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Given a graph with a designated set of boundary vertices, we define a new notion
of a Neumann Laplace operator on a graph using a reflection principle. We show
that the first eigenvalue of this Neumann graph Laplacian satisfies a Cheeger
inequality.

1. Introduction and main result

1A. Introduction. Supposethat G = (V, E) is a graph with vertices V and edges E.
Let 0V C V be a designated set of boundary vertices, and V=V \ V. We define
the doubled graph G’ as follows. Let G = (U, F) be an isomorphic copy of the
induced subgraph G[V], and let f be an isomorphism from V to U. Set

F:={{u,v}:ueU, vedV, {f'w),v}eE}

Then, we define G’ := (V', E), where V' :=V UU and E’' := EU F U F’. That
is to say, G’ is defined by making an isomorphic copy of the interior of G and
attaching it to the boundary vertices dV as in the original graph; see Figure 1.

Definition 1.1. Let G’ = (V’, E’) be a doubled graph, and let f : V — U be an
isomorphism as above, so that for all w € 9V and v € \O/, {v, w} € E' if and only if
{f(v), w} € E’. We say that a function ¢ : V' — R is even with respect to dV if

p() =9(f(v)) forveV,
and we say that ¢ is odd with respect to dV if
() =—p(f(v)) forve 1% and e(w)=0 forveadV.

Let L' := D — A denote the graph Laplacian of G’, where D is the degree matrix
of G’, and A is the adjacency matrix of G’. The following proposition characterizes
the eigenvectors of L’ as either even or odd.

MSC2010: primary 05C50, 05C85; secondary 15A42.
Keywords: Cheeger inequality, graph Laplacian, Neumann Laplacian.

475



476 E. GELERNT, D. HALIKIAS, C. KENNEY AND N. F. MARSHALL

e - e

Figure 1. A graph G, and its doubled graph G’, where the black
and white dots denote interior and boundary vertices, respectively.

Proposition 1.2. The graph Laplacian L' has |V | eigenvectors that are even with
respect to 0V, and \4 eigenvectors that are odd with respect to 0V ; this accounts
for all eigenvectors of L.

1B. Motivation. We are motivated by the observation that the restrictions of the
odd and even eigenvectors of L’ to the graph G seem like natural Dirichlet and
Neumann Laplacian eigenvectors for the graph G, given the respective odd and
even behavior of Dirichlet and Neumann Laplacian eigenfunctions on manifolds. In
fact, the restriction of the odd eigenvectors of L’ to the graph G are eigenvectors of
the Dirichlet graph Laplacian defined in [Chung 1997], and inequalities involving
the eigenvalues of this operator have been investigated [Chung and Oden 2000].
However, an operator corresponding to the restriction of the even eigenvectors
of L' to G has not, to our knowledge been investigated. Chung [1997] defined
the Neumann graph Laplacian by enforcing a condition that a discrete derivative
vanishes on the boundary nodes of the graph, which results in different eigenvectors
than those arising from the even eigenvectors of L. We note that a Cheeger
inequality for Chung’s definition of the Neumann graph Laplacian has recently
been established in [Hua and Huang 2018].

1C. Odd and even eigenvectors. The proof of Proposition 1.2 gives some initial
insight into the odd and even eigenvectors the graph Laplacian L’ on the doubled
graph G'.

Proof of Proposition 1.2. The proof is immediate from the block structure of the
graph Laplacian L' Indeed, let L' (U, W) denote the submatrix of L’ whose rows
and columns are indexed by U € V and W C V, respectively. We can write

X YO0
L'=|Y"zvYT"],
0 Y X
where X is the submatrix L'(V, V), Y is the submatrix L'(V, dV), and Z is the
submatrix L’'(dV, dV'). With this notation, the eigenvectors of L’ that are even with
respect to dV are solutions to the equation

X YO u
YTZyT | lv]l=u
0Y X u
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That is to say, the vectors u and v satisfy Xu + Yv = puu and 2Y "u + Zv = pv.
Put differently, when concatenated, u# and v form an eigenvector of the matrix

X Y
Lg = <2YT Z). (1)

Observe that Ly is similar to a symmetric matrix,

Le= ((I) J%I) («/EXYT \/;Y) ((I) J%I)_l’

and thus by the spectral theorem, L has | V| real eigenvectors, which give rise to
|V| even eigenvectors of L’. The eigenvectors of L’ that are odd with respect to 9V
are solutions to the equation

X YO u u
Y'z vy’ 0Ol=x]| O
0 Y X —u —u

Thus, each vector u such that Xu = Au gives rise to an odd eigenvector of L’. Let
LD = X.

