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Abstract

We present a fast method for evaluating expressions of the form

uj =
n
∑

i=1,i 6=j

αi

xi − xj

, for j = 1, . . . , n,

where αi are real numbers, and xi are points in a compact interval of R. This
expression can be viewed as representing the electrostatic potential generated
by charges on a line in R

3. While fast algorithms for computing the electro-
static potential of general distributions of charges in R

3 exist, in a number
of situations in computational physics it is useful to have a simple and ex-
tremely fast method for evaluating the potential of charges on a line; we
present such a method in this paper, and report numerical results for several
examples.
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1. Introduction and motivation

1.1. Introduction

In this paper, we describe a simple fast algorithm for evaluating expres-
sions of the form

uj =
n
∑

i=1,i 6=j

αi

xi − xj

, for j = 1, . . . , n, (1)

where αi are real numbers, and xi are points in a compact interval of R. This
expression can be viewed as representing the electrostatic potential generated
by charges on a line in R

3. We remark that fast algorithms for computing
the electrostatic potential generated by general distributions of charges in R

3

exist, see for example the Fast Multipole Method [9] whose relation to the
method presented in this paper is discussed in §1.2. However, in a number of
situations in computational physics it is useful to have a simple and extremely
fast method for evaluating the potential of charges on a line; we present such
a method in this paper. Under mild assumptions the presented method
involves O(n log n) operations and has a small constant. The method is
based on writing the potential 1/r as

1

r
=

∫ ∞

0

e−rtdt.

We show that there exists a small set of quadrature nodes t1, . . . , tm and
weights w1, . . . , wm such that for a large range of values of r we have

1

r
≈

m
∑

j=1

wje
−rtj , (2)

see Lemma 4.5, which is a quantitative version of (2). Numerically the
nodes t1, . . . , tm and weights w1, . . . , wm are computed using a procedure for
constructing generalized Gaussian quadratures, see §5.2. An advantage of
representing 1/r as a sum of exponentials is that the translation operator

1

r
7→ 1

r + r′
(3)
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can be computed by taking an inner product of the weights (w1, . . . , wm)
with a diagonal transformation of the vector (e−rt1 , . . . , e−rtm). Indeed, we
have

1

r + r′
≈

m
∑

j=1

wje
−(r+r′)tj =

m
∑

j=1

wje
−r′tje−rtj . (4)

The algorithm described in §3 leverages the existence of this diagonal trans-
lation operator to efficiently evaluate (1).

1.2. Relation to past work

We emphasize that fast algorithms for computing the potential generated
by arbitrary distributions of charges in R

3 exist. An example of such an
algorithm is the Fast Multipole Method that was introduced by [9] and has
been extended by several authors including [7, 10, 16]. In this paper, we
present a simple scheme for the special case where the charges are on a line,
which occurs in a number of numerical calcuations, see 1.3. The presented
scheme has a much smaller runtime constant compared to general methods,
and is based on the diagonal form (4) of the translation operator (3). The
idea of using the diagonal form of this translation operator to accelerate
numerical computations has been studied by several authors; in particular,
the diagonal form is used in algorithms by Dutt, Gu and Rokhlin [6], and
Yavin and Rokhlin [22] and was subsequently studied in detail by Beylkin
and Monzón [1, 2].

The current paper improves upon these past works by taking advantage
of robust generalized Gaussian quadrature codes [4] that were not previously
available; these codes construct a quadrature rule that is exact for functions
in the linear span of a given Chebyshev system, and can be viewed as a
constructive version of Lemma 4.2 of Krĕın [13]. The resulting fast algorithm
presented in §3 simplifies past approaches, and has a small runtime constant;
in particular, its computational cost is similar to the computational cost of
5-10 Fast Fourier Transforms on data of a similar length, see 5.

1.3. Motivation

Expressions of the form (1) appear in a number of situations in compu-
tational physics. In particular, such expressions arise in connection with the
Hilbert Transform

Hf(x) = lim
ε→0

1

π

∫

|x−y|≥ε

f(y)

y − x
dy.
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For example, the computation of the projection Pmf of a function f onto the
first m + 1 functions in a family of orthogonal polynomials can be reduced
to an expression of the form (1) by using the Christoffel–Darboux formula,
which is related to the Hilbert transform; we detail the reduction of Pmf to
an expression of the form (1) in the following.

