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Abstract
A field F is O∗ if each partial order that makes F a partially ordered field can be
extended to a total order that makes F a totally ordered field. We use the theory of
infinite primes developed byDubois andHarrison to prove the following. For a subfield
F of C that is finite-dimensional over Q, we prove that when F is Galois over Q, F is
an O∗-field if and only if is a subfield of R. We find other conditions that make F an
O∗-field and provide several examples. As well for an arbitrary field of characteristic
0, we characterize the maximal partial orders that are Archimedean.

Keywords Galois extension · Infinite prime · O∗-field · Normal closure · Number
field · Archimedean maximal partial order

Mathematics Subject Classification 06F25

1 Introduction

Afield F is called O∗ if each partial order on F making F into a partially ordered field
can be extended to a total order on F making F into a totally ordered field, that is, if P
is the positive cone of a partial order on F , then there exists a total order on F with the
positive cone T such that P ⊆ T . The concept of O∗-rings was introduced by Fuchs
in 1963 [5]. Identifying fields that are O∗-fields is an open question in Steinberg’s
book “Lattice-ordered Rings and Modules” [14, Open Problem 22].

The first author was supported by the Engaged Learning to Promote STEM Graduation Grant funded by
NSF, grant number 1928622.

B Jingjing Ma
ma@uhcl.edu

Kenneth Evans
evansk3470@uhcl.edu

1 Department of Mathematics, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston,
TX 77058, USA

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11117-023-00982-w&domain=pdf
http://orcid.org/0000-0002-5141-986X


   29 Page 2 of 13 K. Evans, J. Ma

Afield F is called anumber field if F is a subfield ofC, thefield of complexnumbers,
and F is finite-dimensional over Q, the field of rational numbers. By using the theory
of infinite primes for rings and fields developed by Harrison [6], the necessary and
sufficient conditions for real number fields being O∗-fields have been proved recently
[9]. The current paper continues the previous work and considers the number fields
in C, not necessarily in R, the field of real numbers. This gives us the ability to use
Galois extensions to get some results on O∗-fields.

Let R be a field. From [6, p. 3], a nonempty subset S of R is called a preprime if S
is closed under the addition and multiplication in R, and −1 /∈ S, that is, S + S ⊆ S,
SS ⊆ S, and −1 /∈ S. A maximal preprime is called a prime. By Zorn’s Lemma, each
preprime is contained in a prime. A prime S is called infinite if 1 ∈ S, otherwise S is
called finite. An infinite prime S of R is called full if R = S − S = {a − b | a, b ∈ S}.

Let F be a number field that is n-dimensional over Q. As observed on [6, p. 37]
there exist exactly n embeddings σ1, σ2, . . . , σn of F into C. Let ρ be the ordinary
complex conjugate on C. Assume ρ ◦ σi = σi , for 1 ≤ i ≤ r , and ρ ◦ σi = σi+s for
r < i ≤ r + s with r + 2 s = n. Then

σ1, . . . , σr , σr+1, . . . , σr+s, ρ ◦ σr+1, . . . , ρ ◦ σr+s

are these embeddings, and σ1, . . . , σr are called the real infinite prime divisors of F ,
and the sets {σr+1, ρ◦σr+1}, . . . , {σr+s, ρ◦σr+s} are called the complex infinite prime
divisors of F [6]. An embedding σ of F is called imaginary if there exists an element
0 �= a ∈ F such that σ(a) is a pure imaginary complex number.

Theorem 1 (1) ( [6, Proposition 3.5]) Let R be a number field and let σ1, . . . , σr be
the real infinite prime divisors of R. Then the sets σ−1

1 (R+), . . . , σ−1
r (R+) are distinct

and consist exactly of all the full infinite primes of R.
(2) ([6, Proposition 3.6]) Let R be a number field. Let P be an infinite prime of R

which is not full (i .e., P − P �= R). Then there exists a complex infinite prime divisor
{σ, ρ ◦ σ } of R with P = σ−1(R+). If R is a normal number field, then this gives
a one-one correspondence between all the non-full infinite primes of R and all the
complex infinite prime divisors of R.

For a number field F , the infinite primes of F are precisely the maximal partial
orders on F . If P is a maximal partial order on F . Then EP = P − P is a subfield of
F and P is a total order if and only if EP = F . The proofs of these facts are given in
[9, Lemma 2.2 & Theorem 3.1].

For more information on partially ordered rings and undefined terminology, the
reader is referred to [1, 2, 5, 6, 9, 11, 13, 14]. In the following, R+ and Q

+ denote the
usual total order on R and Q, respectively.

