 1), (2.25)

in order to change problem (2.21) into the zero initial value problem with £(x,0) = 0. Note
that, when # is sufficiently close to the initial data Ao for small ¢ > 0 in the Holder space, &
should be also small enough for small # > 0. To show the smallness of the nonlinearity in the
Holder space, we consider the nonlinear terms in terms of ¢ instead of /. Thus, below, we will
derive the evolution equation in terms of .
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Lemma 2.10. Leth € C>'(Q x (0,T)) N C(Q x [0,T)) be a solution of (2.21) in a classical
sense and define £ as in (2.25). Then, £ satisfies the following equation in a classical sense,

gf_L£+go(x H+GE), xeQ,t>0,
VeE-v| =0, t>0, (2.26)
80

£0,x)=0, x€Q,

where

peo (BLOP 5 (25 <<b<x7r>>2 o)

2 7Y\ 200)
¢ g( 3)2Vh0( y- & (;”))2”0<x) VD(x)) ve
- (Sofa o0 in ) .
cotut) = OO Ayt feq(xx) v( bz(g” ) Vho(x)
+ (b(x’(;)))z Vho(x) 2 ;’Z <x(’ ;;;zho(x)Vho(x) VD(x),
o(6) = L ijwep - L e vo),

Conversely, let £ € C*>'(Q x (0,T)) N C0(Q x [0,T)) be a solution of (2.26) in a classical
sense and define h as in (2.25). Then, h is a solution of (2.21) in a classical sense.

Proof. The equivalence of the initial conditions for functions 4 and £ is trivial, so we consider
the equivalence of the differential equations and of the boundary conditions for 4 and &. First,
we derive the differential equation for £ using the change of variable in (2.25). Assume 4 is
a solution of (2.21) in a classical sense. Since & = h;,, Vh = Vhy + V&, Ah = Ahg + A&, we
have,

x,1))? x x,1))? x,1))?
% _ (b( 2,t)) AL+ D(x) v ((I;(Da(;))) feq(x)) 'Vf—f—MAhO(X)
D(x) o ( (b(x,1))

+ e (5ot

X 2
£33 ) - o) + G196 4 Voo

(€ +ho(x)) V(€ + ho(x)) - VD(x). (2.28)
Using the following relations,

IVE+ ho(x) [ = [VE[ +2Vho(x) - VE+ [Vho(x) 2,
(E+ho(x))V(E+ho(x) = EVE+EVR(x) + ho(x)VE + ho(x) Vo (x),
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the equation (2.28) is transformed into the equation,

% MA{Jr ( D) ((b(x, t))zfeq(x)>

a2 a0 Y \ 2009
o) - e ) v
<§§¢22V0<>dew)s+(“§”VA%@>
ﬁ@v(ﬁ?‘m Vo (x)
+ MV%(X)IZ - Who(x)wo(x) VD(x)
+(bz(1§’(2))2 NON %;Cég))zfeq( JEVE - VD(x)

= L& +go(x,1) + G(§).

Thus, we obtain the equivalence of the differential equations for 4 and €.
Next, we consider boundary condition V¢-v|gq =0. Using the compatibility condi-
tion (2.19), we have,
Vé-v| =Vh-v
o0

- V]’l() vV
o0

=Vh-v
(o9}

)

o0

hence we also have the equivalence of the boundary conditions for 4 and &.
O

Remark 2.11. From the change of variable (2.25), the free energy F[f] (2.22) and the energy
dissipation law (2.23) are given in terms of ¢ below,
1) + ho(x)

FM—A@@»+%@-0@+QNW<&%>

DY) )feq (x)dx, (2.29)

and
d (b(x,1))” )) §(x, 1) + ho(x)

Remark 2.12. The idea to consider the variable £ in (2.25), in order to change (2.21) into
the zero initial value problem (2.26), is similar to the study of the inhomogeneous Dirichlet
boundary value problems for the elliptic equations, see [25, theorems 6.8 and 8.3].

) Fx)dx. (2.30)

In this section, we made several changes of variables. Hereafter we study (2.26) with the homo-
geneous Neumann boundary condition and with the zero initial condition. As one can observe
in (2.27), the initial data & (or equivalently py) is included into the coefficients of the linear
operator L and of the external force gy of the problem (2.26).