Since Lp is symmetric, it follows from the spectral theorem that it has |V| real
eigenvectors, and we conclude that L’ has |V | odd eigenvectors. (]

1D. Contribution. In this paper, we study the operator Lg defined in (1), which we
call the reflected Neumann graph Laplacian. This operator seems to be particularly
natural on graphs approximating manifolds. For example, in Remark 1.3, we
show that on the path graph, the eigenvectors of the Dirichlet graph Laplacian Lp
and the reflected Neumann graph Laplacian Ly are the familiar discrete sine and
cosine functions. We remark that the definition of the reflected Neumann graph
Laplacian Lk has some similarities to the normalization used in the diffusion maps
manifold learning method of [Coifman and Lafon 2006].

Our main result Theorem 1.4 shows that the first eigenvalue of the normalized
reflected Neumann graph Laplacian L defined in (2) satisfies a Cheeger inequality.
The graph cuts arising from Lz can differ significantly from graph cuts arising from
the standard normalized graph Laplacian £ defined in [Chung 1997]. In Figure 3, we
illustrate Theorem 1.4 with an example where the first eigenvector of the Neumann
graph Laplacian Lg suggests a drastically different cut than the first eigenvector
of the standard graph Laplacian, and describe how the graph cut suggested by
Lp is consistent with the Cheeger inequality established in Theorem 1.4. It may
be interesting to investigate the analog of other classical eigenvalue inequalities
involving these definitions of Lp and Ly for graphs with boundary.
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Figure 2. A path graph and its doubled graph.

Remark 1.3. The operators Lp and Ly are particularly natural on the path graph.
Let P, = (V, E) denote the path graph on n vertices, where V = {1, ..., n} and
{u,v} € E if and only if |u —v| = 1. If 0V := {1, n}, then the doubled graph
P, = C2,_» is the cycle graph on 2n — 2 vertices; see Figure 2.

Consider Lp and Ly of the path graph P,. The Dirichlet eigenvectors ¢; and

eigenvalues A, which satisfy Lpgy = Ay for k =1, ..., n — 2, are of the form
wk ) . wjk
M =2|1—cos and @ (j) =sin
n—1 n—1
for j =1,...,n—2, while the Neumann eigenvectors, ¥ and p,, which satisfy

Lryry = upy fork =0,...,n—1, are of the form

,uk=2(l—cos( Tk )) and wk(j)=cos( n]k>
n—1 n—1

for j =0, ...,n—1. Thus, the path graph doubling procedure defined in Section 1A
gives the familiar sine and cosine functions, which are the Dirichlet and Neumann

eigenfunctions of the Laplace operator of the unit interval.

1E. Notation and definitions. Suppose that G = (V, E) is a graph with vertices V
and edges E. Let 0V C V be a designated set of boundary vertices, and set
V= V\0V. We can write the adjacency matrix A of the graph G as the block matrix

An A12>
A= ,
(AB Az
where Aj; = A(V, V), Ajp = A(V,9V), and A» = A(dV, dV). Motivated by
Proposition 1.2 we define the reflected adjacency matrix R by

Ro— ( Aqy A12>
240, An
With this notation, the reflected Neumann Laplacian Lg can be defined by

Lr=D—R,

where D = diag(Ri), where 1 denotes a vector whose entries are all 1, and whose
dimensions are such that the matrix-vector multiplication is well-defined. We define
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the normalized reflected Neumann graph Laplacian Lg by
Lg:=D""2LgD712, 2)

