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Abstract. Image reconstruction based on indirect, noisy, or incomplete data remains an important yet chal-
lenging task. While methods such as compressive sensing have demonstrated high-resolution image
recovery in various settings, there remain issues of robustness due to parameter tuning. More-
over, since the recovery is limited to a point estimate, it is impossible to quantify the uncertainty,
which is often desirable. Due to these inherent limitations, a sparse Bayesian learning approach is
sometimes adopted to recover a posterior distribution of the unknown. Sparse Bayesian learning
assumes that some linear transformation of the unknown is sparse. However, most of the meth-
ods developed are tailored to specific problems, with particular forward models and priors. Here,
we present a generalized approach to sparse Bayesian learning. It has the advantage that it can be
used for various types of data acquisitions and prior information. Some preliminary results on image
reconstruction/recovery indicate its potential use for denoising, deblurring, and magnetic resonance
imaging.
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1. Introduction. Many applications seek to solve the linear inverse problem
(1.1) y=Fx+v,

where y € R™ is a vector of indirect measurements, x € R™ is the vector of unknowns,
F € R™*™ is a known linear forward operator, and v € R™ corresponds to a typically unknown
noise vector (see [35, 55, 39] and references therein). In particular, (1.1) can be associated
with signal or image reconstruction [48, 40, 51]. In this regard it is often reasonable to assume
that some linear transformation of the unknown solution x, say Rx, is sparse. A common
approach is to consider the ¢'-reqularized inverse problem

(1.2) xy = argmin {|| Fx — y|[3 + A Rx|)1 }
X
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where R € RF*™ is referred to as the regularization operator and X > 0 as the regularization
parameter. The motivation for this approach is that the ¢!-norm, || - ||1, serves as a convex
surrogate for the ¢9-“norm”, || - |lo. Thus, (1.2) balances data fidelity, noise, and the sparsity
assumption on Rx, while still enabling efficient computations [26, 27, 31]. However, an often
encountered difficulty for the ¢!-regularized inverse problem (1.2) is the selection of an ap-
propriate regularization parameter A. This parameter can critically influence the quality of
the regularized reconstruction xy [34, 24, 38, 50, 44]. Partly due to this reason, many statis-
tical approaches have been proposed for regularized inverse problems [41, 13, 51]. Another
advantage in using statistical approaches is that they may allow for uncertainty quantification
in the reconstructed solution [14]. For example, the hierarchical Bayesian formulation of the
¢-regularized inverse problem (1.2) (see [41, 13]) is based on extending x, y, and all other
involved parameters, which we collectively write as 6, into random variables. Consequently
X, y, and @ are characterized by certain density functions, as are their relationships to each
other. In particular, one usually considers the following density functions:

e The likelihood p(y|x,0), which is the probability density function for y given x

and 6.

e The prior p(x|@), which is the density function for x given 6.

e The hyper-prior p(@), which is the probability density function for the parameters 6.

e The posterior p(x,0|y), which is the probability density function for the solution x

and the parameters 8 given the data y.

One can use Bayes’ theorem to obtain

(1.3) p(x,0ly) o< p(yl|x,0)p(x|0)p(0),

where “x” means that the two sides of (1.3) are equal to each other up to a multiplicative
constant that does not depend on x or . Note that the parameters @ are now part of the
problem and are no longer selected a priori. Furthermore, using an appropriate method for
Bayesian inference allows one to quantify uncertainty in the reconstructed solution x.

There are a variety of sparsity-promoting priors to choose from, including but not limited
to Laplace priors [29], total variation (TV)-priors [42, 4], mixture-of-Gaussian priors [28],
and hyper-Laplacian distributions based on ¢P-quasinorms with 0 < p < 1 [45, 43]. In this
investigation we consider the well-known class of conditionally Gaussian priors given by

(1.4) p(xﬁ)(xdet(B)l/Zexp{;XTRTBRX},

where B = diag(f1,...,0r) is a diagonal inverse covariance matrix. Ideas discussed in
[54, 57, 19, 12, 18, 7, 5, 16, 22, 23] suggest that conditionally Gaussian priors of the form
(1.4) are particularly suited to promote sparsity of Rx. For example, the model proposed in
[54] is designed to recover sparse representations of kernel approximations, coining the term
sparse Bayesian learning (SBL). Promoting sparse solutions, as done in [54], corresponds to
using R = I € R™™"™ as a regularization operator in (1.4). Further investigations that made
use of SBL to promote sparse solutions include [57, 61, 59, 16, 22]. In many applications,
however, it is some linear transformation Rx that is desired to be sparse. For example, TV-
regularization is of particular interest in image recovery. Extensions of SBL for this setting
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have been proposed in [19, 12, 14, 18, 7, 5, 23]. That said, since the TV-regularization
operator R is singular, the prior (1.4) is improper. This prohibits the application of many
of the existing SBL approaches. An often-encountered idea therefore is to make R € RF*™
with k& < n invertible by introducing additional rows that are consistent with assumptions
about the underlying solution. For example, in [12, 14, 7] the additional rows encode certain
boundary conditions. The same technique can be extended to higher-order TV-regularization
[23]. Unfortunately, such additional information might not always be available or may be
complicated to incorporate, especially in two or more dimensions. Further, different types of
regularization operators must be adapted on a case-by-case basis, and the resulting prior may
promote undesired artificial features in the solution when the regularization operator is not
carefully modified. The approach in [19, 18], by contrast, depends on the assumption of a
“commuting property” of the form FFR= RF. Requiring such a commuting property is often
unrealistic in applications, however.'