2.2. Properties of the Hdélder spaces with the zero initial condition

In this section, we study properties of the Holder spaces with the zero initial value condition.
The main idea behind the proof of the theorem 2.5 is to find a solution of the problem (2.26)
in a function space as defined below,
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Xy = {g e CHaIT/2(Q % [0,T)) : ¢(x,0) = 0 forx € Q,
v'<|89:0’ ||<Hc‘2+“vl+a/2(ﬂx[o,r)) <M}7 (2.31)

for the appropriate choice of constants M, 7T > 0.
For v € Xy 7, let ) be a classical solution of the following linear parabolic problem,

0
%an—i—go(xJ)—&—GW), xeQ, >0,

Vn-v| =0, >0, (2.32)
o0

n(0.x) =0, xeq,

where L, go(x,?) and G are defined in (2.27). Note that, in section 2.3 our goal will be to select
constants M, T > 0 such that for any 1) € Xy, 1, a solution 7 belongs to Xy 7. Thus, here we first
need to introduce the idea of the solution map and the well-definedness of the solution map on

XM,T-

Definition 2.13. For ¢ € Xy, 1, let n = Ay be a solution of (2.32). We call A a solution map
for (2.32). The solution map A is well-defined on Xy 1 if A € Xy r for all ¢ € Xpy 7.

Once we will show that the solution map A is well-defined in Xy, 7 and is a contraction for the
appropriate choices of constants, then we can find a fixed point £ € Xy 7 for the solution map
A, and thus establish that £ is a classical solution of the problem (2.26). In order to derive the
contraction property of the solution map A, first, we obtain the decay estimates for the Holder’s
norm for ¢ € Xy 7.

As we noted in the remark 2.23 below, when a function 6 € C**/2(Q x [0,T)) satisfies
0(x,0) = 0, the supremum norm of # and its derivatives will vanish at = 0, namely:

sup |0, sup |VO|, sup |V?0|—0, asT—0,
Qx1[0,7) Qx[0,T) Qx[0,7)
as a consequence of the Holder’s norm’s estimates (2.33) and (2.40) obtained below. Note
again that 6(x,0) = 0 is essential for the above convergence. In order to consider the nonlinear
model (2.26) as a perturbation of the linear system (2.32), we need some smallness for the

norm in general. Hence, we next show explicit decay estimates for the Holder’s norms which
can be applied for a function ¢ € Xy 7.

Lemma 2.14. Let any function 0 € C>+172/2(Q x [0,T)), 6(x,0) = 0 for x € Q. Then,
V0]l canarzxo,ry) < 3(TIFD2 L TV2)[10]| coatvarz e o,19) - (2.33)
Thus, for a function ¢ € Xy, (2.33) also holds.

Proof. First, we consider ||V0||c(qx[o,r))- Forx € Q and ¢ € (0,T), we have, by V6(x,0) =0
and the definition of Holder’s norm, that,

_ |VO(x,t) — VO(x,0)]

V6] = = ey

|t —0|(F2 L AF2(T0) (| oy paxpn.  (234)

Therefore, we have,

V0]l c@xion) < T T20]| cransarxo,n)- (2.35)
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Next, we derive the estimate of [V0], qx0,7). For x,x’ € Q and ¢ € (0, T), we first assume
that |x — x’| < #'/2. Then, since we assume that { is convex, the fundamental theorem of cal-
culus and the triangle inequality lead to,

1
V6(x,1) — VO, 1)| = / diva(TH (1 — 1), 1) dr
0 T

1
< |x—x’|/ V20(rx+ (1 — 7)Y, )| dr.
0

Since V20(rx+ (1 — 7)x’,0) = 0, we have,

5 |V20(rx+ (1 — 7)x',1) — V20(rx + (1 — 7)x’,0)
[V20(rx+ (1 —7)x 1) < 107

ST (V?0) 2.0 00.1)-

| |t— 0‘04/2

Using the assumption |x — x’| < #'/2, and that |x — x'| = |x — x'|'=*|x — x'|*, we conclude,

|VO(x,t) — VO (x',1)| < T”‘/zt(lf"‘)/2<V29>a/2’Qx[O’T) |x —x'|*
< T(V?0)app0xpnx—x'|* (2.36)
Next, we consider the case |x —x'| > 1'/2. Using (2.34), we have,