1F. Main result. In this section, we present our main result Theorem 1.4. While
the matrix Lp is not in general symmetric, it is similar to a symmetric matrix;

indeed, if
0 §I|av|

then the matrix Q'/2Lx0~1/? is symmetric, positive-definite, and has the eigen-
vector D'/2Q'/21 of eigenvalue 0. It follows that the first nontrivial eigenvalue A g
of Ly satisfies
) XTQ1/2£RQ_1/2)C
AR = inf = .
xTD1/2Q1/21=0 xX'x

Let EU,W):={{u,w}e E:ueclU, we W} thatis, E(U, W) is the set of edges
between U and W. We define a measure m (U, W) on this set of edges by

m(U, W) =|EU, W)| - 3|EQUNJV, WNaV)|,
and we define the volume vol(U) of U C V by
vol(U) 1= “m({u}, V).

uelU

The following theorem is our main result.

Theorem 1.4. Suppose that G = (V, E) is a graph with a designated set of bound-
ary vertices 0V C V, and define the Cheeger constant hg by

. m(S, V\S)
= min — .
scv min{vol(S), vol(V \ §)}
V2ig = hg = 3z,

where Ly is the first nontrivial eigenvalue of Lg.

hg: 3)

Then,

Recall that the standard Cheeger inequality is constructive in the sense that a
cut that achieves the upper bound on the Cheeger constant can be determined from
the eigenfunction corresponding to the first eigenvalue of the normalized graph
Laplacian £; see [Alon 1986; Cheeger 1970]. Specifically, a partition that achieves
the upper bound can be determined by dividing the vertices into two groups based
on if the value of the first eigenvector is more or less than some threshold; for a
detailed exposition see for example [Chung 1997; 2007]. Similarly, the result of
Theorem 1.4 is constructive in the sense that a cut which achieves the upper bound
on hg can be determined from the eigenvector g of Ly that corresponds to Ag.
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Figure 3. The same graph with vertices colored proportional to
(left) and colored proportional to ¥g (right), where the squares in
the right graph denote boundary vertices.

In the following remark, we present an example where the cut arising from ¥
differs significantly from the cut arising from the first eigenvector ¢ of the standard
normalized graph Laplacian L.

Remark 1.5. Graph cuts arising from g can differ significantly from graph cuts
arising from . Indeed, on the left of Figure 3 we illustrate a graph whose vertices
are colored by greyscale values proportional to . On the right of Figure 3 we
illustrate the same graph except several vertices have been designated as boundary
vertices (indicated by squares) and the color of the vertices is proportional to Vg.
Observe that ¥ suggests cutting the graph by a vertical line into two equal parts,
while g suggests cutting the graph by a horizontal line into two equal parts.

That g suggests a horizontal cut of the graph is illustrative of Theorem 1.4.
Indeed, it is straightforward to check that the horizontal cut suggested by ¥z
minimizes the cut measure m (S, V \ §)/(vol(S), vol(V \ S)) from (3). In contrast,
the vertical cut suggested by ¥ minimizes the standard cut measure, which is
equivalent to the measure m(S, V \ S)/(vol(S), vol(V \ S)) in the case that all
vertices are interior vertices. Of course, Theorem 1.4 only guarantees that the
measure of the cut arising from the eigenvector /¢ is an upper bound for s g with
value at most /21z; however, in this simple example the cut arising from ¥
actually obtains this minimum.

Remark 1.6. Here we visualize the first eigenfunction g of the reflected Neumann
graph Laplacian L on a classic barbell shaped graph; see Figure 4. Observe that in
Figure 4 the maximum and minimum value of the eigenvector occur at an interior
vertex. This feature of the eigenvectors is interesting in the context of spectral

Figure 4. A barbell shaped graph whose vertices are colored pro-
portional to ¥ g, where squares in the graph denote boundary vertices.
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clustering, where extreme values of the eigenvectors often correspond to the center
of clusters.

1G. Future directions. One future direction for this work is the problem of se-
lecting boundary vertices in a principled way. How the boundary is selected may
depend on the application at hand. In a social network graph, boundary vertices
could correspond to individuals with many connections outside the network. In
the context of manifold learning, where the vertices of the graph are points in R”,
boundary vertices could be selected based on the number of points within some
e-neighborhood of each vertex. On the other hand, when a graph is given by
sampling from a predefined manifold with boundary, vertices selected from some
collar neighborhood of the boundary could be designated as boundary vertices.