Let {pk}∞k=0 be a family of monic polynomials that are orthogonal with
respect to the weight w(x) ≥ 0 on (a, b) ⊆ R. Consider the projection
operator

Pmf(x) :=

∫ b

a

m
∑

k=0

pk(x)pk(y)

hk

f(y)w(y)dy,

where hk :=
∫ b

a
pk(x)

2w(x)dx. Let x1, . . . , xn and w1, . . . , wn be the n > m/2
point Gaussian quadrature nodes and weights associated with {pk}∞k=0, and
set

uj :=
n
∑

i=1

m
∑

k=0

pk(xj)pk(xi)

hk

f(xi)w(xi), for j = 1, . . . , n. (5)

By construction the polynomial that interpolates the values u1, . . . , un at the
points x1, . . . , xn will accurately approximate Pmf on (a, b) when f is suffi-
ciently smooth, see for example §7.4.6 of Dahlquist and Björck [5]. Directly
evaluating (5) would require Ω(n2) operations. In contrast, the algorithm
of this paper together with the Christoffel–Darboux Formula can be used
to evaluate (5) in O(n log n) operations. The Christoffel-Darboux formula
states that

m
∑

k=0

pk(x)pk(y)

hk

=
1

hm

pm+1(x)pm(y)− pm(x)pm+1(y)

x− y
, (6)

see §18.2(v) of [17]. Using (6) to rewrite (5) yields

uj =
1

hm

(

f(xj) +
m
∑

i=1,i 6=j

pm+1(xj)pm(xi)− pm(xj)pm+1(xi)

xj − xi

f(xi)w(xi)

)

,

(7)
where we have used the fact that the diagonal term of the double summation
is equal to f(xj)/hm. The summation in (7) can be rearranged into two
expressions of the form (1), and thus the method of this paper can be used
to compute a representation of Pmf in O(n log n) operations.
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Remark 1.1. Analogs of the Christoffel–Darboux formula hold for many
other families of functions; for example, if Jν(w) is a Bessel function of the
first kind, then we have

∞
∑

k=1

2(ν + k)Jν+k(w)Jv+k(z) =
wz

w − z
(Jν+1(w)Jν(z)− Jν(w)Jν+1(z)) ,

see [21]. This formula can be used to write a projection operator related to
Bessel functions in an analogous form to (7), and the algorithm of this paper
can be similarly applied

Remark 1.2. A simple modification of the algorithm presented in this paper
can be used to evaluate more general expressions of the form

vj =
n
∑

i=1

αi

xi − yj
, for j = 1, . . . ,m,

where x1, . . . , xn are source points, and y1, . . . , ym are target points. For
simplicity, this paper focuses on the case where the source and target points
are the same, which is the case in the projection application described above.

2. Main result

2.1. Main result

Our principle analytical result is the following theorem, which provides
precise accuracy and computational complexity guarantees for the algorithm
presented in this paper, which is detailed in §3.
Theorem 2.1. Let x1 < . . . < xn ∈ [a, b] and α1, . . . , αn ∈ R be given. Set

uj :=
n
∑

i=1,i 6=j

αi

xi − xj

, for j = 1, . . . , n.

Given δ > 0 and ε > 0, the algorithm described in §3 computes values ũj

such
|ũj − uj|
∑n

i=1 |αi|
≤ ε, for j = 1, . . . , n (8)

in O (n log(δ−1) log(ε−1) +Nδ) operations, where

Nδ :=
n
∑

j=1

#{xi : |xj − xi| < δ(b− a)}. (9)
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The proof of Theorem 2.1 is given in §4. Under typical conditions, the
presented algorithm involves O(n log n) operations. The following corollary
describes a case of interest, where the points x1, . . . , xn are Chebyshev nodes
for a compact interval [a, b] (we define Chebyshev nodes in §4.2).

Corollary 2.1. Fix ε = 10−15, and let the points x1, . . . , xn be Chebyshev

nodes on [a, b]. If δ = 1/n, then the algorithm of §3 involves O(n log n)
operations.

The proof of Corollary 2.1 is given in §4.4. The following corollary states
that a similar result holds for uniformly random points.

Corollary 2.2. Fix ε = 10−15, and suppose that x1, . . . , xn are sampled

uniformly at random from [a, b]. If δ = 1/n, then the algorithm of §3 involves

O(n log n) operations with high probability.

The proof of Corollary 2.2 is immediate from standard probabilistic esti-
mates. The following remark describes an adversarial configuration of points.

Remark 2.1. Fix ε > 0, and let x1, . . . , x2n be a collection of points such
that x1, . . . , xn and xn+1, . . . , x2n are evenly spaced in [0, 2−n] and [1−2−n, 1],
respectively, that is

xj = 2−n

(

j − 1

n− 1

)

, and xn+j = 1 + 2−n

(

j − n

n− 1

)

, for j = 1, . . . , n.

We claim that Theorem 2.1 cannot guarantee a complexity better than O(n2)
for this configuration of points. Indeed, if δ ≥ 2−n, then Nδ ≥ n2/2, and if
δ < 2−n, then log2(δ

−1) > n. In either case

n log(δ−1) +Nδ = Ω(n2).