2 Galois extension andO∗-fields

We recall a few definitions and notations from Galois theory. Let L be a number field
and K a subfield of L . TheGalois groupGal(L/K ) is the set of all K -automorphisms
of L . Let S be a subset of Galois(L/K ). Define

123



Galois extensions and O∗-fields Page 3 of 13    29 

F(S) = {a ∈ L | f (a) = a,∀ f ∈ S}.

Then F(S) is a subfield of L , called the fixed field of S, and clearly K ⊆ F(S). L
is called Galois over K if K = F(Gal(L/K )). L is Galois over K if and only if
|Gal(L/K )| = [L : K ] [13, Corollary 2.16]. Let L = K [α] and [L : K ] = n. Then
L is Galois over K if and only if the minimal polynomial of α has n roots in L [13,
Corollary 2.17].

Theorem 2 Let F be a number field that is Galois over Q. Then F is O∗ if and only
if F is a subfield of R.

Proof “⇒” Assume that F is O∗. Since F is Galois over Q, F is the splitting field of
a set of irreducible polynomials { f j } over Q. Suppose that one f j has a complex root
α = a + ib with a, b ∈ R and b �= 0. Then α = a − ib is a root of f j as well. So
α − α = 2ib ∈ F and (α − α)2 = −(2b)2 �= 0.

Let P = R
+∩F . Then P is a partial order on F and−(α−α)2 ∈ P . Since F is O∗,

P ⊆ T , where T is a total order on F . Thus (α−α)2 ∈ T , so 0 �= (α−α)2 ∈ T ∩−T ,
a contradiction. Hence each f j only contains real roots and hence F ⊆ R.

“⇐” Assume F ⊆ R. Then all infinite prime divisors of F are real infinite prime
divisors since for any a ∈ F , the roots of the minimal polynomial of a over Q are in
F ⊆ R [13, Proposition 3.28]. Let P be a maximal partial order on F . Then P is an
infinite prime of F by [9, Lemma 2.2], so there exists a real infinite prime divisor δ

of F such that P = δ−1(R+) by Theorem 1(1). Thus P is a total order on F and F is
O∗. �


Let F be a number field. The normal closure Fnc of F over Q is the splitting field
over Q of the set of minimal polynomials of elements of F . If F = Q[α], then Fnc
is the splitting field of the minimal polynomial of α over Q and Fnc is Galois over Q

[13, Proposition 5.9]. If the minimal polynomial of α over Q has only real roots, then
Fnc ⊆ R. Thus Fnc is O∗ by Theorem 2 and hence F is O∗ as well. On the other hand
that F is O∗ may not imply that Fnc is O∗. After proving the following result, we will
give an example of such a field F .

Lemma 1 Let E be a number field with a total order P and let F be an extension field
of E such that [F : E] is odd. Then P can be extended to a total order on F, that is,
there exits a total order P1 on F such that P ⊆ P1.

Proof Since E = P∪−P = P−P , by Theorem 1(1), there exists a real infinite prime
divisor δ of E such that P = δ−1(R+). Let F = E[α] and f (x) = a0+a1x+· · ·+xn

be the minimal polynomial of α over E , where a0, a1, . . . are in E . Define

g(x) = δ( f (x)) = δ(a0) + δ(a1)x + · · · + xn .

Then g(x) is a real irreducible polynomial of degree n over δ(E) since δ is a real
embedding. Since [F : E] = n is odd, g(x) has a real root β. Define σ : F → C as
follows. For all

a0 + a1α + · · · + an−1α
n−1 ∈ F,
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σ(a0 + a1α + · · · + an−1α
n−1) = δ(a0) + δ(a1)β + · · · + δ(an−1)β

n−1,

where a0, a1, . . . , an−1 ∈ E . Then σ is a real infinite prime divisor of F . Let P1 =
σ−1(R+). Then, by Theorem 1(1), P1 is a total order on F and for all w ∈ P ,
σ(w) = δ(w) ∈ R

+. So w ∈ P1, that is, P ⊆ P1. �

Example 1 Let ω = e2π i/3 and F = Q[ω 3

√
2]. Let P be a maximal partial order on F

and EP = P − P . Then EP is a subfield of F [9, Theorem 2.2] and hence because
[EP : Q] divides [F : Q] = 3, [EP : Q] is either 3 or 1. We claim [EP : Q] �= 1.
If [EP : Q] = 1, then EP = Q. Since the only total order on Q is Q

+, P = Q
+.

However by Lemma 1, P = Q
+ can be extended to a total order on F , a contradiction.