Another future direction arises from generalizing the setup under which our work
was done. Our graph doubling procedure inputs a graph with boundary and outputs
a larger graph, containing the original graph as an induced subgraph, which has a
special Z, symmetry. Could similar Cheeger results be proven for other reflection
procedures? For example, what if n — 1 copies of the interior vertices were attached,
instead of only 1?

Finally, we note a connection between the doubled graph (defined in Section 1A)
and numerical analysis that may motivate a direction for future study. Recall that
for a path graph P, the eigenfunctions of the reflected Neumann Laplacian Lg
are of the form ¥ (j) = cos(mwjk/(n — 1)); see Remark 1.3. These Neumann
eigenvectors are precisely the basis vectors for the discrete cosine transform (DCT)
type I, as classified in [Strang 1999]. The DCT type II, which has basis vectors
Vi (j) = cos(r (j + $)k/n) is also important in numerical analysis; it could be
interesting to develop a graph doubling procedure whose Neumann eigenvectors on
the path graph are these vectors.

2. Proof of main result

2A. Summary. The proof of Theorem 1.4 is divided into two lemmas: first, in
Lemma 2.1 we show that A < 2hp, and second, in Lemma 2.2 we show that
h%e /2 < Ag. The structure of our argument is similar to classical Cheeger inequality
proofs; see [Chung 1996; 1997].

2B. Proof of Theorem 1.4.

Lemma 2.1 (trivial direction). We have
AR <2hg.
Proof of Lemma 2.1. Recall that
Lr:=D"202Lz0 2D,
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First, we observe that Q Lg can be written as

QLg=L— 3Ly,
where . .
I — <diag(A111+A121)—A11 —An )
—Al, diag(A,14+An)—Axn)’
and

Lo (0 0
?7\0 diag(AnD)—An)"

Observe that L is the standard graph Laplacian of G, while L is the graph Laplacian
of the vertex induced subgraph G[0V]. Fix a subset S C V, and let x5 be the indicator
function for S. Define

S
_Xs DQE DI/ZQI/ZT.

. nl/2pl/2
X = Q D S =
1TDO1

By construction, we have x DY le/ 27 = 0, and it follows that

xTDfl/ZQl/ZLRQfl/ZDfl/Zx

Ay = xTx
B Xs OLgxs _xg (L—4Ly)xs(TDQT)
X DOxs(1—xJ DOxs/(ITDQ1) (X3 DQxs )Xy sDQxvs)
2-xs (L—3La)xs _2.m(S,V\S)

< = .
~ min{(xy DOxJ ). (XJ\SD Oxv\s)}  min{vol(S), vol(V '\ S)}
Since this inequality holds for all subsets S C V, we conclude that Ag <2hg. U

Lemma 2.2 (nontrivial direction). We have

Proof of Lemma 2.2. Recall that
. x T Lgx . y' OLgy
)\.R = lnf . T = [ T—
xTDI2Q12T=0 X'X yTDQi=0 ¥y ' QDy
Let g be a vector satisfying
-
L -
rp=5LLE g ¢Topi=o.
g§' DQOg
Let {vy, ..., v,} be an enumeration of the vertices V so that g,, <.-- < g, and

set §j :={vy,...,v;}, for j =1,...,n. Let p be the largest integer such that
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vol(S,) < 4 vol(V); that is,
pi= max{j ef{l,...,n}:vol(S;) < %VO](V)}.

Let g™ and g~ denote the positive and negative parts of g — g, ,» respectively. That
is, g;7 ;= max{g, —&v,, 0} and g, :=max{g,, — gy, 0}. Letu ~ v denote {u, v} € E
and g = diag(Q). Then

2 1 2
gT(L—SLpg a8 =8) =32 iy (8u—80)

AR =
g"DQg >, 82dvgy
1
} > (8 — &) — % Xy (8= gv)?
- >, (g(W) — g(vp)2dygy '

where the last inequality holds because we have increased the denominator. From
here,

Y (@ =88 =80 =3 1w (8 —87)+(8 —8,)7)