This complexity is indicative of the performance of the algorithm for this
point configuration; the reason that the algorithm performs poorly is that
structures exist at two different scales. If such a configuration were encoun-
tered in practice, it would be possible to modify the algorithm of §3 to also
involve two different scales to achieve evaluation in O(n log n) operations.
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3. Algorithm

3.1. High level summary

The algorithm involves passing over the points x1, . . . , xn twice. First, we
pass over the points in ascending order and compute

ũ+
j ≈

j−1
∑

i=1

αi

xi − xj

, for j = 1, . . . , n, (10)

and second, we pass over the points in descending order and compute

ũ−
j ≈

n
∑

i=j+1

αi

xi − xj

, for j = 1, . . . , n. (11)

Finally, we define ũj := ũ+
j + ũ−

j for j = 1, . . . , n such that

ũj ≈
n
∑

i=1,i 6=j

αi

xi − xj

, for j = 1, . . . , n.

We call the computation of ũ+
1 , . . . , ũ

+
n the forward pass of the algorithm,

and the computation of ũ−
1 , . . . , ũ

+
n the backward pass of the algorithm. The

forward pass of the algorithm computes the potential generated by all points
to the left of a given point, while the backward pass of the algorithm computes
the potential generated by all points to the right of a given point. In §3.2
and §3.3 we give an informal and detailed description of the forward pass
of the algorithm. The backward pass of the algorithm is identical except it
considers the points in reverse order.

3.2. Informal description

In the following, we give an informal description of the forward pass of
the algorithm that computes

ũ+
j ≈

j−1
∑

i=1

αi

xi − xj

, for j = 1, . . . , n.

Assume that a small set of nodes t1, . . . , tm and weights w1, . . . , wm such that

1

r
≈

m
∑

i=1

wie
−rti for r ∈ [δ(b− a), b− a], (12)
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where δ > 0 is given and fixed. The existence and computation of such nodes
and weights is described in §4.4 and §5.2. We divide the sum defining u+

j

into two parts:

ũ+
j ≈

j0
∑

i=1

αi

xi − xj

+

j−1
∑

i=j0+1

αi

xi − xj

, (13)

where j0 = max
{

i : xj − xi > δ(b− a)
}

. By definition, the points x1, . . . , xj0

are all distance at least δ(b− a) from xj. Therefore, by (12)

ũ+
j ≈ −

j0
∑

i=1

m
∑

k=1

wkαie
−(xj−xi)tk +

j−1
∑

i=j0+1

αi

xi − xj

.

If we define

gk(j0) =

j0
∑

i=1

αie
−(xj0

−xi)tk , for k = 1, . . . ,m, (14)

then it is straightforward to verify that

ũ+
j ≈ −

m
∑

k=1

wkgk(j0)e
−(xj−xj0

)tk +

j−1
∑

i=j0+1

αi

xi − xj

. (15)

Observe that we can update gk(j0) to gk(j0 + 1) using the following formula

gk(j0 + 1) = αj0 + e−(xj0+1−xj0
)tkgk(j0), for k = 1, . . . ,m. (16)

We can now summarize the algorithm for computing ũ+
1 , . . . , ũ

+
n . For each j,

we compute ũ+
j by the following three steps:

1. Update g1, . . . , gm as necessary

2. Use g1, . . . , gm to evaluate the potential from xi such that xj − xi >
δ(b− a)

3. Directly evaluate the potential from xi such that 0 < xj −xi < δ(b− a)

By (16), each update of g1, . . . , gm requires O(m) operations, and we must
update g1, . . . , gm at most n times, so we conclude that the total cost of
the first step of the algorithm is O(nm) operations. For each j = 1, . . . , n,
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the second and third step of the algorithm involve O(m) and O(#{xi : 0 <
xj − xi < δ(b − a)}) operations, respectively, see (15). It follows that the
total cost of the second and third step of the algorithm is O(nm + Nδ)
operations, where Nδ is defined in (9). We conclude that ũ+

1 , . . . , ũ
+
n can be

computed in O(nm + Nδ) operations. In §4, we complete the proof of the
computational complexity guarantees of Theorem 2.1 by showing that there
exist m = O(log(δ−1) log(ε−1)) nodes t1, . . . , tm and weights w1, . . . , wm that
satisfy (12), where ε > 0 is the approximation error in (12).

3.3. Detailed description

In the following, we give a detailed description of the forward pass of the
algorithm that computes ũ+

1 , . . . , ũ
+
n . Suppose that δ > 0 and ε > 0 are

given and fixed. We describe the algorithm under the assumption that we
are given quadrature nodes t1, . . . , tm and weights w1, . . . , wm such that

∣

∣

∣

∣

∣

1

r
−

m
∑

j=1

wje
−rtj

∣

∣

∣

∣

∣

≤ ε for r ∈ [δ(b− a), b− a]. (17)

The existence of such weights and nodes is established in §4.4, and the com-
putation of such nodes and weights is discussed in §5.2. To simplify the
description of the algorithm, we assume that x0 = −∞ is a placeholder node
that does not generate a potential.

Algorithm 3.1. Input: x1 < · · · < xn ∈ [a, b], α1, . . . , αn ∈ R. Output:

ũ+
1 , . . . , ũ

+
n .