Our contribution. To address these issues, we present a generalized approach to SBL for
“almost” general forward and regularization operators, F' and R. By “almost” general, we
mean that the only restriction on F' and R is that their common kernel should be trivial,
kernel(F') Nkernel(R) = {0}, a standard assumption in regularized inverse problems [41]. We
propose an efficient numerical method for Bayesian inference that yields a full conditional
posterior density p(x|y), rather than a simple point estimate, which allows for uncertainty
quantification in the solution x. The present work implies that SBL can be applied to a
broader class of problems than currently known. In particular, some preliminary results
on signal and image reconstruction indicate its potential use for denoising, deblurring, and
magnetic resonance imaging.

Outline. The rest of this paper is organized as follows. Section 2 provides some details
on the sparsity promoting hierarchical Bayesian model under consideration. In section 3, we
propose an efficient numerical method for Bayesian inference. A series of numerical examples
is presented in section 4 to illustrate the descriptive span of the hierarchical Bayesian model.
Finally, in section 5, we provide some concluding thoughts.

2. The hierarchical Bayesian model. We begin by reviewing the generalized hierarchical
Bayesian model considered here, which is illustrated in Figure 1.

2.1. The likelihood. The likelihood function p(y|x,a) models the connection between
the solution x, the noise parameters «, and the indirect measurements y. It is often assumed
that v € R™ in (1.1) is zero-mean i.i.d. normal noise with inverse variance a > 0, that is,
v ~N(0,a~'I). This assumption yields the conditionally Gaussian likelihood function

—m m «
(2.1) plylx, @) = (2m) 20" exp {5 | Fx ~ y[3}

The likelihood function given by (2.1) was considered, for instance, in [54, 19, 5, 6, 23]. By
contrast, we restrict v to be independent but not necessarily identically distributed. This
translates into v ~ A (0, A~!) with diagonal positive definite inverse noise covariance matriz

(2.2) A=diag(ax), a=[ai,...,an].

!The dimensions of F and R are typically not consistent.
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Figure 1. Graphical representation of the hierarchical Bayesian model. Nodes denoted within circles cor-
respond to random variables, while nodes without a circle correspond to parameters. Shaded circles represent
observed random variables, while plain circles represent hidden random variables.

The linear data model (1.1) then yields the generalized likelihood function
1
(2.3 plybe,) = (2) "2 der( )2 exp {5 (Fx - ¥ AFx - y) |,

which reduces to (2.1) if the inverse variances aji,...,a,, are all equal to a. We note that
conditionally Gaussian likelihoods of the form (2.3) were considered in [15, Example 3.4] in
combination with smoothness promoting priors to address data outliers. Example 2.1 below
motivates the weaker assumption v ~ N(0, A~!) for sparsity promoting priors in the context
of data fusion [37] and multisensor acquisition systems [36, 21].

Example 2.1. Assume we have a collection of measurements y(d) eR™ d=1,...,D,
generated from the same source x from D different sensors. The corresponding data models
are

(2.4) y D =Fdx 4D qg=1,...D.

Further, assume that the noise in the measurements from the same sensor is i.i.d., that is,
v~ N (O,afll ). However, the noise variance might differ from sensor to sensor, so that
a1 #---# ap. If we combine the different measurements and consider the joint data model

y@ FM ()

(2.5) Sl= s | x+| o,
y(P) FD) v(D)

N—_—— %E‘_/ N—_——
=y = =V

the stacked noise vector v cannot be assumed to be i.i.d., which we cannot appropriately model
using the likelihood function (2.1). However, using the more general likelihood function (2.3),
we can model (2.5) by choosing a diagonal inverse noise covariance matrix A of the form

(2.6) A:diag(alh,...,ap[p),
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where I; € R™a*™a d =1 ... D, denotes the identity matrix with dimensions matching the
number of measurements provided by the dth sensor.

Remark 2.2. We note that in [60] it was pointed out that for classical SBL algorithms,
even when the exact inverse noise variance o (or A) is known, using this fixed value instead
of a variable Gamma hyper-prior can yield suboptimal reconstructions.

2.2. The prior. The prior function p(x|3) models our prior belief about the unknown
solution x. Assume that some linear transformation of x, say Rx, is sparse. The SBL approach
promotes this assumed sparsity by using a conditionally Gaussian prior function,

(2.7) p(x|8) = det(B)'/? exp{—;xTRTBRX},

where B = diag(fi,...,8k) is referred to as the inverse prior convariance matriz. See
[54, 57, 19, 12, 18, 7, 5, 16, 22, 23] and references therein. The conditionally Gaussian
prior (2.7) can be justified by its asymptotic behavior [12]. If we assume that the inverse vari-
ances f1,..., B are all equal, then (2.7) favors solutions x for which Rx is equal to or close
to zero,” since these solutions have a higher probability. For instance, when Rx corresponds
to the total variation of x, [Rx]|; = xj41 — x;, then (2.7) promotes solutions x that have no
or little variation. However, if one of the inverse variances, say f;, is significantly smaller
than the remaining ones, a jump between x; and z;11 becomes more likely. In this way, (2.7)
promotes sparsity of Rx.

Remark 2.3 (improper priors). If kernel R # {0}, then RT BR is singular and (2.7) becomes
an improper prior. Most existing SBL algorithms are infeasible in this case, thus motivating
us to propose an alternative method in section 3. In particular, the resulting difficulties for
the evidence approach, which was used in the original investigation [54] and later in [5], are
addressed in Appendix A.

