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Given a graph with a designated set of boundary vertices, we define a new notion

of a Neumann Laplace operator on a graph using a reflection principle. We show

that the first eigenvalue of this Neumann graph Laplacian satisfies a Cheeger

inequality.

1. Introduction and main result

1A. Introduction. Suppose that G = (V, E) is a graph with vertices V and edges E .

Let ∂V ⊆ V be a designated set of boundary vertices, and V̊ := V \ ∂V. We define

the doubled graph G ′ as follows. Let G̊ = (U, F) be an isomorphic copy of the

induced subgraph G[V̊ ], and let f be an isomorphism from V̊ to U. Set

F ′ :=
{

{u, v} : u ∈ U, v ∈ ∂V, { f −1(u), v} ∈ E
}

.

Then, we define G ′ := (V ′, E ′), where V ′ := V ∪ U and E ′ := E ∪ F ∪ F ′. That

is to say, G ′ is defined by making an isomorphic copy of the interior of G and

attaching it to the boundary vertices ∂V as in the original graph; see Figure 1.

Definition 1.1. Let G ′ = (V ′, E ′) be a doubled graph, and let f : V̊ → U be an

isomorphism as above, so that for all w ∈ ∂V and v ∈ V̊ , {v,w} ∈ E ′ if and only if

{ f (v), w} ∈ E ′. We say that a function ϕ : V ′ → R is even with respect to ∂V if

ϕ(v)= ϕ( f (v)) for v ∈ V̊ ,

and we say that ϕ is odd with respect to ∂V if

ϕ(v)= −ϕ( f (v)) for v ∈ V̊ and ϕ(v)= 0 for v ∈ ∂V .

Let L ′ := D − A denote the graph Laplacian of G ′, where D is the degree matrix

of G ′, and A is the adjacency matrix of G ′. The following proposition characterizes

the eigenvectors of L ′ as either even or odd.
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G = 7→ G ′ =

Figure 1. A graph G, and its doubled graph G ′, where the black

and white dots denote interior and boundary vertices, respectively.

Proposition 1.2. The graph Laplacian L ′ has |V | eigenvectors that are even with

respect to ∂V, and |V̊ | eigenvectors that are odd with respect to ∂V ; this accounts

for all eigenvectors of L ′.

1B. Motivation. We are motivated by the observation that the restrictions of the

odd and even eigenvectors of L ′ to the graph G seem like natural Dirichlet and

Neumann Laplacian eigenvectors for the graph G, given the respective odd and

even behavior of Dirichlet and Neumann Laplacian eigenfunctions on manifolds. In

fact, the restriction of the odd eigenvectors of L ′ to the graph G are eigenvectors of

the Dirichlet graph Laplacian defined in [Chung 1997], and inequalities involving

the eigenvalues of this operator have been investigated [Chung and Oden 2000].

However, an operator corresponding to the restriction of the even eigenvectors

of L ′ to G has not, to our knowledge been investigated. Chung [1997] defined

the Neumann graph Laplacian by enforcing a condition that a discrete derivative

vanishes on the boundary nodes of the graph, which results in different eigenvectors

than those arising from the even eigenvectors of L ′. We note that a Cheeger

inequality for Chung’s definition of the Neumann graph Laplacian has recently

been established in [Hua and Huang 2018].

1C. Odd and even eigenvectors. The proof of Proposition 1.2 gives some initial

insight into the odd and even eigenvectors the graph Laplacian L ′ on the doubled

graph G ′.

Proof of Proposition 1.2. The proof is immediate from the block structure of the

graph Laplacian L ′. Indeed, let L ′(U,W ) denote the submatrix of L ′ whose rows

and columns are indexed by U ⊆ V and W ⊆ V, respectively. We can write

L ′ =





X Y 0

Y ⊤ Z Y ⊤

0 Y X



 ,

where X is the submatrix L ′(V̊ , V̊ ), Y is the submatrix L ′(V̊ , ∂V ), and Z is the

submatrix L ′(∂V, ∂V ). With this notation, the eigenvectors of L ′ that are even with

respect to ∂V are solutions to the equation




X Y 0

Y ⊤ Z Y ⊤

0 Y X









u

v

u



 = µ





u

v

u



 .
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That is to say, the vectors u and v satisfy Xu + Yv = µu and 2Y ⊤u + Zv = µv.

