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Abstract

Accurate modeling of sea ice dynamics is critical for predicting environmental variables and is im-

portant in applications such as navigating ice breaker ships, and as such there have been numerous

investigations on modeling sea ice dynamics. The 1979 viscous-plastic (VP) sea ice model intro-

duced by W.D. Hibler remains the most widely accepted. Due to its highly nonlinear features, the

Hibler model is intrinsically challenging for computational solvers. This study therefore focuses on

improving the numerical accuracy of the VP sea ice model. Since the poor convergence observed

in existing numerical simulations stems from the nonlinear nature of the VP formulation, this in-

vestigation proposes using the celebrated weighted essentially non-oscillatory (WENO) scheme – as

opposed to the frequently employed centered difference (CD) scheme – for the spatial derivatives in

the VP sea ice model. We then proceed to numerically demonstrate that WENO yields higher-order

convergence for smooth solutions, and that furthermore it is able to resolve the discontinuities in

the sharp features of sea ice covers – something that is not possible using CD methods. Finally, our

proposed framework introduces a potential function method that utilizes the phase field method

that naturally incorporates the physical restrictions of ice thickness and ice concentration in trans-

port equations, resulting in modified transport equations which include additional forcing terms.

Our method does not require post-processing, thereby avoiding the possible introduction of discon-

tinuities and corresponding negative impact on the solution behavior. Numerical experiments are

provided to demonstrate the efficacy of our new methodology.
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1. Introduction

Sea ice dynamics plays a vital role in shaping the ice cover in polar regions. Properly representing

sea ice dynamics is crucial in predicting environmental variables and is important in a wide range

of applications such as the navigation of ice breaker ships [1, 2]. The observations of the Arctic

Ice Dynamics Joint Experiment (AIDJEX) significantly improved sea ice dynamics modeling in the5

1970s [3]. Since then there has been an increased effort in modeling sea ice dynamics [4, 5, 6, 7, 8, 9].

The VP sea ice model introduced by Hibler [4] has become the most widely used approach for sea

ice dynamics. The model consists of a nonlinear momentum equation and two transport equations,

and is initially developed for meshes in the range of 100 kilometers. To solve the momentum

equation at this spatial resolution, implicit time-stepping schemes are recommended [10] due to10

the nonlinear character of the momentum equation stemming from the viscous-plastic material law.

As the standard Picard solver exhibits slow convergence, solvers such as Jacobian-free Newton-

Krylov (JFNK) solver [11] have been developed to improve the numerical efficiency for solving the

VP model. The Elastic-Viscous-Plastic (EVP) model proposed by Hunke and Dukowicz [5] avoids

implicit methods altogether by relaxing the stability condition for an explicit time-stepping scheme.15

With increasing mesh resolutions now available, it is becoming more apparent that the numerical

solutions to the sea ice model resulting from either the VP or EVP formulation are not well resolved,

and indeed there is a significant discrepancy with obtainable observations [12]. How much of this

difference is attributable to modeling error, e.g. due to discrepancies in the atmospheric forcing

term, and how much to the numerical approximation error remains an open question [13]. In this20

study we focus on improving the numerical accuracy of the sea ice representation based on the

one-dimensional (1D) VP model which will be discussed in Section 2.

While there are many aspects of the VP model that merit investigation, our focus here is on

two different but related issues: (1) the numerical efficacy of the computational methods used for

solving the model, which includes a study on both accuracy and convergence; and (2) ensuring that25

the computational method observes physical constraints on the ice thickness and concentration. A

key aspect in our investigation is to demonstrate the importance of high order spatial discretization

operators. Therefore, as part of our study we solve the VP model using an explicit time-stepping
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solver in order to isolate the associated error. We note that this is not the same as the traditional

EVP model. For comparison purposes we run a simulation using the EVP model in Appendix A.30

Discussion on each issue as motivation for this investigation is provided below.

1.1. Numerical efficacy of the VP sea ice model

One goal of this investigation is to address the numerical simulation of the nonlinear VP sea ice

model, specifically concerning the accuracy, stability, and efficiency. While many efforts have been

made to improve the computational efficiency of sea ice model solvers, e.g. [11, 14, 5, 15], analy-35

sis of the corresponding convergence properties is lacking, and indeed many of these methods fail

to converge[16]. We note that [16], which proposes and implements an iterated IMplicit-EXplicit

(IMEX) time integration to solve the coupled sea ice model monolithically, does provide an analysis

of the temporal convergence of the numerical solution. There it is demonstrated that a combina-

tion of the second-order Runge-Kutta method for the explicit time integration and a second-order40

backward difference method for the implicit integration of the momentum equation yields an over-

all second-order accuracy in time of the numerical solution when compared to a reference solution

obtained using a tiny time step (1 second). Spatial convergence is investigated in [17], where it is

shown that in the VP sea ice model, the simulated velocity field depends on the spatial resolution

of the model and approaches the analytical solution as the spatial resolution is increased. However,45

the study is not quantified in terms of convergence rate. The method in [18, 19] adopts the Crank

Nicholson time discretization and three point stencil centered difference (CD) spatial discretization

together with the JFNK solver. By simultaneously refining both spatial and temporal resolutions,

second-order convergence is sometimes observed for a specifically designed synthetic model. Conver-

gence rates are estimated using the L2 and L∞ norms by computing solutions for two different mesh50

refinements at the end of each day during the 6-day simulation. We note that the mesh refinement

does not consistently correspond to better accuracy for this simulated experiment, however.

To the best of our knowledge, convergence with respect to spatial resolution has not been well

studied. In particular, no clear conclusion has been drawn in terms of spatial convergence. We

adopt this as a starting point in our investigation to explore the related numerical properties. As55

we focus on spatial convergence, we choose the time step to be sufficiently small so that the time

discretization error does not affect the convergence rate. This allows us to test the VP formulation

using an explicit time-stepping scheme and therefore avoid the error caused by either the first-order
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approximation to the Jacobian matrix or the corresponding prescribed stopping criterion in the

nonlinear solver needed for the implicit time-stepping scheme. Based on a constructed analytical60

solution with appropriately added forcing term to the governing equations, we test for convergence

on the VP sea ice model using both a second-order CD spatial discretization scheme as well as a

third-order total variation diminishing (TVD) Runge-Kutta time integration scheme.

Nowadays, with increasing mesh resolutions, the general performance of the existing sea ice

solvers is degrading, leading to a significant increase in numerical cost [3]. Higher-order spatial65

discretization methods may be able to offset this problem. Due to the natural discontinuity fea-

ture of ice thickness and concentration, traditional higher-order finite difference schemes typically

have spurious oscillations near discontinuities (the Gibbs phenomenon), which may pollute smooth

regions and even lead to instability, causing blowups of the schemes [20]. The weighted essentially

non-oscillatory (WENO) method [21] is designed to achieve higher-order accuracy in smooth regions70

while sharply resolving discontinuities in an essentially non-oscillatory fashion. This study verifies

that these desirable properties hold when implementing WENO for the sea ice model.

1.2. Ice thickness and ice concentration

Following the VP model by Hibler [4], two idealized thickness levels, namely thick and thin, are

adopted to approximately characterize ice thickness in a relatively simple form. The two variables75

used to keep track of these levels are ice thickness, which is equivalent to the mass of ice in any grid

cell, and ice concentration, which is defined as the fraction of the grid cell area covered by thick ice.

One issue is how the constraints on these two variables are imposed. In particular, assuming

continuity of the ice thickness and the ice velocity, the ice thickness should remain non-negative (see

[22, Theorem 3.10]). The non-negativity of ice concentration is similarly guaranteed. As will be80

demonstrated, preserving the non-negativity in both parameters is an important consideration for

choosing a numerical solver. Moreover, although not explicitly providing a method to guarantee the

upper bound of ice concentration to be 1, such a constraint is described in Hibler [4] to be equivalent

to adding a mechanical sink term in the model, which is turned on when the ice concentration reaches

1 to prevent its further growth. A more formal derivation of the ice thickness distribution is given85

by Thorndike et al [23], in which more general thermodynamic processes and mechanical source and

sink terms are considered. Yet the question still remains on how best to numerically incorporate

physical constraints in models for which complicated forcing terms are already simplified. For
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example, for short term predictions used for navigation purposes, there is likely a trade-off between

efficiency and model consistency that has to be made.90

More sophisticated ice thickness distribution models have been more recently introduced under

the global climate model framework, such as the multi-thickness category model in CICE [24].