2.3. The hyper-prior. From the discussion above it is evident that the inverse variances
b1, ..., B must be allowed to have distinctly different values for the conditionally Gaussian
prior (2.7) to promote sparsity of Rx. This can be achieved by treating fi,..., 0 as random
variables with uninformative density functions. A common choice is the gamma distribution
with probability density function

d° c—1 _—dx
(2.8) I(z|e,d) = I‘(c)x e
where ¢ and d are positive shape and rate parameters. Furthermore, I'(-) on the right-hand
side of (2.8) denotes the usual gamma function [3]. Note that a gamma-distributed ran-
dom variable, X ~ I'(c,d), respectively, has mean E[X] = c¢/d and variance V[X]| = ¢/d>.
In particular, ¢ — 1 and d — 0 implies E[X],V[X] — oo, making (2.8) an uninformative
prior. We therefore choose the inverse noise and prior variances, a and 3, to be gamma-
distributed:

p(a;) =T (aile,d), i=1,...,m,

(2.9) p(B;) =T (Bjle,d), j=1,... k.

2For this prior, Rx being close to zero means that Rx has a small (unweighted) £*-norm, ||Rx||2.
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By setting c=1 and d = 0, o and 3 are free from the moderating influence of the hyper-prior
and allowed to “vary wildly” following the data. In our numerical tests we used d = 10~*
for all one-dimensional problems (signals) and d = 1072 for all two-dimensional problems
(images), which is similar to the choices in [54, 5, 6]. Future investigations will elaborate on
the influence of these parameters. A few remarks are in order.

Remark 2.4 (conjugate hyper-priors). Choosing the hyper-priors p(c;) and p(5;) as gamma
distributions is convenient since the gamma distribution is a conjugate® (see [33, 30, 47]) for
the conditionally Gaussian distributions (2.3) and (2.7).

Remark 2.5 (informative hyper-priors). For simplicity we use the same hyper-prior I'(-|c,d)
and parameters ¢, d for all components of c, 3. If one has a reasonable a priori notion of what
a or 3 should be, the choice for hyper-prior could be modified correspondingly [6, 16].

Remark 2.6 (generalized gamma hyper-priors). The use of generalized gamma distributions
was recently investigated in [11] and merged into a hybrid solver in [10]. Although generalized
gamma hyper-priors were demonstrated to promote sparsity more strongly in some cases to
not exceed the scope of the present work, we limit our discussion to usual gamma hyper-priors.

3. Bayesian inference. We now propose a Bayesian inference method for the generalized
hierarchical Bayesian model from section 2.

3.1. Preliminary observations. The conditionally Gaussian prior (2.7) and the gamma
hyper-prior (2.8) were intentionally chosen because of their conditional conjugacy relationship.
Some especially important implications include the following (see [33]):

(3.1) p(y[x, @)p(x|B) oc N (x|, C),
(3.2) plylx, e)p(a) o [ [T(eil1/2 + ¢, [Fx — y]7 /2 + d),
=1
k
(3.3) p(x|B)p(B) o< [T (B)[1/2 + ¢, [Rx]3 /2 + d).
j=1

Here the covariance matrix C' and the mean p in (3.1) are, respectively, given by
(3.4) C=(FTAF+R"BR)"', u=CFT4y,

[Fx —y]; denotes the ith entry of the vector F'x —y € R™, and [Rx]; denotes the jth entry
of the vector Rx € R*. Note that the two sides of (3.1), (3.2), and (3.3) are equal up to
a multiplicative constant that does not depend on X, «, and 3, respectively. Finally, we
stress that (3.1) only holds if the forward operator F' € R™*" and the regularization operator
R € RF*™ satisfy the common kernel condition:

(3.5) kernel(F') Nkernel(R) = {0},

3Recall that p(0) is a conjugate for p(z|0) if the posterior p(f|z) is in the same class of densities (in this
case corresponding to gamma distributions) as p(@).
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Algorithm 3.1 BCD algorithm for the mean

1: Initialize o, 8%, and [ =0

2: repeat
3 Update x by setting x'*! = E[x|a!, 8!, y].
4 Update a by setting a!t! = E[a|x!*!, 8 y].
5: Update B by setting 8! = E[@|x!*1, o/t y].
6
7

Increase [ — 1+ 1.
until convergence or maximum number of iterations is reached

which is a standard assumption in regularized inverse problems [41, 53]. Indeed, (3.5) can
be interpreted as the prior (regularization) introducing a sufficient amount of complementary
information to the likelihood (the given measurements) to make the problem well posed. This
indicates that the hierarchical Bayesian model proposed in section 2 does not require R to be
invertible as long as (3.5) is satisfied.

3.2. Proposed method: Bayesian coordinate descent. We are now in a position to
formulate a Bayesian inference method for the generalized hierarchical Bayesian model from
section 2. This method is motivated by the coordinate descent approaches [32, 58] and solves
for a descriptive quantity (mode, mean, variance, etc.) of the posterior density function
p(x, a, Bly) by alternatingly updating this quantity for x, a, and 8. Henceforth, we refer to
this method as the Bayesian coordinate descent (BCD) algorithm.

Assume that we are interested in the expected value (mean) of the posterior, F[x, a, B|y].
The BCD algorithm for this case is described in Algorithm 3.1.