AR > u.vedV . @)
> (824 (80)Ddugy
Recall that
a-+b la b
> ming —, — (5)
c+d c d

for any a, b > 0 and c, d > 0. From (4), we can set

a=) (& —gH’ =) (ar—gh)’ c=) (&) ’dun,
v

u~v u~v

u,vedV
b= (g, —8) =D (& —8)% d=) (g, dvqy.
u~v u~v v
u,vedV

Observe that @ and b are nonnegative. Indeed,
a= Y (er-g&h?
ugdVor vgav
which has nonnegative summands, and a similar statement holds for b.
Without loss of generality, (5) implies

Y8 85— 3 X e (8 — &)’
)\,R Z - u,ve .
Zv(gv )Zdqu

To simplify notation in the following, let f = g™. We begin by setting
Zu~v(fu - fv)2 - % Z u~v (fu - fv)2

u,vedV

>, fidugy

A=
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Multiplying the numerator and denominator by the same term gives

(Cums fumfo? =35 wt (Fum fo?) (S it o) =33, s (furtfi)?)

u,vedV

(X0 2dva) (X Furtfo? =31 wr (futo)?)

Applying the Cauchy—Schwarz inequality in the numerator gives

(s 2= FA= 5w 12— £21)°

u,vedV

Zv fvzdqu)(ZMNU(fu =+ fv)z - % Zu}f}ggv(fu + fv)z) .

Next, we observe that

S utfP =3 3 Gt fi?=Y ffduqv—<2(fu—fu)2—% 3 (fu—fv>2>,

u~v u~v v u~v u~v
u,vedV u,vedV

kz(

and thus it follows that

(Zufvv |fu2_fv2| _%Zu”NU |fu2_fv2|)2

,vedV

A > 3
(>, f2dvgy) 2—2)

We want to show

n

1
DS =5 o U= =Y~ S Im (S VAS).
u~v u~v i=1

u,vedV

We can write

n i—1

Y=g YA :ZZ<XE"-f B %W’z" R
U~v u~v i=2 j=1

u,vedV

where
1 if{v;, v} €E,
XEi; = .
0 otherwise

is the indicator function for {v;, v;} € E, and
1 ifiedV,
% = :
X 0 otherwise
is the indicator function for v; € dV. Note that we are justified in dropping the
absolute value signs because fvzi is an increasing function of i. Next we write
fvzi — fv%, as a telescoping series

fo=fo=Ua—=Ffo )+ Ua = fo )+ + o, =)

Jj+1
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and rearrange terms in the summation to conclude that
Gl Xo: Xo;
DD I VR
i=2 j=I
X9; Xak I
_ZZZ(<XE/1<+I : ) J<l>(fvl+1 _fvl

I=1 k=1 j=I

o 1 ifj<lI,
Xj=t = 0 otherwise.

where

Then, to complete this step, we note that

n n
Xd; Xo
Z Z((XE/:M - 5 Hl)Xj51> =m(S;, V\Sp).

k=1 j=1

Returning to our main sequence of inequalities for A, we have

L (S A Im S VAS)) (@ S fa Imintvol (89, vol (V\5)))°

(Zv fv dqu) B (Zu f(u)zduCIv)z

where
m(S;, V\Si)

min
1<i<n min{vol(S;), vol(V \ )}

o=

Since fvzi is nondecreasing, a rearrangement of the numerator of the previous
expression gives

2 (32, (f;7] min{vol(Sp), vol(V \ §;)} — min{vol(S;1), vol(V \ Sl+1>}|))

s
2 (X f)?dugu)’
It follows that
2 2
IRZAZ= a_—(Z fuldutn) _ o by
2 (Lu fpdug)” 22
which completes the proof. ([
Acknowledgements

We thank the referees for their helpful comments. This research was supported
by Summer Undergraduate Math Research at Yale (SUMRY) 2018. Marshall was
supported in part by NSF DMS-1903015.