Despite these efforts, as far as we know, the numerical methods used to solve the model or impose

the constraints have not been rigorously analyzed or compared. As already mentioned, the original

work in [4] does not explicitly discuss how these constraints may be incorporated into the numerical95

implementation of the model under simplified source and sink terms. Since then some investigations

have explicitly provided approaches both for numerical simulation of the model as well as for

imposing these constraints. For example, Mehlmann [25] uses a finite element framework to solve

the sea ice model and imposes restrictions on the trial spaces of ice thickness and concentration

through a projection of the solution. Lipscomb and Hunke [26] adopt an incremental remapping100

scheme for sea ice transport. This is a Lagrangian approach that preserves the monotonicity by

Van Leer limiting. That is, the gradients are reduced when necessary to ensure that the values in

the reconstructed fields stay inside the range of the mean values in the cell and its neighbors. All

of these mentioned approaches impose the model constraints through a post-processing procedure,

which may, unfortunately, introduce discontinuity into the numerical solution, which affects the105

accuracy and might ultimately impact stability so that the solution does not converge.

Therefore, the other goal of this investigation is to develop a numerical approach that more

intuitively imposes the model constraints without any post-processing procedure based on Hibler’s

model [4]. To accomplish this task, we propose using the potential function method motivated

by the analogous approach of using a double-well potential function in what is commonly referred110

to as the phase field method [27, 28], which is designed to solve interface problems by treating

the interface as an object with finite thickness. Our proposed method, described in Section 4,

offers a simple but elegant way to incorporate additional restrictions into the model and could be

generalized in various settings, such as the transport equations in other sea ice models. It further

yields a modified transport model with the extra forcing terms coming from the potential energy115

function, which is consistent with Hibler’s statement on how to include the mechanical sink term

in the model.

The rest of the paper is organized as follows. In Section 2 we describe the sea ice model.

Section 3 provides a brief overview of standard numerical solvers for the sea ice model, focusing on
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the JFNK solver and the EVP model, as well as their adapted versions to the 1D VP model for120

the purpose of this investigation. We then describe our proposed approach, which includes both

the WENO scheme and the potential function method in Section 4. In Section 5 we conduct some

numerical experiments, illustrating and comparing the performances of our proposed approach with

that of more typically employed methodology. We give some concluding remarks in Section 6.

2. Sea ice dynamics model125

We begin by describing the two-dimensional (2D) VP model introduced by Hibler [4] for the

simulation of sea ice circulation and thickness. Although sea ice dynamics occurs in a three-

dimensional space, the vertical scale of O(m) is much smaller than the horizontal scale of O(1000

m), so the motion of sea ice is usually described in two dimensions. The VP sea ice model comprises

of a momentum equation and two transport equations that describe the balance laws and is given

by

m
Du

Dt
= m(

∂u

∂t
+ u · ∇u) = ∇ · σ −mf k× u+ τa − τw −mg∇Hd, (2.1a)

∂h

∂t
+∇ · (uh) = Sh, (2.1b)

∂A

∂t
+∇ · (uA) = SA. (2.1c)

Here u is the 2D ice velocity, h is the mean ice thickness, A is the ice concentration. The ice mass

per unit area m is given by ρh, where ρ is the sea ice density. The internal ice stress is denoted by

σ. The external forces comprise of the Coriolis force, forces due to air and water stress τa and τw,

and the ocean tilt stemming from the changing sea surface height. The other parameters include

f the Coriolis parameter, k, a unit vector perpendicular to the horizontal plane, g the acceleration130

due to gravity, and Hd the sea surface dynamic height. Finally, Sh and SA are the thermodynamic

source or sink terms. We note that the advection term u·∇u of ice momentum can be neglected due

to scaling properties [29]. Furthermore, the thermodynamic terms are set to zero in the simulations

as we concentrate on dynamic effects. The independent variables t and x are measured in seconds

(s) and meters (m) correspondingly.135

To better understand and analyze how well different computational approaches are suited to sea

ice dynamics, we focus on a simplified 1D sea ice model in this study, which is given by

ρh
∂u

∂t
− τa + τw −

∂σ

∂x
= 0, (2.2a)

6



∂h

∂t
+

∂

∂x
(uh) = 0, (2.2b)

∂A

∂t
+

∂

∂x
(uA) = 0. (2.2c)

Here u is the 1D sea ice velocity and σ is the internal stress corresponding to σxx in the 2D model.

We note that the Coriolis force and sea surface tilt are set to zero as the external forces act only in

one direction on a static ocean slab [30, 17]. The air and water stress terms, τa and τw respectively,

are determined from the nonlinear boundary layer theories and the quadratic drag formulas used

in the model [31]:

τa = ρaCda|ua|ua, (2.3)

τw = ρwCdw

p
u2 + ϵ1u, (2.4)

where ρa and ρw are the air and water densities, Cda and Cdw are the air and water drag coefficients,

ua is the surface wind, and ϵ1 is a very small value (10−10 m2/s2) introduced for numerical stability.

Here the sea ice drift speed is neglected in the air drag formulation as it is much slower than the

wind speed. The water under the ice is assumed to be at rest, leading to the absence of the water

velocity in the water drag formulation.140

We now describe the rheology term modeling the ice interaction, a viscous-plastic constitutive

law relating the stresses and the strain rates. Due to the dimension reduction, all other mixed

derivative components σxy, σyx and σyy vanish, and therefore the divergence of the stress tensor

in (2.2a) is reduced to
∂σ

∂x
=

∂

∂x

�
(η + ζ)

∂u

∂x
− P

2

�
, (2.5)

where

η = ζe−2 and ζ =
P

2∆
(2.6)

are the bulk and shear viscosities modeled by a normal flow rule in the plastic state and are chosen

as constant values in the viscous regime. Here e is the eccentricity of the elliptical yield curve, and

∆ in one dimension is obtained as

∆ =

�
(1 + e−2)

�
(
∂u

∂x
)2 + ϵ2

��1/2
, (2.7)

with ϵ2 = 10−22 s−2 as another small parameter introduced for numerical stability purposes.

The viscous coefficients in the VP formulation [4] are capped to prevent them from becoming

arbitrarily large. This leads to a rheology term that is not continuously differentiable with respect
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to velocity. To obtain a smooth formulation of the viscous coefficients, we follow Lemieux and

Tremblay [13] and replace the expression of ζ by the hyperbolic tangent function

ζ =
P

2∆min
tanh(

∆min

∆
), (2.8)

with ∆min = 2× 10−9 s−1 in accordance with the ζmax definition in [4].

The ice strength P is expressed as

P = P ⋆h exp[−C(1−A)], (2.9)

where P ⋆ and C are the strength and concentration parameters.

Finally, Table 1 provides the values for all of the physical parameters which we will use in

our numerical experiments. These parameter values are typically used in the VP sea ice model145

[14, 16, 32].

Symbol Definition Value

ρ Sea ice density 900 kg/m3

ρa Air density 1.3 kg/m3

ρw Water density 1026 kg/m3

Cda Air drag coefficient 1.2× 10−3

Cdw Water drag coefficient 5.5× 10−3

P ⋆ Ice strength parameter 27.5× 103 N/m2

C Ice concentration parameter 20

e Ellipse ratio 2

Table 1: Physical parameters used in the VP sea ice model.

3. Numerical solvers

Time splitting methods are standard for solving the coupled sea ice system (2.2a)–(2.2c) [16],

and in general, they are widely used to cope with the complex coupled system, e.g., in [4, 6, 16, 15].

The basic idea is to decouple the momentum equation (2.2a) from the transport equations and150
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solve it first, and then use the updated velocity to solve the transport equations, (2.2b) and (2.2c),

together. The main difficulty here lies in the momentum equation due to the highly nonlinear

feature of the viscous-plastic rheology.

To apply an explicit time-stepping scheme to the momentum equation, numerical stability dic-

tates a time step on the order of 1 s for a 100 km grid resolution [10], or equivalently 1/100 s155

for a 10 km resolution grid, which is a typical spatial resolution for earth system models. Be-

cause of this very restrictive time step, it is recommended in [10] to use implicit time-stepping

for the momentum equation. Implicit time-stepping requires the use of iterative methods which

are notoriously difficult for nonlinear problems, however. To alleviate this issue, a Picard solver

designed to repeatedly solve simple linear systems was proposed in [29]. Further investigation in160

[13] demonstrated the impractical slow convergence of the Picard solver which ultimately motivated

the development of the JFNK solver in [11]. The JFNK solver is a nonlinear solver based on New-

ton’s method [33]. It is a matrix-free approach in the sense that the Jacobian is utilized through

matrix-vector products deduced from a first-order Taylor series expansion, and is useful since form-

ing and storing the Jacobian matrix is prohibitively expensive [11]. The resulting linear system of165

equations is then in general solved by the preconditioned FGMRES method [34], which is a Krylov

subspace method. Employing an inexact Newton method [35] can further improve robustness and

computational efficiency. More details can be found in [36, 11, 37].

On the flip side, in order to entirely avoid implicit methods, the EVP model proposed by Hunke

and Dukowicz [5] and then further modified by Hunke in [6], adds an artificial elastic term to the170

viscous-plastic constitutive equation, thereby relaxing the stability condition for an explicit time-

stepping scheme. The basic idea of the EVP model is to approximate the VP solution by damping

the resulting artificial elastic waves via subcycling [14].

