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Abstract

In the problem of spotlight mode airborne synthetic aperture radar (SAR) image
formation, it is well-known that data collected over a wide azimuthal angle violate the
isotropic scattering property typically assumed. Many techniques have been proposed to
account for this issue, including both full-aperture and sub-aperture methods based on
filtering, regularized least squares, and Bayesian methods. A full-aperture method that
uses a hierarchical Bayesian prior to incorporate appropriate speckle modeling and re-
duction was recently introduced to produce samples of the posterior density rather than
a single image estimate. This uncertainty quantification information is more robust as
it can generate a variety of statistics for the scene. As proposed, the method was not
well-suited for large problems, however, as the sampling was inefficient. Moreover, the
method was not explicitly designed to mitigate the effects of the faulty isotropic scat-
tering assumption. In this work we therefore propose a new sub-aperture SAR imaging
method that uses a sparse Bayesian learning-type algorithm to more efficiently produce
approximate posterior densities for each sub-aperture window. These estimates may be
useful in and of themselves, or when of interest, the statistics from these distributions
can be combined to form a composite image. Furthermore, unlike the often-employed ¢,-
regularized least squares methods, no user-defined parameters are required. Application-
specific adjustments are made to reduce the typically burdensome runtime and storage
requirements so that appropriately large images can be generated. Finally, this paper
focuses on incorporating these techniques into SAR image formation process, that is,
for the problem starting with SAR phase history data, so that no additional processing
errors are incurred. The advantage over existing SAR image formation methods are
clearly presented with numerical experiments using real-world data.

Keywords: synthetic aperture radar, sub-aperture image recovery, generalized sparse
Bayesian learning, uncertainty quantification.

1 Introduction

Spotlight mode airborne synthetic aperture radar (SAR)! is a widely-used technology for
surveillance and mapping due to its all-weather day-or-night imaging capabilities that
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make it favorable over optical imaging modalities in remote sensing, [1, 21, 35]. The
data are typically collected in a circular flight pattern around the scene of interest and
then processed to produce images that are used for purposes such as classification and
identification. It is therefore critical for practitioners to be able to rely on SAR images
that clearly localize targets.

Challenges in SAR imaging

There are several well-known challenges in SAR imaging, which we discuss below, along
with the existing state of the field on these issues.

e Isotropic scattering assumption: While it is straightforward to directly process
the circularly-collected 360°-azimuth SAR phase history data into a single image
estimate, i.e. so-called full-azimuth or full-aperture imaging, it forces the often used
yet incorrect assumption that the imaging scene contains only isotropic scatterers.
There is angular dependence of the scattered response, however. In particular,
since the energy is scattered off objects in the front of the scene, then it does
not mix evenly with the full scene. So-called sub-aperture techniques, where the
full azimuth data are grouped into smaller overlapping sub-aperture windows and
then processed separately for image recovery are often employed to alleviate this
problem. Each image recovery process typically employs filtering, regularized least
squares, /1 regularization, or Bayesian methods, followed by some mechanism (e.g.
weighted averages) to aggregate the results from each sub-aperture recovery to
form a final image. A good review of sub-aperture techniques may be found in [4],
with specific examples in [15, 17, 44, 49, 50, 55, 60].

e Speckle: SAR is a coherent imaging system, meaning that both the collected data
and the reflectivity image are complex-valued. While typically only the magnitude
is viewed, the phase information should not be neglected in the image formation
process, and is important for downstream tasks such as target position and ampli-
tude estimation, [43, 42]. All coherent imaging modalities are affected by speckle,
a multiplicative-noise-like phenomenon which, although is in fact signal, causes
grainy-looking images and hence it is desirable to remove it. Existing methods for
SAR image reconstruction from phase history data usually do not directly address
speckle and post-processing operations like smoothing and filtering are typically
necessary, see e.g. [3, 22, 25, 26, 39, 48|. Basic, fast methods that rely on an in-
verse non-uniform fast Fourier transform (NUFFT), [33], provide no speckle reduc-
tion, while sparsity-based methods that rely on ¢, regularization in some domain?
[2, 14, 16, 17, 58, 57, 50, 53|, disregard the physical meaning of speckle and in-
stead choose to place penalties on approximate pixel magnitude values. Conflating
speckle with the usual additive noise in this way makes parameter selection for
the ¢; regularization penalty term very difficult (and essentially without physical
meaning) in practice, although some methods have tried to tackle estimating this
parameter [10]. Recently, [24] incorporated the fully-developed speckle model as
an image prior within a hierarchical Bayesian framework, and in doing so properly
characterized the speckle as part of the signal, which could then be appropriately

2Speckle reduction is often also addressed using denoising techniques such as total variation (TV) regular-
ization, either used directly of through a joint sparsity scheme [50, 52, 55].



reduced, for example using a sparse Bayesian learning (SBL) technique [65]. The
numerical tests performed in [24] confirmed that using this model yielded improved
speckle reduction over commonly used compressive sensing techniques while also
providing uncertainty quantification (see below). However, due to long run-time,
this method did not consider sub-aperture imaging and the correspondingly re-
quired processing of more than one aperture window.

e Uncertainty quantification: For the most part the existing sub-aperture and full
azimuth SAR image formation methods produce a single image product, typically
a maximum likelihood or maximum a posteriori point estimate, that approximates
the unknown ground truth. Predictions from these methods are not probabilistic,
and therefore provide no information about the statistical confidence with which
we can trust the features in the resulting images, e.g., which are more likely ac-
tual objects in the scene and which are more likely attributed to speckle or noise.
This makes forming reliable images difficult, particularly in SAR where even many
synthetically-created examples have unknown true reflectivity.® In [24], an MCMC-
based method was used to sample the posterior density of a hierarchical Bayesian
model for full-azimuth SAR image reconstruction from phase history data, giving
much more robust information about the distribution of the image to affirm the
confidence with which each estimate can be trusted. Sampling-based methods us-
ing this same prior structure have been developed to quantify uncertainty in basic
real-valued linear inverse problems such as image reconstruction, see e.g. [9], and
have also been applied to SAR imaging tasks such as moving target inference, [46],
passive SAR image reconstruction, [69], and speckle noise model selection, [38]. In
addition, several SAR image reconstruction methods [29, 68, 71, 72| have leveraged
SBL estimation procedures, [65], or Bayesian compressed sensing [36] to analyze
the same posterior.

The purpose of this paper therefore is to address these challenges by introducing an
efficient sub-aperture SAR imaging method that models and reduces speckle and returns
an approximate posterior density, allowing for uncertainty quantification. This will be
accomplished by adapting the speckle characterization and reduction techniques, along
with the uncertainty quantification, of the method in [24]. Significantly, we are able to
address these challenges within the process of reconstructing SAR images directly from
phase history data, as opposed to relying on altering images that have already been
reconstructed or otherwise processed.

