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Abstract Let G = {G1 = (V, E1), . . . , Gm = (V, Em)} be a collection of m graphs
defined on a common set of vertices V but with different edge sets E1, . . . , Em. Infor-
mally, a function f : V → R is smooth with respect to Gk = (V, Ek) if f(u) ∼ f(v)
whenever (u, v) ∈ Ek. We study the problem of understanding whether there exists a
nonconstant function that is smooth with respect to all graphs in G, simultaneously,
and how to find it if it exists.
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1 Introduction

1.1 Introduction

Let G = (V, E) be a graph; loosely speaking, a function f : V → R is smooth
with respect to G if it varies little over adjacent vertices meaning that f(u) ∼ f(v)
whenever (u, v) ∈ E. Let G be a collection of m graphs on the same set of vertices V

G = {G1 = (V, E1), . . . , Gm = (V, Em)}.
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We consider the following problem: among all mean zero unit norm functions f :
V → R which is the smoothest with respect to G (see §1.6 for a formal statement)?
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Fig. 1 A 6-nearest neighbor graph of points in the plane (left), and a 6-nearest neighbor graph
for the same points after each point has been independently randomly rotated about the origin
(right). As the number of points n → ∞, commonly smooth functions f : V → R are functions
of the distance to the origin.

1.2 Motivating example

A geometric example is shown in Figure 1: we are given a set of n uniformly random
points in the unit square centered at the origin, and form a graph G1 = (V, E1) by
connecting each point to its 6-nearest neighbors with respect to Euclidean distance.
A second graph G2 = (V, E2) is built on the same set of points as follows: each point
is randomly rotated about the origin (by independent uniformly random rotations),
and the rotated points are connected to their 6-nearest neighbors (see §3.3 for a
precise description of this example). Two vertices u and v are close in the graph G1

if the underlying points are physically close in the plane. Likewise, u and v are close
in the graph G2 if the rotated version of the underlying points are close. It becomes
clear that any commonly smooth function f : V → R must be close to a function
that only depends on the distance of the underlying points to the origin (in the usual
sense as the number of points n becomes large). How can we detect these ‘commonly
smooth functions’ or ‘common variables’ if we do not have access to how the graphs
were constructed? How can we find them from the graph data alone?

1.3 Problem statement

Suppose that G = (V, Ek)m
k=1 is a collection of m graphs on a common set of V

vertices. We address two main problems.

– Is it possible to detect whether there is a nonconstant commonly ‘smooth’ func-
tion on the vertices V (that is smooth with respect to all m graphs)?

– Can we determine the ‘smoothest’ nonconstant function on V with respect to
the collection of graphs G?
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The precise nature of these questions will strongly depend on the notion of
‘smoothness’ of a function f : V → R. The main purpose of our paper is to de-
fine a notion of smoothness inspired by Spectral Graph Theory and to provide an
approach which provably solves both problems in the regime where there truly is a
common smooth variable shared by all graphs in a certain precise sense. What we
observe in practice is that the method is more broadly applicable. We emphasize
that the underlying question could be formalized in many different ways (possibly
leading to very different mathematics) and many of them might be interesting.

1.4 Related results.

The problem of determining a commonly smooth function for a collection of graphs
appears in different contexts, perhaps most frequently in data synthesis. Consider
a data synthesis problem where a fixed set of data points is measured in different
ways (a multi-view problem). Each measurement of the data points is encoded in a
graph Gk = (V, Ek) whose vertices V are the fixed data points and whose edges Ek

are determined by the specific measurement. The end goal is to synthesize this data
to extract intrinsic information. In particular, is there a common variable (function
on V ) that is related to how connections between the data points are formed across
all of the graphs? This is a well-studied problem, we refer to [1] [2] [3] [4] [5] [8]
[9] [10] [12] [14] and references therein. We especially emphasize three papers. Ma
and Lee [11] propose working with a sum of Laplacians – this is similar to our
approach except for the scaling which is crucial (see below for a longer discussion).
Eynard, Kovnatsky, Bronstein, Glashoff, and Bronstein [7] also work within a spectral
framework, and discuss the problem of simultaneous diagonalization of Laplacians
which is philosophically related to our approach. Yair, Dietrich, Mulayoff, Talmon,
and Kevrekidis [13] use the same perspective on smoothness as we will (indeed, their
paper directly inspired ours) – they compute smooth functions on each graph and
then look for vectors having large correlation with the subspaces of smooth functions.

