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Abstract—Microglia are the macrophages resident in the
central nervous system. Brain injuries, such as traumatic brain
injury, hypoxia, and stroke, can induce inflammatory
responses accompanying microglial activation. The
morphology of microglia is notably diverse and a prominent
manifestation of activation. In this study, we propose to classify
activated microglia using a convolutional neural network
(CNN). Ibal images were acquired from a control and cardiac
arrest Long-Evans rat brain with a bright-field microscopy.
The training data of 54,333 single-cell images were collected
from the cortex and midbrain areas and curated by
experienced neuroscientists. Results were compared between
CNNs with different architectures, including Resnetl8,
Resnet50, Resnetl01, and support vector machine classifiers.
The highest model performance was found by Resnetl8,
trained after 120 epochs with a classification accuracy of 95.5-
98.8 percent. The findings indicate a potential application for
using CNN in the quantitative analysis of microglial
morphology over regional differences in a large brain section.

Keywords—microglia, cell morphology, cardiac arrest, CNN

I. INTRODUCTION

As resident macrophages in the central nervous system,
microglia are activated in response to neuroinflammation in
many brain diseases and injuries, such as traumatic brain
injury, stroke, and hypoxic-ischemic brain injury after
cardiac arrest (CA) [1]-[4]. Microglial morphology is closely
related to its activation status, hence the morphological
analysis of microglia has been widely used to provide
quantitative indices of neuroinflammation [5]-[7]. Several
machine learning and deep learning algorithms, with
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supervised or unsupervised data, have been used to
characterize the state of microglia in various animal disease
models.

Unsupervised algorithms (e.g., K-means or hierarchical
clustering methods) require cell morphology parameters
calculated from segmented cell images to identify the
activation states of microglia [8]-[12]. On the other hand,
supervised learning algorithms, such as Support Vector
Machines (SVM) or Convolutional Neural Networks (CNN),
require extensive manual labeling of segmented cell images
[13], [14]. Silburt and Aubert [15] trained a SVM to identify
activated microglia and astrocytes after focused ultrasound
treatment using cellular features extracted from sliding-
window on mouse brain images. However, most of the
existing models are limited to detecting microglia in a
relatively small region that has uniform brain structure. A
few models attempt to detect region-specific microglial
activation in a large field of view, but lose the resolution
necessary to delineate the features in each individual cells.

In this study, we propose to utilize CNNs for the
classification of activated microglia in two pathological
conditions from different brain regions. The training data
were prepared for individual microglia images curated from
the cortex and midbrain of control and cardiac arrested rat
brains. Results of residual neural networks were compared
between Resnetl8, Resnet50, Resnetl01, and a three-
convolution layer CNN (CNN3CL). We also compared the
CNNs with SVM classifiers trained by raw cell images or by
the features extracted from Resent18. Results show superior
performance with Resnetl8 trained after 120 epochs for
microglia classification.
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II. MATERIALS AND METHODS

A. Animal model and immunohistochemistry

Ischemic brain injury was induced in one-week-old
Long-Evans rats by 12-minute CA surgery and compared
with the non-surgical control brain [4]. All rat brains were
perfused with 4% paraformaldehyde, extracted, then
sectioned at 40 um thickness. Immunohistochemistry (IHC)
staining was performed with the primary ionized calcium-
binding adapter (Ibal) antibody, followed by bright-field
microscopy using 20X objective for taking images in 0.464
pm/pixel resolution. Slices located at ~5 mm posterior to the
bregma were studied.

B. Image data sets

The locations of individual microglia were obtained by
applying multiple thresholding steps on the grayscale image
followed by manual corrections to fine-tune the bounding
box of each cell. Each single-cell image was then resized to
120x120 pixels by zero-padding for CNNs. Classification of
single-cell image data was evaluated by (1) four classes
according to the pathological-regional conditions: the control
cortex (Ctrl-COR), control midbrain (Ctrl-MB), CA cortex
(CA-COR), and CA midbrain (CA-MB), or (2) two classes
by pathological conditions: Ctrl and CA. In total, 18,524,
7,928, 18,078, and 9,803 images were taken from Ctrl-COR,
Ctrl-MB, CA-COR, and CA-MB, respectively. 6,000 and
12,000 images were randomly selected in each of the four-
class and two-class data sets, respectively, for training and
the remainders for validation.