Contributions

This investigation provides several significant contributions to the SAR image formation
literature, specifically to sub-aperture imaging. First, to the best of our knowledge,
sub-aperture approaches for wide-angle SAR imaging have previously been limited to
point estimates. To this end, our proposed method provides approximate posterior
densities for each sub-aperture image based on a deterministic estimation procedure
[32] to analyze the constructed hierarchical Bayesian prior. Second, while many sub-
aperture methods have been shown to yield highly resolved SAR images, [4, 15, 17, 44,

3We point out that there are some instances for which benchmarks for despeckling have been established,
[27]. However, these tests operate on simulated magnitude-only images that have already been formed, while
the focus of this paper is on reconstructing complex-valued images from real-world phase history data.



49, 50, 55, 60], whether through a direct prior on each sub-aperture image or a joint
sparsity approach, these techniques all require some user selected thresholds and/or
parameters, which makes them less robust to modifications within the data. By contrast,
the proposed method is automated, meaning that it does not require any parameter
tuning for different data sets. While some methods have been proposed to aid in selection
of the regularization parameters, e.g. [10, 59|, the task remains challenging in practice
and at the very least requires some extra processing. The method we propose is also
able to incorporate TV regularization (as well as higher order TV, and most other
regularization operators, e.g. wavelets) into its hierarchical Bayesian prior. The ability
to regularize in other domains illustrates the general flexibility of the Bayesian model,
whereby additional priors can be added to account for a variety of constraints, such as
phase error correction [56, 67, 58, 62, 47, 70]. To the best of our knowledge, this is the
first time an SBL-type prior has been used with TV for SAR image formation. Third, we
demonstrate that this novel approach is also significantly faster than other sparsity (¢1-
regularized least squares) methods. Furthermore, among other subjective advantages in
the actual appearance of the image, our technique increases image contrast and reduces
speckle. Finally, a challenging real-world data example is considered to demonstrate the
new methodology, and support its use. Real-world SAR image formation is a very large
problem, and we make application-specific efficient storage and runtime adjustments due
to the prohibition of traditional matrix-based methods for linear inverse problems, as
even storing dense matrices of the necessary size is problematic. Parallel processing of
the sub-aperture images is also included in the implementation.

Organization

The rest of this paper is organized as follows. Section 2 gives necessary background
on SAR imaging and existing estimation techniques. Section 3 derives the hierarchical
Bayesian prior of [65] from scratch, emphasizing the incorporation of coherent imaging,
speckle, and sparsity using conjugate priors, as in [24], and then explains the new sub-
aperture imaging algorithm and its properties. Section 4 shows a real-world example
using the Air Force Research Laboratory’s GOTCHA Volumetric Data Set 1.0, [13].
Some concluding remarks and ideas for future directions are provided in Section 5.

2 Background

As noted in Section 1, although it is straightforward to directly process the circularly-
collected 360°-azimuth SAR phase history data into a single full-azimuth image estimate,
it forces the often used yet incorrect assumption that the imaging scene contains only
isotropic scatterers. By using opposite halves of the full azimuth to recover the same
underlying scene, Figure 1 demonstrates that this assumption is clearly false. It is
reasonable to assume, however, that the information received is the same within a small
aperture window. Therefore the sub-aperture imaging approach, [16, 44, 55], which forms
a SAR image by combining a finite number of individual reconstructions coming from
small overlapping aperture windows of data, helps to mitigate the effects of conflicting
information resulting from the anisotropic nature of the scatterers. Observe in Figure
2(right) that simply applying a non-uniform Fourier transform (NUFFT) to each sub-
aperture window and then combining the results by taking the maximum modulus over



the sub-apertures to form a single image clearly yields more localized features.

Figure 1: Parking lot images formed using opposite halves of full azimuth coverage (2048 x 2048
pixels, NUFFT image formation).

Figure 2: Parking lot images formed via (left) full-aperture and (right) sub-aperture methods
(2048 x 2048 pixels, NUFFT image formation with 60 sub-apertures each spanning 8° with 2°
of overlap).

2.1 SAR modeling

The ensuing description of the SAR image formation inverse problem below generally
follows the development in [35, 58]. Let f : Q2 — C denote the two-dimensional reflective
scene of scattering objects that we want to recover, where f is defined over

Q= {(x,y) € R?|2® +¢* < U?}.

At a particular position in the sensing process, indicated by an azimuth angle 6 € [0, 27|,
the transmitted linear FM chirp mixes with the scene in a way that depends upon 6,
the angle from which the chirp is emitted.? In the far field case, once the transmitted
signal reaches the scene it has essentially a planar wave front, and thus the points in
the scene along each line perpendicular to the direction of the chirp all mix with the
same values. Hence the two-dimensional setup is often simplified to a one-dimensional

4In practice there is also a relevant angle of elevation which is not critical to the development of our method.



process by compressing the scatterers along each of these lines to a single point. This
compression is commonly referred to as the projection or Radon transform of f at the
angle 6, and is denoted p :  — R2. It can be expressed mathematically as

p(0,u) = // f(z,y)d(u — xcos® — ysinb) dx dy, (1)

22 4y2< U2

where ¢ is the Dirac delta function and u € R is the slant range position.
The linear FM chirp that is transmitted and mixed with the scene is the real part of

i(wt+at?) tI< T
sy =40 =g @
0, otherwise

where w is the carrier frequency, 2« is the chirp rate, and T > 0 is the pulse duration.
This chirp signal mixes with the scene to yield reflected signals of the form

U
r(0,t) = /_U Re{p(0,u)s(t — 19 — 7(u))} du, (3)

where 73 is the round trip time required for the chirp to travel to the scene center and
7(u) is the additional travel time for any particular position in the scene u. If R is the
distance from the transmitter/receiver to the scene center and c is the speed of light in
a vacuum, we have 79 = 2R/c and 7(u) = 2u/c.

A deramping process is implemented to extract approximate instantaneous frequency
information (i.e. the classical Fourier transform of f) from the chirp response, ultimately
yielding the approximation®

U
fott) = [ pl6.0)e ™ dum r(0,0), (4)
-U
where the spatial frequencies k, measured in cycles/meter, are given by
2
k=Ek(t):= E(w+2a(t—7'0)). (5)

This approximation makes several assumptions about the transmitted signal, the scene,
and how accurately the data are measured. For example, as already noted, in far field
spotlight SAR, the distance R from the transmitter/receiver to the scene center is far
enough so that the transmitted signal has essentially a planar wave front (i.e. any cur-
vature of the scene geometry can be safely ignored). Moreover, the chirp rate « is small
enough so that higher order terms can be ignored in the approximation of (4). A third
assumption often made is that the round trip propagation time is exactly known. This
is generally not the case, and this lack of precision causes a phase error in the signal
recovery. Autofocusing is commonly employed to reduce the shearing effect caused by
the phase error. We do not discuss the ramifications of phase error in the current inves-
tigation, but point readers to [5, 58, 66, 56, 67, 58, 62, 47, 70] for general information on
autofocusing techniques. Finally, (5) assumes that the scene scatterers in spotlight SAR
are isotropic, meaning that the reflection is the same regardless of the azimuth angle.