In Algorithm 3.1 and henceforth, all variables with superscripts are treated as fixed pa-
rameters. That is, the expected values in Algorithm 3.1 are computed w.r.t. x, a, and S,
respectively. Algorithm 3.1 is simple to implement because of the particular decomposition of
the posterior density function p(x,a, B|y) provided by Bayes’ theorem (see (1.3)):

(3.6) p(x, a, Bly) x p(y|x, a)p(x|B)p(a)p(8).
By (3.1)—(3.3), we therefore have
(3.7) p(xlal, B',y) xp(ylx, a')p(x|B8") cc N (x|, O),
(3.8) plax*, 8 y) < plyx, a)p(a) o [ [ T(ail1/2 + ¢, [FXF! —y]7 /24 d),
=1
k
(3.9) p(BIXT, o y) o p(xXB)p(B) < [ T(B11/2 + ¢, [Rx")3 /2 + d),
j=1

where the covariance matrix C' and the mean g in (3.7) are given as in (3.4) with A = diag(a!)
and B = diag(8'). Thus, the update step for x in Algorithm 3.1 reduces to solving the linear
System

(3.10) (FTAF + R"BR)x""' = FT Ay
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for the mean x/t1, and the subsequent update steps for a and 3 yield

142

(3.11) b= i . i=1,...,m,
1+ 2¢

3.12 gtl= " =1k

(3.12) 7 [Rx 4 2d

respectively. Hence, Algorithm 3.1 consists of alternating between (3.10)—(3.12).
Remark 3.1. For ii.d. noise, that is, the likelihood function is (2.1) rather than (2.3), the
linear system (3.10) will be simplified to
(3.13) (aFTF + R"BR)x"' =aFTy,
and the update step (3.11) correspondingly reduces to

I+1 m+ 2c

3.14 « = .
(3.14) [T —y[2+2d

Remark 3.2. Tt was demonstrated in [57] that the cost function of classic SBL, which can
be recovered from the generalized model in section 2 for R = I, is nonconvex with potentially
many local minima that are achieved at a sparse solution. Further, the cost function has a
global minimum that can produce the maximally sparse solution at the posterior mean and
the classic SBL algorithm based on evidence maximization is globally convergent. While we
numerically observed similar properties in the context of generalized sparse Bayesian learning
(GSBL) and other regularization operators R (with sparsity holding for Rx instead of x), a
detailed analysis exceeds the scope of the present paper.

3.3. Efficient implementation of the x-update. If the common kernel condition (3.5) is
satisfied, then the coefficient matrix on the left-hand side of (3.10) is symmetric and positive
definite (SPD). For sufficiently small problems, (3.10) can therefore be solved efficiently using
a preconditioned conjugate gradient (PCG) method [49]. However, the coefficient matrix may
become prohibitively large in some cases. To avoid any potential storage and computational
issues, we implemented our method using gradient descent for the imaging problems described
in section 4.

Let G=FTAF+RTBR and b= FT Ay be the SPD coefficient matrix and the right-hand
side of the linear system (3.10), respectively. The solution of (3.10) then corresponds to the
unique minimizer of the quadratic functional

(3.15) J(x)=xTGx —2x"b with VJ(x)=2(Gx—b).

For this functional, line search minimization can be performed analytically to find the locally
optimal step size ~ in every iteration. This allows us to use the classical gradient descent
method described in Algorithm 3.2 to approximate the solution x/*! of (3.10).

It is important to note that the gradient in (3.15) can be computed efficiently and without
having to store the whole coefficient matrix G, which might be prohibitively large. To show
this, assume that the unknown solution x € R”* corresponds to a vectorized matrix X € R"*"

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 03/06/23 to 132.174.250.194 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

270 JAN GLAUBITZ, ANNE GELB, AND GUOHUI SONG

Algorithm 3.2 Gradient descent method

1: Setr=b—-Gx

2: repeat
3 Compute Gr according to (3.21).
4 Compute the step size: v =r’r/r’Gr.
5:  Update the solution: x + ~r.
6
7

Update the difference: r =r — yGr.
: until convergence or maximum number of iterations is reached

and that the forward operator I’ corresponds to applying the same one-dimensional forward
operator F; to the matrix X in z- and y-direction:

(3.16) Fx=y < [ XF =Y,

where F'= F; ® F1, x = vec(X), and y = vec(Y). We furthermore assume that the regular-

ization operator R is defined by
IR | vec(R1X)

(3.17) Rx = [Rl ®I} vec(X) = [VGC(XR’{) ,

which corresponds to anisotropic regularization. Using some basic properties of the Kronecker
product and the elementwise Hadamard product ®, it can be shown that

(3.18) FTAFx = vec (FI [A0 RXF| 1Y),
(3.19) RTBRx = vec ({Bl ® XRﬂ R1> + vec (RlT [B2 ® RlX]) ,
(3.20) b=vec (F [do x| F),

where A, B;, and B, are such that Vec(fl) = a, vec(B;) = B, and vec(By) = 3%, with
B=[8',3%. Combining (3.18)—(3.20) yields

(3.21) Gx = vec (FlT [[l@ FlXFlT} F1> + vec <[B1 @XR{] Rl) + vec (R{ [Bg © RlXD ,

and therefore,

VJ(x) = 2| vec (FIT [A © FlXFlT} F1> + vec ([Bl © XRIT] Rl)

(3.22)

+ vec (R{ [Bg © R1X]> ~ vec (FlT [A © X} Fl)

Observe that all of the matrices in (3.21) and (3.22) are significantly smaller than F' and R.
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3.4. Uncertainty quantification. The proposed BCD algorithm has the advantage of al-
lowing for uncertainty quantification in the reconstructed solution x. For fixed a and 3,
Bayes’ theorem and the conjugacy relationship (3.1) yield

(3.23) p(x[y) o< p(y[x)p(x) x N (x|, C),

where the mean p and the covariance matrix C' are again given by (3.4). We can then sample
from the normal distribution N (u,C) to obtain, for instance, credible intervals for every
component of the solution x. At the same time, we stress that this only allows for uncertainty
quantification in x for given hyper-parameters a and 3. The above approach does not include
uncertainty in a and 3 when these are treated as random variables themselves. This might
be achieved by employing a computationally more expensive sampling approach [6], which we
will investigate in future work.