References

[Alon 1986] N. Alon, “Eigenvalues and expanders”, Combinatorica 6:2 (1986), 83-96. MR Zbl



486 E. GELERNT, D. HALIKIAS, C. KENNEY AND N. F. MARSHALL

[Cheeger 1970] J. Cheeger, “A lower bound for the smallest eigenvalue of the Laplacian”, pp. 195—
199 in Problems in analysis (Princeton, 1969), edited by R. C. Gunning, Princeton Univ. Press, 1970.
MR Zbl

[Chung 1996] F. R. K. Chung, “Laplacians of graphs and Cheeger’s inequalities”, pp. 157-172 in
Combinatorics: Paul Erdds is eighty, 1l (Keszthely, Hungary, 1993), edited by D. Mikl6s et al.,
Bolyai Soc. Math. Stud. 2, Janos Bolyai Math. Soc., Budapest, 1996. MR Zbl

[Chung 1997] F. R. K. Chung, Spectral graph theory, CBMS Region. Conf. Ser. Math. 92, Amer.
Math. Soc., Providence, RI, 1997. MR Zbl

[Chung 2007] F. Chung, “Four Cheeger-type inequalities for graph partitioning algorithms”, pp.
751-772 in Proceedings of the International Conference on Computational Methods (Hiroshima,
2007), 2007.

[Chung and Oden 2000] F. R. K. Chung and K. Oden, “Weighted graph Laplacians and isoperimetric
inequalities”, Pacific J. Math. 192:2 (2000), 257-273. MR Zbl

[Coifman and Lafon 2006] R. R. Coifman and S. Lafon, “Diffusion maps”, Appl. Comput. Harmon.
Anal. 21:1 (2006), 5-30. MR Zbl

[Hua and Huang 2018] B. Hua and Y. Huang, “Neumann Cheeger constants on graphs”, J. Geom.
Anal. 28:3 (2018), 2166-2184. MR Zbl

[Strang 1999] G. Strang, “The discrete cosine transform”, SIAM Rev. 41:1 (1999), 135-147. MR Zbl

Received: 2019-12-04 Revised: 2020-05-09 Accepted: 2020-05-23

edward.gelernt@yale.edu Department of Mathematics, Yale University,
New Haven, CT, United States

diana.halikias@yale.edu Department of Mathematics, Yale University,
New Haven, CT, United States

ctk47@math.rutgers.edu Department of Mathematics, Rutgers University,
Piscataway, NJ, United States

nicholas.marshall@math.princeton.edu
Department of Mathematics, Princeton University,
Princeton, NJ, United States

:'msp

mathematical sciences publishers



Colin Adams
Arthur T. Benjamin
Martin Bohner
Amarjit S. Budhiraja
Pietro Cerone
Scott Chapman
Joshua N. Cooper
Jem N. Corcoran
Toka Diagana
Michael Dorff
Sever S. Dragomir
Joel Foisy

Errin W. Fulp
Joseph Gallian
Stephan R. Garcia
Anant Godbole
Ron Gould

Sat Gupta

Jim Haglund
Johnny Henderson
Glenn H. Hurlbert
Charles R. Johnson
K. B. Kulasekera
Gerry Ladas

David Larson
Suzanne Lenhart
Chi-Kwong Li

involve

msp.org/involve

INVOLVE YOUR STUDENTS IN RESEARCH

Involve showcases and encourages high-quality mathematical research involving students from all
academic levels. The editorial board consists of mathematical scientists committed to nurturing
student participation in research. Bridging the gap between the extremes of purely undergraduate
research journals and mainstream research journals, Involve provides a venue to mathematicians
wishing to encourage the creative involvement of students.

MANAGING EDITOR

Kenneth S. Berenhaut

BOARD OF EDITORS

Williams College, USA
Harvey Mudd College, USA

Robert B. Lund
Gaven J. Martin

Missouri U of Science and Technology, USA Mary Meyer
U of N Carolina, Chapel Hill, USA Frank Morgan
La Trobe University, Australia Mohammad Sal Moslehian
Sam Houston State University, USA Zuhair Nashed
University of South Carolina, USA Ken Ono

University of Colorado, USA

University of Alabama in Huntsville, USA
Brigham Young University, USA

Victoria University, Australia

SUNY Potsdam, USA

Wake Forest University, USA

University of Minnesota Duluth, USA
Pomona College, USA

East Tennessee State University, USA
Emory University, USA

U of North Carolina, Greensboro, USA
University of Pennsylvania, USA

Baylor University, USA

Virginia Commonwealth University, USA
College of William and Mary, USA
Clemson University, USA