C. CNN and SVM

The pre-trained Resnetl8, Resnet50, and Resnet101 for
1000 object categories were modified with the input image
size 120x120 pixels and the number of classes in the output
layer for transfer learning [16], [17]. For comparison, CNN
with three convolutional layer, CNN3CL, consisted of three
repeated convolution - Rectified Linear Unit (ReLu) - max-
pooling layers, followed by fully connected - ReLu - fully
connected layers, and a softmax layer to the output, was
trained from random biases and weights [18].

All CNNs were trained by homemade Matlab programs
using stochastic gradient descent with momentum (SGDM)
algorithm, with the momentum = 0.9, piecewise learning rate
schedule, shuffle at every epoch, and the initial learning rate
was set to 0.001 for CNN3CL and 0.1 for the Residual
Networks. Training times for 60 epochs (eps) were 24, 43,
143, and 292 minutes for CNN3CL, Resnet18, Resnet50, and
Resnet101, respectively, using an NVIDIA GeForce RTX

(a) Ctrl-COR (b)

(e) CNNs Trainint
Number of Four Classes o Epochs
Images Ctrl-COR | Ctrl-MB | CA-COR | CA-MB CNN3CL 60
Training 6,000 6,000 6,000 6,000 Resnet18 60

Validation 12,524 1,928 12,078 3,803 Resnet18 120
Resnet50 60
Number of Two Classes Resnet101 60
Images Crrl cA
Training 12000 12,000 SYM@images
Validation 14452 15,881 SVM@Resnet18
Layer-Features

Fig. 1. Groundtruth images and experimental setup. Single-microglia
images were prepared from the (a) cortex of control (Ctrl-Cor), (b)
cortex of cardiac arrest (CA-Cor), (c) midbrain of control (Ctrl-MB), and
(d) midbrain of cardiac arrest (CA-MB) rat brains. (¢) Number of images
in training/validation dataset for four/two classes CNNs and SVM.
(CNN3CL: CNN with three convolutional layer)

2070 GPU. Resnetl18(120eps) trained with additional 60
epochs, totaling 120 epochs, used 48 minutes from the
previous weights. Multi-class SVM classifiers with a linear
kernel were trained by a fast stochastic gradient descent
solver [19] wusing the labeled grayscale images in
SVM@images or the features extracted from
Resnet18(60eps) or Resnet18(120eps) in SVM@Rsenet18.

III. RESULTS

A. Four-class classification

Activated microglia were present in the hypertrophic or
amoeboid form in the inflamed brain after CA, whereas the
resting microglia in the control tissue appeared to show
ramified morphology [4], [20], [21]. Fig. 1 shows the single
microglia images in bounding boxes from the cortex and
midbrain of the control and CA brains. Instead of manual
labeling of individual microglia by morphology, we created
cell labels based on the pathological condition, CA or

TABLE 1. ACCURACY AND F1 SCORE OF CNNS AND SVM RESULTS
Four Class (Ctrl - COR/MB, CA - COR/MB) Two classes (Ctrl and CA)
CNgli:slilg::M Training Training Validati Validati Training Training Validati Validati
Accuracy F1 Accuracy Fl1 Accuracy Fl1 Accuracy F1
CNN3CL (60eps) 68.5% 0.69 56.7% 0.55 84.1% 0.84 77.3% 0.77
Resnet18 (60eps) 73.6% 0.74 67.7% 0.64 92.3% 0.92 79.7% 0.80
Resnet18 (120eps) 95.5-98.8% 0.96-0.99 63.5-64.0% 0.59-0.61 98.8% 0.99 78.4% 0.78
Resnet50 (60eps) 93.5% 0.94 65.1% 0.62 97.7% 0.98 78.0% 0.78
Resnet101 (60eps) 88.5% 0.89 59.4% 0.53 93.3% 0.94 79.3% 0.79
SVM@jimages 40.1% 0.40 26.8% 0.29 61.5% 0.62 58.1% 0.58
SVM@Resnet18 77.7% 0.78 63.7% 0.58 80.7% 0.81 69.7% 0.70
(120eps).:

Authorized licensed use limited to: Howard University. Downloaded on February 28,2023 at 17:21:18 UTC from IEEE Xplore. Restrictions apply.



(a) Resnet18 (60eps) - Training

g o+-cor I s | 630 | 200
& art-cor| e02 [EETN 585 | 94
o camB | 868 | 360 [ERIEN 309
£ cri-mB | 533 | 417

PPV
29.3% | 22.3% | 27.6% | 25.2% | FDR

A-COR 1 CORAMR. - MB

Predicted Class

(c) Resnet18 (120eps) - Training

PXRed 5620

S cni-cor| 23 |EID

9 CA-MB | 103 |

& cri-mB |36

97.2% 90.7% 97.8% 97.1% \'

29% |FDR

CACO.CORAMP MB
Predicted Class

(b) Resnet18 (60eps) - Validation

2 c4-Cor [EXERY 854 | 1617 | 487
Scrrl-am 1505 [REIGH 1506 | 2137
L CA-MB | 595
& cri-mp | 183

80.0% 8!
20.0%

cA-COR 1. CORAMB . MB
Predicted Class

(d) Resnet18 (120eps) - Validati
o ca-cor [EEEN 1980 | 1903 [ 1070 2
& cmi-cor | 868 JEZEN 1120 | 1791
g ca-mB | 477 | 625 | 2202 | 479
& cri-MB | 105 | 474 | 179 | 1170
16.9% | 26.0%
c ,,_colé"[_conc A-MB. L MB

Predicted Class

I TP
25.9% | PPV
FDR

(a) Resnet18 (60eps) - Training

2

True Class
Q
i

TPR FNR

6.1% 93%  |FDR
CcA cul
Predicted Class

c) Resnet18 (120eps) - Validation

True Class
2

Q
B

TPR FNR

12% 13%  |FDR

cA Crrl
Predicted Class

(b) Resnet18 (60eps)r - Validation

@
2 cu 3651
O
EC 1| 2501
I
=]
TPR FNR
83.0% 766%  fgall
17.0% 234% | FDR

cA curt
Predicted Class

d)  Resnet18 (120eps) - Validation

@
] cA 19.4%
19
o
2 crl 75.9% PIRL
= S
TPR FNR
78.6% 781%  hgais
21.4% 1 21.9% FDR
CA Cerl

Predicted Class

Fig. 2. Confusion matrix of four classes as shown in Figure 1. (a)
Resnet18(60eps) of training, (b) Resnet18(60eps) of validation, (c)
Resnet18(120eps) of training, (d) Resnet18(120eps) of validation datasets.
TPR: true positive rate; FNR: false negative rate; PPV: positive predictive
value; FDR: false discovery rate.

control, and their location in the brain, cortex or midbrain.
Microglia showed large diversity and morphological
varieties in all four classes: Ctrl-COR, Ctrl-MB, CA-COR,
and CA-MB.

Microglia in the CA brains were less branched than those
in the control brains. Although the morphological differences
of cells among the four classes appeared to be smaller than
the differences within each class, the CNNs were able to
distinguish the subtle features among the four classes. As
shown in Table I, in the tests of different CNNs, the best
training accuracy and F1 was 95.5-98.8% and 0.96-0.99 by
Resnet18(120eps), while the best validation accuracy and F1
was 67.7% and 0.64 by Resnet18(60eps). The validation
accuracies converged after about 100 epochs in Resnet18.