~|VO(x,t) — VO(x,0)]
B |t_0‘(1+a)/2

VO (x,1)] 6= 0|2 L TV2(V0) 140y 2, 0x 01 X — X[,

hence we obtain,
[VO(x,1) — VO ,0)| < [VO(x,0)| + VO, 1)] < 2T"*(VO) (110) 2.0x 0.0 X — X'|*. (2.37)
Combining (2.36) and (2.37) we arrive at,
[V0laaxon <2T2[0]l crearsaraxiomn)- (2.38)
Finally, we consider (V0), /> axo,r)- For x € Qand #,# € (0,T), we have

[VO,t) =VOxO) (a2
‘t_t/|(l+o¢)/2 11|

< T1/2|l — t'|a/2<ve>(1+a)/2,§2x[O,T)a

‘VG(XJ) - ve(xa t/)| <

hence
(V0)ay2.0xion) < T8l c2tansar@xpomn)- (2.39)
Combining (2.35), (2.38) and (2.39), we obtain the desired estimate (2.33).

Remark 2.15. Note that, for arbitrary continuous function 6 : Q x [0,7) — R,
10l ccxo,m) = sup|6(x,0)],
xeQ

hence, in general, we cannot obtain the decay estimate (2.33), unless § =0 at t = 0.

Next, we derive the decay estimate of [|€)]| ca.a/2(x[o,7)) that will be also used for ¢ € Xy, 7.
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Lemma 2.16. Let arbitrary function § € C*T1+/2(Q x [0,T)), 6(x,0) = 0 for x € Q. Then,

16l cearziax o) < 3(T+ T "2)[|0]| 2 artarzaxo.1)- (2.40)
Thus, for ¢ € Xy, 1, the estimate (2.40) holds as well.
Proof. First we consider ||0||c(qx[o,r))- Forx €  and ¢ € (0,T), we have by 0(x,0) =0,

t
/ 0:(x,7)dr
0

[10]lccaxo,r)y < TNOllcotararaxio,n)- (2.42)

|0(x,1)| = 16(x,1) — 6(x,0)| = <10 llccoxpo,m), (2.41)

thus,

Next, we give the estimate of [0] axo,r). For x,x” € Qand ¢ € (0,7), we first assume |x —

x’| < t'/2. Then, again using the assumption that © is convex, the fundamental theorem of
calculus and (2.35) lead to,

1
10(x,1) — 0(x',1)] < |x—x’|/ IVO(rx+ (1 —7)x',1)|dr
0
LTI 1x — X[|[0]| oo i+0200x 0.1))-

'l < 1'/2, we have again,

T(1+a)/2,(1-a)/2

Using the assumption |x — x

‘a(xv t) - 9(}5”1‘”

< H0||C2+°"1+°‘/2(Q><[07T))|x—xl|a
< T||9HC2+Q,1+Q/2(QX[07T)) |)C —)C/|a.

Next, we consider the case that |x —x'| > /2, Using the estimate (2.41), we have,
|0x, 1) = 0(x", )| < |0, 1)] +0(x', 1)
<210l oo, ) < 2620 oo arr@x oy x — 2|
2T 2||]| coverva 2 o, X — ¥
Combining these estimates, we arrive at,
[0a.0xion) < (T+2T72)]10]| 2+ autrar2(x 0,1 - (2.43)

Finally, we consider (0),/>.ox[o,r)- Forx € Qand ¢’ € (0,T), the fundamental theorem of

calculus leads to,
t
/ 0,(x,7)dr
t/

ST =116/l cerx o,

10(x,1) — 0(x,1)] < <t =110l ccax o)

hence,

Tl—()(/z

(0)ay2,0x0,1) < 0]l coa1+0 12020, 79) (2.44)

Combining (2.42)—(2.44), we obtain estimate (2.40).
O

Remark 2.17. In the proof of the lemmas above, in order to apply the fundamental theorem
of calculus, we assumed the sufficient condition on the domain 2 to be convex. However one
may generalize the assumptions on the domain to more general conditions.
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We later use the norm of the product of the Holder functions (see [29, section 8.5]). Therefore,
we establish the following result. It is well-known inequalities (for instance, see [25, section
4.1]), but we give a proof for readers convenience.