Put differently, when concatenated, u and v form an eigenvector of the matrix

LR :=
(

X Y

2Y ⊤ Z

)

. (1)

Observe that LR is similar to a symmetric matrix,

LR =
(

I 0

0
√

2I

) (

X
√

2Y√
2Y ⊤ Z

) (

I 0

0
√

2I

)−1

,

and thus by the spectral theorem, LR has |V | real eigenvectors, which give rise to

|V | even eigenvectors of L ′. The eigenvectors of L ′ that are odd with respect to ∂V

are solutions to the equation





X Y 0

Y ⊤ Z Y ⊤

0 Y X









u

0

−u



 = λ





u

0

−u



 .

Thus, each vector u such that Xu = λu gives rise to an odd eigenvector of L ′. Let

LD := X.

Since LD is symmetric, it follows from the spectral theorem that it has |V̊ | real

eigenvectors, and we conclude that L ′ has |V̊ | odd eigenvectors. �

1D. Contribution. In this paper, we study the operator LR defined in (1), which we

call the reflected Neumann graph Laplacian. This operator seems to be particularly

natural on graphs approximating manifolds. For example, in Remark 1.3, we

show that on the path graph, the eigenvectors of the Dirichlet graph Laplacian LD

and the reflected Neumann graph Laplacian LR are the familiar discrete sine and

cosine functions. We remark that the definition of the reflected Neumann graph

Laplacian LR has some similarities to the normalization used in the diffusion maps

manifold learning method of [Coifman and Lafon 2006].

Our main result Theorem 1.4 shows that the first eigenvalue of the normalized

reflected Neumann graph Laplacian LR defined in (2) satisfies a Cheeger inequality.

The graph cuts arising from LR can differ significantly from graph cuts arising from

the standard normalized graph Laplacian L defined in [Chung 1997]. In Figure 3, we

illustrate Theorem 1.4 with an example where the first eigenvector of the Neumann

graph Laplacian LR suggests a drastically different cut than the first eigenvector

of the standard graph Laplacian, and describe how the graph cut suggested by

LR is consistent with the Cheeger inequality established in Theorem 1.4. It may

be interesting to investigate the analog of other classical eigenvalue inequalities

involving these definitions of LD and LR for graphs with boundary.
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P5 = 7→ C8 =

Figure 2. A path graph and its doubled graph.

Remark 1.3. The operators LD and LR are particularly natural on the path graph.

Let Pn = (V, E) denote the path graph on n vertices, where V = {1, . . . , n} and

{u, v} ∈ E if and only if |u − v| = 1. If ∂V := {1, n}, then the doubled graph

P ′
n = C2n−2 is the cycle graph on 2n − 2 vertices; see Figure 2.

Consider LD and LR of the path graph Pn . The Dirichlet eigenvectors ϕk and

eigenvalues λk , which satisfy LDϕk = λkϕk for k = 1, . . . , n − 2, are of the form

λk = 2

(

1 − cos

(

πk

n − 1

))

and ϕk( j)= sin

(

π jk

n − 1

)

for j = 1, . . . , n − 2, while the Neumann eigenvectors, ψk and µk , which satisfy

LRψk = µkψk for k = 0, . . . , n − 1, are of the form

µk = 2

(

1 − cos

(

πk

n − 1

))

and ψk( j)= cos

(

π jk

n − 1

)

for j = 0, . . . , n−1. Thus, the path graph doubling procedure defined in Section 1A

gives the familiar sine and cosine functions, which are the Dirichlet and Neumann

eigenfunctions of the Laplace operator of the unit interval.