The training accuracy of Resnetl18(120eps) was higher
than that of Resnetl18(60eps), yet the validation accuracies
were opposite, at 63.5% vs. 67.7%. The relatively high
training accuracies suggest the overfitting of CNNs. Fig. 2
illustrates the confusion matrices of the four classes from
Resnet18(60eps) and Resnetl18(120eps) on training and
validation sets. The true positive rates (TPR) and positive
predictive values (PPV) of Resnet18(120eps) were all higher
than 90% in the training dataset. In contrast, Resnet18(60eps)
misidentified more microglia in Ctrl-COR as Ctrl-MB,
whereas microglia in CA-MB were mislabeled as CA-COR
and vice versa. The difference implied that some microglia in
the cortex and midbrain may have similar morphology.

B. Two-class classification

Fig. 3 and Table 1 demonstrate the results for microglia
detection in two classes (Ctrl vs CA). Compared with the
four-class results, both the accuracy and F1 score of the two-
class CNNs improved, especially the validation accuracy
increased from 56-67% to 77-79%. As shown in Fig. 3,
Resnet18(60eps) and Resnetl8(120eps) achieved 90% and
98% of TPR and PPV, respectively, in the training data,
while they were both larger than 75% in the validation
dataset. Results suggest that CNN can recognize different
microglia morphology between the Ctrl and CA brain with
high accuracy.

C. Prediction Images of CNNs

Fig. 4 demonstrates the images obtained from the cortex
and midbrain of the control and CA brain with the bounding

Fig. 3. Confusion matrix of two classes in control and CA brain tissues.
(a) Resnet18(60eps) of training, (b) Resnetl18(60eps) of validation, (c)
Resnet18(120eps) of training, (d) Resnet18(120eps) of validation datasets.
TPR: true positive rate; FNR: false negative rate; PPV: positive predictive
value; FDR: false discovery rate.

boxes colored in four-class ground truth labels: green for
Ctrl-COR, blue for Ctrl-MB, red for CA-COR, and yellow
for CA-MB. Resnet50 and Resnet101 had lower accuracy
compared to Resnetl8, which indicates increasing the
complexity of the model has no benefit to the current dataset.
Meanwhile, the underfitting of CNN3CL implied that the
features between the cortex and midbrain of either control or
CA brain cannot be captured accurately by only three
convolutional layers (Fig. 4(b)).

D. SVM from layer features of Resnet18
The SVM classifiers were trained by the same four-class
training images (Fig. 4(g)) or by the extracted features from
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Fig. 4. Predictions of CNNs and SVMs in the cortex and midbrain. (a)
Ground truth, (b) CNN3CL, (c) Resnet18(60eps) (d) Resnet18(120eps),
(e) Resnet50(60eps), (f) Resnet101(60eps), (g) SVM trained from labeled
images. (h) SVM from features of laver 12 of Resnet18(120ens).
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Resnet18. As shown in Fig. 5(a), the accuracy of the SVM
classifiers increased with the depth of the feature extraction
layers. Generally, the SVM results obtained by the
Resnet18(120eps) features had higher training accuracy than
those obtained from the Resnet18(60eps) features after layer
20, where the accuracies reached plateau. Fig. 4(g) and 4(h)
show the predicted images of the SVM classifier
(SVM@images) trained by the raw images or by the features
extracted from layer 12 of Resnetl8 (120eps)
(SVM@Resnet18(120eps-L12)). The training accuracy of
SVM@images was only 40.13%, which means it was
difficult to classify microglia without cell features. The
results from SVM@Resnet18(120eps-L12) were similar to
those of CNN3CL, because the architecture of the first 12
layers in Resnetl8 also contained three convolution layers.
Fig. 5(b) and 5(c) show examples of the four-class cell
images and their feature maps obtained from layer 12 of
Resnetl8 (120eps). The high contrast of the cell body, as
well as the large surrounding background area, were the
major features contributing to the judgments in the CNNs

—~
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) SVM from Layer Features of Resnet18

imomt—_—mm-m- - —=

@©
e
1

Accuracy (%)
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Number of Layers

(b)  cuwi-cor

CA-COR

Ctrl-MB
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Fig. 5. Results of SVM classifier using CNN features. (a) Training and
validation accuracies of SVM classifiers by features extracted from
different layer of Resnet18 - 120 epochs (layer 0 denotes the raw images).
(b) Images from the four classes, and (c) their 64 feature maps (size of
30x30) from layer 12 of Resnet18 - 120 epochs (a.u.: arbitrary units).

and SVM.