1.5 Preliminaries

Suppose that G is an undirected connected weighted graph on n vertices described by
an n × n symmetric nonnegative adjacency matrix A. We use the notion of a graph
Laplacian L : R

n → R
n throughout the paper; we assume that L is symmetric,

positive semi-definite, and has eigenvalue 0 (of multiplicity 1) corresponding to the
eigenvector 1. An example of such an operator is the graph Laplacian

L = D − A, (1)

where D is the diagonal matrix whose i-th diagonal element dii is the degree of the
vertex i ∈ V . We use the notation

0 = λ0(L) < λ1(L) ≤ · · · ≤ λn−1(L),

to denote the eigenvalues of L, and

1√
n

1 = ψ0,ψ1, . . . ,ψn−1,
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to denote the corresponding eigenvectors which we assume are normalized (so that
their ℓ2-norm is 1). When L is given by (1), its associated quadratic form can be
expressed by

x⊤Lx =
∑

(u,v)∈E

auv(xu − xv)2, (2)

where auv is the weight associated with the edge (u, v). In spectral graph theory,
this quadratic form is a standard way to measure the smoothness of a function on
a graph. In order to use this quadratic form as a smoothness score, we restrict our
attention to the set X of vectors with mean zero and unit length

X = {x ∈ R
n : 1⊤x = 0 and x⊤x = 1}.

Restricting our attention to X is important since it avoids trivially smooth functions
on the vertices of a graph such as functions with a large constant component or
functions with a very small norm. We define a smoothness score sL : X → [1, ∞) by

sL(x) =
1

λ1(L)
x⊤Lx. (3)

This normalization ensures that sL(x) ≥ 1 with equality if and only if x is an eigen-
vector of L of eigenvalue λ1(L). The reason that normalizing sL is important, is
that we are going to compare smoothness scores of a given function across differ-
ent graphs. Dividing by λ1(L) is just one reasonable method of normalization; for
some applications it may be advantageous to normalize sL differently, see Remark
2. The presented results hold for these alternate normalization strategies, as well as
more general definitions of sL whose discussion is delayed until later in the paper to
simplify the exposition, see Remark 4

1.6 Main results

Suppose that G = {G1, . . . , Gm} is a collection of undirected connected weighted
graphs on a common set of n vertices V . Informally speaking, a common variable
for G is a function defined on the vertices V which is smooth with respect to the
geometry of each graph. More precisely, we can define a score sG indicating how
smooth (in the minimax sense) the smoothest function with respect to G is by

sG = min
x∈X

max
k∈{1,...,m}

sLk
(x), (4)

where sL is defined by (3). The score sG can be used to understand how much ‘com-
mon information’ is shared by the collection of graphs G. If ψ ∈ X is an argument
that minimizes (4), then we call ψ the smoothest function with respect to G or a
common variable of G.

We can now present our main results. Theorem 1 provides upper and lower
bounds on sG in terms of (explicitly computable) spectral quantities: we show that
the smallest eigenvalue of suitably averaged Laplacians serves as a lower bound. The-
orem 1 is complemented by Theorem 2 which shows that the lower and upper bounds
are equal under an additional assumption, and for a suitable choice of parameters.
Numerical examples will show that they indeed coincide in practice.
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Theorem 1 (Upper and Lower Bounds) Let G be a collection of graphs satis-
fying the assumptions in §1.5. For any t = (t1, . . . , tm) ∈ T , where

T := {t ∈ [0, 1]m : t1 + · · · + tm = 1}, (5)

define the Laplacian Lt by the linear combination

Lt =

m
∑

k=1

tk
Lk

λ1(Lk)
. (6)

Then,
λ1(Lt) ≤ sG ≤ max

k∈{1,...,m}
sLk

(ψ1(Lt)),

where λ1(Lt) denotes the smallest positive eigenvalue of Lt, and ψ1(Lt) denotes a
unit length eigenvector associated with λ1(Lt).