3.5. Relationship to current methodology. We now address the connection between the
proposed BCD algorithm and some existing methods.

3.5.1. lterative alternating sequential algorithm. There are both notable similarities and
key distinctions between the proposed BCD algorithm and the iterative alternating sequential
(IAS) algorithm, developed in [13, 12] and further investigated in [9, 16]. Both algorithms
estimate the unknown x and other involved parameters by alternatingly updating them. How-
ever, in contrast to the BCD method, the IAS algorithm assumes that the noise covariance
matrix A is known, which then allows the restriction to white Gaussian noise v ~ N(0,1);
see [16, section 2]. Moreover, the IAS algorithm builds upon a conditionally Gaussian prior
for which the elements of the diagonal covariance matrix are gamma-distributed, rather than
the elements of the diagonal inverse covariance matrix as done here, which does not result
in a conjugate hyper-prior. This makes the update steps for x and the hyper-parameters of
the prior more complicated. Finally, the TAS algorithm solves for the MAP estimate of the
posterior, which does not provide uncertainty quantification in the reconstructed solution. By
contrast, the proposed BCD method grants access to the solution posterior p(x|y) for fixed
hyper-parameters.

3.5.2. Iteratively reweighted least squares. The update steps (3.10)—(3.12) resulting
from Algorithm 3.1 can be interpreted as an iteratively reweighted least squares (IRLS) algo-
rithm [25]. The idea behind the IRLS algorithms is to recover, for instance, a sparse solution by
penalizing the components of x by weighting them individually and iteratively updating these
weights. Indeed, the update steps (3.10)—(3.12) resemble reweighted Tikhonov-regularization
strategies. In this regard, the BCD method provides a solid Bayesian interpretation for com-
monly used reweighting choices and might be used to tailor these weights to specific statistical
assumptions on the underlying problem.

3.5.3. ARD/SBL optimization via iteratively reweighted £!-minimization. The first
SBL algorithms used the same x-update as in Algorithm 3.1, but updated the noise and
prior parameters «, (3 using the evidence approach (expectation maximization) or the fixed-
point approach, [54, 46]. Although these methods can yield sparse solutions, they have no
convergence guarantees and become prohibitively slow for large problems. Subsequently, in
[56] it was demonstrated that the (type-II) evidence approach can be interpreted as a (type-I)
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MAP approach with a special nonfactorable prior. With this insight in hand, a more efficient
algorithm was then proposed to update 8 based on reweighted ¢!-minimization, which provably
converges to a local maximum of the evidence p(y|a,3) (see (A.3)) with respect to 3. For
the “almost” general regularization operators considered here, we cannot use the algorithm
proposed in [56] since the evidence becomes improper if kernel(R) # {0} (see Appendix A).
By contrast, the a- and B-updates in Algorithm 3.1 are decoupled and based on maximizing
the full conditional posteriors (3.8) and (3.9), respectively (if we solve for the mode of the
posterior p(x, o, Bly)) or computing the mean of the full conditional posteriors (3.8) and (3.9)
(if we solve for the mean of the posterior p(x,c, 3|y)). We were able to derive explicit and
efficient formulas for these based on the conditionally conjugate relationships between the
likelihood, prior, and hyper-priors.

4. Numerical results. The MATLAB code used to generate the numerical tests presented
here is open access and can be found at GitHub.*

4.1. Computational complexity. We start by addressing the computational complex-
ity of the proposed BCD algorithm (Algorithm 3.1) for Bayesian inference. Assume that
Algorithm 3.1 stops after L iterations, either because the algorithm has converged or reached
the maximum number of iterations. In every iteration, the algorithm performs the x-update
(3.10), the a~update (3.11), and the B-update (3.12). Denoting their computational complex-
ity by O(hy), O(ha), and O(hg), respectively, the total computational complexity of the BCD
method is O(L(hy + ha + hg)).

The x-update. If x € R” represents a one-dimensional signal and the x-update (3.10) is
solved using the PCD method, then the computational complexity of this update is O(n),
where 72 is the number of the nonzero elements of the coefficient matrix G € R"*™ on the left-
hand side of (3.10).° On the other hand, if x = vec(X) € R™ is the vectorized representation
of an image X € R"™*™ and the coefficient matrix G' € R *"" is dense. In this case we solve
the x-updated (3.10) using the efficient gradient descent approach described in subsection 3.3.
This method has a computational complexity of O(n3) for a fixed number of iterations.® We
thus have h, = max{n3,n}.

The a- and B-updates. If x € R”, F € R™*" and R € R¥*", then «, B in (3.11) and
(3.12) can be computed in O(nm) and O(nk), respectively. Assuming that F' and R only
contain ng and ngr elements, then the computational complexity of the a- and B-updates
reduces to O(np) and O(ng), respectively. We thus have h, = max{nm,np} and hg =
max{nk,ng}.