1: j0 = 0 and g1 = · · · = gm = 0

2:

3: main loop:

4: for j = 1, . . . , n

5:

6: update g1, . . . , gm and j0:

7: while xj − xj0+1 > δ(b− a)

8: for i = 1,. . . ,m

9



9: gi = gie
−(xj0+1−xj0

)ti + αi

10: end for

11: j0 = j0 + 1

12: end while

13:

14: compute potential from xi such that xi ≤ xj0 :

15: ũ+
j = 0

16: for i = 1, . . . ,m

17: ũ+
j = ũ+

j − wigie
−(xj−xj0

)ti

18: end for

19:

20: compute potential from xi such that xj0+1 ≤ xi ≤ xj−1

21: for i = j0 + 1, . . . , j − 1

22: ũ+
j = ũ+

j + αi/(xi − xj).

23: end for

24: end for

Remark 3.1. In some applications, it may be necessary to evaluate an ex-
pression of the form (1) for many different weights α1, . . . , αn associated with
a fixed set of points x1, . . . , xn. For example, in the projection application
described in §1.3 the weights α1, . . . , αn correspond to a function that is be-
ing projected, while the points x1, . . . , xn are a fixed set of quadrature nodes.
In such situations, pre-computing the exponentials e−(xj−xj0

)ti used in the
Algorithm 3.1 will significantly improve the runtime, see §5.1.
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4. Proof of Main Result

4.1. Organization

In this section we complete the proof of Theorem 2.1; the section is or-
ganized as follows. In §4.2 we give mathematical preliminaries. In §4.3 we
state and prove two technical lemmas. In §4.4 we prove Lemma 4.5, which
together with the analysis in §3 establishes Theorem 2.1. In §4.5 we prove
Corollary 2.1, and Corollary 2.2.

4.2. Preliminaries

Let a < b ∈ R and n ∈ Z>0 be fixed, and suppose that f : [a, b] → R,
and x1 < · · · < xn ∈ [a, b] are given. The interpolating polynomial P of the
function f at x1, . . . , xn is the unique polynomial of degree at most n − 1
such that

P (xj) = f(xj), for j = 1, . . . , n.

This interpolating polynomial P can be explicitly defined by

P (x) =
n
∑

j=1

f(xj)qj(x), (18)

where qj is the nodal polynomial for xj, that is,

qj(x) =
n
∏

k=1,k 6=j

x− xk

xj − xk

. (19)

We say x1, . . . , xn are Chebyshev nodes for the interval [a, b] if

xj =
b+ a

2
+

b− a

2
cos

(

π
j − 1

2

n

)

, for j = 1, . . . , n. (20)

The following lemma is a classical result in approximation theory. It says
that a smooth function on a compact interval is accurately approximated
by the interpolating polynomial of the function at Chebyshev nodes, see for
example §4.5.2 of Dahlquist and Björck [5].

Lemma 4.1. Let f ∈ Cn([a, b]), and x1, . . . , xn be Chebyshev nodes for [a, b].
If P is the interpolating polynomial for f at x1, . . . , xn, then

sup
x∈[a,b]

|f(x)− P (x)| ≤ 2M

n!

(

b− a

4

)n

,
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where

M = sup
x∈[a,b]

|f (n)(x)|.

In addition to Lemma 4.1, we require a result about the existence of gen-
eralized Gaussian quadratures for Chebyshev systems. In 1866, Gauss [8] es-
tablished the existence of quadrature nodes x1, . . . , xn and weights w1, . . . , wn

for an interval [a, b] such that

∫ b

a

f(x)dx =
n
∑

j=1

wjf(xj),

whenever f(x) is a polynomial of degree at most 2n − 1. This result was
generalized from polynomials to Chebyshev systems by Krĕın [13]. A collec-
tion of functions f0, . . . , fn on [a, b] is a Chebyshev system if every nonzero
generalized polynomial

g(t) = a0f0(t) + · · ·+ anfn(t), for a0, . . . , an ∈ R,

has at most n distinct zeros in [a, b]. The following result of Krĕın says
that any function in the span of a Chebyshev system of 2n functions can be
integrated exactly by a quadrature with n nodes and n weights.

Lemma 4.2 (Krĕın [13]). Let f0, . . . , f2n−1 be a Chebyshev system of contin-

uous functions on [a, b], and w : (a, b) → R be a continuous positive weight

function. Then, there exists unique nodes x1, . . . , xn and weights w1, . . . , wn

such that
∫ b

a

f(x)w(x)dx =
n
∑

j=1

wjf(xj),

whenever f is in the span of f0, . . . , f2n−1.

4.3. Technical Lemmas

In this section, we state and prove two technical lemmas that are involved
in the proof of Theorem 2.1. We remark that a similar version of Lemma 4.3
appears in [18].

Lemma 4.3. Fix a > 0 and t ∈ [0,∞), and let r1, . . . , rn be Chebyshev nodes

for [a, 2a]. If Pt(r) is the interpolating polynomial for e−rt at r1, . . . , rn, then

sup
r∈[a,2a]

∣

∣e−rt − Pt(r)
∣

∣ ≤ 1

4n
.
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Proof. We have

sup
r∈[a,2a]

∣

∣

∣

∣

∂n

∂rn
e−rt

∣

∣

∣

∣

= sup
r∈[a,2a]

|tne−rt| = tne−ta.