Thus we must have [EP : Q] = 3, so EP = F and P is a total order on F . Hence F
is O∗. By [13, Example 1.27], Fnc = Q[ω,

3
√
2], so Fnc is not O∗ by Theorem 2.

Let F be a number field. If F is O∗, then F does not have imaginary embeddings.
In fact, if δ : F → C is an embedding such that δ(a) = ib for some 0 �= a ∈ F and
b ∈ R, where i = √−1. Then P = δ−1(R+) is a partial order on F that cannot be
extended to a total order on F since −a2 ∈ P .

However it is not clear that F having no imaginary embeddings is a sufficient
condition for F being O∗. We know that if [F : Q] is odd, then F is always O∗ from
Lemma 1 or [9, Theorem 3.2].

In the following result, we collect some equivalent conditions equivalent to F not
having imaginary embeddings.

Theorem 3 Let F be a number field. The following statements are equivalent.

(1) F does not have imaginary embeddings,
(2) For any pair (E, P), where E is a subfield of F and P is a total order on E, and

any subfield K of F which is a quadratic extension over E, there exists α ∈ K
such that K = E[α] and α is a root of irreducible polynomial f (x) = x2 − a
over E for some a ∈ P,

(3) For any subfields E and K of F such that E ⊆ K and [K : E] = 2, each total
order on E can be extended to a total order on K .

Proof (1) ⇒ (2) Since P is a total order on E , by Theorem 1(1), there exists a real
infinite prime divisor δ of E such that P = δ−1(R+). Assume that K = E[α] and α

satisfies the irreducible polynomial f (x) = x2 − a for some a ∈ E . If a /∈ P , then
−a ∈ P , so −δ(a) ∈ R

+. It follows that g(x) = x2 − δ(a) has pure imaginary roots
θ = ±i

√−δ(a). Then φ : K → C, defined by

φ(c + dα) = δ(c) + δ(d)θ, ∀c, d ∈ E,

is an imaginary embedding of K , and it can be extended to an imaginary embedding
of F [12, Theorem 50], a contradiction. Therefore we must have a ∈ P .

(2) ⇒ (3) Let P be a total order on E , by Theorem 1(1) there exists a real infinite
prime divisor δ of E such that P = δ−1(R+). By the assumption, K = E[α] for some
α satisfying the irreducible polynomial f (x) = x2 − a with a ∈ P . Let θ be a root of
g(x) = x2 − δ(a). Since a ∈ P , δ(a) ∈ R

+ and thus θ ∈ R.
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Then φ : K → C, defined by

φ(c + dα) = δ(c) + δ(d)θ, ∀c, d ∈ E,

is a real embedding from K to C that extends δ, so φ is a real infinite prime divisor
of K that extends δ. Thus P1 = φ−1(R+) is a total order on K and P = δ−1(R+) ⊆
φ−1(R+) = P1.

(3) ⇒ (1) Let σ be an imaginary embedding of F . Then there exists 0 �= a ∈ F
such that σ(a) = ib, where b ∈ R. Define P = σ−1(R+) and EP = P − P . Then
P is a total order on the subfield EP of F . Since σ(−a2) = −σ(a)2 = b2 ∈ R

+,
−a2 ∈ P , so a2 ∈ EP . Thus [EP [a] : EP ] = 2. By (3), P can be extended to a
total order P1 on EP [a], so a2 ∈ P1. On the other hand, −a2 ∈ P ⊆ P1. Therefore
a2 ∈ P1 ∩ −P1 = {0}, a contradiction. Hence F cannot have imaginary embeddings.

�

The following direct consequence of Theorem 3 is useful when showing number

fields are O∗.

Corollary 1 Let F be a number field that does not have imaginary embeddings. For
a maximal partial order P on F, EP cannot be contained in a subfield K of F such
that [K : EP ] = 2 or m, where m > 1 is an odd positive integer.

Proof Assume EP ⊆ K and K is a subfield of F with [K : EP ] = 2 or m, where
m > 1 is odd. By Theorem 3 and Lemma 1, the total order P on EP can be extended
to a total order P1 on K . Since P is a maximal partial order on F and P1 is also a
partial order on F , P = P1, so K = P1 ∪ (−P1) = P ∪ (−P) = P − P = EP , a
contradiction. �

Theorem 4 Let F be a number field that does not have imaginary embeddings. Assume
[Fnc : Q] = 2an, where a ≥ 1 and n is a positive odd integer. If G = Gal(Fnc/Q) has
a normal subgroup of order n, then F is an O∗-field.