1E. Notation and definitions. Suppose that G = (V, E) is a graph with vertices V

and edges E . Let ∂V ⊆ V be a designated set of boundary vertices, and set

V̊ = V \∂V. We can write the adjacency matrix A of the graph G as the block matrix

A =
(

A11 A12

A⊤
12 A22

)

,

where A11 = A(V̊ , V̊ ), A12 = A(V̊ , ∂V ), and A22 = A(∂V, ∂V ). Motivated by

Proposition 1.2 we define the reflected adjacency matrix R by

R :=
(

A11 A12

2A⊤
12 A22

)

.

With this notation, the reflected Neumann Laplacian LR can be defined by

LR = D − R,

where D = diag(RE1), where E1 denotes a vector whose entries are all 1, and whose

dimensions are such that the matrix-vector multiplication is well-defined. We define
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the normalized reflected Neumann graph Laplacian LR by

LR := D−1/2LR D−1/2. (2)

1F. Main result. In this section, we present our main result Theorem 1.4. While

the matrix LR is not in general symmetric, it is similar to a symmetric matrix;

indeed, if

Q :=
(

I|V̊ | 0

0 1
2

I|∂V |

)

,

then the matrix Q1/2
LR Q−1/2 is symmetric, positive-definite, and has the eigen-

vector D1/2 Q1/2E1 of eigenvalue 0. It follows that the first nontrivial eigenvalue λR

of LR satisfies

λR := inf
x⊤ D1/2 Q1/2E1=0

x⊤Q1/2
LR Q−1/2x

x⊤x
.

Let E(U,W ) := {{u, w} ∈ E : u ∈ U, w ∈ W }; that is, E(U,W ) is the set of edges

between U and W. We define a measure m(U,W ) on this set of edges by

m(U,W )= |E(U,W )| − 1
2
|E(U ∩ ∂V,W ∩ ∂V )|,

and we define the volume vol(U ) of U ⊆ V by

vol(U ) :=
∑

u∈U

m({u}, V ).

The following theorem is our main result.

Theorem 1.4. Suppose that G = (V, E) is a graph with a designated set of bound-

ary vertices ∂V ⊆ V, and define the Cheeger constant h R by

h R := min
S⊆V

m(S, V \ S)

min{vol(S), vol(V \ S)} . (3)

Then,
√

2λR ≥ h R ≥ 1
2
λR,

where λR is the first nontrivial eigenvalue of LR .

Recall that the standard Cheeger inequality is constructive in the sense that a

cut that achieves the upper bound on the Cheeger constant can be determined from

the eigenfunction corresponding to the first eigenvalue of the normalized graph

Laplacian L; see [Alon 1986; Cheeger 1970]. Specifically, a partition that achieves

the upper bound can be determined by dividing the vertices into two groups based

on if the value of the first eigenvector is more or less than some threshold; for a

detailed exposition see for example [Chung 1997; 2007]. Similarly, the result of

Theorem 1.4 is constructive in the sense that a cut which achieves the upper bound

on h R can be determined from the eigenvector ψR of LR that corresponds to λR .
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ψ = , ψR =

Figure 3. The same graph with vertices colored proportional to ψ

(left) and colored proportional to ψR (right), where the squares in

the right graph denote boundary vertices.

In the following remark, we present an example where the cut arising from ψR

differs significantly from the cut arising from the first eigenvector ψ of the standard

normalized graph Laplacian L.

Remark 1.5. Graph cuts arising from ψR can differ significantly from graph cuts

arising from ψ . Indeed, on the left of Figure 3 we illustrate a graph whose vertices

are colored by greyscale values proportional to ψ . On the right of Figure 3 we

illustrate the same graph except several vertices have been designated as boundary

vertices (indicated by squares) and the color of the vertices is proportional to ψR .

Observe that ψ suggests cutting the graph by a vertical line into two equal parts,

while ψR suggests cutting the graph by a horizontal line into two equal parts.

That ψR suggests a horizontal cut of the graph is illustrative of Theorem 1.4.

Indeed, it is straightforward to check that the horizontal cut suggested by ψR

minimizes the cut measure m(S, V \ S)/(vol(S), vol(V \ S)) from (3). In contrast,

the vertical cut suggested by ψ minimizes the standard cut measure, which is

equivalent to the measure m(S, V \ S)/(vol(S), vol(V \ S)) in the case that all

vertices are interior vertices. Of course, Theorem 1.4 only guarantees that the

measure of the cut arising from the eigenvector ψR is an upper bound for h R with

value at most
√

2λR; however, in this simple example the cut arising from ψR

actually obtains this minimum.