Theorem 1 provides us with spectral upper and lower bounds on sG . Theorem
2 shows, assuming the first nontrivial eigenvalue is simple, that there is an explicit
duality relation which allows us to find the common variable by solving an eigenvalue
optimization problem.

Theorem 2 (Common Information Minimax Theorem) In addition to the
hypothesis of Theorem 1, assume that λ1(Lt) is always simple:

λ2(Lt) > λ1(Lt), for all t ∈ T,

where T is defined by (5). If

t∗ = argmax
t∈T

λ1(Lt), (7)

then
ψ1(Lt∗ ) = argmin

x∈X
max

k∈{1,...,m}
sLk

(x).

The proofs of Theorems 1 and 2 are given in §2. In practice, these theorems can be
used in conjunction, see Remark 1. The optimization problem (7) is straightforward
to solve numerically using standard methods, see §3.

1.7 Diffusion geometry interpretation

In the following, we describe how Theorems 1 and 2 can be interpreted in terms
of diffusion geometry methods. Given a symmetric positive semi-definite matrix L
which has eigenvalue 0 (of multiplicity 1) associated with the eigenvector 1, we can
define a diffusion (or averaging) operator Hτ by

Hτ = exp(−τL),

where exp(A) = I + A + 1
2! A + · · · is the matrix exponential and τ > 0 plays the

role of time. If L has eigenvalues

0 = λ0(L) < λ1(L) ≤ · · · ≤ λn−1(L),

then by the spectral mapping theorem Hτ has eigenvalues

1 = e−τλ0(L) > e−τλ1(L) ≥ · · · ≥ e−τλn−1(L). (8)

The following corollary is immediate from Theorem 2 and (8).
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Corollary 1 (Diffusion interpretation) Under the hypothesis of Theorem 2, de-
fine the diffusion operator Hτ

t
by

Hτ
t

= exp

(

−τ

m
∑

k=1

tk
Lk

λ1(Lk)

)

.

Let
t∗ = (t∗

1, . . . , t∗
m) = argmin

t∈T
µ1(Hτ

t
),

where µ1(Hτ
t
) is the largest eigenvalue which is less than 1 of Hτ

t
, and T is defined

in (5). Then,
ϕ1(Hτ

t∗ ) = argmin
x∈X

max
k∈{1,...,m}

sLk
(x),

where ϕ1(Hτ
t∗ ) denotes a unit length eigenvector associated with µ1(Hτ

t∗ ).

This corollary, which rewrites Theorem 2 in terms of a diffusion operator, has
several interesting consequences.

1) The parameters t∗ = (t∗
1, . . . , t∗

m) can be interpreted as optimally tuned dif-
fusion times for the graphs G1, . . . , Gm. The operator Hτ

t∗ uncovers common
information from the graphs by optimally diffusing on these graphs at different
rates.

2) The operator Hτ
t∗ can be used to define a diffusion distance on the common set

of vertices V on which the graphs G are defined. Assume that V = {1, . . . , n}.
We can define the diffusion distance Dτ

t∗ : V × V → R by

Dτ
t∗ (i, j) = ‖Hτ

t∗δi − Hτ
t∗δj‖ℓ2 ,

where δi is the column vector whose i-th entry is 1 and other entries are 0.
3) For any chosen dimension d ≥ 1, the operator Hτ

t∗ can be used to define a
diffusion map Ψτ : V → R

d by

Ψτ (j) =







µ1(Hτ
t∗ )ϕ1,j(Hτ

t∗ )
...