Proof Let P be a maximal partial order on F and EP = P − P . We assume EP �= F ,
and get a contradiction. Let

N = Gal(Fnc/F), H = Gal(Fnc/EP ).

Then N � H ⊆ G. Since |H | divides |G|, |H | = 2bm, where 0 ≤ b ≤ a is an
integer and m is a positive integer that is odd and divides n. Let M be a maximal
proper subgroup of H containing N and K = F(M). Then |M | = [Fnc : K ] and
EP � K ⊆ F .

Ifm = 1 and b = 0, then |H | = [Fnc : EP ] = 1, so EP = Fnc and hence EP = F ,
a contradiction. If m = 1 and b ≥ 1, then |H | = 2b and |M | = 2b−1 [8, Corollary
5.26]. Thus
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[K : EP ] = [Fnc : EP ]
[Fnc : K ] = |H |

|M | = 2,

a contradiction by Corollary 1. If b = 0 and m > 1, then |H | = m, and hence

[K : EP ] = [Fnc : EP ]
[Fnc : K ] = |H |

|M |

is an odd integer > 1, a contradiction by Corollary 1.
In the following, assume that b ≥ 1 and m > 1. Let Q be a normal subgroup of G

with |Q| = n, and n = pt11 . . . ptkk , where p1, . . . , pk are distinct odd prime numbers,
k ≥ 1, and ti ≥ 1, i = 1, . . . , k. For i = 1, . . . , k, let Qi be a Sylow pi -subgroup of
G. Then QQi is a subgroup and Q ⊆ QQi ⊆ G. Since

|QQi | = |Q||Qi |
|Q ∩ Qi | and |QQi | divides |G|,

we must have |QQi | = n, so Q = QQi and Qi ⊆ Q for i = 1, . . . , k. Let Wi be a
Sylow pi -subgroup of H , i = 1, . . . , k. Then Wi is contained in a conjugate of Qi in
G, and hence because Q is normal, Wi ⊆ Q for i = 1, . . . , k. Let W = Q ∩ H . Then
W is a normal subgroup of H and Wi ⊆ W for i = 1, . . . , k, so |Wi | divides |W | for
i = 1, . . . , k, and hence |W | = m. Since WM is a subgroup of H , either WM = H
or WM = M .

If WM = H , then

2bm = |H | = |WM | = |W ||M |
|W ∩ M | = m|M |

|W ∩ M | ,

so |M | = 2bm1, where m1 is a positive integer and m1|m. Hence,

[K : EP ] = [Fnc : EP ]
[Fnc : K ] = |H |

|M | = m

m1

is an odd integer > 1, a contradiction by Corollary 1.
If WM = M , then W ⊆ M . The quotient group H/W is a 2-group and M/W is

a maximal subgroup of H/W . Hence |M/W | = 2b−1 [8, Corollary 5.26], so |M | =
2b−1m and

[K : EP ] = [Fnc : EP ]
[Fnc : K ] = |H |

|M | = 2,

a contradiction by Corollary 1.
Therefore if P is a maximal partial order of F , we must have EP = F , so P is a

total order on F by Theorem 1(1). �
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Corollary 2 Let F be a number field that does not have imaginary embeddings. Assume
[Fnc : Q] = 2a pb, where a, b are positive integers and p is an odd prime number. If
p ≥ 2a, then F is an O∗-field.

Proof Since p ≥ 2a , the Sylow p-subgroup of G is normal, so by Theorem 4, F is
O∗. �


Let F be a number field that does not have imaginary embeddings. By Theorem 4,
if [Fnc : Q] = 4pb with b ≥ 1 and prime number p > 3, then F is O∗. We show that
if [Fnc : Q] = 4(3b) with b ≥ 1, then F is O∗ as well. We first have the following
result that will be used in the proof.

Lemma 2 Let G be a group of order |G| = 4(3k) with k ≥ 2. Then G has either the
normal Sylow 3-subgroup or a normal subgroup of order 3k−1.

Proof If the number of Sylow 3-subgroups of G is 1, then G has the normal Sylow
3-subgroup. Now suppose that N and M are two different Sylow 3-subgroups of G.
Then

|N ∩ M | = |N ||M |
|NM | ≥ |N ||M |

|G| = (3k)(3k)

4(3k)
= 9

4
(3k−2),

so because |N ∩ M | divides 3k , |N ∩ M | = 3k−1.
We claim that N ∩ M is normal in G. It is well known that N ∩ M is normal in N

and M [8, Corollary (5.26)]. Let K = NG(N ∩ M) be the normalizer of N ∩ M in G.
Then NM ⊆ K and hence 3k+1 = (|N ||M |)/|N ∩ M | = |NM | ≤ |K |. So since |K |
divides |G|, |K | = 4(3k). Therefore K = G, so N ∩ M is normal in G. �

Example 2 Let F be a real number field that does not have imaginary embeddings. If
[Fnc : Q] = 4(3b) with b ≥ 1, then F is O∗.