Remark 1.6. Here we visualize the first eigenfunctionψR of the reflected Neumann

graph Laplacian LR on a classic barbell shaped graph; see Figure 4. Observe that in

Figure 4 the maximum and minimum value of the eigenvector occur at an interior

vertex. This feature of the eigenvectors is interesting in the context of spectral

Figure 4. A barbell shaped graph whose vertices are colored pro-

portional toψR , where squares in the graph denote boundary vertices.
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clustering, where extreme values of the eigenvectors often correspond to the center

of clusters.

1G. Future directions. One future direction for this work is the problem of se-

lecting boundary vertices in a principled way. How the boundary is selected may

depend on the application at hand. In a social network graph, boundary vertices

could correspond to individuals with many connections outside the network. In

the context of manifold learning, where the vertices of the graph are points in R
n,

boundary vertices could be selected based on the number of points within some

ε-neighborhood of each vertex. On the other hand, when a graph is given by

sampling from a predefined manifold with boundary, vertices selected from some

collar neighborhood of the boundary could be designated as boundary vertices.

Another future direction arises from generalizing the setup under which our work

was done. Our graph doubling procedure inputs a graph with boundary and outputs

a larger graph, containing the original graph as an induced subgraph, which has a

special Z2 symmetry. Could similar Cheeger results be proven for other reflection

procedures? For example, what if n −1 copies of the interior vertices were attached,

instead of only 1?

Finally, we note a connection between the doubled graph (defined in Section 1A)

and numerical analysis that may motivate a direction for future study. Recall that

for a path graph Pn the eigenfunctions of the reflected Neumann Laplacian LR

are of the form ψk( j) = cos(π jk/(n − 1)); see Remark 1.3. These Neumann

eigenvectors are precisely the basis vectors for the discrete cosine transform (DCT)

type I, as classified in [Strang 1999]. The DCT type II, which has basis vectors

ψk( j) = cos
(

π
(

j + 1
2

)

k/n
)

is also important in numerical analysis; it could be

interesting to develop a graph doubling procedure whose Neumann eigenvectors on

the path graph are these vectors.

2. Proof of main result

2A. Summary. The proof of Theorem 1.4 is divided into two lemmas: first, in

Lemma 2.1 we show that λR ≤ 2h R , and second, in Lemma 2.2 we show that

h2
R/2 ≤ λR . The structure of our argument is similar to classical Cheeger inequality

proofs; see [Chung 1996; 1997].

2B. Proof of Theorem 1.4.

Lemma 2.1 (trivial direction). We have

λR ≤ 2h R.

Proof of Lemma 2.1. Recall that

LR := D−1/2 Q1/2LR Q−1/2 D−1/2.
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First, we observe that QLR can be written as

QLR = L − 1
2

L∂ ,

where

L =
(

diag(A11
E1+A12

E1)−A11 −A12

−A⊤
12 diag(A⊤

12
E1+A22

E1)−A22

)

,

and

L∂ :=
(

0 0

0 diag(A22
E1)−A22

)

.

Observe that L is the standard graph Laplacian of G, while L∂ is the graph Laplacian

of the vertex induced subgraph G[∂V ]. Fix a subset S ⊆V, and let χS be the indicator

function for S. Define

x := Q1/2 D1/2χS − χ⊤
S DQE1

E1⊤DQE1
D1/2 Q1/2E1.

By construction, we have x⊤D1/2 Q1/2E1 = 0, and it follows that

λN ≤ x⊤D−1/2 Q1/2LR Q−1/2 D−1/2x

x⊤x

= χ⊤
S QLRχS

χ⊤
S DQχS(E1 −χ⊤

S DQχS/(E1⊤DQ1))
= χ⊤

S

(

L − 1
2

L∂
)

χS(E1⊤DQE1)
(χ⊤

S DQχ⊤
S )(χ

⊤
V \S DQχV \S)

≤ 2 ·χ⊤
S

(

L − 1
2

L∂
)

χS

min{(χ⊤
S DQχ⊤

S ), (χ
⊤
V \S DQχV \S)}

= 2 · m(S, V \ S)

min{vol(S), vol(V \ S)} .