®More details may be found in [35, 58].



Figures 1 and 2 respectively demonstrate the inaccuracy in the image recovery due to
this faulty assumption and how using a sub-aperture approach helps to alleviate this
issue.

The projection slice theorem [35] is used to conveniently rewrite (4) as

U
fotty = [ powean= [ pa ettt ()
-U :E2+y2§U2

Hence forming an image from SAR phase history data can be modeled as the inverse of
a continuous non-uniform Fourier transform.

To discretize the problem, let temporal frequency values be given by t,, for m =
1,...,M, and a set of azimuth angles by 6; for each sub-aperture | = 1,..., L. From (5)
we can define

2
km = —(w+ 2a(tm — 1)), m=1,..,M, (7)
c

as the discretized spatial frequencies, leading to the linear system model for each sub-
aperture image formation

fFO = pO®) 1 n(l)7 l=1,...,L. (3)

The discrete forward operator FO : CN — CM, [ =1,..., L, is the two-dimensional dis-
crete non-uniform Fourier transform matrix for the sub-aperture data collection modeled
by (6) that maps the concatenated [-th sub-aperture reflectivity image f ) € CN to the
corresponding vertically-concatenated phase history data fO e CM, where N is the
number of pixels in the each image, M is the length of the data in each window, and L is
the number of sub-aperture windows.® Note that by using the discrete Fourier transform
in (8) we introduce both aliasing error and the Gibbs phenomenon. As these errors are
typically smaller in scale than the data acquisition error, they are simply folded into
the additive noise in (8) and not separately considered. We also observe that (8) is
equivalent to the full-aperture case when L = 1, i.e. a single aperture window with full
azimuth information.

Since it is reasonable to assume that within a small aperture the scatterers in the
scene are isotropic, the method proposed in this investigation uses the sub-aperture
imaging approach of dividing the full azimuth data into sub-apertures which may or
may not overlap. Finally, we assume in (8) that the model and measurement error
n(®) is complex noise that is circularly-symmetric white Gaussian distributed. That is,
ngl) ~ CN(0,1/8W) ii.d. for all pixels i, where (3))~1 > 0 is the noise variance. This
yields the Gaussian likelihood function

(D) 1ol g0 .
pEVIED, 80 oc (8)M exp —Tllf”) -FOfO13), =1L, (9)
which measures the goodness of fit of the model (8), where ||g||? = g*g with g* the
conjugate transpose of g. The initial objective is to infer £) from ") in each sub-
aperture, and then combine each of the L recovered windowed images into a single
image (if desired).

6In fact it is possible to have M = M(l), I = 1,..., L, but for ease of presentation we choose the number
of frequencies in each window to remain constant.



2.2 Estimation techniques

One straightforward way to estimate each f® from f() is to maximize the likelihood
function. From the Gaussian likelihood in (9), this estimate is

0 _ ()
15979 argmfax{p(f |f75)}

. (10)
:argmfin{Hf(l)—F(l)fﬂg}, l=1,...,L.

Assuming approximate orthogonality of F(), we have f J(\f[) LR (F(l))*f' () which only re-

quires an inverse non-uniform fast Fourier transform (NUFFT) application to invert the
data, [31, 40, 34]. Specifically, an individual reflectivity image can be found by inter-
polating the typically polar grid of measured samples in frequency space to an equally
spaced rectangular grid, then computing an inverse uniform fast Fourier transform, [1].
While the NUFFT has the advantage of being computationally efficient, the noisy data
and model error can still degrade image quality. Hence an improvement is generally
needed. Each image in Figures 1 and 2 was formed using the above NUFFT method.
We highlight the differences between Figure 2(left), which uses L = 1 full-azimuth win-
dow, and Figure 2(right), which shows the maximum modulus composite image of L = 60
sub-aperture windows of 8° with 2° of overlap.

An assumption about sparsity is often used to improve image quality. Indeed, there
are many sparsity-based SAR image formation methods, see e.g. [17] for a good overview
and [2, 14, 16, 17, 50, 51, 53, 57, 58] for specific examples. Because SAR images are
frequently sparse in the image domain (more precisely in the magnitude of the image),
an ¢; (or more generally £,) norm penalty term on the presumed sparse domain of
£f() is often added to improve on the results obtained using (10). In this regard it
is important to recall that each f) is complex, and only its magnitude, |[f()|, has a
corresponding sparse domain, as the phase is not modeled as sparse, [35]. Since |[f()] is
not differentiable, it is convenient to instead employ a unitary diagonal matrix © such
that (OW)*f(®) ~ |f1)|, where @;l]) = f']@ / ]f'](l)] is extracted from some cheaply computed
approximation f), such as the NUFFT, [55]. Thus we arrive at

O
£}, = arg min {@Hﬂ“ ~FOf|3 + AHT(@‘”)*fh} I

where T is an appropriate sparsifying operator’. The solution is typically found via the
alternating direction method of multipliers (ADMM), [11], although other methods are
also available. Besides being an inexact representation, approximating |f (l)\ in this way
has an important consequence. In particular, since (11) regularizes the sparsity of an ap-
proximation to the magnitude (instead of the magnitude itself), the regularization term
no longer corresponds to any prior distribution since data are considered in forming the
initial estimate. An alternate formulation is to solve for the phase explicitly, e.g. [17].
Nevertheless, for practical purposes such empirically based priors are regularly used [73].
A more commonly discussed difficulty in using (11) is that it often requires fine tuning
of the sparsity prior parameter A and noise variance 1/ 10 (often combined into a single

"In general we can have T = T, [ = 1,..., L, but choosing sparsifying operators for different sub-apertures
may be difficult in practice without prior knowledge of the scene.



parameter). Assuming there is enough information to choose the regularization param-
eters, see e.g. [10, 59], the ¢; regularization approach, often referred to as compressive
sensing, [12], can be a highly effective way to compute a point estimate image for SAR.
Figure 3 shows four realizations of (11) using T = I (reflecting presumed sparsity in
the image magnitude) with § = 1 and A = 1/20,1/40,1/60,1/80. Compared with the
NUFFT images, the /1 method removes a lot of the “background” scattering which may
be advantageous. However, it is also apparent that the results are quite sensitive to
the choice of the regularization parameter. The images are 2048 x 2048 pixels and use
L = 12 windows each spanning 40° with an overlap of 10°. The composite maximum
method, as explained in Section 2.3 below, is then used to combine the sub-apertures.
Code and parameters (i.e. A and the number of iterations) for this method are taken
from [54, 55].