Remark 3.1 (On the use of explicit time integration). Although using explicit time integration is

non-standard for the VP model, and indeed is not realistic in the more general setting, it is well-175

suited for the purpose of this investigation. Specifically, studying the 1D VP model allows us to not

be concerned about the cost in using explicit time stepping schemes, which in turn ensures that we

do not conflate the errors that arise from using iterative solvers (namely stopping criteria) with the

spatial discretization errors. We also avoid introducing new terms in the VP model, such as the

EVP model does. In particular we are interested in avoiding the effects of numerical diffusion, which180

while serving to increase the underlying stability of the computation inevitably causes a reduction
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in accuracy. We emphasize that the spatial derivative operators employed in our analysis, namely

WENO and CD, are regularly used in multi-dimensional environments, and that it is possible to

couple with implicit time stepping algorithms. This investigation, therefore, is to demonstrate the

potential use of higher order spatial derivative operators in sea ice modeling based on the numerical185

convergence properties we observe in our study of the 1D VP model. For completion we will compare

our results to those obtained using the EVP model in Appendix A.

Before describing our approach to solving the 1D VP model in Section 4, we first take time to

review the current methodology which we adapt to this simplified environment (as opposed to the

2D VP model). To this end, we will use a modified version of the JFNK solver, which we describe190

in Section 3.1 and hereafter refer to as the Newton solver. We also review the 1D EVP model in

Section 3.2. We will compare the results using our new approach to those obtained using these

current methodologies in Section 5.

3.1. The Newton solver

By limiting our study to the 1D VP model, we can accordingly simplify numerical implemen-195

tation by directly using Newton’s method instead of the JFNK solver, which would be required in

more complex settings. Below we illustrate how this is implemented with a backward Euler (BE)

time integration scheme for the momentum equation (2.2a).

The time-discretized 1D momentum equation is written as

ρhn−1u
n − un−1

∆t
= τna − τw(u

n) +
∂σ(un, hn−1, An−1)

∂x
, (3.1)

where the superscript n denotes the current time level. The numerical solution at the previous time

level n− 1 for (2.2) is known. Let un = {uj}Nj=1 denote the approximation of un obtained by some

finite difference spatial discretization technique at each grid point xj , j = 1, . . . N .2 The spatial

discretization scheme will be specified on both non-staggered and staggered grids in Section 4. For

now we generically define the solution on N grid points. At current time level n, we therefore seek

a solution to

F(un) = 0,

2To avoid cumbersome notation, for the rest of this paper we will use u to depict the vectorized solution of (2.2)

(and not the continuous solution (2.1)).
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where F(un) is the difference between the right- and left-hand sides of (3.1) following spatial

discretization.200

Since we are focusing on a single time step, we can simplify the notation by dropping the

superscript n, so that we seek the solution u = un. Using the velocity solution at the previous time

level as the initial value u(0), we iteratively solve a sequence of linearized systems to consecutively

obtain u(1),u(2), · · · ,u(k), · · · until some stopping criterion is satisfied. Algorithm 1 summarizes

the iterative technique.205

Algorithm 1 Newton solver

Start with an initial iterate u(0) and calculate ∥F(u(0))∥, here ∥ · ∥ is the L2-norm.

for k = 1 to kmax = 150 do

Solve F(u(k−1)) + J(u(k−1))δu(k) = 0 for δu(k), where ϵ = 10−7 and [J(uk−1)]i :=
F(u(k−1) + ϵ ei)− F(u(k−1))

ϵ
, here ei is the standard basis vector.

Set u(k) = u(k−1)+λ δu(k), where λ =

�
1,

1

2
,
1

4
,
1

8

�
is successively reduced until ∥F(u(k))∥ <

∥F(u(k−1))∥ or until λ =
1

8
.

Stop if ∥F(u(k))∥ < γnl∥F(u0)∥ with γnl = 10−6.

end for

Remark 3.2 (Relationship between the Newton and JFNK solver). The solution obtained using

Algorithm 1 is comparable to that obtained using the JFNK solver, which is commonly used in

solving the 2D VP model. While the JFNK solver is generally more stable, using Newton’s method

will ensure that in our numerical tests we are appropriately comparing the spatial discretization

error.210

3.2. The Elastic-Viscous-Plastic (EVP) model

In the EVP model, the velocity at time level n is obtained by explicitly solving the momentum

equation from the previous time level n − 1. In particular, the constitutive law was rewritten by

Hunke and Dukowicz [5] to include a time dependence on the stress tensor. The velocity is then

solved together with stress during subcycling. In the 1D case [32], the stress-strain relationship

σ = (η + ζ)
∂u

∂x
− P

2
(3.2)
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is equivalent to
σ

η + ζ
+

P

2(η + ζ)
=

∂u

∂x
. (3.3)

By adding an artificial elastic strain with an elastic parameter E, we obtain

1

E

∂σ

∂t
+

σ

η + ζ
+

P

2(η + ζ)
=

∂u

∂x
. (3.4)

In the original version of the EVP model [5], the viscosities η and ζ were held fixed throughout

the subcycling procedure. However, because the viscosities were not regularly updated, such lin-

earization of the internal stress term caused the computed principal stress states to lie outside the

elliptical yield curve [6]. To address this issue, Hunke [6] proposed to include the viscosities within

the subcycling, while simultaneously changing the definition of the elastic parameter E to maintain

the computational efficiency. Specifically, with E defined in terms of a damping timescale for elastic

waves and T according to the equation E =
ζ

T
, (3.4) can be rewritten as

∂σ

∂t
+

σ

(1 + e−2)T
+

P

2(1 + e−2)T
=

ζ

T

∂u

∂x
. (3.5)

The subcycling solution is advanced iteratively with subcycling time step ∆te. This approach yields

the time evolution of stress as a function of the velocity from the previous iterate according to

σs − σs−1

∆te
+

σs

(1 + e−2)T
+

Pn−1

2(1 + e−2)T
=

ζs−1

T

∂us−1

∂x
, (3.6)

where the subcycling iterate is denoted with the superscript s. With the newly calculated stress in

(3.6), the velocity is subcycled according to

ρhn−1u
s − us−1

∆te
= τ sa − τ s−1w +

∂σs

∂x
. (3.7)

Observe that in the EVP model, the damping timescale T is a tuning parameter satisfying ∆te <

T < ∆t, which is in general set to be T = 0.36∆t following the documentation of the CICE model

[24]. In addition, we denote the number of subcycles by Nsub, satisfying Nsub ×∆te = ∆t.

Remark 3.3. We note that neither the JFNK solver nor the EVP model has entirely resolved the215

convergence issue. In particular, the JFNK solver is not robust, as it was demonstrated in [11] that

the failure rate for the JFNK solver increases as the grid is refined. On the other hand, it was shown

in [14] that the EVP approximate solution has notable differences from the reference solution, which

becomes relatively more distinct with finer resolution. Furthermore, while both methods focus on the
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momentum equation, less attention is paid to the transport equations in the coupled system in either220

case. In particular, treating out-of-range issues for either the ice thickness or ice concentration is

seldomly discussed. Hence it is possible to obtain unrealistic physical values for either or both when

applying the solvers directly to the sea ice model. We therefore seek to address these issues in the

1D case so that we are better able to subsequently solve the more complicated 2D version in (2.1).

4. Proposed numerical methods225

Motivated by the above discussion, in this section we propose an approach to help mitigate the

limitations of existing solvers for both the VP and EVP sea ice models. We first discuss the WENO

method [21] to advocate the use of higher-order methods for improving numerical accuracy and

efficiency. We then describe the potential function method as a means to incorporate the physical

restrictions of the ice thickness and concentration on top of the existing numerical methods. This230

will help to alleviate the out-of-range issues.

4.1. Weighted essentially non-oscillatory (WENO) scheme

A main goal of this investigation is to demonstrate the advantages of using higher-order meth-

ods to solve the sea ice model. We use the WENO method [21] as a prototype for two reasons.

First, WENO is designed to have a higher-order convergence rate for smooth solutions than stan-235

dard second-order three point stencil CD schemes, and second, WENO is able to maintain stable,

non-oscillatory, and sharp discontinuity transitions so that it is suitable for sea ice with natural

discontinuity feature of thickness and concentration. We verify that both of these properties hold

in our numerical simulation of sea ice cover with and without sharp features.

Below we present the numerical implementation details of the WENO scheme [21], along with240

the other methods used to solve the momentum and transport equations (see Table 2). To keep our

investigation self-contained, a brief description of the WENO scheme is provided in Appendix B.