By writing the derivative of tne−ta as

d

dt
tne−ta =

(n

a
− t
)

atn−1e−at,

we can deduce that the maximum of tne−ta occurs at t = n/a, that is,

sup
t∈[0,∞)

tne−ta =
(n

a

)n

e−a(n/a). (21)

By (21) and the result of Lemma 4.1, we conclude that

sup
t∈[a,2a]

|e−rt − Pt(r)| ≤
2(n/a)ne−a(n/a)

n!

(a

4

)n

=
2nne−n

n!

1

4n
.

It remains to show that 2nne−n ≤ n!. Since ln(x) is a increasing function,
we have

n lnn− n+ 1 =

∫ n

1

ln(x)dx ≤
∫ n

1

n−1
∑

j=1

χ[j,j+1](x) ln(j + 1)dx =
n
∑

j=1

ln(j).

Exponentiating both sides of this inequality gives enne−n ≤ n!, which is a
classical inequality related to Stirling’s approximation. This completes the
proof.

Lemma 4.4. Suppose that ε > 0 and M > 1 are given. Then, there exists

m = O(log(M) log(ε−1))

values r1, . . . , rm ∈ [1,M ] such that for all r ∈ [1,M ] we have

sup
t∈[0,∞)

∣

∣

∣

∣

∣

e−rt −
m
∑

j=1

cj(r)e
−rjt

∣

∣

∣

∣

∣

≤ ε, (22)

for some choice of coefficients cj(r) that depend on r.
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Proof. We construct an explicit set of m := (⌊log2 M⌋ + 1)(⌊log4 ε−1⌋ + 1)
points and coefficients such that (22) holds. Set n := ⌊log4 ε−1⌋ + 1. We
define the points r1, . . . , rm by

rin+k := 2i−1

(

3 + cos

(

π
k − 1

2

n

))

, (23)

for k = 1, . . . , n and i = 0, . . . , ⌊log2 M⌋, and define the coefficients c1(r), . . . , cm(r)
by

cin+k(r) := χ[2i,2i+1)(r)

⌊log4 ε
−1⌋

∏

l=1,l 6=k

r − rin+l

rin+l − rin+k

, (24)

for k = 1, . . . , n and i = 0, . . . , ⌊log2 M⌋. We claim that

sup
r∈[1,M ]

sup
t∈[0,∞)

∣

∣

∣

∣

∣

e−rt −
m
∑

j=1

cj(r)e
−rjt

∣

∣

∣

∣

∣

≤ ε.

Indeed, fix r ∈ [1,M ], and let i0 ∈ {0, . . . , ⌊log2 M⌋} be the unique integer
such that r ∈ [2i0 , 2i0+1). By the definition of the coefficients, see (24), we
have

m
∑

j=1

cj(r)e
−rjt =

n
∑

k=1

e−ri0n+kt

⌊log4 ε
−1⌋

∏

l=1,l 6=k

r − ri0n+l

ri0n+l − ri0n+k

.

We claim that the right hand side of this equation is the interpolating poly-
nomial Pt,i0(r) for e

−rt at ri0n+k, . . . , r(i0+1)n, that is,

n
∑

k=1

e−ri0n+kt

⌊log4 ε
−1⌋

∏

l=1,l 6=k

r − ri0n+l

ri0n+l − ri0n+k

= Pt,i0(r).

Indeed, see (18) and (19). Since the points ri0n+k, . . . , r(i0+1)n are Chebyshev
nodes for the interval [2i0 , 2i0+1], and since i0 was chosen such that r ∈
[2i0 , 2i0+1), it follows from Lemma 4.3 that

∣

∣e−rt − Pt,i0(r)
∣

∣ ≤ 1

4n
for t ∈ [0,∞).

Since n = ⌊log4 ε−1⌋+ 1 the proof is complete.
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Remark 4.1. The proof of Lemma 4.4 has the additional consequence that
the coefficients c1(r), . . . , cm(r) in (22) can be chosen such that they satisfy

|cj(r)| ≤
√
2 for j = 1, . . . ,m.

Indeed, in (24) the coefficients cj(r) are either equal zero or equal to the nodal
polynomial, see (19), for Chebyshev nodes on an interval that contains r. The
nodal polynomials for Chebyshev nodes on an interval [a, b] are bounded by√
2 on [a, b], see for example [18]. The fact that e−rt can be approximated

as a linear combination of functions e−r1t, . . . , e−rmt with small coefficients
means that the approximation of Lemma 4.4 can be used in finite precision
environments without any unexpected catastrophic cancellation.