µd(Hτ
t∗ )ϕd,j(Hτ

t∗ )






,

where ϕi,j(Hτ
t∗ ) denotes the j-th entry of the eigenvector ϕi(H

τ
t∗ ) associated

with the eigenvalue µi(H
τ
t∗ ) = e−τλi(Lt∗ ).

Remark 1 (Using Theorems 1 and 2 in conjunction) In applications, the optimization
problem (7) for t∗ in Theorem 2 can be solved numerically using gradient based
optimization methods and Lemma 1. Suppose that t̃ is the numerical solution to (7),
and let ψ̃1 denote a normalized eigenvector corresponding to λ1(L

t̃
). By Theorem 1

we have the following error estimate:
∣

∣

∣

∣

max
k∈{1,...,m}

sLk
(ψ̃1) − sG

∣

∣

∣

∣

≤ max
k∈{1,...,m}

sLk
(ψ̃1) − λ1(L

t̃
). (9)

This inequality can be used to verify that the numerical optimization is successful.
For each of our numerical examples presented in §3 we use (9) to verify that we are
able to accurately solve each optimization problem (with error . 10−6); however, in
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practice (9) could also be used to stop the optimization process when the error is less
than, say, 10−1, if that is sufficient for the application. Furthermore, we note that
since Theorem 1 does not require the eigenvalue multiplicity condition of Theorem
2 and Lemma 1, this error estimate can be used to check that a candidate common
variable ψ1 determined using Theorem 2 is close to optimal without having to verify
that the spectral gap hypothesis of Theorem 2 holds.

Remark 2 (Alternate normalization methods) Recall that we defined the smoothness
score sL : X → [1, ∞) by

sL(x) =
1

λ1(L)
x⊤Lx,

such that the ‘smoothest function’ with respect to sL has smoothness score 1. In
practice it may be advantageous to normalize the quadratic form differently. For
example, we could define aL : X → (0, ∞) by

aL(x) =

(

1

n − 1

n−1
∑

j=1

λj(L)

)−1

x⊤Lx, (10)

such that the ‘average smoothness’ with respect to aL is 1. More precisely, with this
definition we have E[aL(x)] = 1, where the expectation is taken over x chosen uni-

formly at random from X. Indeed, by writing x =
∑n−1

j=1 cjψj , where (c1, . . . , cn−1)

are chosen uniformly at random with respect to the surface measure on S
n−2 we

have

E[x⊤Lx] = E

[

n−1
∑

j=1

c2
j λj(L)

]

=

n−1
∑

j=1

λj(L)

n − 1
.

Other methods of normalization are conceivable: one could, for example, consider
decreasing weights that put more emphasis on lower frequencies. Our theoretical
results are independent of the choice of normalization. However, for applications
the distinction between choosing to normalize based on the ‘smoothest function’ or
‘average smoothness’ (or some other intermediate normalization method) may be
important; we provide such an example in §3.6.

2 Proof of main results

We start by proving Theorem 1. After that, we establish Lemma 1 and use it to
establish Theorem 2.

2.1 Proof of Theorem 1

Proof Recall that

X = {x ∈ R
n : 1⊤x = 0 and x⊤x = 1}.

We have

sG = min
x∈X

max
k∈{1,...,m}

sLk
(x) = min

x∈X
max
t∈T

m
∑

k=1

tksLk
(x),
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where
T = {t = (t1, . . . , tm) ∈ [0, 1]m : t1 + · · · + tm = 1} .

For any fixed t ∈ T (not depending on x) we have

min
x∈X

max
t∈T

m
∑

k=1

tksLk
(x) ≥ min

x∈X

m
∑

k=1

tksLk
(x) = min

x∈X
x⊤Ltx,

where

Lt =

m
∑

k=1

tk

λ1(Lk)
Lk.

By the Courant-Fischer Theorem

min
x∈X

x⊤Ltx = λ1(Lt).