The second-order CD scheme is commonly used for spatial discretization of momentum equation

[11, 16, 37] as well as transport equations [37]. A main purpose of this investigation is to analyze

the numerical convergence properties for the 1D Hibler model and in particular to determine if245

either method is suitable.

We use the method of lines for time integration when employing either the WENO or CD spatial

discretization scheme. In this regard, to ensure stability and maintain the accuracy obtained in the
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equation type scheme

momentum (2.2a)
WENO TVDRK3

CD TVDRK3

transport (2.2b), (2.2c)

WENO TVDRK3

CD TVDRK3

Upwind

Table 2: Equations and corresponding solvers. The TVDRK3 scheme is provided in Algorithm 2. The WENO

method is described in Appendix B. CD refers to the classical second-order three point stencil centered difference

scheme, while upwind refers to the first-order two point one-sided finite difference method.

spatial derivative approximation, we use the third-order TVD Runge-Kutta (TVDRK3) method

[38] for both the WENO and CD schemes. By employing the same time integration method (along250

with the same fixed time step) we ensure that we are comparing only the spatial discretization

performances of WENO and CD – we are neither evaluating the time integration methods nor

considering in our analysis the corresponding time integration error.

We furthermore compare these results to those obtained using CD with an implicit time integra-

tion (BE) and Newton solver for the momentum equation along with a first-order upwind scheme255

for the transport equations. Since the scheme with the (comparable) JFNK solver is common in

practice, [11, 16], we will refer to this particular combination as the “reference scheme” from now

on. For completion we describe the numerical implementation of the upwind scheme for the trans-

port equations (see (4.2) in Section 4.1.2). Our numerical examples in Section 5.3 and Section 5.4

provide case studies for the mixed time integration approach. Finally we note that it is of course260

possible to use a different spatial discretization for each equation in the system. As we did not

observe any advantage in this (more complex) approach, we do not include these results here.

4.1.1. The momentum equation

To solve the momentum equation by the WENO scheme, we use higher-order finite differencing

for (2.2a), following [39] for nonlinear degenerate parabolic equations. In particular,
∂u

∂x
and

∂σ

∂x
265

are discretized using the fifth-order finite difference WENO method for conservation laws [40] based

on the left-biased stencil and right-biased stencil, respectively.

We consider both periodic and Dirichlet boundary conditions. Periodic boundary conditions
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allow us to avoid errors introduced by numerical extrapolation at the boundaries. That said,

the complexities introduced at the boundaries here are not fundamentally different from other

PDE models. Here we construct a non-staggered grid so that all variables are defined at the

center of each grid cell. That is, we seek the solution at the j = 1, . . . , N midpoints of each cell,

xj− 1
2
= xj −

1

2
∆x, with xj = j∆x and ∆x =

L

N
where L is the domain length. For periodic

boundary conditions, the “ghost” point values outside the computational domain are naturally

obtained from the periodicity assumption. For a more physically realistic scenario, we consider an

ocean-land boundary in which case homogeneous Dirichlet boundary conditions (u = 0) are applied

at either end of the model domain. To incorporate the prescribed boundary conditions accurately,

we construct a non-staggered grid where all the variables are defined on vertices {xj}Nj=0. The ghost

point values are simply chosen to be the same as the values of their closest neighbors within the

computational domain. That is, for a generic variable z, we take

zj =

z0 if j < 0;

zN if j > N.

(4.1)

On the other hand, for the commonly used CD scheme, we follow [11, 16, 37] and construct a 1D

version of the staggered Arakawa C-grid [41], where the velocity u is defined on vertices {uj}Nj=0,

and the traces h and A are defined at the center of each grid cell, {hj− 1
2
}Nj=1 and {Aj− 1

2
}Nj=1

respectively. Correspondingly, the stress σ, the viscosities η and ζ and the ice strength P are also

defined at the center of each grid cell. To solve for the velocity u in the momentum equation (2.2a),

we take hj =
1

2
(hj+ 1

2
+hj− 1

2
) for j = 1, · · · , N − 1. We then approximate

∂u

∂x
at each cell center as

{du}j− 1
2
=

uj − uj−1

∆x
,

so that σ = (η+ ζ)
∂u

∂x
− P

2
is defined at xj− 1

2
. This leads to the approximation

∂σ

∂x
at each vertex

given by

{dσ}j =
σj+ 1

2
− σj− 1

2

∆x
.

The scheme is then complemented with either periodic boundary conditions or homogeneous Dirich-

let boundary conditions as discussed above.

4.1.2. The transport equations270

Similarly to the momentum equation, the fifth-order WENO method for conservation laws [40]

is also used to solve the transport equations (2.2b) and (2.2c) with either periodic or Dirichlet
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boundary conditions. In the latter case, suitable ghost point values for numerical flux bf need to

be prescribed on both sides of the domain. When the boundary point corresponds to bf ′ ≥ 0, the

ghost point values are taken to be 0. On the other hand when the boundary point corresponds tobf ′ ≤ 0, we use linear extrapolation resulting in3

bfj =
2 bf0 − bf−j if j < 0;

2 bfN − bf2N−j if j > N.

Both the second-order CD scheme [37] and the first-order upwind scheme [11, 14, 16] have been

frequently used to solve the transport equations, where the staggered grid is adopted for spatial

discretization of the variables as explained in Section 4.1.1. In the CD scheme, using a similar

strategy to discretize the transport equation (2.2b) for h as was done for the momentum equation

(2.2a), we approximate
∂

∂x
(uh) at each cell center as

{d(uh)}j− 1
2
=

(uh)j − (uh)j−1
∆x

.

We similarly solve A using the same spatial discretization for the transport equation (2.2c). To

numerically impose the homogeneous Dirichlet boundary conditions we apply u0 = 0 (similarly

uN = 0) so that

(uh)0 = u0h0 = 0,

leading to

{d(uh)} 1
2
=

(uh)1 − (uh)0
∆x

=
(uh)1
∆x

for the transport equation (2.2b) (similarly for {d(uh)}N− 1
2
). The Dirichlet boundary conditions

also yield analogous equations for A at the boundaries in (2.2c). On the other hand, the first-order

upwind scheme for the transport equation (2.2b) of h is given by

hn
j− 1

2

− hn−1
j− 1

2

∆t
+

(uh)n−1
j− 1

2

− (uh)n−1
j− 3

2

∆x
= 0 for un−1

j− 1
2

> 0, (4.2a)

hn
j− 1

2

− hn−1
j− 1

2

∆t
+

(uh)n−1
j+ 1

2

− (uh)n−1
j− 1

2

∆x
= 0 for un−1

j− 1
2

< 0, (4.2b)

3This type of boundary condition is referred to as anti-symmetric in [20]. A more general and detailed discussion

on WENO scheme boundary conditions can be found there.
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for j = 2, · · · , N − 1, where because of the staggered grid we compute uj− 1
2
=

1

2
(uj−1 + uj). To

incorporate the homogeneous Dirichlet boundary condition u0 = 0 (similarly uN = 0), we update

h 1
2
with the modified scheme

hn
1
2

− hn−1
1
2

∆t
+

(uh)n−11
2

− (uh)n−10

1
2∆x

= 0 for un−1
1
2

> 0, (4.3a)

hn
1
2

− hn−1
1
2

∆t
+

(uh)n−13
2

− (uh)n−11
2

∆x
= 0 for un−1

1
2

< 0, (4.3b)

and make use of

(uh)0 = u0h0 = 0.

The transport equation (2.2c) of A is solved similarly.

Finally, we discuss the time integration technique TVDRK3, which is necessary to maintain

stability when employing both WENO and CD spatial discretization schemes. We consider the

ordinary differential equation
dz

dt
= L(z),

for a generic variable z, where L(z) is a discretization of the spatial operator. The TVDRK3 method

advances the solution at the current time level, zn−1, to the solution at the next time level, zn,

according to Algorithm 2. The value z0 corresponds to the initial conditions.

Algorithm 2 TVDRK3 time integration method for a single time step

INPUT: zn−1 and L(zn−1)

OUTPUT: The solution zn at time level n.

z(1) = zn−1 +∆t L(zn−1),

z(2) = 3
4z

n−1 + 1
4z

(1) + 1
4∆t L(z(1)),

zn = 1
3z

n−1 + 2
3z

(2) + 2
3∆t L(z(2)).

4.2. Potential function method275

Due to its physical interpretation, the variable ice thickness h in the sea ice model must remain

non-negative. Similarly, the ice concentration value A must be between 0 and 1. It is crucial for

the numerical methods to preserve both of these properties to ensure that a meaningful solution is
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obtained. Motivated by the double-well potential function in the phase field method [27, 28], where

the resulting equation is limited to a particular set of prescribed values due to the local minima of280

the potential function, we develop the potential function method here to impose the corresponding

restrictions of ice thickness and ice concentration.