Lemma 2.18. For functions ¢ € C2(Q % [0,T)) and 6 € C**/*(Q x [0,T)), the product
of 00 is also in C**/?(Q x [0,T)). Moreover, the following estimate holds,

||99~||Cf¥va/2(§l><[0,T)) < ||9||cava/2(9><[o,r))||9~Hcaaa/2(9x[o,r))~

Proof. Forx,x’ € Q,0 < t,t' < T, we have,
10(x,1)0(x,1)| < ||9Hc(szx[o,T))||5\|C(szx[o,T))~ (2.45)

In addition, we obtain that,

|0Gx,1)0(x,1) — 0(x', )0, 1)] < [(0(x,1) — O ,£))0(x, )| + 0(x', ) (O(x,1) — O(x', 1))
< ([G]a,ﬂx[o,T)||§|\C(Qx[o,r)) + ||9||C(SZ><[0,T))[é]a,QX[O,T))

X x— x|

Hence, we have that,

[00]0.0x0,1) < [Blaox 0. 10l ccaxion) + 10llc@xo.m) Olaoxpon.  (246)

Similarly,

10Gx,1)0(x,1) — 0(x, )0 (x, )| < [(0(x,1) — O(x,#))0(x, )| + 0(x, ) (O(x,1) — O(x,1'))]
< (<9>a/2,ﬂx[o,r) 101l cax o) + 10llcxon) <é>a/2,SZX[O,T))
x|t =172,

Thus, we obtain,

(00)a2.0x101) < (O)asz.0xion 10llc@x o) + 10llc@x o) (0)a/2.0xp0.n- (2.47)
Therefore, combining above estimates (2.45)—(2.47), we arrive at the desired inequality,
100l coa 22 f0.19) = 100l ccerx o, + [00)a02x10.1) + (00)aj2.00x10,1)
<10l c@xgom1fllexon)
+ (Bla0xi0.0 1Bllcaiom) + 1Ellcwxiom Blaoxion
+ (<9>a/2,ﬂ><[0,T) 10]lccexo,my) + ||9||C(Qx[o,T))<9>a/z,ax[o,r))
<0l cenerzix o) 101l conerziax o) -

O

In this section, results of lemmas 2.14 and 2.16 hold for any function ¢ € Xy 7. Therefore, we
obtained the decay estimates for the Holder norms ||V (|| ca.a/2(ax 0,7)) @0d [|C || cover2( 0, 7))
of ¢ € Xy r. As a consequence, in the following sections, for ¢ € Xy r, the nonlinear term
G (7)) can be treated as a small perturbation in terms of the Holder norms.
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2.3. Well-definedness of the solution map

Here, we recall the function space Xy, r defined in (2.31). Here, for 1 € Xy 7, our goal is to
consider first the linear parabolic equation (2.32) associated with the nonlinear problem (2.26).
We also recall the definition of the solution map A : ¥ — 7 from the definition 2.13 associated
with the linear parabolic model (2.32). Therefore, in this section 2.3 and in the next section 2.4,
we are going to show that the solution map A : ¢ — 7 is a contraction mapping on Xy, 7, where
7 is a solution of (2.32). Once we will show that the solution map A is a contraction, we can
obtain a fixed point £ € Xy 7 for the solution map A, and hence £ will be a solution of (2.26),
[5, section 7.2].

First, we will show that the solution map is well-defined on X, 7, namely that there exist
appropriate positive constants M,T > 0 such that for any ¥ € Xj,r, solution 1 = Ay of the
linear parabolic equation (2.32) belongs to Xy 1.

Let us now recall the Schauder estimates for the following linear parabolic equation:

0
%:Lw—i-g(x,l), xeQ, >0,

Vw-v| =0, t>0, J (2.48)
a0

w(0,x) =0, xe€q.

here, the operator L is defined in (2.27). The following Schauder estimates for the solution
of (2.48) can be applicable.

Proposition 2.19 ([31, theorem 5.3 in chapter 1V], [33, theorem 4.31]). Assume the strong
positivity (2.17), the regularity (2.18), and let L be the differential operator defined in (2.27).
For any Holder continuous function g € C**/2(Q x [0,T)), there uniquely exists a solution
w € CPHesl+e/2(Q % [0,T)) of (2.48), such that,

[Wllc2ta4ar2x o) < Callgllcoarz@xion)s (2.49)
where C4 > 0 is a positive constant.

Using the Schauder estimate (2.49), we now show the well-definedness of the solution map A
in<XQw,T.

Lemma 2.20. Assume the strong positivity (2.17), the regularity (2.18), and let L be the dif-
ferential operator defined in (2.27). Then, there are constants M > 0 and Ty > 0, such that for
0 < T<Tyandy € Xy 1, the image of the solution map At belongs to Xy, and the map A is
well-defined on Xy r.