In combination, the above inequalities give

sG ≥ λ1(Lt).

Let ψ1(Lt) be a unit length eigenvector corresponding to λ1(Lt). By using this
eigenvector as a test vector we have

sG = min
x∈X

max
k∈{1,...,m}

sLk
(x) ≤ max

k∈{1,...,m}
sLk

(ψ1(Lt)).

This completes the proof.

Lemma 1 (Gradient of eigenvalue) Suppose that the assumptions of Theorem 2
hold. Suppose that t′ = (t1, . . . , tm−1) and assume tm := 1 − (t1 + . . . + tm−1). We
have

∇t′ λ1(Lt) =











ψ1(Lt)⊤
(

1
λ1(L1) L1 − 1

λ1(Lm) Lm

)

ψ1(Lt)

...

ψ1(Lt)⊤
(

1
λ1(Lm−1) Lm−1 − 1

λ1(Lm) Lm

)

ψ1(Lt)











.

Moreover, λ1(Lt) is equal to sG whenever the gradient vanishes.

Proof Suppose that t′ = (t1, . . . , tm−1) and assume tm := 1−(t1 +. . .+tm−1). Under
this assumption, we use the notation Lt′ = Lt interchangeably. We will prove that

∂

∂tj
λ1(Lt′ ) = ψ1(Lt′ )⊤

(

1

λ1(Lj)
Lj −

1

λ1(Lm)
Lm

)

ψ1(Lt′ ),

for j ∈ {1, . . . , m − 1}. Let ej ∈ R
m−1 be the j-th standard basis vector (whose j-th

entry is 1 and other entries are 0). For ε > 0 we have

λ1(Lt′+εej
) = ψ1(Lt′+εej

)⊤(Lt′+εej
)ψ1(Lt′+εej

).

By the definition of Lt′ we have

Lt′+εej
= Lt′ + ε

(

1

λ1(Lj)
Lj −

1

λ1(Lm)
Lm

)

. (11)
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We will now argue that it is possible to express the first normalized eigenvector of the
perturbed matrix Lt′+εej

as a small perturbation of the first normalized eigenvector
of the unperturbed matrix Lt′ . Using that all our eigenvectors are defined to be
normalized, we can write

ψ1(Lt′+εej
) = cψ1(Lt′ ) + δ,

where c is a coefficient and δ is orthogonal to ψ1(Lt′ ). It remains to show that c is
close to 1 or, equivalently, that δ is small. For this, we use the Davis-Kahan theorem.
If θ denotes the angle between ψ1(Lt′ ) and ψ1(Lt′+εej

) then by the Davis-Kahan
theorem

sin(θ) ≤
2‖Lt′+εej

− Lt′ ‖

mini 6=1 |λ1(Lt′ ) − λi(Lt′ )|
. (12)

The denominator is uniformly bounded away from 0 as part of the assumptions of
Theorem 2, which are assumed to hold in the statement of the lemma. Therefore,
combining (11) and (12) yields

sin(θ) ≤ O
(

‖Lt′+εej
− Lt′ ‖

)

= O(ε).

We can now compute the cosine of θ via an inner product and obtain

cos (θ) =
〈

ψ1(Lt′ ),ψ1(Lt′+εej
)
〉

= c.

Using

1 = ‖ψ1(Lt′+εej
)‖2 = c2 + ‖δ‖2,

we arrive at

‖δ‖2 = 1 − c2 = 1 − cos (θ)
2

= sin (θ)
2

= O(ε2)

from which we deduce ‖δ‖ = O(ε). Using these identities, we can perform an expan-
sion of λ1(Lt′+εej

) up to order ε. We start by writing

λ1(Lt′+εej
) = (cψ1(Lt′ )+δ)⊤

(

Lt′ + ε

(

1

λ1(Lj)
Lj −

1

λ1(Lm)
Lm

))

(cψ1(Lt′ )+δ).