We begin by illustrating the potential function method on the transport equation of ice concen-

tration A in (2.2c) and note that the case for ice thickness h in (2.2b) similarly follows. First, to

restrict ice concentration A so that 0 ≤ A ≤ 1, we define a potential function in a piecewise manner

as

f(A) =


γ1f1(A), if A < 0,

0, if 0 ≤ A ≤ 1,

γ2f2(A), if A > 1,

(4.4)

where f1 > 0 and f2 > 0 for all A, and γ1 > 0 and γ2 > 0 are parameters chosen so that f has

minima on [0, 1]. For example, if both f1 and f2 are linear functions, a particular form of f might

be

f(A) =


−γ1A, if A < 0,

0, if 0 ≤ A ≤ 1,

γ2(A− 1), if A > 1.

(4.5)

The transport equation (2.2c) is then modified by adding a forcing term given by the gradient of

the potential. This has the effect of the ice concentration experiencing a gradient force that tracks

down to the physical range [0, 1]. The resulting equation is given by

∂A

∂t
+

∂

∂x
(uA) = −f ′(A). (4.6)

Observe that for the piecewise linear case, the forcing term −f ′(A) is piecewise constant, meaning

that the force transition is not continuous. To enable a more desirable smooth transition for this

term we will instead choose both f1 and f2 to be quadratic and define f as

f(A) =


γ1A

2, if A < 0,

0, if 0 ≤ A ≤ 1,

γ2(A− 1)2, if A > 1.

(4.7)
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The corresponding forcing term is now given by

f ′(A) =


2γ1A, if A < 0,

0, if 0 ≤ A ≤ 1,

2γ2(A− 1), if A > 1,

(4.8)

which is clearly continuous.

4.2.1. Determining parameters γ1 and γ2

We now must determine parameters γ1 and γ2 in (4.5) to ensure that A stays in range, 0 ≤ A ≤ 1.

To this end, we first prescribe a Lagrangian representation of the ice concentration field A, denoted

as

B(t) = A(x(t), t),

which allows us to express the ice concentration field as a function of time t only. From the method

of characteristics we have ẋ =
dx

dt
= u(x, t), so that the modified transport equation (4.6) can be

written as

Ḃ = −f ′(B)−B
∂u

∂x
.

Using local analysis around B = 0 and B = 1 to respectively determine the appropriate ranges for

γ1 and γ2, we conduct linear approximation to u and estimate
∂u

∂x
as a = a(x). This leads to the

ODE given by

Ḃ = −f ′(B)− aB. (4.9)

Determining a range for γ1: To determine an appropriate range for γ1, we use local analysis

around B = 0 so that (4.9) becomes

Ḃ = −2γ1B − aB, B(0) = B0, (4.10)

which has the analytical solution

B = B0e
−(2γ1+a)t. (4.11)

The out-of-range case we are considering is for the case where the numerical solution yields the285

non-physical negative ice concentration. It therefore follows that B0 < 0, and from this observation

we define the “out-of-range” error δ1 := −B0. Our goal then is to “nudge” the numerical solution so

that it moves back into range. Accordingly, we need B to be an increasing function, or equivalently
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Ḃ > 0 in (4.10). Clearly this requires γ1 > −a

2
. Observe from (4.11) that it is always true that

B < 0, so the ice concentration will never fall out of range near the value 1 as long as γ1 > −a

2
.290

Imposing this constraint is straightforward. Since A is initially within [0, 1] for the whole domain

and f ′(A) = 0 everywhere, we start by solving the non-modified transport equation (2.2c). Now

suppose that at some later time there is a point in the domain for which the numerical scheme

computes A < 0. This is equivalent to B0 < 0 in (4.10), establishing the need to modify the

transport equation by adding an extra forcing term −f ′(A) = −2γ1A from (4.8).295

The analysis with respect to (4.11) applies only to constructing a lower bound for γ1, as indeed

choosing γ1 too large would dramatically affect the behavior of (4.6), creating a greater discrepancy

from the original problem (2.2c), and possibly leading to non-physical oscillatory behavior over time.

We can avoid this problem altogether by using a surrogate one-step forward Euler approximation

of (4.10) given by

B = −(2γ1 + a)B0∆t+B0, (4.12)

which simplifies both the analysis and numerical implementation for determining the bounds of γ1.

Specifically, based on the arguments above requiring B to be an increasing function, we still need

γ1 > −a

2
. On the other hand, we also need B ≤ 1 to ensure that A stays within [0, 1]. As per the

discussion above, the legitimacy of (4.6) requires B > 0 to remain close to 0, that is B ≤ bδ1 for

some small number bδ1 > 0. Substituting these conditions into (4.12) we obtain

γ1 ≤ −
a

2
+

bδ1/δ1 + 1

2∆t
,

yielding the finite range for γ1 as

−a

2
< γ1 ≤ −

a

2
+

bδ1/δ1 + 1

2∆t
. (4.13)

Remark 4.1. Recall that δ1 measures the discrepancy between negative A and 0, while bδ1 measures

the amount the numerical solution is “nudged” back into range. Since both values are small, we see

from (4.13) that the range of admissible γ1 is proportional to
1

∆t
, which also provides insight on

the choice of γ1. We further note that since a is the linear approximation of
∂u

∂x
(see discussion

surrounding (4.9)), |a| can be reasonably assumed to be less than 1 s−1, due to the fact that |u| is300

generally less than 1 m/s and thus the discretized value |∆u| is much smaller than the order (km)

of the spatial resolution ∆x. It follows that to maintain consistency between (4.6) and (2.2c) it is
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desirable to choose γ1 close to −a

2
. Finally, we point out that since a can be estimated in early

simulations (before A goes out of range) and ∆t is a user-defined parameter, choosing γ1 can be

somewhat automated.305

It is important to point out the trade-off between ensuring that A stays within range and con-

servation. That is, applying (4.6) (or any type of post-processing) will cause some conservation

discrepancy, and this increases with γ1. By contrast, when γ1 is closer to the lower bound, there is

less conservation discrepancy, but in this case using the potential function method may not be ef-

fective in keeping A within its physically meaningful range. More details will be provided in Section310

5.3.

Determining a range for γ2:

Using a similar approach, we now consider the local analysis around B = 1, corresponding to

the case where A goes out of range near the value 1. The ODE in (4.9) around B = 1 reduces to

Ḃ = −2γ2(B − 1)− aB, B(0) = B0, (4.14)

which yields the analytical solution

B = (B0 −
2γ2

2γ2 + a
)e−(2γ2+a)t +

2γ2
2γ2 + a

. (4.15)

Since we are now considering the out-of-range solution A > 1, we have B0 = 1 + δ2, where δ2 =

|1− B0| > 0 is again the magnitude of the out-of-range error. In this case we seek γ2 so that B is

decreasing, or equivalently Ḃ < 0, which wil “nudge” the numerical solution so that A gets back in

range of possible physical solutions, [0, 1]. Clearly, then, γ2 > − aB0

2(B0 − 1)
=

a(1 + δ2)

2δ2
. We must

also ensure that B ≥ 0 for all t ≥ 0 so that we don’t fall out of range on the left side of the solution

interval. To this end, we first observe that (4.15) can also be written as

B = (B0 − 1)e−(2γ2+a)t +
a

2γ2 + a
(e−(2γ2+a)t − 1) + 1, (4.16)

from which it is immediately apparent that B > 1 for all γ2 as long as a ≤ 0. It is also possible to

show that B ≥ 0 for a ≤ 1. From the discussion within Remark 4.1 we can assume |a| < 1 s−1, so

that B ≥ 0 holds for all γ2 in the given problem.315

As was done in (4.12), we can again consider the one-step forward Euler approximation

B = −(2γ2 + a)B0∆t+ 2γ2∆t+B0. (4.17)
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The requirements of B decreasing with B ≥ 1− bδ2 lead to the range of γ2 given by

a(1 + δ2)

2δ2
< γ2 ≤

a(1 + δ2)

2δ2
+

bδ2/δ2 + 1

2∆t
. (4.18)

As before, we add the extra forcing term, in this case −f ′(A) = −2γ2(A− 1), whenever A > 1

results from the numerical solver. Finally, we also note that the same procedure is implemented

for the ice thickness h when the numerical solver causes it to become negative. As we will see in

Section 5, our integrated method, which combines the WENO TVDRK3 scheme with the potential

function approach, yields an accurate and stable numerical solver for the 1D Hibler model.320

5. Numerical experiments

We provide four numerical experiments to illustrate the behavior of our proposed methods for the

1D sea ice simulation model. The first experiment is to corroborate the higher rate of convergence

for WENO as compared to CD for smooth solutions. The capacity to resolve discontinuities (sharp

features) in the sea ice covers is verified in the second test, while the third example shows how325

the potential function is implemented in situations where the numerical solutions A and h fall out

of range. Finally, we illustrate the benefits of integrating our proposed methods by comparing

the WENO TVDRK3 potential function numerical solver to the reference scheme (see discussion

preceding Section 4.1.1) that uses a “cut-off” post-processor to keep h and A within physical range

on the transport equations.330

5.1. Numerical convergence analysis

To assess the convergence rate of WENO, we consider a test problem in a domain Ω = [0, 2000]

km with a known analytical solution. This is, of course, generally not the case as the sea ice model

has no known solutions. We construct the proposed solutions so that their values are consistent in

magnitude to their corresponding true physical values:335

utrue = (sin(2πx/(2× 106) + 5t/518400− π/2) + 1)× 0.001 + 0.2,

htrue = (sin(2πx/(2× 106) + 5t/518400− π/2) + 1) + 0.1, (5.1)

Atrue = (sin(2πx/(2× 106) + 5t/518400− π/2) + 1)× 0.15 + 0.7.