Proof. Let us assume that we have constants M, T > 0 that will be defined later, then consider
¥ € X, 7. We use the Schauder estimate (2.49) for L and for g = gy + G(¢), where L, G(%) and
go are defined as in (2.27). First, we note that from the strong positivity (2.17) and the regular-
ity (2.18), there is a positive constant Cs > 0 which depends only on [|b||ci+a,(+a) /2 x[0,79)s
D¢+ )s 1@llcr+e(q)» [[7ollc2+e (), and the constant Cs in (2.17) such that,

||80Hcafa/2(9x[o,r)) < Gs. (2.50)

Next, we calculate the norm of %f ®d(x)|V)|%. Using lemma 2.18, the strong positiv-

ity (2.17) and the regularity (2.18), we obtain for v € Xy 7,
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(b(x,1))>
2D(x)

)| VY| £4(x)

2
vaucma/l(nx[o,r)) :
Cona/2(Qx[0,T))

H (b(x,1))?
2D(x)

<
C:/2(Qx[0,T)) H

Noting that ¢/(x,0) = 0 for x € 2, we can apply lemma 2.14 and use the decay estimate (2.33)
to show that,

2 e}
IVl ewarzaxory < MNP NGasantar@uory T T2 +T72)%

Since ¥ € Xu,1, [|[¥]|2+attar2(xo,1y)) < M, hence we have,

(b(x,1))’
2D(x)

H (b(x,1))

2 (14a)/2 | 1/242
2D(x) MO LT,

C/2(Qx[0,T))
2.51)

<9 H )

@)Vl

C/2(Qx[0,T))

Next, we calculate the norm of %fﬂq(x)wvw -VD(x). Using lemma 2.18, the strong
positivity (2.17) and the regularity (2.18), we estimate,

H (x,1))> (x,1))*

eq Vi -VD
200 VY VPO L eom) H D)2

S () VD(x)

Cona/2(Qx[0,T))
XYl caarzaxio,m) V¥l caarrxon) -

Using lemmas 2.14 and 2.16 with the initial condition ¢ =0 at t=0, we have by (2.33)
and (2.40) that,

VYl coaraiaxom) < 3lYllctaitar@xpo,n) J(TUF)/2 4 71/2)

and,
[P0l coarzaxiory < 3Pl crantar@xpon (T+T 7).

Again, since Y € Xu 7, |9l c2o14a/2(0x[0,77)) < M, and thus, we obtain,

H’”)f (VY- VD) H ’””zfeqm D)
(x))? Coa/2(Qx[0.T) D(x)) Coa/2(Qx[0.T)
XM2(T(1+Q)/2+T1/2)(T+ Tlfa/Z).

(2.52)

Together with (2.51) and (2.52), we can take a positive constant C¢ > 0 which depends only
on [[b|[cr+e.ater2(ax0,19)s IPllcr+e (@), [|@]lc1+a (), and the constant C3, such that,

IGW)llcaer2(axio,ry) < CoMPR(T), (2.53)
where
K(T) = (TUF)2 4 1/2)2 4 (TOF )2 T1/2) (T 7170 /2), (2.54)

Note that %(7) is an increasing function with respect to 7 >0 and x(7) — 0 as 7| 0. By the
Schauder estimate (2.49), together with (2.50) and (2.53), the solution £ = A of the linear
parabolic equation (2.32) satisfies,

[AY | coteitarzxo ) < (Cs + CeM?ki( )) (2.55)

1909



Nonlinearity 36 (2023) 1890 Y Epshteyn et al

In order to guarantee ||At)|

Ceta2(Qx[0,7)) S M for 0 < T < Ty, we take,
M:=2C4Cs,  C¢M*r(Tp) < Cs. (2.56)

Then from (2.55), [|A¢||cota14a/2(x[o,1)) < M for 0 < T < To, hence Ay € Xy 1.
O

Remark 2.21. Note that from (2.56), a positive constant M >0 depends on
||bHCl+o¢,(l+a)/2(QX[O’T)), HDHC1+Q(Q), H¢||CI+Q(Q), ||h0HCZ+a(Q), and the constant C5. Also,
from (2.56), a time interval T, > 0 can be estimated as,

K(To) <~

<—5— 2.57
4C2C5Cs (&37)

Since ¢ = 0 at t =0, the auxiliary function x(T) can be written explicitly as in (2.54), in order
to estimate the Holder norm of nonlinear term G(¢). Thus, using (2.57), we obtain the explicit
estimate of the time-interval T > 0 to ensure that the solution map A is well-defined on Xy 7.