Figure 3: Composite maximum sub-aperture MAP estimate images from the GOTCHA
data set, [13], formed with the ¢; method (11) using T = I with § = 1 and A =
1/20,1/40,1/60,1/80 (left to right, top to bottom). Each image is obtained using the com-
posite maximum estimate in (14).

Another observation can be made from the construction of (11) from (10). Specifi-
cally, had the prior probability distribution

p(EO) o< exp (~AITIEV] ) (12)
been invoked, the resulting posterior would be

p(EDIEDO 5O Xy o p(ED1£D, sOYp(£]N)

o . (13)
x exp (—@uf@ - FO|3 AHTIf(”HIl) . l=LloL



Figure 4: Composite maximum sub-aperture MAP estimate images from the GOTCHA data
set, [13], formed with the TV-{; method (11) with § = 1 and A = 1/40,1/80,1/120,1/160
(left to right, top to bottom). Each image is obtained using the composite maximum estimate
in (14).

Observe that maximizing (13) yields (11), and indeed (11) is known as a maximum a
posteriori (MAP) estimate. Of course this is not the only prior distribution that can be
used and others would invoke other a priori beliefs. This discussion also makes clear
that the regularization penalty term within the cost function imposes the a priori belief
specified in the prior probability distribution, [61]. Regardless of which prior distribution
is chosen, without additional information, the parameters A or S would be difficult to
choose. Moreover, finding the maximum is generally not the best way to interrogate
a posterior. Finally, the single image reconstruction provides no quantification of the
certainty for which the estimate should be trusted. Hence in what follows we take
the position that densities should be sought rather than point estimates, and that the
parameters of the prior should also be estimated.

Many choices can be made for T, but for comparison purposes, in our experiments we
show images formed using two popular sparsity-encouraging image formation methods:
(i) ¢1 regularization [63], where sparsity is promoted in the image itself; and (ii) total
variation (TV) regularization [52], where sparsity is promoted in the gradients in the
image. Both can be codified as (11) with sparsifying operator T chosen appropriately,
and both have been extensively applied in SAR (see e.g. [58, 28, 55, 2, 14]). Alternatively,
the sub-apertures can also be modeled jointly, e.g. [50, 55], to take advantage of the
presumably small differences between neighboring sub-aperture images. Figure 4 shows
four realizations of (11) using the two-dimensional anisotropic TV operator for T with
B =1and A =1/40,1/80,1/120,1/160. Compared with the NUFFT and ¢; images, we
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notice the piecewise constant smoothing effect of TV regularization which, depending
on A\, appears to blur some objects in the scene. The images are 1024 x 1024 pixels and
use L = 12 windows each spanning 40° with an overlap of 10°. The composite maximum
method provided in (14) discussed in Section 2.3 below is once again used to combine
the sub-apertures. We note that the smaller image size is due to long runtime when
using a non-identity regularization operator. As before, code and parameters (i.e. A and
the number of iterations) for this method are taken from [54, 55].

2.3 Combining sub-aperture images

As mentioned briefly in the descriptions of the figures, if desired, sub-aperture images
can be combined to form a single composite image. One way to achieve this is by taking
the argument of maximum modulus over the sub-apertures for each image pixel, [44].
Specifically, we compute elementwise

Frvas "¢ = arg max |f)], (14)

[RAS}

which can be interpreted as choosing the most significant scattering response at a partic-
ular location in the scene over all of the sub-aperture windows. Although non-coherent
and subject to a reduction of information, this combination of sub-apertures provides a
single image to examine and display, and furthermore is able to somewhat mollify the
problem of the faulty isoptropic scattering assumption.

3 Sub-aperture SAR Image Formation with UQ

We now derive the proposed method for sub-aperture SAR imaging with uncertainty
quantification. We begin by specifying the hierarchical Bayesian model followed by the
SBL-type estimation procedure.

3.1 Hierarchical prior for speckle and sparsity

With the likelihood given by (9), a prior for each latent variable, fO 1 =1,...,L,is
required to compute a posterior. The prior expresses a belief about a quantity before
observation. For example, as already noted above an #; prior can be used to enforce a
sparsity assumption on the magnitude of £(!) in some domain. Here we encode into the
prior the fact that SAR images are affected by the speckle phenomenon. As discussed
in Section 1, speckle, which is manifested as a granular pattern of bright and dark spots
through an image, occurs in all coherent imaging and is often mischaracterized as noise,
[35]. Although it is in fact signal, speckle still decreases image contrast and so it is
desirable to remove it. Speckle reduction is often addressed using denoising techniques
such as total variation (TV) regularization, which reduces to the form given by (11).
But as shown in [24] and will be further demonstrated in our numerical experiments,
treating speckle as noise results in an unnatural smoothing of the speckle. Therefore,
here we instead follow [24, 28, 35] by directly incorporating the speckle into the prior,
so that it is properly characterized as part of the signal.

In fully-developed speckle, we assume Re(fi(l)) and Im(fi(l)), i.e. the real and imaginary

parts of the ith pixel of the image f"), are i.i.d. Gaussian with variance 1/a§-l). Hence f®
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is circularly-symmetric complex Gaussian, i.e. f) ~ CN(0, diag(1/a®)), with density

p(fD]a® o<Ha exp(—H\/ )@ £ |]2> l=1,...,L, (15)

Where ®is elementwise multiplication. Thus the prior on the magnitude of the ith pixel

\f \ = \/Re 2 Im(f( ))2 is Rayleigh with mean proportional to 1/a§l).

Remark 3.1 (Multiplicative noise model). Because any change in the magnitude of

each pizel \fi(l)\ is proportional to 1/045-”, the speckle phenomenon has also been modeled as
a multiplicative noise, [28]. By contrast, here we address the speckle directly by including
it in our model with the prior (15), and later simultaneously estimating the associated
speckle parameter 1/ a® rather than using post- z'mage -formation techniques. Based on

this inversely proportional relationship between |f( | and a( ), we can deduce that our
method successfully reduces speckle when the corresponding speckle parameter estimate
1s large.