We then construct our test cases by adding appropriate extra forcing terms to the governing equa-

tions. This is done by introducing to the right hand side of each equation in (2.2) the forcing terms
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which are obtained by plugging into the left hand side terms corresponding to the constructed

solutions, so that our test system of equations becomes

ρh
∂u

∂t
− τa + τw(u)−

∂σ

∂x
(u) = ρhtrue

∂utrue

∂t
− τa + τw(utrue)−

∂σ

∂x
(utrue), (5.2a)

∂h

∂t
+

∂

∂x
(uh) =

∂htrue

∂t
+

∂

∂x
(utrue htrue). (5.2b)

∂A

∂t
+

∂

∂x
(uA) =

∂Atrue

∂t
+

∂

∂x
(utrue Atrue). (5.2c)

In (5.2a) we emphasize that τw and
∂σ

∂x
are both functions of u (see (2.4) and (2.5)). Conversely

τa (see (2.3)) cancels out since it does not depends on u, h, or A, implying that the surface wind

ua does affect the convergence results. Initial conditions for the system are obtained by plugging

t = 0 into (5.2).

The total simulation time is T = 5 s. The time step ∆t = 10−4 s is intentionally chosen to be340

small enough to ensure that the time discretization error does not affect the spatial convergence

rates. It furthermore allows us to conduct convergence tests directly on the VP sea ice model for

both the WENO and CD explicit spatial discretization schemes without the usual concern for the

stability issue associated with explicit methods.

Table 3 compares the relative ℓ2 errors for increasing resolutions with each spatial discretization345

choice. We observe second-order convergence for all three variables for the CD case, which is

consistent with the standard convergence analysis results for CD schemes. By employing the WENO

scheme in the ideal case, one would expect to obtain sixth-order convergence for the velocity u and

fifth-order convergence for both the ice thickness h and ice concentration A. However, due to the

complexity and non-linearity of the sea ice model, coupled with the fact that the added extra forcing350

terms are not being updated in the stages of TVDRK3 time integration, theoretical accuracy is

unlikely to be obtained. We still observe higher-order convergence for all three variables as compared

to the CD results. In addition, a direct comparison of the error magnitudes for all three variables

indicates that the WENO scheme indeed provides more accurate results than those obtained using

CD, noting that WENO appears to be mainly affected by round-off error at 10 km resolution.355

5.2. A simulation of sea ice with sharp features

In this example we test the performance of the WENO scheme on a simulation of a sea ice cover

with sharp features. To better capture the solution behavior near the discontinuity region while
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CD TVDRK3

resolution ∆x u error u rate h error h rate A error A rate

40 km 2.6655e-06 4.4967e-09 1.0362e-09

20 km 6.6698e-07 1.9987 1.1247e-09 1.9992 2.5920e-10 1.9991

10 km 1.6692e-07 1.9984 2.8120e-10 1.9998 6.4883e-11 1.9981

WENO TVDRK3

resolution ∆x u error u rate h error h rate A error A rate

40 km 5.2407e-07 1.3483e-11 8.8200e-12

20 km 2.1769e-08 4.5894 5.8573e-13 4.5248 9.2062e-13 3.2601

10 km 8.3211e-10 4.7093 8.8497e-14 2.7265 5.5688e-13 0.7252

Table 3: A comparison of CD and WENO spatial discretization errors for increasing resolution.

maintaining periodic boundary conditions, the structure of ice is designed such that relatively solid

ice covers both ends of the domain and a very thin layer of ice is in the center of the domain. This

is realized via a discontinuous setting on the initial conditions of ice thickness and concentration

given by

u = 0 m/s on [0, 2000] km,

h =

0.01 m on [400, 1600] km,

2 m on [0, 400] ∪ [1600, 2000] km,

A =

0.01 on [400, 1600] km,

0.8 on [0, 400] ∪ [1600, 2000] km.

(5.3)

For the external forcing in (2.3) we impose uniform constant wind forcing ua = 10 m/s.

Remark 5.1. As the WENO and CD schemes yield theoretically different convergence rates, for a

direct comparison, we also consider the so-called linear WENO scheme, [40], for which the nonlinear

weights are replaced by linear ones of the same order accuracy. Note that this is equivalent to360

using a fifth-order upstream centered scheme (upstream in time, centered in space). Due to the

combined stencil, the highest possible order of accuracy is obtained in smooth regions. The results

are oscillatory near discontinuities, however.
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Our results are displayed for the VP model in (2.2).4 The simulation is run with a spatial

resolution of ∆x = 10 km and time step ∆t = 1 s for a total simulation time of 1 hour (3600365

s). Figure 1 compares the results using WENO (top row), linear WENO (middle row), and CD

(bottom row) spatial discretizations for the simulation of the sea ice model with sharp features as

constructed using the initial conditions given in (5.3). Observe that the solutions for each variable

u (left column), h (middle column) and A (right column) are discontinuous. The solution plots

demonstrate that only WENO maintains a sharp non-oscillatory solution for the velocity u in each370

sub-region, with a sharp overshoot occurring in the CD velocity profile. We also note that while

the WENO solution is plotted at the final time of 1 hour, the solutions for the linear WENO and

CD are presented at 2000 s and at 2331 s, respectively, since the oscillations eventually cause these

solutions to blow up. There is less distinction between the methods in the ice thickness and ice

concentration solutions, which all retain the initial profiles while moving slightly toward the ends375

of the domain due to the exerted wind forcing. However, since they are coupled with velocity, the

CD and linear WENO solutions will also blow up before the final time.

The simulation results lead us to conclude that while we are able to properly resolve the discon-

tinuities and obtain a stable solution using WENO, this cannot be accomplished using either the

CD or the traditional higher-order (linear WENO) schemes.380

Remark 5.2. We also run this numerical experiment using the reference scheme (see paragraph

above Section 4.1.1) with a spatial resolution of ∆x = 10 km and time step ∆t = 180 s for a total

simulation time of 1 hour (3600 s). The solution plots at the 3060 s are presented in Figure 2.

Although the solutions do not blow up, oscillations are apparent in the velocity profile between 1600

km and 2000 km of the domain. Indeed, the Newton solver fails 15 out of 20 times. At earlier385

times (results not shown here), one could observe that the oscillations in the velocity profile stem

from the discontinuity point at 1600 km, and is due to the CD scheme not being able to resolve

the discontinuities. This example further demonstrates that the computed solutions are unreliable

whenever the Newton solver fails. While stability may be enhanced via the use of implicit time

integration schemes and/or low order methods, it is important to emphasize that this does not390

mean that we obtain an accurate solution. In particular, we can obtain a “wrong” solution without

numerical blow up. Fundamentally, this is why both stability and accuracy are needed to obtain

4Similar results are obtained for the EVP solver model and are presented in Appendix A.
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Figure 1: Simulation of sea ice with sharp features. (Top) solution plots using WENO at 1 hour; (middle row)

solution plots using linear WENO at 2000 s; (bottom) solution plots using CD at 2331 s. (Left) velocity u; (middle

column) ice thickness h; (right) ice concentration A.

numerical convergence.
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Figure 2: Simulation of the sea ice with sharp features. The solution plots are constructed using the reference scheme

at 3060 s . (Left) velocity u; (middle) ice thickness h; (right) ice concentration A.

5.3. Incorporating the potential function method into the solver

We now test the model for which no exact solution is known. The main goal of this numerical395

test is to determine how out-of-range issues, namely A < 0, A > 1, or h < 0, may be effectively

mitigated using the potential method described in Section 4.2.

We use BE time integration with CD spatial discretization and Newton solver to solve the

momentum equation, along with TVDRK3 with CD scheme for transport equations. We note that

in choosing to use an implicit time-stepping method for solving (2.2a) we avoid issues concerning400

stability. Moreover, with regard to the transport problem, we note that the WENO scheme does

not yield out-of-range negative solutions for either A or h. Hence to determine the efficacy of the

potential method we apply the CD scheme (using explicit time-stepping) to the transport equations

(2.2b) and (2.2c). As discussed in 4.1, we also use the 1D version of the staggered Arakawa C-grid

[41].405

We run all the experiments on a domain of length 2000 km for a total integration time of 6

days. We choose a spatial resolution of 20 km and 90 s as the time step. The initial conditions are

constant throughout [0, 2000] km and given by

u(x, 0) = 0 m/s, h(x, 0) = 1 m, A(x, 0) = 0.9.