2.4. The contraction property

In this section, we show that the solution map A : Xy, 7 3 ¥ — 1 € Xy, where 7 is a solu-
tion of (2.32), is contraction on Xy, 7. The explicit decay estimates for the Holder norm of
1 € X7 obtained in lemmas 2.14 and 2.16, are essential for the derivation of the small-
ness of the nonlinear term G(v)). Because, for ¢ € Xy 7, Holder norms ||Vt || ca.a /2 xj0,1))
and [[1)[| coar2(qxj0,ry) continuously go to 0 as 7 — 0, thus, the Lipschitz constant of A in
C?Fe1+e/2(Q) x [0,T)) can be taken smaller than 1 if 7 is sufficiently small. This is the reason
why we consider the change of variables (2.25), and as result, consider the zero initial value
problem (2.26) subject to the homogeneous Neumann boundary condition.

Lemma2.22. Assume the strong positivity (2.17), regularity (2.18), and let L be the differential
operator defined in (2.27). Let M > 0 and Ty > 0 be the constants obtained in lemma 2.20,
(2.56). Then, there exists Ty € (0,Ty] such that A is contraction on Xy 7 for 0 < T < T.

Proof of lemma 2.22. We take 0 < T < Ty, where T will be specified later in the proof. For
Y1, V2 € Xy, 1, let 1) := Ayp; — Ay, Then from (2.32), 7 satisfies,

5 =L+ GW) = G). x>0,

(2.58)
oN

7(0,x) =0, xe€.

Due to zero Neumann boundary and the initial conditions for 7, we can use the Schauder
estimate (2.49) for the system (2.58), hence, we have,

7l c2+aitar@xion) < CallGW1) — G(¥2)lcoarrxjo,1)- (2.59)
By direct calculation of the difference of the nonlinear terms G(%)) (2.27), we have,
b 2
Gl - Glwz) = Gl (T P~ [
(b(x,1))* .
- Wf 9(x) (1 Voy — 2 V) - VD(x). (2.60)
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First, we estimate || (Zg ’x))) ) (Vi [P = [V |*) || caarz (oo 1) Since,

V1 [ = [V | = |(Viby 4+ Viba) - (Vi — V)],

we have due to lemma 2.18 that,

VY1 = V2P llcaarzax o) < IV + Viballcanarz i o.m V81 = Vil caarz o) -
2.61)

Since 11, ¥, € Xy, 1, we have that ¢y — ), = 0 at =0, and lemma 2.14 is applicable here to
functions 1,1, and ¥ — 1),

IV 1]l caarz@xpon) < (T2 TV2) |9y || rarrar@xiom)»
IV¢allcoarzaxpom) < 3T+ TV2) |4yl orairarziaxion)» (2.62)
V1 = Viba| caverriax oy < 3(TIFD2 4 TV2)|[4hy — o] evantarriaxion)-

Combining estimates (2.61) and (2.62), we obtain,

V312 = V2 | coerriaxoryy < OTUFT/2 4 71/2)2

X ([Y1ll crattaraxio,m) + 12l crattarn@xio,m) ¥ — ballcraitar@xion)-

Therefore, using the strong positivity (2.17), the regularity (2.18), and that functions %, €
Xu,r, we arrive at the inequality,

H““”’ () (|61 2 — [Val?)

2D(x) Coa/2(Qx[0,7))
< CM(TMTI2 L T2 by — | caatvarzaxo,n)- (2.63)

Here, constant

(b(x.0))?