While the prior (15) and likelihood (9) are indeed enough to derive each posterior
p(f(l)|f'(l)7 a®, ﬁ(l)) and compute a MAP estimate for each sub-aperture, this estimate
would not necessarily be representative of such a posterior. Nor does it provide informa-
tion about the statistical confidence of the estimate for each recovered pixel value, or for
any other recovered features of the image, [45]. Moreover, the regularization parameters
for both the cost function and prior in the MAP estimate approach (analogous to 10
and a() here) are user-specified. However they are truly unknown and therefore should
be inferred. For these reasons we seek the joint posterior p(f\), ORMONGIO) ]f O] ), and hence
will be simultaneously estimating the speckle parameter o(!) and noise parameter (),
which will lend clarity when determining whether or not the speckle reduction techniques
are actually Working

To calculate p(f®, a®, BO|FD), we need to define priors on a® and Y. We first
invoke a conjugate Gamma prior for ). That is, 81 ~ I'(¢,d) with density

p(BVe,d) o (B) exp(=dp?),  1=1,..., L. (16)

Similarly, a conjugate Gamma prior is invoked on each element of a®), i.e. agl) ~ T'(a,b).
By independence, o) ~ I'(a,b) with

N

N
|ab o<H l)“ lexp<—bZa§l)>, l=1,...,L. (17)
=1

Note the dependence of (16) and (17) on parameters a, b, ¢, and d, which as in [9, 65]
are chosen rather than inferred. Following [65], we choose ¢ = d = 0 so that the resulting
improper prior on the noise variance (16) is uniform over a logarithmic scale, making
all scales equally likely. Regarding a and b, analogous parameters for a real-valued
model in [9] are chosen to reflect the uncertainty in the latent variable, making the prior
uninformative. On the other hand in [24, 65], @ = b = 0, resulting in an improper

8Without a reference ground truth image, speckle statistics are typically only estimated from small regions
of already formed images, [3].
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prior p(fi(l)) ~ 1/ \fi(l)\, which is peaked at zero and hence encourages sparsity.” As
already noted, the reflectivity in SAR images is presumably sparse, so that using (17)
with parameters a,b =~ 0 seems reasonable. Importantly, fixing a,b,c and d in this way
removes any need for user-defined parameters in this model.

The form of the posterior is achieved through a hierarchical Bayesian model where
the likelihood parameters £) and 8() are given priors with prior parameters (hyperpa-
rameters) a®) ¢, and d. Moving up to the final level of hierarchy in this model, the
hyperparameter a® is given a prior (called a hyperprior) with hyperhyperparameters a
and b. By Bayes’ theorem, the joint posterior for each f®), a® and O 1 =1,...,L,is

p(E", oD, O1E) o pED1e®, 5)p(8010,0)p(V | )p(aV |0, 0) (18)

_ BY 1
oc (BY)M " exp (—QHf”) ~FORO3 - S [Va® o V)3 ).

It is important to make the distinction between the speckle model introduced in [28] and
the subsequent methodology developed in [24]. While the implementation in [28] provides
an appropriate characterization of speckle, it then uses TV regularization to obtain a
MAP estimate. By contrast, the characterization in [24] is followed by a full posterior
recovery using a sampling method which enables quantification of the uncertainty. Note
that the methods in both [28] and [24] are for full azimuth imaging (L =1 in (18)).

3.1.1 Regularization in other domains

Applying the above sparsifying prior in domains other than the imaging domain is chal-
lenging. Some methods have been proposed that accommodate specific domains, e.g.
TV [8, 18, 19, 20, 23], however a generalized regularization model, for which the only
restriction was that the regularization operator satisfy the so-called common kernel con-
dition (which will be discussed in more detail in Section 3.2), [37], was not considered
until [32].10

Hence, while (18) properly models speckle, as mentioned earlier one may wish to
enforce sparsity in some other domain, e.g. some transformation of the magnitude T|f @) |.
In order to include this, one can alter (15) to

ocHa exp<—|| U@(T\fl)\)||2) I=1,...,L. (19

Letting ©) be a unitary diagonal matrix as in Section 2.2 such that (@W)*f() ~ |f()|,
we then have

Pt ocHa exp(—w ) & (1) >\2) (20)

9To ensure numerical robustness, we choose all parameters, a, b, ¢, d to be machine precision rather than 0
in our implementation.

Tncidentally, the method introduced in [32] restricts the noise to be independent but not necessarily
identically distributed, as is required in other approaches. This desirable property may be useful for fusing
multiple time-dependent SAR data sets, but is not part of the current investigation.
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We can then write the final posterior for each [ =1,..., L as
p(E?, ), gOIE0,00) o pE V1D, 50)p(5010,0)p(f V|V, 0V)p(aV]0,0)  (21)

_ B(Z) N 1 *
x (B0 exp (‘2||f“>—F<l>f<l>u%—2|| ol o (TE) )3 ).

3.2 Estimation Techniques Revisited

At this stage the proposed method deviates from [24], where f O a®, and Y were sam-
pled from the joint posterior using a single 360° azimuth window (L = 1). Requirements
for storage and memory of samples for f), a®, and 8 were already challenging in the
single aperture window case, limiting image reconstruction to images of N = 5122 and
smaller. In particular, there were ~ 5 x 10° sampled parameters to consider, each with
~ 1300 samples. In the current framework, as a consequence of appropriately modeling
the anisotropic nature of scatterers in the scene, the composite image reconstruction
model in (8) is now roughly L times larger than problem size considered in the cor-
responding models in [24]. Specifically in the context of (18), we would essentially be
reconstructing L sub-aperture images of size N. For example, the corresponding com-
posite imaging problem with I = 60 would require us to store samples of ~ 3 x 107
parameters.

To limit such extreme storage and memory requirements, we now instead follow
a Bayesian coordinate descent (BCD) algorithm similar to that of generalized sparse
Bayesian learning method [32] to deterministically choose a density estimate. SBL-
type methods have been used extensively for reconstructing SAR images from phase
history data, see e.g. [41, 71, 72]. In addition to these direct applications of SBL in
SAR image reconstruction from phase history data, the posterior density arrived at in
SBL has also been used in sampling schemes for a variety of SAR tasks such as moving
target recognition [46], model selection for speckle [38], as well as both direct image
reconstruction [24] and composite image reconstruction [69]. To form an image, the
individual (conditional) posterior for £(!) and to the parameters a and g, 1 =1,... L,
are updated in sequence. The individual posterior for each £ is

R @
PO, .50, 00) o exp (—inf@ - FOFO3 - JVal o <T<e<l>>*f<’>>||%) ,

(22)
hence
FOIED, o0 30 00 ~ cAr(u®, 50) (23)
with
pl) = OO EFO) 0 (24)
and
=0 = [BOEOYFO 4 (TOO) diag(a®)TOW] . (25)
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We note that for this to hold, F®) and TO® must satisfy the common kernel condition
[32, 37, 64]:
kernel(FY) Nkernel(TO®) = {0}, 1=1,...,L,

which of course depends on the choice of T, which can be non-invertible and even non-
square. Since FU) is a Fourier transform operator with a full-rank matrix representation
then it has trivial kernel. Therefore, for the purposes of our examples, we confirmed
via direct computation that both T being the identity and the anisotropic TV operator
when multiplied by ©®) yield matrices with trivial kernels.