We impose Dirichlet boundary conditions so that

u(0, t) = u(2000, t) = 0 m/s. (5.4)

Observe that since the ocean is considered to be at rest in this model, the only variable external

forcing term is the wind, which is imposed uniformly as a constant given by

ua(x, t) = 10 m/s.
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For comparison purposes we first run the simulation without applying the potential function

method. Throughout the 6-day simulation, we find that the largest A value is 1.0540, the smallest

A value is -0.1445, and the smallest h value is -0.1606, which are all out of range.

To employ the potential function method, we first simulate the model (without incorporating the

potential function method into the transport equations) until the time T1 for which min
x
{A(x, T1)} <

0.5 The potential function variables corresponding to (4.10) are then determined as

a ≈ ∂u

∂x
, B0 = A.

While B0 is determined directly from the numerical implementation of the scheme, as previously

mentioned after (4.9), a is computed as a linear approximation of
∂u

∂x
. Following the discussion in

Section 4.2, we then find a uniform bound for γ1 by computing

γ1,min = max
x

n
− a

2

o
, γ1,max = min

x

n
− a

2
+

bδ1/δ1 + 1

2∆t

o
,

where δ1 = −B0 and we assume bδ1 = δ1 for simplicity. The process is similar for determining γ2

for when max
x
{A(x, T2)} > 1, T2 > 0 and choosing bδ2 = δ2, and in our experiment we obtain

γ1 ∈ (3.6682× 10−7, 0.0111), γ2 ∈ (0.0075, 0.0186).

Finally, similarly derived as for γ1 and γ2, the corresponding range for the parameter γ associated

with h < 0 is

γ ∈ (3.6682× 10−7, 0.0111). (5.5)

Based on these results and the discussion in Section 4.2, we choose

γ1 = 10−3, γ2 = 10−2, and γ = 10−3.

These parameter choices will be discussed further in Remark 5.4. We then run the remainder of the

simulation, up until final time T = 6 days, with the potential function method now incorporated410

into the transport equations. For comparison, we also run the simulation using a “cut-off” post-

processor, which simply removes any value outside the desired range.

The solutions of u, h, and A are displayed in Figure 3, where the top row depicts the solutions

without employing the potential function method or the cut-off post-processor, the second row

5We only do this process one time for each out-of-range situation, A < 0, A > 1, and h < 0. The potential

function parameters then remain fixed for all time.
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Figure 3: Potential function method example. (Top) images of computed solutions without applying the potential

function method or the cut-off post-processor; (second row) images of computed solutions applying potential function

method; (third row) images of computed solutions applying the cut-off post-processor; (bottom) solutions plots at

final time.
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shows the solutions when the potential function is used, the third row shows the solutions using the415

cut-off post-processor, and the bottom row shows the solution plots at the final time. It is evident

that using the potential function yields some differences in the solution. The change of color shade

in the velocity image around the 2000 km boundary of the region at roughly 30 hours indicates

the situation when the non-physical values are detected and potential function starts to take effect.

With the potential function method, the velocity remains a relatively large value on a larger portion420

of the domain and decreases to 0 in a sharper manner towards the end of the boundary. The

behavior of the ice thickness near the boundary, especially around 2000 km, dramatically changes

due to the application of the potential function method. In particular, the non-physical negative

values near the left boundary are replaced by smoother physically meaningful values. Also, the

thickness value is much larger near the right boundary, and the ridging effect is more clearly425

observed. This makes more sense physically for ridging on the ocean-land boundary. For the ice

concentration, non-physical negative values near the left boundary and non-physical large values

near the right boundary are also appropriately treated by the potential function method. Finally,

Figure 3 (bottom) shows similar behavior when either the potential function method or the cut-off

post-processor is employed to reduce out of range issues. Here “original” refers to the numerical430

scheme without employing either the potential function method or the cut-off post-processor. A

couple of remarks are in order.

Remark 5.3. The numerical tests demonstrate that the potential function method plays an impor-

tant role in preserving the bounds for ice thickness and ice concentration in the sea ice model. It

has the advantage of not requiring any post-processing, which may introduce discontinuities into the435

solution profile, a problem that can become more apparent in more realistic environments, where the

true solution exhibits more fluctuating behavior. In future work we will investigate how the potential

function method performs in more complicated scenarios, such as in the case of non-uniform wind

forcing or in higher-dimensional settings.

Remark 5.4. As already discussed, the parameters in the potential function are related to mass

conservation. To analyze this more deeply, we first recall that the mass of ice on the domain is

defined as

m =

Z
ρ h dx

where ρ is the constant sea ice density. We then define the discrete scaled mass at arbitrary time
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level n as

bm =

NX
j=1

hn
j− 1

2

NX
j=1

h0
j− 1

2

× 100%. (5.6)

We note that (5.6) describes the percentage of discrete scaled mass to indicate the deviation from440

the true amount.

Figure 4: Potential function method example. (Left) scaled mass (5.6); (middle) ice thickness at final time; (right)

log of ice thickness error and scaled mass error as a function of γ in (5.5).

Figure 4(left) presents the scaled mass bm in (5.6) as a function of time obtained using (1)

the scheme without employing the potential function method or the cut-off method (referred to as

“original” in each figure), (2) the scheme with the potential function method (4.6) applied to the

h transport equation, using different choices for γ in (5.5), and (3) the scheme with cut-off post-

processor. To avoid unintended effects due to the equations being coupled, we choose γ1 = γ2 = 0

(i.e. we do not adopt the potential function method for A going out of range). Observe that, as

expected, mass is conserved when neither the cut-off nor the potential function method is used on

top of the currently adopted numerical scheme, while employing either causes an increase in the

scaled mass percentage. This artificial mass gain is more pronounced when larger parameters are

used in the potential function method. Using the cut-off post-processor results in similar behavior.

Conversely, as observed in Figure 4(middle) the larger parameters in the potential method reduce

the out-of-range problem near h = 0, with similar behavior once again observed for the cut-off

post-processor. To quantify this trade-off relationship, we define

herror = max
t
|0−min{0,min

x
h}| = max

t
|min{0,min

x
h}|
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which measures the out-of-range error for h, and

bmerror = max
t
|100%− bm|

which measures the mass conservation discrepancy. Note that we write herror in this form to empha-

size that we are measuring the discrepancy between the non-physical negative value of ice thickness

with 0. Figure 4(right) displays the log10 magnitude of these two quantities with respect to the

parameter γ in the potential function method and verifies the trade-off between out-of-range errors445

and scaled mass percentage errors.

5.4. Comparison with the reference scheme

This numerical test is designed to compare the proposed method (WENO TVDRK3 with po-

tential function method) with the reference scheme (see paragraph above Section 4.1.1). The model

domain is 2000 km long and the total simulation time is 6 days. The experiment is initialized with

three types of ice block on the domain given by

u = 0 m/s on [0, 2000] km,

h =


1.2 m on [0, 800] km,

0.5 m on [800, 1600] km,

1.2 m on [1600, 2000] km,

A =


0.8 on [0, 800] km,

0.5 on [800, 1600] km,

0.9 on [1600, 2000] km.

(5.7)

Homogeneous Dirichlet boundary conditions (5.4) are imposed. A “ramp-up” type of wind forcing

is imposed as the only external forcing term. That is, the wind is chosen to be gradually increasing

temporally as ua(t) = 10 (1− e−t/τ ) m/s with τ being set to six hours and remain uniform pattern450

spatially. The simulation is run with a spatial resolution of ∆x = 20 km. As for the time step, we

use ∆t = 1 s for the proposed method and ∆t = 300 s for the reference scheme. 6

6Since our proposed method uses explicit time-stepping to solve (2.2a), a small time step is needed to ensure

numerical stability. This restriction may be alleviated by either using an implicit time-stepping method or an EVP
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Figure 5 shows solutions for u, h and A at the final time of 6 days along with the scaled

mass percentage (5.6) obtained by each method with and without treatment of non-physical values

(the potential function method and cut-off post-processor, respectively). We note that the WENO455

scheme does not yield non-physical negative solutions for either A or h, so that we need only

apply the potential function method to treat non-physical solutions for A > 1. In this case we

choose γ2 = 10−2. Observe that while the velocity profiles behave similarly for the reference and

proposed method, as well as for when the respective treatments are included, it is clear that only our

proposed method maintains a sharp non-oscillatory solution in each sub-region for the ice thickness460

and ice concentration. As desired, applying the potential function method helps to nudge the

non-physical value for ice concentration A back into range, which results in a clear ridging effect

near the right boundary (by correcting the artificial numerical solutions) for ice velocity u and ice

thickness h. On the other hand, the reference scheme generates sharp overshoots in both the ice

thickness and ice concentration profiles. The cut-off post-processor mitigates these overshoots but465

does not completely resolve the issue. Finally, while neither method maintains mass conservation,

the discrepancy seen in the proposed method is clearly less than for the reference scheme. In this

regard, it is interesting to observe that in the long term, using the cut-off post-processor (as applied

to the reference scheme) appears to cause greater conservation discrepancy than using the potential

function method in conjunction with the proposed method.470

6. Concluding remarks

This paper discusses the current methodology and limitations, namely poor convergence and

out-of-range issues for both ice concentration and ice thickness, for solving the VP sea ice model.