Let P be a maximal partial order on F and EP = P − P . Define

G = Gal(Fnc/Q), H = Gal(Fnc/EP ), and N = Gal(Fnc/F).

Then N ⊆ H ⊆ G, so |H | divides |G| = 4(3b). In the following, we consider the
case that |H | = 4(3c) with 1 ≤ c < b, and leave the similar verifications of the other
cases to the reader.

Assume EP �= F . We derive a contradiction. Since EP �= F , N �= H . Let M be a
maximal proper subgroup of H containing N and define E = F(M). Then

[E : EP ] = [Fnc : EP ]
[Fnc : E] = |H |

|M | ,

by the Fundamental Theorem of Galois Theory [13, Theorem 5.1]. We will use this
fact repeatedly in the argument.

(1) Assume c = 1, so |H | = 12. Then H has either a normal Sylow 2-subgroup or
a normal Sylow 3-subgroup [8, Theorem (5.14)].
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First assume that H has a normal Sylow 3-subgroup Q. Since QM is a subgroup
and M ⊆ QM ⊆ H , QM = M or QM = H . If QM = M , then Q ⊆ M and M/Q
is a maximal subgroup in H/Q. Since |H/Q| = 4, |M/Q| = 2 [8, Corollary 5.26],
so |M | = 6, and hence [E : EP ] = |H |/|M | = 2, a contradiction by Corollary 1.
Suppose that H = QM . If |Q ∩ M | = 3 then Q ⊆ M and thus QM = M , a
contradiction. So |Q ∩ M | = 1, and hence

|H | = |Q||M |
|Q ∩ M | = 3|M |

so that [E : EP ] = |H |/|M | = 3, again a contradiction by Corollary 1.
Now assume that H has the normal Sylow 2-subgroup W . If WM = M , then

W ⊆ M , so |M | = 4. Then [E : EP ] = |H |/|M | = 3, a contradiction by Corollary 1.
If H = WM and |W ∩ M | = 2, then

12 = |H | = |W ||M |
|W ∩ M | = 2|M | ⇒ |M | = 6,

so [E : EP ] = |H |/|M | = 2, a contradiction by Corollary 1. If H = WM and
|W ∩ M | = 1, then |M | = 3. Let K = F(W ). We have

[K : EP ] = |H |
|W | = 3 and [E : EP ] = |H |

|M | = 4,

so [K E : EP ] = 12 [13, Problem 17, p. 14]. We also have

[EP : Q] = [Fnc : Q]
[Fnc : EP ] = 4(3b)

4(3)
= 3b−1.

It follows that [K E : Q] = [K E : EP ][EP : Q] = 4(3b), and hence K E = Fnc.
Since [K : EP ] = 3, K = EP [α] and α is a root of an irreducible polynomial f (x)

of degree 3 over EP . Since EP ⊆ F ⊆ R, we may take α as a real root of f (x), so
K ⊆ R, and hence since E ⊆ F ⊆ R, Fnc = K E ⊆ R. So Fnc is O∗ by Theorem 2
and thus F is also O∗. But then Ep = F , a contradiction of our initial assumption.

(2) Assume |H | = 4(3c) with c ≥ 2. By Lemma 2, H has a normal subgroup Q of
order 3c or 3c−1.

(2a) Suppose that |Q| = 3c. If QM = M , then Q ⊆ M , so |M | = 2(3c). Thus
[E : EP ] = |H |/|M | = 2, a contradiction by Corollary 1. If QM = H , then

4(3c) = |H | = |QM | = |Q||M |
|Q ∩ M | ⇒ |M | = 4|Q ∩ M |,

so [E : EP ] = 3c/|Q ∩ M | is an odd integer > 1 since |Q ∩ M | �= 3c, a contradiction
by Corollary 1.

(2b) Suppose that |Q| = 3c−1. If QM = M , then Q ⊆ M . Since Q is contained in
a Sylow 3-subgroup of H and M is maximal, Q �= M . Since |H/Q| = 12 and M/Q
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is maximal in H/Q, |M/Q| = 3, 6, or 4, and hence |M | = 3c, 2(3c) or 4(3c−1). If
|M | = 2(3c) or 4(3c−1), then [E : EP ] = |H |/|M | is either 2 or 3, a contradiction by
Corollary 1.