Per Bayesian coordinate descent [32], a® and gV, 1 =1,..., L, are approximated
by the means of their conditional posteriors. Due to the conjugate prior relationship,
both conditional posteriors are Gamma-distributed with means given by

M
= 26
0 =50 — FOr0)|2 (26)
and
-1 (27)
A ECRIE Ll

Remark 3.2 Note that while O is not included in the estimation problem as an in-
o _
Ji
(fML)gl)/|(fML)§-l)|. In the iterative estimation procedure that follows we update each
00U using the same formula with the current iterate for £

ferred variable, it is not fixed by an initial estimate as in Section 2.2, e.g. as ©

ol =¢" V) j=1,... N, I=1,.. L (28)

This technique was used in [58] to keep the quantity (O 1) real-valued as the iterates
change. Observe that due to construction of the prior this has no impact for the case
when T =1.

The algorithm therefore consists of alternating computation of u® using £ from
(24) and (25), pgw and g, from (26) and (27), and 00 from (28), until a convergence
criterion has been achieved. The computational challenge is in using the covariance X
to compute p at each step. However, as mentioned earlier, since F is applied via a
NUFFT, [31], if T =1 (the assumption generally used for the SAR speckle model) then
¥~ = gFHUF + (TOW)*diag(a)TOW is diagonal and hence efficiently inverted with a
cheap elementwise division by 5 + a, [24]. If T is more general, then solving the linear
system is more involved. Nevertheless, in many cases X! is typically sparse, e.g. if T is
a TV operator. Algorithm 1 shows the exact steps used in our examples. We emphasize
that, in practice, X itself is not computed until after Algorithm 1 has been executed and
uncertainty quantification information is desired, and instead X! is initially treated
only as the left-hand side of a linear system which is solved to find p.

Many typical convergence criteria can be used. In our implementation, we use a
standard convergence criterion based on the relative change of subsequent iterates (see
details in Section 4), although convergence could also be based on speckle reduction in
a particular region based on «, etc. Moreover, due to the loop in Algorithm 1, the
sub-aperture images can be formed roughly L-times faster by operating in parallel.
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Algorithm 1 Sub-aperture SAR image formation

Initiate pél) = (FO)*f0), @(()l) = u((]l)/|p((]l)|, and convergence tolerance e.
for/=1,...,L do

k=0;
h-l H/J'}(gqu /J‘k ”2 d
wilie —H (l)”2 > € o
142a
[Na“)]k-f—l |T(®(Z)) N(l)|2+2b
M+2c¢

* l
u;il—[mﬁm]m(F“»F + (TOW)*diag([1tam |ks1)TOD] ™ [1gw]krrpd;
)
®k:+1 Nk+1/|ﬂfk+1|

k=k+1;
end while
Mo = [,ua ]k+17
fram = [fao]k+1;
o —,,0 .
IJ’ ”’k(;?)_lv
ol = SHEE
end for

The results of Algorithm 1 are the means of the conditional posteriors defined by
the final iterates {/La(m,uﬁa),u(l),@(Z)}le. At this point, final covariances () can
be computed as in (25), and being a probability distribution, many estimates can be
derived from these distributions on £), or they can be sampled to form other estimates,
etc. This provides more information than is common in sub-aperture wide angle SAR
image reconstruction. In addition, note that p,u) and piga) are also themselves point
estimates of the speckle and noise parameters, respectively. This is significant as typical
estimates for such parameters (if possible at all) would require additional processing as
they are not included in the image formation process itself. Moreover, as discussed in
more detail in [24] with respect to the L = 1 (full azimuth) case, in general we have no
intuition for a® and ). Our method allows us to encode this uncertainty by choosing
uninformative priors. As a result, the estimates we obtain help to lend clarity when
determining whether or not the speckle (and noise) reduction techniques are actually
working. Finally, without a ground truth reference image, any additional processing to
obtain this information would have to rely on pre-formed images.

3.3 Combining sub-aperture densities

As mentioned above in (14) and originating in [44], taking the argument of the maxi-
mum modulus over the sub-apertures of each image pixel provides a way to form a single
composite image from multiple sub-aperture image estimates. This typically brightens
the appearance of the image compared with full-azimuth imaging (see Figure 2), but is
non-coherent and a reduction of the information in each sub-aperture image estimate.
Furthermore, it is applied to image estimates, which are already a reduction of informa-
tion compared to the full posterior density.

We therefore propose a method for combining the sub-aperture densities themselves.
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This option assumes that each sub-aperture image is independent of the others and takes
advantage of the properties of summing independent Gaussian random variables. We
have that each sub-aperture image is modeled by a Gaussian posterior with mean p(®
and covariance ()| which are computed using the final estimates for the noise variance
and speckle parameter. If we assume each of these random variables are independent,
then their average is also a Gaussian random variable.!! That is, the coherent composite
posterior is modeled as

fﬁfgggosite ~ C./\/‘(Idl/composite7 Ecomposite), (29)
where
1 L
; l
ucomposzte — Z Z /J’( ) (30)
=1
and
L
s composite _ i Z z(l) (31)
= 72 .

l

I
A

There are many ways to interrogate this composite distribution. For example, taking
the elementwise square root of the diagonal of X¢MPosite gives the standard deviation
image for the composite posterior, which gives insight beyond a single point estimate into
the spread of the density. For instance, around 68% of the mass lies within a standard
deviation of the mean.

We furthermore note the significance of the availability to estimate the composite
speckle parameter

L
. 1
T Sy (32)
=1

Similar to the variance, (32) can provide confirmation that speckle has been reduced.
Finally, it is of course also possible to use the maximum option to recover a non-coherent
point estimate while relying on the mean option to obtain other information.

4 Computational Results

4.1 GOTCHA SAR Data

The GOTCHA Volumetric SAR Data Set 1.0 consists of SAR phase history data of a
parking lot scene collected at X-band with a 640 MHz bandwidth with full azimuth cover-
age at 8 different elevation angles with full polarization, [13]. The GOTCHA SAR phase
history data were collected when a plane carrying a sensor flew a roughly circular mea-
surement flight around a parking lot near the Sensors Directorate Building at Wright-
Patterson Air Force Base in Dayton, Ohio. The parking lot contains various targets

1We recognize that given the typical processing that uses overlapping data sub-apertures, azimuthal an-
gular independence may not typically be a good assumption. However, we suggest that non-overlapping
sub-apertures can be taken. Furthermore, any angular independence argument would also depend on the
scene itself.
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Figure 5: Optical images of parking lot being imaged in GOTCHA dataset, [13]. Note scene
contains a variety of calibration targets, such as primitive reflectors like the tophat shown, a
Toyota Camry, forklift, and tractor.

including civilian vehicles, construction vehicles, calibration targets, primitive reflectors,
and military vehicles. Figure 5 shows optical images of the targets. Note that because
this is real-world data, the elevation angle is not perfectly constant, and the path is not
perfectly circular. The center frequency is 9.6GHz and bandwidth is 640MHz. This pub-
lic release data has been used extensively for testing new SAR image formation methods,
[6, 7, 30, 55], and is available from https://www.sdms.afrl.af.mil /index.php?collection=gotcha.