Recalling that c2 = 1 − O(ε2), expanding the right hand side gives

λ1(Lt′+εej
) = c2ψ1(Lt′ )⊤Lt′ψ1(Lt′ ) + 2cδLt′ψ1(Lt′ )

+ εψ1(Lt′ )⊤
(

1

λ1(Lj)
Lj −

1

λ1(Lm)
Lm

)

ψ1(Lt′ ) + O(ε2).

The first term on the right hand side is equal to λ1(L′
t
) + O(ε2), and the second

term is equal to zero since δ is orthogonal to the eigenvector ψ1(L′
t
). It follows that

λ1(Lt′+εej
) − λ1(L′

t
)

ε
= ψ1(Lt′ )⊤

(

1

λ1(Lj)
Lj −

1

λ1(Lm)
Lm

)

ψ1(Lt′ ) + O(ε).

This argument works for all j ∈ {1, . . . , m − 1} so the proof is complete.
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2.2 Proof of Theorem 2

Proof Suppose that
t∗ = argmax

t∈T
λ1(Lt).

We use the notation t′ = (t1, . . . , tm−1) where tm := 1 − (t1 + · · · + tm−1). First,
consider the case where t∗ is contained in the interior of T . In this case,

∇t′ λ1(Lt)|t=t∗ = 0.

Thus, by Lemma 1 we have

ψ1(Lt∗ )⊤
(

1

λ1(Lk)
Lk −

1

λ1(Lm)
Lm

)

ψ1(Lt∗ ) = 0,

for k ∈ {1, . . . , m − 1}, since this equation can be equivalently written as

sLk
(ψ1(Lt∗ )) − sLm

(ψ1(Lt∗ )) = 0,

it follows that all of these quadratic forms are equal:

sL1
(ψ1(Lt∗ )) = · · · = sLm

(ψ1(Lt∗ )).

Informally speaking, the smoothest function or common variable ψ1(Lt∗ ) is indiffer-
ent between the different smoothness measures sL1

, . . . , sLm
. Thus,

λ1(Lt∗ ) = max
k∈{1,...,m}

sLk
(ψ1(Lt∗ )).

We recall Theorem 1 states that

λ1(Lt) ≤ sG ≤ max
k∈{1,...,m}

sLk
(ψ1(Lt)),

from which we can conclude that

max
k∈{1,...,m}

sLk
(ψ1(Lt∗ )) = sG .

It remains to consider the case where t∗ is not contained in the interior of T . Without
loss of generality, suppose that t∗

1 = · · · = t∗
p = 0 and t∗

p+1, . . . , t∗
m 6= 0. Suppose

first that p + 1 6= m. Then there are at least 2 positive entries and, in particular,
0 < tm < 1. We can thus apply Lemma 1 and conclude that for k ∈ {p + 1, . . . , m}

ψ1(Lt∗ )⊤
(

1

λ1(Lk)
Lk −

1

λ1(Lm)
Lm

)

ψ1(Lt∗ ) = 0

which, as above, is equivalent to,

sLk
(ψ1(Lt∗ )) = sLm

(ψ1(Lt∗ )), for k ∈ {p + 1, . . . , m}. (13)

If p + 1 = m, then (13) holds trivially. It remains to deal with the entries t∗
1, . . . , t∗

p

(which are all 0). Fix k ∈ {1, . . . , p}. Since t∗ is maximal, the derivative of λ1(Lt′ )
at t′ = (t∗

1, . . . , t∗
m−1) in the direction ek must be negative and thus by Lemma 1

sLk
(ψ1(Lt∗ )) ≤ sLm

(ψ1(Lt∗ )).



A common variable minimax theorem for graphs 11

It follows that

max
k∈{1,...,m}

sLk
(ψ1(Lt∗ )) = max

k∈{p+1,...,m}
sLk

(ψ1(Lt∗ )) = λ1(Lt∗ ).