4.4. Completing the proof of Theorem 2.1

Previously in §3.2, we proved that the algorithm of §3 involvesO(nm+Nδ)
operations. To complete the proof of Theorem 2.1 it remains to show that
there exists

m = O(log(ε−1) log(δ−1))

points t1, . . . , tm and weights w1, . . . , wm that satisfy (17); we show the exis-
tence of such nodes and weights in the following lemma, and thus complete
the proof of Theorem 2.1. The computation of such nodes and weights is
described in §5.2.

Lemma 4.5. Fix a < b ∈ R, and let δ > 0 and ε > 0 be given. Then, there

exists m = O(log(ε−1) log(δ−1)) nodes t1, . . . , tm and weights w1, . . . , wm such

that
∣

∣

∣

∣

∣

1

r
−

m
∑

j=1

wje
−rtj

∣

∣

∣

∣

∣

≤ ε, for r ∈ [δ(b− a), b− a]. (25)

Proof. Fix a < b ∈ R, and let δ, ε > 0 be given. By the possibility of rescaling
r, wj, and tj, we may assume that b−a = δ−1 such that we want to establish
(25) for r ∈ [1, δ−1]. By Lemma 4.4 we can choose 2m = O(log(ε−1) log(δ−1))
points r0, . . . , r2m−1 ∈ [1, δ−1], and coefficients c0(r), . . . , c2m−1(r) depending
on r such that

sup
r∈[1,δ−1]

sup
t∈[0,∞)

∣

∣

∣

∣

∣

e−rt −
2m−1
∑

j=0

cj(r)e
−rjt

∣

∣

∣

∣

∣

≤ ε

2 log(2ε−1)
. (26)
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The collection of functions e−r0t, . . . , e−r2m−1t form a Chebyshev system of
continuous functions on the interval [0, log(2ε−1)], see for example [12]. Thus,
by Lemma 4.2 there existsm quadrature nodes t1, . . . , tm and weights w1, . . . , wm

such that
∫ log(2ε−1)

0

f(t)dt =
m
∑

j=1

wjf(tj),

whenever f(t) is in the span of e−r0t, . . . , e−r2m−1t. By the triangle inequality

∣

∣

∣

∣

∣

1

r
−

m
∑

j=1

wje
−rtj

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

r
−
∫ log(2ε−1)

0

e−rtdt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ log(2ε−1)

0

e−rtdt−
m
∑

j=1

wje
rtj

∣

∣

∣

∣

∣

. (27)

Recall that we have assumed r ∈ [1, δ−1], in particular, r ≥ 1 so it follows
that

∣

∣

∣

∣

∣

1

r
−
∫ log(2ε−1)

0

e−rtdt

∣

∣

∣

∣

∣

≤ ε/2. (28)

By (26), the function e−rt can be approximated to error ε/(2 log(2ε−1)) in
the L∞-norm on [0, log(2ε−1)] by functions in the span of e−r0t, . . . , e−r2m−1t.
Since our quadrature is exact for these functions, we conclude that

∣

∣

∣

∣

∣

∫ log(2ε−1)

0

e−rtdt−
m
∑

j=1

wje
rtj

∣

∣

∣

∣

∣

≤ ε/2. (29)

Combining (27), (28), and (29) completes the proof.

4.5. Proof of Corollary 2.1

In this section, we prove Corollary 2.1, which states that the algorithm
of §3 involves O(n log n) operations when x1, . . . , xn are Chebyshev nodes,
ε = 10−15, and δ = 1/n.

Proof of Corollary 2.1. By rescaling the problem we may assume that [a, b] =
[−1, 1] such that the Chebyshev nodes x1, . . . , xn are given by

xj = cos

(

π
j − 1

2

n

)

, for j = 1, . . . , n.
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By the result of Theorem 2.1, it suffices to show that Nδ = O(n log n), where

Nδ :=
n
∑

j=1

#

{

xi : |xj − xi| <
1

n

}

.

It is straightforward to verify that the number of Chebyshev nodes within an
interval of radius 1/n around the point −1 < x < 1 is O(1/

√
1− x2), that

is,

#

{

xi : |x− xi| <
1

n

}

= O
(

1√
1− x2

)

, for − 1 < x < 1.

This estimate, together with the fact that the first and last Chebyshev node
are distance at least 1/n2 from 1 and −1, respectively, gives the estimate

n
∑

j=1

#

{

xi : |xj − xi| <
1

n

}

= O
(

∫ π−1/n2

1/n2

n
√

1− cos(t)2
dt

)

. (30)

Let π/2 > η > 0 be a fixed parameter; direct calculation yields
∫ π−η

η

1
√

1− cos(t)2
dt = 2 log

(

cot
(η

2

))

= O
(

log
(

η−1
))

.

Combining this estimate with (30) yields Nδ = O(n log n) as was to be
shown.

5. Numerical results and implementation details

5.1. Numerical results

We report numerical results for two different point distributions: uni-
formly random points in [1, 10], and Chebyshev nodes in [−1, 1]. In both
cases, we choose the weights α1, . . . , αn uniformly at random from [0, 1], and
test the algorithm for

n = 1000× 2k points, for k = 0, . . . , 10.