University of Rhode Island, USA

Texas A&M University, USA

University of Tennessee, USA

College of William and Mary, USA

Yuval Peres

Y.-F. S. Pétermann
Jonathon Peterson
Robert J. Plemmons
Carl B. Pomerance
Vadim Ponomarenko
Bjorn Poonen
J6zeph H. Przytycki
Richard Rebarber
Robert W. Robinson
Javier Rojo

Filip Saidak

Hari Mohan Srivastava
Andrew J. Sterge
Ann Trenk

Ravi Vakil

Antonia Vecchio
John C. Wierman
Michael E. Zieve

PRODUCTION
Silvio Levy, Scientific Editor

Wake Forest University, USA

Clemson University, USA

Massey University, New Zealand
Colorado State University, USA
Williams College, USA

Ferdowsi University of Mashhad, Iran
University of Central Florida, USA
Univ. of Virginia, Charlottesville
Microsoft Research, USA

Université de Geneve, Switzerland
Purdue University, USA

Wake Forest University, USA
Dartmouth College, USA

San Diego State University, USA

UC Berkeley, USA

George Washington University, USA
University of Nebraska, USA
University of Georgia, USA

Oregon State University, USA

U of North Carolina, Greensboro, USA
University of Victoria, Canada
Honorary Editor

Wellesley College, USA

Stanford University, USA

Consiglio Nazionale delle Ricerche, Italy
Johns Hopkins University, USA
University of Michigan, USA

Cover: Alex Scorpan

See inside back cover or msp.org/involve for submission instructions. The subscription price for 2020 is US $205/year for the electronic
version, and $275/year (+$35, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of
subscriber address should be sent to MSP.

Involve (ISSN 1944-4184 electronic, 1944-4176 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of
California, Berkeley, CA 94720-3840, is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional

mailing offices.

Involve peer review and production are managed by EditFLow® from Mathematical Sciences Publishers.

PUBLISHED BY

:l mathematical sciences publishers

nonprofit scientific publishing
http://msp.org/
© 2020 Mathematical Sciences Publishers



Involve

2020 vol. 13 no. 3

Hyperbolic triangular prisms with one ideal vertex
GRANT S. LAKELAND AND CORINNE G. ROTH
On the sandpile group of Eulerian series-parallel graphs
KYLE WEISHAAR AND JAMES SEIBERT
Linkages of calcium-induced calcium release in a cardiomyocyte simulated
by a system of seven coupled partial differential equations
GERSON C. KROIZ, CARLOS BARAJAS, MATTHIAS K. GOBBERT
AND BRADFORD E. PEERCY
Covering numbers and schlicht functions
PHILIPPE DROUIN AND THOMAS RANSFORD
Uniqueness of a three-dimensional stochastic differential equation
CARL MUELLER AND GIANG TRUONG
Sharp sectional curvature bounds and a new proof of the spectral theorem
MAXINE CALLE AND COREY DUNN
Qualitative investigation of cytolytic and noncytolytic immune response in
an HBV model
JOHN G. ALFORD AND STEPHEN A. McCoy
A Cheeger inequality for graphs based on a reflection principle
EDWARD GELERNT, DIANA HALIKIAS, CHARLES KENNEY AND
NICHOLAS F. MARSHALL
Sets in R determining k taxicab distances
VAJRESH BALAJI, OLIVIA EDWARDS, ANNE MARIE LOFTIN,
SOLOMON MCHARO, LO PHILLIPS, ALEX RICE AND BINEYAM
TSEGAYE
Total difference chromatic numbers of graphs
RANJAN ROHATGI AND YUFEI ZHANG
Decline of pollinators and attractiveness of the plants
LEILA ALICKOVIC, CHANG-HEE BAE, WILLIAM MAI, JAN
RYCHTAR AND DEWEY TAYLOR

361

381

399

425

433

445

455

475

487

511

529

1944-4176(2020)13:3;1-