Appealing to Theorem 1 once more gives

λ1(Lt∗ ) ≤ sG ≤ max
k∈{1,...,m}

sLk
(ψ1(L∗

t
)),

we can conclude that

λ1(Lt∗ ) = sG = max
k∈{1,...,m}

sLk
(ψ1(Lt∗ )).

This completes the proof.

3 Numerical examples

3.1 The Laplacian

Our approach is completely general with respect to the underlying notion of Lapla-
cian L and many different types of Laplacians could be used. We merely require that
L is symmetric positive semi-definite, and that L has eigenvalue 0 of multiplicity 1
(corresponding to constant functions). For the purpose of consistency, all examples
will be computed using the bi-stochastic Laplacian which is defined as follows. As-
sume that A is a symmetric non-negative weighted adjacency matrix with a positive
main diagonal. By using the Sinkhorn-Kopp algorithm (see Lemma 2) it is possible
to determine a symmetric positive definite diagonal matrix D such that

D−1/2AD−1/21 = 1,

where 1 denotes a column vector of ones. Given such a matrix D we define the
bi-stochastic graph Laplacian L by

L = I − D−1/2AD−1/2,

where I is the identity matrix. The bi-stochastic graph Laplacian can be viewed as
the graph Laplacian of a graph whose weighted adjacency matrix is D−1/2AD−1/2,
and thus the bi-stochastic graph Laplacian has the same properties as the graph
Laplacian discussed in §1.5. We refer to §4.1 for more details on how to compute the
bi-stochastic Laplacian.

3.2 Nearest neighbor graph definition

Let X = {x1, . . . , xn} be a subset of Rd. We say that Nk(xj) is a set of k-nearest
neighbors of xj in X if Nk(xj) is a subset of X \ {xj} consisting of k points which
has the property

max
x∈Nk(xj)

‖x − xj‖ ≤ min
y∈X\(Nk(xj)∪{xj})

‖y − xj‖.
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We say that G is a k-nearest neighbor graph for X if its adjacency matrix A = (aij)
satisfies

aij =







1 if i = j,
1 if xi ∈ Nk(xj) or xj ∈ Nk(xi), and
0 otherwise,

for i, j = 1, . . . , n, and for some choice of k-nearest neighbors Nk(x1), . . . , Nk(xn).
Note that our definition of a k-nearest neighbor graph includes self loops for each
vertex. This assumption allows us to perform a bi-stochastic normalization of the
adjacency matrix. We note that assuming that a graph has self loops is a common
assumption when working with stochastic matrices on graphs since it ensures these
stochastic matrices are aperiodic.

3.3 Independent rotations in two dimensions

Let X1 = {x1, . . . , xn} be a set of n = 250 independent uniformly random points
from the unit square [−1/2, 1/2]2, and θ1, . . . , θn be independent uniformly random
points from [0, 2π). Set

X2 = {Tθ1
(x1), . . . , Tθn

(xn)},

where Tθ(x) denotes the rotation of x by angle θ about the origin. More precisely,
if x = (r cos φ, r sin φ), then Tθ(x) = (r cos(φ + θ), r sin(φ + θ)). To summarize, the
set X2 is created by rotating the points in X1 about the origin with independent
uniformly random rotations. Let G1 and G2 be 6-nearest neighbor graphs of X1 and
X2, respectively, see Figure 1. For each graph G1 and G2 we construct the corre-
sponding bi-stochastic graph Laplacians L1 and L2. Next we solve the optimization
problem

t∗ = argmax
t∈T

λ1(Lt),

where Lt is defined in (6). By setting t2 := 1 − t1 we can optimize over t1 ∈ [0, 1].
To visualize this optimization problem, we plot λ1(Lt) against t1 in Figure 2.
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Fig. 2 Parameter t1 versus λ1(Lt); the max occurs at the star.