Q:%’Du>ﬁ%”

Cone/2(Qx[0,T))

is a positive constant which depends only on ||b|| ca.a/2(qx[0,7))> IPllca(02)s |9llca(0)» and the
constant C3 in (2.17).
(b(x,t

Next, we estimate, ||2(D(x))2 Ux) (V1 Vo1 = aViPa) - VD(X)|| caarz(xfo,7y)- Since, we
can write,

V1V — Vb = 1 (Vb — Vahy) + (Y1 — 1p2) Vb,

we can use lemma 2.18 again,

141V = 2 Vibal| caarraxo,r)) < W1l coverziaxiomy VY1 = Vbl covarrxo, 1))
V2|l caaraxio,m 11 = V2l coarziaxjo,ry) - (2:64)
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Since ¥, ¥, € Xuy,r, we have that 1)) — b, = 0 at t =0, and thus, we can use lemmas 2.14 and
2.16 to obtain,

T+T7) ]|z
7(1+a)/2

1%11] cocrar2(2x0,79) (Qx[0,7))
Tl/z)||’¢12ch+a,1+a/2(9x[o,r))’

191 — Y2l caarzaxpory < 3(T+T 7)1 — ol 2ransar@xpo )
V1 = Vbl cararziaxo,r) T2 L TV2)|[4hy — o[ 2vairarzixon)-
Combining (2.64) and (2.65), we obtain the estimate,

191 V41 = 2 Vhallconraix o,y < OTHHO2 4 T2) (T4 T 7/%)

X (|1l coreitarraxio,m) + ||¢2Hcﬂ+a,l+a/2(nx[o,r)))

Vo[ o
Vtallcaarziaxo,m) (2.65)

(
(
(
(

INCINCIN N
W W W W

X |11 = ol c2raitarriaxion)-

Therefore, using the strong positivity (2.17), the regularity (2.18), and that ¥, € Xy, 1, we
get,

5Fx) (01 Vbt — 2 Vipe) - VD(x)

X

Hébxt )?

Ce-a/2(Qx[0,T)) (2.66)
< CeM(TOF 2 L T2 (T4 T'07) [ohy — tho| c2tavarriax o)

where constant,

N
=] g ecavee)

is a positive constant which depends only on [|b[| ca.a/2(ax o,
the constant C3 in (2.17).
Finally, combining (2.59), (2.60), (2.63) and (2.66), we arrive at the estimate,

Coa/2(Qx[0,T))

(Q),and

[AY1 — A || covaivarrax o) = Il cotetariaxpon)
< CoME(T)|[Y1 — Yol c2taitaraxo,n)s
where Cy = Cymax{C;, Cg} > 0 is a positive constant and,
w(T) = (TUF/2 4 1/2)2 4 (p(+e)/2 L T1/2) (T4 71 =2/, (2.67)

Note that x(T) is increasing with respect to 7 >0 and x(T) — 0 as T | 0. Taking T; € (0, 7o
such that,

CoMk(Ty) < 1, (2.68)

the solution map A is a contraction mapping on X r for 0 < T < T.
O

Remark 2.23. Note that, for hec C?t!T2/2(Qx [0,T)), Al cocor2axo,ry)  @nd
VAl co.ar2(axjo,ry) do not vanish as 71 0 in general. On the other hand, when 1) =0 at
t=0, Holder’s norms [|¢)|ca.a/2(axo,r)) and [[VY|[caar2x[o,r)) continuously go to O as
T ] 0 by (2.33) and (2.40). Thus, we derived the explicit time-interval estimates in (2.67) and
in (2.68), to ensure that the solution map A is a contraction map.

Further note that, we may show directly the well-definedness and contraction for the solu-
tion map associated with the problem (2.21). Still it is worth considering variable £ in (2.25):
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we can easily construct a contraction mapping A on Xy, r and get the estimates (2.57) and (2.68)
to guarantee the well-definedness and contraction for the solution map.

We are now in position to prove existence of a solution of (2.11).

Proof of theorem 2.5. Let M > 0 be a positive constant obtained in lemma 2.20, (2.56), and
let T > 0 be a positive constant from Lemma 2.22, (2.68). Then, due to Lemma 2.20 and 2.22,
the solution map A is a contraction on Xy, r,. Therefore, there is a fixed point £ € X 7,, such
that £ = A and ¢ is a classical solution of (2.26). Thus,

&(x,1) +h0(x)>

s - (22

is a classical solution of (2.11). ]

In this section, we constructed a solution p using auxiliary variables / in (2.20) and £
in (2.25). Since £ =0 at =0, the time interval of a solution can be explicitly estimated as
in (2.56) and in (2.68). As a last step of our construction, we will show uniqueness of the
solution p of (2.11) in the next section.