Consider the case that |M | = 3c. Let W be a Sylow 2-subgroup of H and K =
F(W ). Then [K : EP ] = |H |/|W | = 3c. It follows that [EK : EP ] = [E : EP ][K :
EP ] = 4(3c) [13, Problem 17, p. 14]. Since

[EP : Q] = [Fnc : Q]
[Fnc : EP ] = 4(3b)

4(3c)
= 3b−c,

we have [EK : Q] = 4(3b), so EK = Fnc. Similar to the argument used in (1), it
follows that Fnc ⊆ R, a contradiction.

If QM = H , then

4(3c) = |H | = |Q||M |
|Q ∩ M | = 3c−1|M |

|Q ∩ M | ⇒ |M | = 12|Q ∩ M |,

so [E : EP ] = |H |/|M | is an odd integer > 1, a contradiction again by Corollary 1.
Therefore, we have proved that if [Fnc : Q] = 4(3b) with b ≥ 1, then F is O∗.

Theorem 5 Let F be a real number field that does not have any imaginary embeddings
and [Fnc : Q] = 4pb, where p is an odd prime number and b ≥ 1, then F is O∗.

Proof The case for p = 3 is demonstrated in Example 2, leaving only p ≥ 4, for
which the Sylow p-subgroup of G is normal so by Theorem 4, F is O∗ �


Let F be a number field and Fnc be its normal closure. Define

G = Gal(Fnc/Q) and N = Gal(Fnc/F).

Suppose that |N | = 2an where a ≥ 1 and n is a positive odd integer. Let S be a
Sylow 2-subgroup of N and E = F(S). Then F ⊆ E ⊆ Fnc with [E : F] = n and
[Fnc : E] = 2a [13, Theorem 5.1].

Although it is not certain if F is O∗ when F does not have imaginary embeddings,
F is indeed O∗ in case that E does not have imaginary embeddings.

Theorem 6 Let E be defined as above. If E does not have imaginary embeddings, then
F is an O∗-field.

Proof Let P be a maximal partial order on F and EP = P − P . Define H =
Gal(Fnc/EP ) and assume |H | = 2t k where t ≥ 1 and k is a positive odd integer.
Since N ⊆ H , |N | divides |H | implies that a ≤ t and n | k. Let W be a Sylow
2-subgroup of H such that S ⊆ W , where S is a Sylow 2-subgroup of N , and let
K = F(W ). So |W | = 2t . Then there exists a chain of subgroups of W :

S ⊆ S1 ⊆ . . . ⊆ St−a−1 ⊆ W ,

123



   29 Page 10 of 13 K. Evans, J. Ma

such that |Si | = 2a+i for i = 1, . . . , t − a − 1 [8, Corollary 5.23]. Let Ei = F(Si )
for i = 1, . . . , t − a − 1. We have

K ⊆ Et−a−1 ⊆ . . . ⊆ E1 ⊆ E

and [E : E1] = 2, [E1 : E2] = 2, . . . , [Et−a−1 : K ] = 2.
Now that P is a total order on EP and [K : EP ] = |H |/|W | = k is odd implies

that P can be extended to a total order PK on K by Lemma 1. Since E does not have
imaginary embeddings, by Theorem 3, PK can be extended to a total order Pt−a−1 on
Et−a−1, so P can also be extended to the total order Pt−a−1. Continuing this process,
we have that P can be extended to a total order PE on E . Thus P can be extended
to a total order PE ∩ F on F since F ⊆ E . Therefore, since P is maximal on F ,
P = PE ∩ F is a total order on F and F is O∗. �


The following is a direct consequence of Theorem 6.

Corollary 3 If a number field F has no imaginary embeddings and [Fnc : F] = 2k

where k is a positive integer, then F is O∗.

3 Archimedeanmaximal partial orders on fields

Harrison and Dubois obtained many important results not only for the infinite primes
on the number fields, but also for the infinite primes on arbitrary fields as well [2–4,
6, 7]. In this section, we use the connection between Archimedean maximal partial
orders and infinite primes on an arbitrary field of characteristic 0 to studyArchimedean
maximal partial orders.

Let (R,≤) be a partially ordered field. The partial order ≤ on R is called
Archimedean if for any a, b ∈ R, Za ≤ b implies that a = 0, where Z is the set
of all integers and Za ≤ b means that ma ≤ b for all integers m. The partial order ≤
on R is called strong Archimedean if 0 ≤ 1 and for any 0 ≤ a ∈ R, there is a positive
integer n such that 0 ≤ n−a. The above definition for Archimedean is widely used in
partially ordered groups and rings, see [1, 5, 9, 15] and the above definition for strong
Archimedean is called Archimedean in [2, 6].