4.2 Experiments

We now demonstrate the accuracy, efficiency, and robustness of the proposed method
for sub-aperture SAR image reconstruction from phase history data with uncertainty
quantification. Note that the ground truth reflectivity image is unknown, preventing
the computation of standard error statistics such as the relative error. This is the case
even in synthetically-created SAR examples, where the true reflectivity is still unknown.
Therefore, the uncertainty quantification information the proposed method provides is
all the more valuable, as it is able to quantify how much we should trust pixel values and
structures in the image even in the absence of ground truth. Throughout, all reflectivity
images f are displayed in decibels (dB):

I£|
20 10g10 (max |f| ) (33)

with a minimum of —100 dB and maximum of 0 dB. Lesser or greater values are assigned
the minimum or maximum.

In what follows, we generally hesitate to make subjective claims about the appearance
or “quality” of these reconstructions, as all certainly have advantages and disadvantages.
Thus depending on what the image is being used for, different image reconstruction
methods or image features (e.g. smoothness, sparsity, etc.) may be more useful. We
instead focus on the new methodology, its capabilities, as well as objective comparisons.
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Figure 6: Sub-aperture composite mean images formed with Algorithm 1 using T = I and
COHVGI‘gean LoV N1 /e o N N1 (2 N oo 1 ANNMATT A ,J,.Aja Set, [13]

Figure 7: Sub-aperture composite max images formed with Algorithm 1 using T = I and
convergence tolerance € = 0.1 (left) and ¢ = 0.01 (right) from the GOTCHA data set, [13].

4.2.1 Benchmarking sparsity testing

Figures 6 and 7 show the composite mean and max estimates for the GOTCHA parking
lot scene using L = 12 windows each spanning 40° with 10° of overlap (see Section 4.2.2
below for more on sub-aperture size). Compared with one another, the mean and max
composite estimates have a very similar appearance, which for a Gaussian aligns with
our expectation that the mean and mode would be similar. As demonstrated in Figures
6 and 7, when compared with other sub-aperture methods in Figures 2 (right), 3, and
4, Algorithm 1 is able to reduce background speckle appearance while localizing bright
targets.

We note that different convergence tolerances yield different results. For example,
if ¢ = 0.1 (corresponding to a 10% relative error iterate threshold), the sub-aperture
regions each run for ~ 3 iterations and still have visible speckle in them, evidenced
by the speckle parameter image. The image contains all features of the original image
with increased contrast. However, if ¢ = 0.01 (corresponding to a 1% relative error
iterate threshold), the sub-aperture regions each run for ~ 12 iterations and have very
little visible speckle in them. Strong targets are localized more precisely, but the image
is less interpretable to human eyes. Regardless of the composite technique, our tests
found that lowering e further does not remarkably change the image appearance. This is
essentially mandated by the criterion itself which limits relative changes. We therefore
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consider € = 0.01 to correspond to the converged state.!? Given this relatively simple
specification of €, we emphasize the difference in choosing this non-physical parameter
compared with the challenge of selecting the physically-relevant regularization parameter
used in other sparsity-based schemes. Furthermore, the main intent of imposing € at all
is to increase the speed of the algorithm, as discussed below.

45
:5
:5
js
gs

Figure 8: Sub-aperture composite speckle parameter images as in (32) formed with Al-
gorithm 1 using T = I and convergence tolerance ¢ = 0.1 (left) and € = 0.01 (right) from
the GOTCHA data set, [13]. Note the color scale here is inverted to conform with the other
figures.

o

Figure 9: Sub-aperture composite standard deviation images as in (31) formed with Algo-
rithm 1 using T = I and convergence tolerance ¢ = 0.1 (left) and € = 0.01 (right) from the
GOTCHA data set, [13].

Furthermore, the proposed method also supplies extra information in Figures 8 and
9, which show the speckle parameter and standard deviation images as in (32) and
(31), respectively. These images confirm the speckle and noise reduction resulting from
the sparsity-inducing hierarchical Bayesian prior, indicating tight confidence intervals in
the background with the only significant variance occurring where the mean estimate
predicted signal returns.

12Tn this regard, we note that tests were conducted to confirm this is the case where each sub-aperture was
run for 1000 iterations.
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Remark 4.1 We note that for brevity we limit the exposition on extra information to
these few examples, and emphasize that they are certainly not the only statistics that can
be utilized. As was done in [24], median estimates and confidence intervals can also be
computed.

Method Variance
NUFFT 5.5275e — 08
l, A=1/20 2.0548¢ — 16

Alg. 1, T=I, e = .1, mean | 2.4433e — 18
Alg. 1, T=I, e = .1, max | 3.5544e — 16
Alg. 1, T=I, e = .01, mean | 2.1432e — 28
Alg. 1, T=I, e = .01, max | 1.0437¢ — 26

Table 1: Variance for a small 50 x 50-pixel homogeneous subregion with each algorithm to
show speckle reduction in 2048 x 2048 images.

To quantify the improvement and speckle reduction, Table 1 shows the variance
of each image in a small (50 x 50 pixel) homogeneous region containing no targets in
the center of the image in the intersection entering the parking lot. We choose to
compare the most sparsifying ¢; example tested (A = 1/20), as this will serve as a lower
variance estimate compared with other regularization parameter choices. This type of
measurement has been used to evaluate speckle reduction, [3]. For the result, we see
that all methods perform quite well, with all but one Algorithm 1 composite resulting in
smaller variance compared with the most sparsifying /1 method over the homogeneous
subregion, indicating superior small scale speckle reduction.

4 x10°

T T
[ NUFFT

11, lambda=1/20
[JAlg. 1, eps=.1, mean
[ Alg. 1, eps=.1, max
[ Alg. 1, eps=.01, mean
[ AIg. 1, eps=.01, max

14 -12 -10 -8 -6 -4 2

Figure 10: Histograms of log;, |x|, where p is the composite mean and max resulting from
Algorithm 1 with different convergence tolerances, and the point estimates of the NUFFT
and ¢; regularization with A = 1/20 comparing their sparsification. Observe that Algorithm
1 sparsifies the image more and has visibly increased contrast.
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image size 2048%
NUFFT 8.4s
¢ (20 iters.) 2534.7s
Algorithm 1 (T=I, ¢e=0.1) | 21.3s
Algorithm 1 (T=I, ¢ =0.01) | 94.2s

Table 2: Sub-aperture imaging runtimes for L = 12 windows each spanning 40° with 10°
overlap.