IV. DiscuUsSION

CNN and SVMs are increasingly used for biomedical
image classification [1], [13]-[15], [22]-[24]. For the
analysis of microglia images, most studies utilize a
classification system based on the morphological phenotypes
of microglia, such as ramified, hyper-ramified, activated,
rod, and amoeboid morphotypes [13], [14]. In this study,
CNNs were tested on identifying microglia based on a
simple classification system defined by the anatomy and
pathological conditions. Results showed that CNNs can
accurately identify resting microglia in the control brain as

well as mostly activated microglia in the CA brains, without
the inputs of microglial morphotypes.

SVM was able to classify the microglia based on features
extracted from segmentation results, such as cell area, cell
perimeter, and cell circularity [13]. SVM performed
inferiorly when trained with the cell images directly, because
each image pixel was treated as an independent variable.
This may result in the loss of correlation between pixels (Fig.
4(g)). When using the features extracted from Resnetl8,
SVM can classify microglia adequately, which demonstrates
the value of feature extraction by CNNs.

In Resnetl8(120eps), the SVM training accuracy
increased by each ‘“addition layer”, demonstrating the
advanced nature of Residual Networks. However, the
validation accuracy did not increase with these residual
features, suggesting that the CNN may not capture the
features in the entire dataset, or cannot identify similarities
among the categories. Also, the imbalance in cell number
between each class in the validation set (24,602 cells from
the cortex and 5,731 cells from the midbrain) may lower the
validation accuracy. It is possible to prevent overfitting by
adding more training data or training with data augmentation
or cross-validation [25], [26]. Accordingly, SVM may be
useful to understand how a CNN works by evaluating the
features extracted from different CNN, therefore helping the
design of a better architecture for specific datasets.

It is worthy to note that the four- or two-class ground
truth that were tested in this study did not consider the fact
that microglia may have the same morphotype in different
regions, or even in different pathological conditions. The
classification system in the tested ground truths did not
reflect the actual spatial distribution of microglia by
morphology in the brain tissues. Interestingly, even with the
ground truths that defined microglia inaccurately, the CNN's
still recognized the morphological features from the majority
of microglia that were correctly defined, which were the
resting microglia in the control brain, and the activated
microglia in the CA brain.

CNN3CL and Resnet18(60eps) both showed that some
microglia in the center cortex appeared similar to those in the
midbrain (Fig. 4(b) and 4(c)). The “false” classification
results by CNNs perhaps reveal that the microglia were not
properly classified in the ground truth. As suggested by
Fernandez-Arjona’s study [11], microglia should be
classified by a morphometric parameter grading system in a
region-specific manner. These results suggest that it may be
possible to utilize CNNs, and a properly defined
classification system, to create a morphological atlas by
detecting the distributions of specific cell features in the
brain.

The orientation of microglia is an important feature
related to brain structure and the slicing direction of THC
slides. The current model may not be suitable for slides in
different locations or orientations. Further study comparing
the 2D projection images with 3D Z-stack images would be
interesting. Furthermore, microglia morphology can vary not
only by regional and pathological conditions, but also by
different staining variables, slice thickness, focus, exposure
and color tone, etc. More training data are required to enable
CNNs to be widely applicable to analyze stained slices of
varying image quality.
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V. CONCLUSION

In this work, CNNs were demonstrated to successfully
detect microglial activation in the IHC images. The CNNs
can distinguish microglia between the cortex and midbrain of
control and CA treated brains. The finding suggests a strong
potential for CNN to perform region-specific quantification
of microglia in a large brain section.
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