Lemma 3 Let (R,≤) be a partially ordered field.

(1) If≤ is a total order, then≤ is Archimedean if and only if it is strong Archimedean.
(2) If≤ is a lattice order that is strong Archimedean, then it is a total order. However

a lattice order that is Archimedean may not be a total order.

Proof (1) Since ≤ is a total order, 1 ≥ 0. Assume that (R,≤) is Archimedean and
0 ≤ a. Then Z1 � a, so there exists a positive integer n such that n > a, so 0 ≤ n−a.
Thus (R,≤) is strong Archimedean. Now assume that (R,≤) is strong Archimedean
and Za ≤ b for some a, b ∈ R. Suppose that a �= 0. If a > 0, then for any positive
integer n, na ≤ b implies that n ≤ a−1b for all integers n, so there is no positive
integer m such that 0 ≤ m − a−1b, a contradiction. If a < 0, then for all positive
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integers n, n(−a) ≤ b implies that n ≤ (−a)−1b, a contradiction again. Thus we
must have a = 0, that is, (R,≤) is Archimedean.

(2) Let (R,≤) be a lattice-ordered field that is strong Archimedean and a ∈ R.
Since a+ = a ∨ 0 < n and a− = −a ∨ 0 < m for some positive integers n,m, we
have

a+a− = a+a− ∧ a+a− ≤ na− ∧ ma+ ≤ nm(a+ ∧ a−) = 0.

Hence a+a− = 0, so a+ = 0 or a− = 0, that is, (R,≤) is a totally ordered field. �

An example of an Archimedean lattice order that is not a total order is R = Q[√2]

with the coordinate-wise ordering R+ = {a + b
√
2 | a, b ∈ Q

+}.
Let P be a partial order on R and suppose that 1 ∈ P . Define

JP = {a ∈ R | 1 + Za ⊆ P}, where Za = {na | n ∈ Z}.

Lemma 4 For any Archimedean partial order P with 1 ∈ P, JP = {0}.
Proof It is clear that 0 ∈ JP . Let a ∈ JP . Then 1 + Za ≥P 0, where ≥P is the
partial order with the positive cone P . Then we have Za ≤P 1, so a = 0 since P is
Archimedean. Therefore JP = {0}. �

Theorem 7 Let R be a field and let P be a maximal partial order on R.

(1) Then 1 ∈ P, P is an infinite prime of R, and EP = P − P is a subfield of R.
(2) If P is Archimedean, then P is strong Archimedean.

Proof (1) We first show that if 0 �= a ∈ P , then a−1 ∈ P . It is easy to see that,

P ′ = {x ∈ R | wx ∈ P for some 0 �= w ∈ P}

is a partial order on R and P ⊆ P ′. Since P is maximal, P = P ′. Then a−1 ∈ P ′ = P
because a2a−1 = a ∈ P . In particular, since P is maximal, there exists 0 �= a ∈ P ,
and thus 1 = aa−1 ∈ P .

It is clear that P is a preprime. Assume that P � P1, where P1 is a preprime.
We derive a contradiction. Take t ∈ P1\P . Define

P[t] = { f (t) | f (t) is a polynomial in t with coefficients in P}.

It is clear that P ⊆ P[t] and P[t] is closed under the addition and multiplication of
R. If P[t] ∩ (−P[t]) = {0}, then P[t] is a partial order on R, so P = P[t] since P
is a maximal partial order. Then t ∈ P , a contradiction. Thus P[t] ∩ (−P[t]) �= {0}.
Let w ∈ P[t] ∩ (−P[t]) and w �= 0. Then w = f (t) and −w = g(t) for some
f (t), g(t) ∈ P[t], so f (t) + g(t) = 0. Thus we have cntn + . . . + c1t + c0 = 0 with
ci ∈ P and c0 �= 0, so c−1

0 ∈ P implies that

−1 = c−1
0 cnt

n + . . . + c−1
0 c1t ∈ P[t] ⊆ P1,
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a contradiction. Therefore P is a maximal preprime with 1 ∈ P , that is, P is an infinite
prime.