4.2. Denoising a sparse signal. Consider the sparse nodal values x of a signal = : [0,1] - R
at n =20 equidistant points. All of the values in x are zero except at four randomly selected
locations, where the values were set to 1. We are given noisy observations y which result from
adding i.i.d. zero-mean normal noise with variance o? =5 - 1072 to the exact values x. The
signal-to-noise ratio (SNR), defined as E[x?]/0? with E[x?] = (z3+ -+ 22)/n, is 4.

“See https://github.com/jglaubitz/generalizedSBL.
5This assumes that the coefficient matrix itself is computed in O(7).
5In our implementation we used five gradient descent steps for each x-update.

Copyright (© by SIAM and ASA. Unauthorized reproduction of this article is prohibited.


https://github.com/jglaubitz/generalizedSBL.

Downloaded 03/06/23 to 132.174.250.194 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

GENERALIZED SPARSE BAYESIAN LEARNING 273
"o o | z 15 a BCD
o m| & evidence
N ° _ | o TAS
@ 5 ? 1h o o| * ADMM
i oo o R~
: : qd 0.5%: Pt
i 0 ¢ } i o HE
0 Quegerenst [ VR IR
[e] 0] : . : H
05 ‘ ‘ ‘ ‘ O et -8 ‘..5..&.. af8n8
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t

(a) Signal z and noisy observations y (b) Reconstructions by different methods

Figure 2. The sparse signal x and noisy observations y at n = 20 equidistant points, and reconstructions
by different methods.

Figure 2a illustrates the exact values of x and the noisy observations y. The corresponding
data model and regularization operator are

(4.1) y=x+v, R=1.

This simple test case allows us to compare the proposed BCD algorithm with some existing
methods, some of which assume x itself to be sparse (R =1I). Figure 2b provides a comparison
of the BCD algorithm with (1) SBL using the evidence approach [54], (2) the IAS method
[12, 13] solving for the MAP estimate of the posterior, and (3) the alternating direction
method of multipliers (ADMM) [8] solving the deterministic ¢!-regularized problem (1.2).
The free parameters of the TAS algorithm were fine-tuned by hand and chosen as 8 =1.55 and
9; =5-10"2 for j=1,...,n; see [16] for more details on these parameters. The regularization
parameter A in (1.2) was also fine-tuned by hand and set to A = 202||x||o. Finally, for the
proposed BCD algorithm and the evidence approach, we assumed the noise variance o2 to be
unknown, which therefore had to be estimated by the method as well. We can see in Figure 2b
that for this example all of the SBL-based methods perform similarly. On the other hand, the
ADMM yeilds a more regularized reconstruction, which might be explained by the uniform
nature of the ¢!'-regularization term in (1.2). This is in contrast to the hierarchical Bayesian
model which allows for spatially varying regularization. In this regard we note that there are
weighted ¢;-regularization methods [17, 20, 1] that incorporate spatially varying regularization
parameters. While such techniques can improve the resolution near the nonzero values in
sparse signals, as well as near the internal edges in images, they are still point estimates and
thus do not provide additional uncertainty information. Hence in the current investigation we
simply employ the standard ADMM with a fine-tuned nonvarying regularization parameter
as a reasonable comparison.

4.3. Deconvolution of a piecewise constant signal. We next consider deconvolution of
the piecewise constant signal z : [0,1] — R illustrated in Figure 3. The corresponding data
model and regularization operator are given by
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Figure 3. Deconvolution of a piecewise constant signal x from moisy blurred data y with i.i.d. zero-mean
normal noise with variance o> = 1072,

(4.2) y=Fx+v, R=

respectively, where v ~ N(0,021) with 02 =102 (SNR ~ 80) and F is obtained by applying
the midpoint quadrature to the convolution equation

1
(4.3) y(s)= /0 k(s —s)xz(s)ds'.

We assume a Gaussian convolution kernel of the form

(4.4) k(s) = 27;2 exp (-2‘9;>

with blurring parameter v =3 -1072. The forward operator thus is

(4.5) [F]Z]:hk(h[l—j]), i,j:1,...,n,
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where h =1/n is the distance between consecutive grid points. Note that F' has full rank but
quickly becomes ill-conditioned.

Figure 3a illustrates the true signal x as well as the given noisy blurred data y at n =40
equidistant points. Figure 3b provides the reconstructions using the SBL-based BCD algo-
rithm and the ADMM /!-regularized inverse problem (1.2). The regularization parameter \
in (1.2) was again fine-tuned by hand and chosen as A = 20%||Rx||p. We do not include any
of the existing SBL algorithms considered before (the evidence approach and IAS algorithm)
since they cannot be applied to the nonquadratic regularization operator R in (4.2) without
modifying this operator first. Figure 3c illustrates the normalized prior covariance parameters
=1 which are estimated as part of the BCD algorithm. Observe that the values are signif-
icantly larger at the locations of the jump discontinuities. This allows the reconstruction to
“jump” and highlights the nonuniform character of regularization in the hierarchical Bayesian
model suggested in section 2. Finally, Figure 3d demonstrates the possibility to quantify
uncertainty when using the BCD algorithm by providing the 99.9% credible intervals of the
solution posterior p(x|y) for the final estimates of & and 3. Note that these credible intervals,
especially their width, indicate the amount of uncertainty in the reconstruction.