We time two different versions of the algorithm: a standard implementation,
and an implementation that uses precomputed exponentials. Precomputing
exponentials may be advantageous in situations where the expression

uj =
n
∑

i=1

αi

xi − xj

, for j = 1, . . . , n, (31)

17



must be evaluated for many different weights α1, . . . , αn associated with a
fixed set of points x1, . . . , xn, see Remark 3.1. We find that using precom-
puted exponentials makes the algorithm approximately ten times faster, see
Tables 1, 2, and 3. In addition to reporting timings, we report the absolute
relative difference between the output of the algorithm of §3 and the output
of direct evaluation; we define the absolute relative difference ǫr between the
output ũj of the algorithm of §3 and the output ud

j of direct calculation by

ǫr := sup
j=1,...,n

∣

∣

∣

∣

∣

ũj − ud
j

ūj

∣

∣

∣

∣

∣

, where ūj :=
n
∑

i=1

∣

∣

∣

∣

αi

xi − xj

∣

∣

∣

∣

, (32)

Dividing by ūj accounts were the fact that the calculations are performed in
finite precision; any remaining loss of accuracy in the numerical results is a
consequence of the large number of addition and multiplication operations
that are performed. All calculations are performed in double precision, and
the algorithm of §3 is run with ε = 10−15. The parameter δ > 0 is set
via an empirically determined heuristic. The numerical experiments were
performed on a laptop with a Intel Core i5-8350U CPU and 7.7 GiB of
memory; the code was written in Fortran and compiled with gfortran with
standard optimization flags. The results are reported in Tables 1, 2, and 3.

To put the run time of the algorithm in context, we additionally perform
a time comparison to the Fast Fourier Transform (FFT), which also has
complexityO(n log n). Specifically, we compare the run time of the algorithm
of §3 on random data using precomputed exponentials with the run time of
an FFT implementation from FFTPACK [20] on random data of the same
length using precomputed exponentials. We report these timings in Table 4;
we find that the FFT is roughly 5-10 times faster than our implementation
of the algorithm of §3; we remark that no significant effort was made to
optimize our implementation, and that it may be possible to improve the
run time by vectorization.

5.2. Computing nodes and weights

The algorithm of §3 is described under the assumption that nodes t1, . . . , tm
and weights w1, . . . , wm are given such that

∣

∣

∣

∣

∣

1

r
−

m
∑

j=1

wje
−rtj

∣

∣

∣

∣

∣

≤ ε for r ∈ [δ(b− a), b− a], (33)
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Label Definition
n number of points
tw time of algorithm of §3 without precomputation in seconds
tp time of precomputing exponentials for algorithm of §3 in seconds
tu time of algorithm of §3 using precomputed exponentials in seconds
td time of direct evaluation in seconds
ǫr maximum absolute relative difference defined in (32)
tf time of FFT using precomputed exponentials (for time comparison only)

Table 1: Key for column labels of Tables 2, 3, and 4.

n tw tp tu td ǫr
1000 0.74E−03 0.18E−02 0.93E−04 0.66E−03 0.19E−14
2000 0.19E−02 0.31E−02 0.19E−03 0.25E−02 0.30E−14
4000 0.42E−02 0.61E−02 0.43E−03 0.10E−01 0.52E−14
8000 0.85E−02 0.10E−01 0.89E−03 0.37E−01 0.72E−14
16000 0.18E−01 0.25E−01 0.18E−02 0.14E+00 0.92E−14
32000 0.38E−01 0.49E−01 0.37E−02 0.59E+00 0.19E−13
64000 0.84E−01 0.98E−01 0.78E−02 0.23E+01 0.21E−13
128000 0.16E+00 0.19E+00 0.18E−01 0.95E+01 0.35E−13
256000 0.37E+00 0.53E+00 0.34E−01 0.40E+02 0.59E−13
512000 0.75E+00 0.10E+01 0.71E−01 0.19E+03 0.88E−13
1024000 0.17E+01 0.23E+01 0.15E+00 0.81E+03 0.14E−12

Table 2: Numerical results for uniformly random points in [1, 10].

where ε > 0 and δ > 0 are fixed parameters. As in the proof of Lemma 4.5
we note that by rescaling r it suffices to find nodes and weights satisfying

∣

∣

∣

∣

∣

1

r
−

m
∑

j=1

wje
−rtj

∣

∣

∣

∣

∣

≤ ε for r ∈ [1, δ−1]. (34)