To see that EP is subfield of R, take 0 �= t ∈ EP . If t ∈ P , then t−1 ∈ P . Assume
that t /∈ P . Define P[t] as above. If P[t] ∩ (−P[t]) = {0} then P[t] is a partial order
on R that contains P , so P = P[t] and hence t ∈ P , a contradiction. Therefore,
P[t] ∩ (−P[t]) �= {0}. So the same argument as in the previous paragraph gives

1 = −(c−1
0 cnt

n−1 + · · · + c−1
0 c1)t,

where c0 �= 0, c1, . . . , cn ∈ P and n ≥ 1. So t−1 = −(c−1
0 cntn−1 + · · · + c−1

0 c1) ∈
EP , and hence EP is a subfield of F .

(2) By Lemma 4, JP = {0}, so P is strong Archimedean [7, Corollary 1.4]. �

For a number field F and amaximal partial order P on F , P is a strongArchimedean

infinite prime divisor of F [6, 9]. Thus if P is directed, P = δ−1(R+) for a real
embedding σ of F , and if P is not directed, P = σ−1(R+) for a complex embedding
δ on F by Theorem 1.We generalize this result to Archimedeanmaximal partial orders
on an arbitrary field of characteristic 0.

Corollary 4 Let R be a field of characteristic 0 and suppose that P is a maximal partial
order on R that is Archimedean.

(1) If P is directed, then there exists an embedding σ from R to R such that P =
σ−1(R+). In particular, P is a total order on R.

(2) If P is not directed, then there exists an embedding δ from R to C such that
P = δ−1(R+) and δ(R) � R.

Proof (1) By Theorem 6, P is a strong Archimedean infinite prime of R. Since P is
directed, R = P − P . It follows from [6, Proposition 1.7] or [2, 4.9] that there exists
an embedding σ : R → R such that P = σ−1(R+), so P is a total order on R.

(2) By [7, Corollary 1.4], there is an embedding δ from R to C such that P =
δ−1(R+). Since P is not directed, δ(R) � R. �

Example 3 A directed maximal partial order may not be a total order if it is not
Archimedean. For instance, let R be equipped with a non-Archimedean total order
≤. So there exists z ∈ R such that n ≤ z for all positive integers n. Define the positive
cone on C as follows.

P = {a + bi | 0 ≤ a and n|b| ≤ a for all n > 0, a, b ∈ R},

where |b| = b if b ≥ 0 in R and |b| = −b if b < 0 in R. Then P is a directed partial
order that is not Archimedean [10, Theorem 1]. This maximal partial order is not a
total order because C cannot have a total order with respect to which it is a totally
ordered field.

Data availability Data sharing not applicable to this article as no datasets were generated or analysed during
the current study.

123



Galois extensions and O∗-fields Page 13 of 13    29 

References

1. Birkhoff, G., Pierce, R.R.S.: Lattice-ordered rings. An. Acad. Brasil Ci. 28, 41–69 (1956)
2. Dubois, D. W.: Infinite prime and ordered fields, Dissertations Math. (Rozprawy Math.), 69 (1971)
3. Dubois, D.W.: A note on David Harrison’s theory of preprimes. Pacific J. Math. 21, 15–19 (1967)
4. Dubois, D.W.: On partly ordered fields. Proc. Amer. Math. Soc. 7, 918–930 (1956)
5. Fuchs, L.: Partially ordered algebraic systems, Dover Publications, Inc. Mineola, New York (2011)
6. Harrison, D.K.: Finite and infinite primes for rings and fields, Memoirs of the American Mathematical

Society, 68, Providence, Rhode Island (1966)
7. Harrison, D.K., Warner, H.D.: Infinite primes of fields and completions. Pacific J. Math. 45, 201–216

(1974)
8. Issacs, I.M.: Algebra, a Graduate Course. Brook/Cole Publishing Company, Boston (1994)
9. Ma, J.: The number fields that are O∗-fields, Algebra Universalis, 83, 23 (2022)

10. Ma, J.: Partial orders on C = D + Di and H = D + Di + Dj + Dk. Int. J. Adv. Math. Sci. 3, 156–160
(2015)

11. Ma, J.: Lecture Notes on Algebraic Structure of Lattice-Ordered Rings. World Scientific Publishing
(2014)

12. Marcus, D.A.: Number fields, Universitext, 2nd edn. Springer, NewYork (2018)
13. Monrandi, P.: Field and Galois Theory. Springer, New York (1996)
14. Steinberg, S.A.: Lattice-Ordered Rings and Modules. Springer, New York (2010)
15. Steinberg, S.A.: A characterization of rings in which each partial order is contained in a total order.

Proc. Amer. Math. Soc. 125, 2555–2558 (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Galois extensions and O*-fields
	Abstract
	1 Introduction
	2 Galois extension and O*-fields
	3 Archimedean maximal partial orders on fields
	References