The results displayed in Figure 4 are for the same model with the noise variance, increased
by 500%, to 02 =5-1072 (SNR =~ 16). The BCD algorithm now yields a less accurate recon-
struction, especially between ¢t =0.15 and ¢t = 0.25. This is also reflected in the corresponding
normalized prior covariance parameters 5!, which can be found Figure 4c. Observe that the
second peak around ¢ = 0.25 is underestimated and therefore causes the block associated with
the region [0.15,0.25] to be drawn towards the subsequent block associated with the region
[0.25,0.5]. The increased uncertainty of the reconstruction is indicated by the 99.9% credible
intervals in Figure 4d. In particular, we note the increased width of the credible interval in
the region [0.15,0.25].

4.4. Combining different regularization operators. We next demonstrate that general-
ized SBL allows us to consider combinations of different regularization operators. Consider the
signal z : [0,1] — R illustrated in Figure 5a, which is piecewise constant on [0,0.5] and piece-
wise linear on [0.5,1]. The corresponding data model is the same as before with convolution
parameter v = 1072 and i.i.d. zero-mean normal noise with variance 02 = 10~2 (SNR = 40).
Figure 5b illustrates the reconstructions obtained by the BCD algorithm using a first- and
second-order TV-regualrization operator,

-1 1 -1 2 -1
(4.6) Ry = , Ro= )
-1 1 -1 2 -1
which promote piecewise constant and piecewise linear solutions, respectively. Observe that
neither R; nor R is even square, meaning that both would have to be modified by introducing
additional rows to apply a standard SBL approach, which can become increasingly complicated
for higher orders and multiple dimensions.

It is evident from Figure 5b that using first-order TV-regularization yields a less accu-
rate reconstruction in [0.5,1], where the signal is piecewise linear,” while using second-order

"This well-known artifact of first-order T'V-regularization is often called the “staircasing” effect and moti-
vates using higher order TV-regularization [2, 52].
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Figure 4. Deconvolution of a piecewise constant signal x from moisy blurred data y with i.i.d. zero-mean
normal noise with variance c® =5-1072.
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Figure 5. Signal © and noisy observations y at n =20 equidistant points, and reconstructions by different
methods.
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TV-regularization yields a less accurate reconstruction in [0, 0.5], where the signal is piecewise
constant. However, generalized SBL and the proposed BCD algorithm allows us to consider
the combined regularization operator

-1 1

(4.7) R= e R(P=3)xn,

Assuming n = 2q, the first £k — 1 rows correspond to first-order TV-regularization while the
last k — 2 rows correspond to second-order TV-regularization. The advantage of using this
nonstandard regularization operator in the BCD algorithm is demonstrated by the red stars
in Figure 5b.

4.5. Image deconvolution. We next consider the reference image X in Figure 6a and
its noisy blurred version Y in Figure 6b. Y results from X by applying the discrete one-
dimensional convolution operator (4.5) in the two canonical coordinate directions and then
adding i.i.d. zero-mean normal noise. The corresponding forward model is Y = FXFT + N
or, equivalently,

(4.8) y=Gx+v,

after vectorization. Here, z = vec(Z) denotes the mn x 1 column vectors obtained by stacking
the columns of the m xn matrix Z on top of one another, and G = F®F'. Further, the blurring
parameter and noise variance were chosen as v =1.5-10"2 and 02 =107° (SNR ~ 4 - 10%) to
make the test case comparable to the one in [6, section 4.2].

Figures 6¢ and 6d show the reconstructions obtained by the ADMM applied to (1.2) and
the SBL-based BCD algorithm with an anisotropic second-order TV operator

-1 2 -1
] with D= c R(n=2)xn_
-1 2 -1

(4.9) R:F®D

D®lI

The regularization parameter A in (1.2) was again fine-tuned by hand and set to A = 107°.
The BCD algorithm provides a sharper reconstruction (see Figure 6) than the ADMM applied
to the (l-regularized inverse problem (1.2). Further parameter tuning might increase the
accuracy of the reconstruction by the ADMM. By contrast, it is important to stress that the
BCD algorithm requires no such exhaustive parameter tuning.

4.6. Noisy and incomplete Fourier data. We next address the reconstruction of images
based on noisy and incomplete Fourier data, which is common in applications such as magnetic
resonance imaging (MRI) and synthetic aperture radar (SAR). The popular prototype Shepp—
Logan phantom test image is displayed in Figure 7a.
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Figure 6. The reference image, the corresponding noisy blurred image, and reconstructions using the ADMM
and the BCD algorithm, Algorithm 3.1.

The indirect data y = vec(Y') is given by applying the two-dimensional discrete Fourier
transform to the reference image X, removing certain frequencies, and adding noise. Since in
this investigation we are assuming x € R", we consider the data model

][

with Re(y) and Im(y), respectively, denoting the real and imaginary part of y € C™.* Further,
v € R?™ corresponds to i.i.d. zero-mean normal noise with variance 0% = 1073 (SNR ~ 60)

80ur technique is not limited to real-valued solutions, and we will consider complex-valued solutions, such
as those occurring in SAR, in future work.
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Figure 7. (a) The Shepp—Logan phantom test image; (b) the ML/LS estimate, and reconstructions using
(c) the ADMM applied to (1.2); and (d) the SBL-based BCD algorithm.

and G=F® F, where I’ denotes the one-dimensional discrete Fourier transform with missing
frequencies, which we impose to mimic the situation where the system is underdetermined and
some data must for some reason be discarded. The removed frequencies were determined by
sampling 100 logarithmically spaced integers between 10 and 200. Finally, because the image
is piecewise constant, we used first-order TV-regularization.