3. Uniqueness

In this section, we show uniqueness for a local solution of (2.1). As in section 2, uniqueness of
a solution of (2.11) implies the uniqueness of a solution to (2.1). We make the same assump-
tions as we did to show existence of a classical solution of (2.11). Note that, the contraction
property of the solution map A implies the uniqueness of the fixed point on Xy 7, but not on
C?Hel+a/2(Q) x [0, T)). Nevertheless, similar to the proof of the contraction property of the
solution map A, lemma 2.22 in section 2, we show below uniqueness for a classical solution
of (2.11) on 2+ 1+2/2(Q) x [0, T)).

Theorem 3.1. Let b(x,1), ¢(x), D(x), po(x) and Q satisfy the strong positivity (2.17), the Holder
regularity (2.18) for 0 < o < 1, and the compatibility for the initial data (2.19), respectively.
Then, there exists T> 0 such that, if p;, py € C?+1+2/2(Q) x [0,T)) are classical solutions
of (2.11), then p; = p; on Q2 x [0,T).

Proof. First, note that from lemmas 2.7 and 2.10, it is sufficient to show uniqueness for a
solution of (2.26). Hereafter, we will show the uniqueness for a classical solution of the prob-
lem (2.26).

Let &;,& € C2Ho1+9/2(Q) x [0, T)) be two distinct solutions of (2.26). We will prove that
& =& in Q x [0,7) for sufficiently small 7 > 0 using contradiction argument. Assume that
&1 and &; are two distinct solutions in §2 x [0,T) for any T > 0. Then, subtracting &; from &5,
we obtain the equation,

&) _ 16— &)+ 66 - G

where L and G are defined in (2.27). Since & — &, =0 at =0, we can apply the Schauder
estimates (2.49), and we obtain,

€1 = &llrartaraxion) < CallG(&) — G(&)lcorarraxo,m)- (3.1)
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As in the proof of the lemma 2.22, we estimate the norm of,

X 2
6(61) - 6(6) = G AW (6 P - V&)

b(x,0))? .
- SO i) 606 - £9:) - VD) 62)

Let  M(T) :=max{[|&i || cotaitarraxfo,n): 1€2llcrortaraxiomy} > 0. Then, &, €
Xwm(r),r» where Xyyr) 7 is defined in (2.31), and thus, we have the same estimates of (2.63)
and (2.66), namely we have,

b(x,t
H(”’ (V&L - [VEP)
2D(x) Coa/2(0%[0,T))
< CGM(T) (T2 L T2 &) — & rantariaxion) (33)
and
2

;; ) (61 VE = 6&VE) - VD(x)

C:a/2(Qx[0,T)) 34
< CsM(T) (T2 L TV2Y(T+ T2 |6 — & erantar@x o)

where constants,

Cy = H (x,¢ ) D) pea ) . and

Coa/2(Qx[0,7))
C —9Hx’t)feq(x)VD(x) (3.5
’ (D(x))? Conar2(Qx[0,7)) .

Combining (3.2)—(3.4), we obtain the estimate,
1G(&1) = G(&)ll coarriaxior)) < CloM(T)K(T) €1 — &l coratrarraxiom),  (3:6)
where Cjg = max{C7, Cs} >0 and,
R(T) = (TUH/2 L 71/2)2 4 (p(1+)/2 L 71/2y (T 4 T1=2/2), (3.7)

Note that M(T) and (T) are increasing with respect to T > 0, and x(7T) — 0 as T | 0. There-
fore, take T > 0 such that,

C4C10M(T)I<J(T) < 1. 3.8)
Then combining (3.1), (3.6) and (3.8), we obtain that,

161 = &llc2ranrarzaxion) < CaCroM(T)K(T)[|€1 — &2l coreaitarrax o,1)) 3.9)

< |I&1 = &llrattaraxo,m);

which is a contradiction. Thus, we established that £; = & in Q x [0, 7).
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4. Conclusion

In this paper, we presented a new nonlinear Fokker—Planck equation which satisfies a special
energy law with the inhomogeneous absolute temperature of the system. Such models emerge
as a part of grain growth modeling in polycrystalline materials. We showed local existence
and uniqueness of the solution of the Fokker—Planck system. Large time asymptotic analysis
of the proposed Fokker—Planck model, as well as numerical simulations of the system will be
presented in a forthcoming paper [17]. As a part of our future research, we will further extend
such Fokker—Planck systems to the modeling of the evolution of the grain boundary network
that undergoes disappearance/critical events, e.g. [3, 18].

Data availability statement

No new data were created or analyzed in this study. Data will be available from 2023
January 31.
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