Figure 10 shows a histogram of the log;, absolute value of various composite im-
age estimates. The separation between the left and right “humps” of the histogram of
the modulus values in each reconstruction displayed in Figure 10 further confirms that
Algorithm 1 significantly increases contrast in the image while dampening background
speckle. That is, Algorithm 1 better separates pixels into categories: signal (the small
hump on the right) and no signal (the large hump on the left). This separation of pixel
values makes it easier to distinguish image features. In other words, it increases the con-
trast. In addition, the figure also shows that neither the NUFFT nor ¢; reconstructions
sparsifies the image to the extent done by Algorithm 1. In both cases, the left hump,
which inherently represents pixels with no target reflectivity, is at least many orders
of magnitude closer to zero. Since the goal of TV regularization is to sparsify its TV
transform, it is not included in Figure 10.

Finally, Table 2 shows another advantage — the speed of reconstruction versus other
sparsity encouraging methods, especially when the image size grows. Computations were
done on a Macbook Pro with a 2.6 GHz 6-Core Intel Core i7 processor and 16GB memory.
Implementation is achieved by using the NUFFT from [31], as well as comparison code
from [54, 55].

4.2.2 Varying the number of sub-apertures

An interesting phenomenon occurs when varying the number of sub-apertures by widen-
ing or narrowing the sub-aperture size. Based on the relationship between the isotropic
scattering assumption and full-azimuth imaging, the reader may expect a (nearly) lin-
ear relationship: using more sub-apertures will give stronger returns (i.e. more non-zero
pixels and a “brighter” image) and more features of the scene will be shown in the com-
posite estimate. However, our testing indicates that there is a wide range of sub-aperture
angles around 60° that demonstrate good performance. In particular, Figure 11 shows
composite mean estimates using Algorithm 1 with T =T and € = 0.01 for 10°, 60°, and
360° (full-azimuth) sub-aperture sizes with no overlap. Respectively, these correspond
to L = 36,6,1 sub-aperture windows. We see that both the 10° and 360° show less
signal in these final estimates than the 60° case. While this observation deserves more
investigation, we can interpret these results as follows. If the sub-aperture is too small,
as in the 10° case, then scattered returns are also small and perhaps confused with
noise. Therefore the SBL approach does not return much significant signal in each sub-
aperture. By contrast, if the 360° full-azimuth aperture is used, the image suffers from
overall weak returns due to the isotropic scattering assumption over such a wide angle.

22



Having sub-apertures of 60° seems to mitigate both issues — the angle is wide enough
to pick out plenty of significant scatterers, but not so big that full-azimuth problems
arise. This phenomenon is also observed with composite max estimates and varying e,
as well as for sub-aperture sizes that fall between those shown in the figure. Finally,
we emphasize that the desired appearance of these composite estimates is subjective
(more returns is not necessarily superior), and that furthermore because the selection
of sub-aperture size happens during data processing, data collection itself is unaffected,
and so multiple configurations can be easily and quickly tested depending on the scene.

Figure 11: Composite mean estimates using Algorithm 1 (T = I, e = 0.01) for 10°, 60°, and
360° sub-aperture sizes with no overlap.

4.2.3 Total variation regularization testing

Finally, as mentioned earlier, it is possible to incorporate a non-identity regularizer into
Algorithm 1 as long as the kernels of the regularization matrix and the forward Fourier
operator have trivial intersection. Due to the now sparse (as opposed to diagonal)
covariance inversion problem that must take place at every step, this is a much more
computationally expensive problem. Further efforts will be devoted to accelerating this
task if these early tests show promising results. Therefore, as a proof of concept, we
limit the problem size to 512 x 512 pixels, where we focus on a subregion of the parking
lot from the same GOTCHA data set, [13]. Specifically, the subregion is in the center-
right of the full parking lot image and contains the forklift and a few other vehicles. To
account for the smaller image size, we use L = 60 sub-aperture windows each spanning
8% with 2 of overlap.

Figures 12 and 13 show mean and max composite estimates of the subregion using
two-dimensional anisotropic TV regularization. That is, the regularization operator is

T= [})®®DI] ’ (34)

where ® denotes the Kronecker product, I is the N x N identity matrix, and D € RV*N
defined by

D(i,j) = {1 r=J (35)



When applied to a concatenated image vector, using such an operator T encourages
sparsity in the horizontal and vertical differences in the image. Some of the typical
smoothing behavior associated with TV is apparent, with oversmoothing of some im-
portant features. Further testing is also required to understand the visible differences in
the mean and max composite images, particularly for e = 0.5 (left).

Uncertainty quantification information for the TV case also requires further inves-
tigation. In particular, further testing is also needed in assigning physical meaning to
the “speckle parameter” a here, as it does not represent speckle in this context. In ad-
dition, similar to the computation of Algorithm 1 itself with a non-identity regularizer,
the computation of the composite covariance is still expensive even at this limited size
so a standard deviation image is not available.

Figure 12: Sub-aperture composite mean images formed with Algorithm 1 using the two-
dimensional anisotropic TV operator for T and (left) € = 0.5, (center) e = 0.1, and (right)
e = 0.01 from the GOTCHA data set, [13].

Figure 13: Sub-aperture composite max images formed with Algorithm 1 using the two-
dimensional anisotropic TV operator for T and (left) ¢ = 0.5, (center) € = 0.1, and (right)
e = 0.01 from the GOTCHA data set, [13].

5 Conclusion

The sub-aperture imaging approach separately analyzes small aperture windows of data
to form image estimates that can combine into a single composite reconstruction. This
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can help to mitigate the effects of conflicting information resulting from the anisotropic
nature of the scatterers in the scene. In this paper, a hierarchical Bayesian prior and
corresponding SBL-tyle estimation procedure is used to develop a method that models
sub-aperture posterior densities as opposed to producing point estimates. This extra
uncertainty quantification information provides a more robust result for practitioners to
be confident in, with access to estimates for the parameters governing speckle and noise,
as well as regarding the standard deviation of image pixels. A new coherent composite
image combination method based on summing independent Gaussians is also presented.
Furthermore, the method allows for a variety of admissible non-identity regularization
operators such as TV. In terms of the estimates generated, we demonstrate with a real-
world numerical example that compared to existing methods, the proposed algorithm
reduces speckle, improves contrast, and is orders of magnitude closer in speed to the fast
NUFFT method which allows large images to be processed. Future work will focus on
increasing efficiency as well as further exploring using non-identity regularizers in this
framework. We also plan to incorporate autofocusing techniques into our method.
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