Figure 7b shows the maximum likelihood (ML) estimate of the image, which is obtained
by maximizing the likelihood function p(x|y). In this case, the ML estimate is the same as
the least squares (LS) solution of the linear system (4.10). Figures 7c and 7d illustrate the
reconstructions obtained by applying ADMM to the ¢!-regularized inverse problem (1.2) and
the SBL-based BCD algorithm. The regularization parameter in (1.2) was again fine-tuned by
hand and chosen as A =402. While the reconstructions in Figures 7c and 7d are comparable,
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it is important to point out that we did not use any prior knowledge about the noise variance
or perform any parameter tuning for the BCD algorithm.

4.7. Data fusion. As a final example we consider a data fusion problem to demonstrate
the possible advantage of using the generalized noise model discussed in subsection 2.1. Re-
call the piecewise constant signal discussed in subsection 4.3, and assume we want to recon-
struct the values of this signal at n = 40 equidistant grid points, denoted by x. We are
given two sets of data: y(D corresponds to direct observations taken at 36 randomly se-
lected locations with added i.i.d. zero-mean normal noise v(!) with variance of = 5- 1071,
and y® corresponds to blurred observations at 24 randomly selected locations with added
i.i.d. zero-mean normal noise ¥(? with variance 03 = 1072, The blurring is again modeled
using (4.5) with a Gaussian convolution kernel and convolution parameter v =3-1072. Fur-
ther, a first-order TV-regularization operator is employed to promote a piecewise constant
reconstruction.

The separate reconstructions by the SBL-based BCD algorithm can be found in Figures 8a
and 8b. Both reconstructions are of poor quality, which is due to the high noise variance in
the case of y() and to the missing information in the case of y(?). In fact, the reconstruc-
tion illustrated in Figure 8b is of reasonable quality except for the region around ¢ = 0.2,
where a void of observations causes the reconstruction to miss the jumps at t = 0.15 and
t=0.25.

Following Example 2.1, we now fuse the two data sets by considering the joint data
model

W7 [pO )
Yy . v
*1) [Y(Q)} a [F(Z)} a [V(Q)]’
—— H}ﬂ_/ ——
=y = =v

where F1) and F® are the forward models describing how x is mapped to y(!) and y®,
respectively. Employing the usual likelihood function (2.1) would correspond to assuming
that all the components of stacked noise vector v are i.i.d., which is not true for this example.
The resulting reconstruction by the BCD algorithm can be found in Figure 8c. In contrast,
utilizing the generalized likelihood function (2.3) with

(4.12) A=diag(ai,...,a1,a9,...,a2),
Vv
my times mo times

we can appropriately model that #() and v have different variances. The corresponding re-
construction by the BCD algorithm using this generalized data model is provided in Figure 8d.
Observe that the reconstruction using the generalized noise model (Figure 8d) is clearly more
accurate than the one for the i.i.d. assumption (Figure 8c). This can be explained by not-
ing that the first data set is larger than the second one, containing m; = 36 and mq = 24
observations, respectively. At the same time, the data of the first set is less accurate than
of the second one, since the variances are o7 = 5-107! and ¢ = 1072 (SNR; ~ 1.6 and
SNR3 ~ 80), respectively. Hence, when using the usual i.i.d. assumption, the first data set
y (), which is larger but less accurate, more strongly influences the reconstruction than second
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Figure 8. Data fusion example with incomplete noisy and incomplete noisy blurred data. Top row: Separate
reconstructions using the SBL-based BCD algorithm. Bottom row: Combined reconstructions using the SBL-
based BCD algorithm with i.i.d. assumption and using a generalized data model.

data set, which is smaller but more accurate. Using the generalized data model, on the other
hand, the BCD algorithm is able to more appropriately balance the influence of the different
data sets.

5. Concluding remarks. This paper introduced a generalized approach for SBL and an
efficient realization of it by the newly proposed BCD algorithm. In contrast to existing SBL
methods, we are able to use any regularization operator R as long as the common kernel
condition (3.5) is satisfied, a usual assumption in regularized inverse problems. Further, the
BCD algorithm provides us with the full solution posterior p(x|y) for fixed hyper-parameters
rather than just resulting in a point estimate, while being easy to implement and highly
efficient. Future work will elaborate on sampling based methods for Bayesian inference [6],
which might be computationally more expensive but would also allow sampling from the
full joint posterior p(x, o, B|y). This has been addressed to some extent in [14, section 6] for
uncertainty quantification in regions of interest. Other research directions might include data-
informed choices for the parameters ¢ and d in (2.9) and data fusion applications. Finally,
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it would be of interest to combine the proposed generalized SBL framework with generalized
gamma distributions as hyper-priors [11] and the hybrid solver from [10].

Appendix A. Evidence approach. In the evidence approach [54, 5], the posterior
p(x,a, Bly) is decomposed as

(A1) p(x, o, Bly) =p(xly, o, B)p(ex, Bly).

The variables x, o, and 3 are then alternatingly updated, with the hyper-parameters @ and
B calculated as the mode (most probable value) of the hyper-parameter posterior p(c, Bly).
By Bayes’ law, one has

(A.2) ple, Bly) < p(a)p(B)p(yle, B),

where the evidence p(y|a,3) can be determined by marginalizing out the unknown solution
x, which yields

(A3) p(yle. B) = / p(yx, @)p(x|B) dx.

Some basic but lengthy computations are then used to obtain
1
(A4)  plylenB) = @m)" /2 det(A)/2det(B)/2 det(C) 2 exp {—Qyz—ly} ,

where ¥ =A='+ F(RTBR)"'FT. Also see [5, section 3]. However, this assumes that RT BR
is invertible, which is not the case whenever kernel(R) # {0}.
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