Since this inequality holds for all subsets S ⊆ V, we conclude that λR ≤ 2h R . �

Lemma 2.2 (nontrivial direction). We have

λR ≥ 1
2
h2

R.

Proof of Lemma 2.2. Recall that

λR = inf
x⊤ D1/2 Q1/2E1=0

x⊤
LR x

x⊤x
= inf

y⊤ DQE1=0

y⊤QLR y

y⊤Q Dy
.

Let g be a vector satisfying

λR = g⊤QLRg

g⊤DQg
and g⊤Q DE1 = 0.

Let {v1, . . . , vn} be an enumeration of the vertices V so that gv1
≤ · · · ≤ gvn

and

set Sj := {v1, . . . , vj }, for j = 1, . . . , n. Let p be the largest integer such that
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vol(Sp)≤ 1
2

vol(V ); that is,

p := max
{

j ∈ {1, . . . , n} : vol(Sj )≤ 1
2

vol(V )
}

.

Let g+ and g− denote the positive and negative parts of g − gvp
, respectively. That

is, g+
v := max{gv−gvp

, 0} and g−
v := max{gvp

−gv, 0}. Let u ∼ v denote {u, v} ∈ E

and q = diag(Q). Then

λR = g⊤(L − 1
2

L∂)g

g⊤DQg
=

∑

u∼v(gu − gv)
2 − 1

2

∑

u∼v
u,v∈∂V

(gu − gv)
2

∑

v g2
vdvqv

≥
∑

u∼v(gu − gv)
2 − 1

2

∑

u∼v
u,v∈∂V

(gu − gv)
2

∑

v(g(v)− g(vp))2dvqv
,

where the last inequality holds because we have increased the denominator. From

here,

λR ≥
∑

u∼v((g
+
u −g+

v )
2+(g−

u −g−
v )

2)− 1
2

∑

u∼v
u,v∈∂V

((g+
u −g+

v )
2+(g−

u −g−
v )

2)
∑

v((g
+
v )2+(g−

v )2)dvqv
. (4)

Recall that
a + b

c + d
≥ min

{

a

c
,

b

d

}

(5)

for any a, b ≥ 0 and c, d > 0. From (4), we can set

a =
∑

u∼v
(g+

u − g+
v )

2 −
∑

u∼v
u,v∈∂V

(g+
u − g+

v )
2, c =

∑

v

(g+
v )

2dvqv,

b =
∑

u∼v
(g−

u − g−
v )

2 −
∑

u∼v
u,v∈∂V

(g−
u − g−

v )
2, d =

∑

v

(g−
v )

2dvqv.

Observe that a and b are nonnegative. Indeed,

a =
∑

u∼v
u /∈∂V or v /∈∂V

(g+
u − g+

v )
2,

which has nonnegative summands, and a similar statement holds for b.

Without loss of generality, (5) implies

λR ≥
∑

u∼v(g
+
u − g+

v )
2 − 1

2

∑

u∼v
u,v∈∂V

(g+
u − g+

v )
2

∑

v(g
+
v )2dvqv

.

To simplify notation in the following, let f = g+. We begin by setting

λ :=
∑

u∼v( fu − fv)
2 − 1

2

∑

u∼v
u,v∈∂V

( fu − fv)
2

∑

v f 2
v dvqv

.
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Multiplying the numerator and denominator by the same term gives

λ=
(
∑

u∼v( fu− fv)
2− 1

2

∑

u∼v
u,v∈∂V

( fu− fv)
2
)(

∑

u∼v( fu+ fv)
2− 1

2

∑

u∼v
u,v∈∂V

( fu+ fv)
2
)

(
∑

v f 2
v dvqv

)(
∑

u∼v( fu+ fv)2−1
2

∑

u∼v
u,v∈∂V

( fu+ fv)2
) .