Indeed, if the nodes t1, . . . , tm and weights w1, . . . , wm satisfy (34), then the
nodes t1/(b− a), . . . , tm/(b− a) and weights w1/(b− a), . . . , wm/(b− a) will
satisfy (33). Thus, in order to implement the algorithm of §3 it suffices to
tabulate nodes and weights that are valid for r ∈ [1,M ] for various values of
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n tw tp tu td ǫr
1000 0.54E−03 0.12E−02 0.74E−04 0.60E−03 0.11E−14
2000 0.15E−02 0.26E−02 0.15E−03 0.24E−02 0.14E−14
4000 0.38E−02 0.51E−02 0.37E−03 0.99E−02 0.39E−14
8000 0.83E−02 0.10E−01 0.85E−03 0.38E−01 0.35E−14
16000 0.19E−01 0.23E−01 0.17E−02 0.14E+00 0.58E−14
32000 0.41E−01 0.48E−01 0.37E−02 0.62E+00 0.89E−14
64000 0.98E−01 0.90E−01 0.82E−02 0.24E+01 0.12E−13
128000 0.22E+00 0.19E+00 0.23E−01 0.10E+02 0.19E−13
256000 0.44E+00 0.47E+00 0.32E−01 0.40E+02 0.26E−13
512000 0.84E+00 0.94E+00 0.73E−01 0.19E+03 0.52E−13
1024000 0.19E+01 0.19E+01 0.14E+00 0.84E+03 0.64E−13

Table 3: Numerical results for Chebyshev nodes on [−1, 1].

n tu tf
1000 0.91E − 04 0.16E − 04
2000 0.28E − 03 0.37E − 04
4000 0.41E − 03 0.44E − 04
8000 0.93E − 03 0.85E − 04
16000 0.18E − 02 0.24E − 03
32000 0.38E − 02 0.41E − 03
64000 0.81E − 02 0.88E − 03
128000 0.18E − 01 0.19E − 02
256000 0.38E − 01 0.59E − 02
512000 0.71E − 01 0.12E − 01
1024000 0.14E + 00 0.25E − 01

Table 4: Time comparison with FFT.

M . In the implementation used in the numerical experiments in this paper,
we tabulated nodes and weights valid for r ∈ [1,M ] for

M = [1, 4k] for k = 1, . . . , 10.
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For example, in Tables 5 and 6 we have listed m = 33 nodes t1, . . . , t33 and
weights w1, . . . , w33 such that

∣

∣

∣

∣

∣

1

r
−

33
∑

j=1

wje
−rtj

∣

∣

∣

∣

∣

≤ 10−15,

for all r ∈ [1, 1024].

0.2273983006898589D-03,0.1206524521003404D-02,0.3003171636661616D-02,

0.5681878572654425D-02,0.9344657316017281D-02,0.1414265501822061D-01,

0.2029260691940998D-01,0.2809891134697047D-01,0.3798133147119762D-01,

0.5050795277167632D-01,0.6643372693847560D-01,0.8674681067847460D-01,

0.1127269233505314D+00,0.1460210820252656D+00,0.1887424688689547D+00,

0.2435986924712581D+00,0.3140569015209982D+00,0.4045552087678740D+00,

0.5207726670656921D+00,0.6699737362118449D+00,0.8614482005965975D+00,

0.1107074709906516D+01,0.1422047253849542D+01,0.1825822499573290D+01,

0.2343379511131976D+01,0.3006948272874077D+01,0.3858496861353812D+01,

0.4953559345813267D+01,0.6367677940017810D+01,0.8208553424367139D+01,

0.1064261195532074D+02,0.1396688222191633D+02,0.1889449184151398D+02

Table 5: A list of 33 nodes t1, . . . , t33.

0.5845245927410881D-03,0.1379782337905140D-02,0.2224121503815854D-02,

0.3150105276431181D-02,0.4200370923383030D-02,0.5431379037435571D-02,

0.6918794756934398D-02,0.8763225538492927D-02,0.1109565843047196D-01,

0.1408264766413004D-01,0.1793263393523491D-01,0.2290557147478609D-01,

0.2932752351846237D-01,0.3761087060298772D-01,0.4828044150885936D-01,

0.6200636888239893D-01,0.7964527252809662D-01,0.1022921587521237D+00,

0.1313462348178323D+00,0.1685948994092301D+00,0.2163218289369589D+00,

0.2774479391081561D+00,0.3557192797195578D+00,0.4559662159666857D+00,

0.5844792718191478D+00,0.7495918095861060D+00,0.9626599456939077D+00,

0.1239869481076760D+01,0.1605927580173348D+01,0.2102583514906888D+01,

0.2811829220697454D+01,0.3937959064316012D+01,0.6294697335695096D+01

Table 6: A list of 33 weights w1, . . . , w33.

The nodes and weights satisfying (34) can be computed by using a proce-
dure for generating generalized Gaussian quadratures for Chebyshev systems
together with the proof of Lemma 4.4. Indeed, Lemma 4.4 is constructive
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with the exception of the step that invokes Lemma 4.2 of Krĕın. The proce-
dure described in [4] is a constructive version of Lemma 4.2: given a Cheby-
shev system of functions, it generates the corresponding quadrature nodes
and weights. We remark that generalized Gaussian quadrature generation
codes are a powerful tools for numerical computation with a wide range of
applications. The quadrature generation code used in this paper was an
optimized version of [4] recently developed by Serkh for [19].
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