To improve the performance of the numerical solutions, we propose the use of higher-order meth-

ods. In particular, a case study of the celebrated WENO scheme is provided for the 1D sea ice475

model, and we verify its improved numerical convergence when compared to standardly employed

algorithms. Moreover, WENO is able to resolve discontinuities and sharp features that may occur

model. Implicit time-stepping methods for WENO schemes have been studied in [42, 43], and we will consider these

approaches in future work. As previously discussed (see Remark 3.3), the purpose of this investigation is to analyze

convergence with respect to spatial resolution, so the time step here is simply chosen to avoid additional temporal

error.
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Figure 5: Comparison between the proposed method and reference scheme. (Top) solution plots and scaled mass

using the proposed method, with and without potential function method; (bottom) solution plots and scaled mass

using reference scheme, with and without cut-off post-processor. (From left to right) velocity u, ice thickness h, ice

concentration A, and scaled mass percentage bm.

in sea ice covers. With regard to the out-of-range issue, this investigation proposes and implements

a potential function method that naturally incorporates the physical restrictions of ice thickness

and ice concentration in the transport equations.480

Since it is relatively easier to examine numerical convergence properties, the current work is

restricted to a 1D case study. Moving forward, we will test the ideas here of using both higher-

order methods and the potential function approach in more realistic environments, including the 2D

model as well as physical set-up test regimes. While direct generalization of the WENO scheme to

2D models is possible, special attention must be paid to the boundary treatment. The ghost-point485

values extrapolated in the 1D case for the ocean-land boundary can be extended to 2D. Stable

extrapolation method of suitable orders of accuracy can also be used for outflow boundaries [44].

Stable high order extrapolation for inflow boundaries is known to be more challenging, however,

with some techniques discussed in [20].

In this investigation, the WENO scheme serves as a prototype to demonstrate the benefits of490

using higher-order methods that are designed to resolve the discontinuities. Other higher-order

methods can also be adopted for the 2D case. The discontinuous Galerkin (DG) method is partic-

ularly suitable for complex geometries.

Besides viscous-plastic rheology, other rheologies have also been proposed, such as elastic-

34



anisotropic-plastic rheology [8] and Maxwell elasto-brittle rheology [9]. Investigating the numerical495

performance of the approaches used here may benefit the numerical solutions for these types of

rheologies as well. Another avenue for future work is to obtain a more realistic setup of the sharp

features in the sea ice cover by incorporating available observations with the physical model via

data assimilation techniques. For example, in [45] data assimilation experiments are based on the

1D VP model discretized by a centered difference scheme, and in future investigations, we can adapt500

this approach to the higher-order method framework discussed here. Finally, sparse features in the

ice thickness have been observed in [45], leading to the successful implementation of an ℓ1 − ℓ2

regularization approach. A general framework for incorporating ℓ1 regularization into numerical

solvers for partial differential equations with sparse solutions was developed in [46], and combining

ideas from there along with the results here may also be beneficial within the data assimilation505

framework.
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Appendix A. A simulation of sea ice with sharp features for the EVP model

Our investigation focuses on the VP model. Since the EVP model is designed for explicit time-

stepping and is often used in practice, here we conduct a test to determine how well the WENO

scheme performs when using the EVP. For this purpose we consider the simulation of the sea ice

cover with sharp features as discussed in Section 5.2. In addition to demonstrating that WENO635

can indeed be incorporated into the EVP model, we moreover observe that in doing so we are able

to resolve the sharp features near the discontinuity region, just as for the VP model. Furthermore,

while the WENO spatial discretization scheme is complemented with the explicit time stepping

scheme (TVDRK3), the EVP model (see Section 3.2) relaxes the stability condition so that a larger

time step can be used. Thus in this experiment we run the simulation with spatial resolution640

∆x = 10 km and time step ∆t = 10 s with 1000 sub-cycling steps for a total simulation time of 1

hour.

As in Figure 1 in Section 5.2, Figure A.6 displays the solution for the initial conditions given

in (5.3) obtained by WENO (top row), linear WENO (middle row) and CD (bottom row) spatial

discretizations. Once again, the simulation can only reach the final time of 1 hour using the645

WENO scheme. Observe that the results for the EVP and VP models are nearly identical, with

no oscillatory behavior near discontinuities. The linear WENO solution is shown at time 2110 s,

where again we see oscillations in the velocity profile. The bottom row (left) shows the velocity

during the sub-cycling iteration between 2340 s and 2350 s. The ice thickness and ice concentration

at 2340 s are shown in the bottom-middle and bottom-right, respectively. We present the velocity650

profile during the sub-cycling stage to capture the undershoot that occurs within the sub-cycling –

it is not detectable outside the sub-cycling for this case. This undershoot eventually leads to the

solution blowing up before reaching the final time.

This simulation result further verifies that for both the VP and EVP models, the WENO scheme

properly resolves discontinuities and obtains a stable solution. By contrast, neither the CD nor the655

traditional higher-order (linear WENO) schemes provide satisfactory results in either case.

Appendix B. The fifth-order WENO scheme

WENO schemes are designed to obtain high order accuracy in smooth regions while sharply

resolving discontinuities. By adapting the stencil of the given grid-points to be more one-sided near
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Figure A.6: Simulation of sea ice with sharp features on EVP model. (Top) solution plots of u, h and A using WENO

at 1 hour; (middle row) solution plots of u, h and A using linear WENO at 2110 s; (bottom) solution plots of u (left)

during sub-cycling between 2340 s and 2350 s; h (middle) at 2340 s; A (right) at 2340 s using CD .

discontinuities, WENO is a modification of the celebrated essentially non-oscillatory (ENO) scheme,

[38]. Originally designed to solve hyperbolic and convection-diffusion equations, they have been

extensively generalized and adapted for different types of PDEs as well as to non-PDE problems.

Below we briefly describe the basic ideas based on the most commonly used fifth-order WENO

scheme in [40] for the 1D scalar conservation law for some generic variable z given by

∂z

∂t
+

∂

∂x
f(z) = 0, (B.1)

with appropriate initial and boundary conditions for x ∈ [a, b] and t > 0.

The domain is discretized with uniform grid points {xj}Nj=1 so that xj = a+ j∆x. We seek the
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numerical approximation zj(t) to the point value z(xj , t) using the conservative scheme

∂zj
∂t

+
1

∆x

� bfj+ 1
2
− bfj− 1

2

�
= 0, (B.2)

where the numerical flux function

bfj+ 1
2
= bf(zj−r, · · · , zj+s)

is chosen so that the conservative difference bfj+ 1
2
− bfj− 1

2
approximates

∂

∂x
f(z) at x = xj with high

order accuracy in smooth regions while also generating an essentially non-oscillatory solution near660

discontinuities.

Flux splitting techniques, such as the global Lax-Friedrichs (LF) flux splitting, are used for

general flux f ′(x) ≱ 0, with bfj+ 1
2
= bf +

j+ 1
2

+ bf −
j+ 1

2

. (B.3)

In particular, the fifth-order WENO procedure computes bf +
j+ 1

2

based on the left-biased “big” stencil

S = {xj−2, · · · , xj+2}

by forming a convex combination of three third-order ENO candidate polynomials

bf +
j+ 1

2

=
2X

m=0

ωm
bf (m)

j+ 1
2

. (B.4)

Each ENO candidate polynomial bf (m)

j+ 1
2

in (B.4) is a lower-order linear scheme constructed from a

“small” stencil

Sm = {xj−2+m, xj−1+m, xj+m},

while ωm, m = 0, . . . , 2, are the corresponding nonlinear weights designed to maintain high order

accuracy in smooth regions and yield non-oscillatory solutions near discontinuities. Note that for

smooth solutions, the nonlinear weights ωm are equivalent to the linear weights for which the highest

possible accuracy (in this case fifth-order) could be achieved. We refer to [40] for more details. A665

thorough review on ENO and WENO schemes is available in [20] with particular extension for

parabolic equations in [39].
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