Applying the Cauchy–Schwarz inequality in the numerator gives

λ≥
(
∑

u∼v | f 2
u − f 2

v | − 1
2

∑

u∼v
u,v∈∂V

| f 2
u − f 2

v |
)2

(
∑

v f 2
v dvqv

)(
∑

u∼v( fu + fv)2 − 1
2

∑

u∼v
u,v∈∂V

( fu + fv)2
) .

Next, we observe that

∑

u∼v
( fu+ fv)

2−1

2

∑

u∼v
u,v∈∂V

( fu+ fv)
2=

∑

v

f 2
v dvqv−

(

∑

u∼v
( fu− fv)

2−1

2

∑

u∼v
u,v∈∂V

( fu− fv)
2

)

,

and thus it follows that

λ≥
(
∑

u∼v | f 2
u − f 2

v | − 1
2

∑

u∼v
u,v∈∂V

| f 2
u − f 2

v |
)2

(
∑

v f 2
v dvqv

)2
(2 − λ)

.

We want to show

∑

u∼v
| f 2

u − f 2
v | − 1

2

∑

u∼v
u,v∈∂V

| f 2
u − f 2

v | ≥
n

∑

i=1

| f 2
vi

− f 2
vi+1

|m(Si , V \ Si ).

We can write

∑

u∼v
| f 2

u − f 2
v | − 1

2

∑

u∼v
u,v∈∂V

| f 2
u − f 2

v | =
n

∑

i=2

i−1
∑

j=1

(

χEi, j
− χ∂i

χ∂j

2

)

( f 2
vi

− f 2
vj
),

where

χEi, j
=

{

1 if {vi , vj } ∈ E,

0 otherwise

is the indicator function for {vi , vj } ∈ E , and

χ∂i
=

{

1 if i ∈ ∂V,

0 otherwise

is the indicator function for vi ∈ ∂V. Note that we are justified in dropping the

absolute value signs because f 2
vi

is an increasing function of i . Next we write

f 2
vi

− f 2
vj

as a telescoping series

f 2
vi

− f 2
vj

= ( f 2
vi

− f 2
vi−1
)+ ( f 2

vi−1
− f 2

vi−2
)+ · · · + ( f 2

v j+1
− f 2

vj
),
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and rearrange terms in the summation to conclude that

n
∑

i=2

i−1
∑

j=1

(

χEi, j
− χ∂i

χ∂j

2

)

( f 2
vi

− f 2
vj
)

=
n

∑

l=1

n
∑

k=1

n
∑

j=1

((

χE j,k+l
− χ∂j

χ∂k+l

2

)

χ j≤l

)

( f 2
vl+1

− f 2
vl
),

where

χ j≤l =
{

1 if j ≤ l,

0 otherwise.

Then, to complete this step, we note that
n

∑

k=1

n
∑

j=1

((

χE j,k+l
− χ∂j

χ∂k+l

2

)

χ j≤l

)

= m(Sl, V \ Sl).

Returning to our main sequence of inequalities for λ, we have

λ≥
(
∑

i | f 2
vi
− f 2

vi+1
|m(Si ,V \Si )

)2

2
(
∑

v f 2
v dvqv

)2
≥

(

α
∑n

i=1| f 2
vi
− f 2

vi+1
|min{vol(Si ),vol(V \Si )}

)2

2
(
∑

u f (u)2duqv
)2

,

where

α := min
1≤i≤n

m(Si , V \ Si )

min{vol(Si ), vol(V \ Si )}
.

Since f 2
vi

is nondecreasing, a rearrangement of the numerator of the previous

expression gives

λ≥ α2

2

(
∑

i ( f 2
vi
| min{vol(Si ), vol(V \ Si )} − min{vol(Si+1), vol(V \ Si+1)}|)

)2

(
∑

u f (u)2duqu

)2
.

It follows that

λR ≥ λ≥ α2

2

(
∑

i f 2
vi

dvi
qvi

)2

(
∑

u f 2
u duqu

)2
= α2

2
≥ h2

R

2
,

which completes the proof. �
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