Using numerical optimization, we find that

t∗ ≈ (0.552330195903778, 0.447669804096222).
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Next, we use Theorem 1 to validate the results of the optimization, which gives
∣

∣

∣

∣

max
k∈{1,2}

sLk
(ψ1(Lt∗ )) − λ1(Lt∗ )

∣

∣

∣

∣

≤ 8.802488427051003 × 10−8,

indicating that the optimization procedure was successful. Since we know how the
graphs G1 and G2 were generated, we can further validate the method by checking
that ψ1(Lt∗ ) is a smooth function of the common variable that influences edge
creation in both graphs (the distance of a point from the origin). We plot ψ1(Lt∗ )
versus r (representing the distance of a point from the origin) in Figure 3.3.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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0
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0.1

0.15

Fig. 3 Plots of ψ(Lt∗ ), ψ(L1), and ψ(L2) against r.

Observe that in Figure 3.3 the common variable is essentially a re-scaling of
the distance to the origin (as would be expected). For comparison, Figure 3.3 also
includes plots of ψ1(L1) and ψ1(L2) versus r to demonstrate that neither of them
are smooth with respect to the common variable.

In the following section, we will present a similar example of building graphs
from randomly rotated points except we start with points in three dimensions, and
perform rotations around different axes to demonstrate how the method works when
there are three graphs G1, G2, and G3.

3.4 Independent rotations in three dimensions

Let X1 = {x1, . . . , xn} be n = 500 independent uniformly random points from the
unit ball {x ∈ R

3 : ‖x‖ℓ2 ≤ 1}, and let θ1, . . . , θn and φ1, . . . , φn be independent
uniformly random angles from [0, 2π). Set

X2 = {Tθ1
(x1), . . . , Tθn

(xn)},

where Tθj
(x) is a rotation about the z-axis by angle θ: if x = (r cos θ, r sin θ, z), then

Tθj
(x) = (r cos(θ + θj), r sin(θ + θj), z),

and set
X3 = {Sφ1

(x1), . . . , Sφn
(xn)},

where Sφj
(x) is a rotation about the y-axis: if x = (r cos φ, y, r sin φ), then

Sφ(x) = (r cos(φ + φj), y, r sin(φ + φj)).

We construct 6-nearest neighbor graphs G1, G2 and G3 from the sets X1, X2, and
X3, respectively, see Figure 4.
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Fig. 4 The graphs G1 (left), G2 (middle), and G3 (right).

For each graph G1, G2 and G3 we construct the corresponding bi-stochastic graph
Laplacians L1, L2, and L3 and consider the optimization problem

t∗ = argmax
t∈T

λ1(Lt).

By setting t3 = 1 − (t1 + t2) we can optimize λ1(Lt) over (t1, t2) such that 0 ≤ t1, t2

and t1 + t2 ≤ 1, see Figure 5. Using numerical optimization, we find that
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Fig. 5 A contour plot of λ1(Lt) for 0 ≤ t1, t2 and t1 + t2 ≤ 1.

t∗ ≈ (0.236853469652210, 0.371066650569015, 0.392079879778775).

Validating the results of this optimization procedure using Theorem 1 gives
∣

∣

∣

∣

max
k∈{1,2,3}

sLk
(ψ1(Lt∗ )) − λ1(Lt∗ )

∣

∣

∣

∣

≤ 9.502285891471729 × 10−8,

so the numerical results are very close to optimal. Since we know how the graphs
were constructed, we can further interpret the result. As in the previous example,
the common variable is the distance of a point to the origin. To demonstrate that
ψ1(Lt∗ ) is a re-scaling of the common variable, we plot ψ1(Lt∗ ) versus the distance
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Fig. 6 The first nontrivial eigenvectors of Lt∗ , L1, L2, and L3 versus the common variable r.

to the origin r; for comparison, we also plot ψ1(L1), ψ1(L2), and ψ1(L3) against r,
see Figure 6.
Finally, we note that this example has some interesting asymmetry. In Figure 5 ob-
serve that the level line λ1(Lt) = 7 (the closest level line to the maximum value)
almost intersects the line t1 = 0. In contrast, the value of λ1(Lt) on the lines t2 = 0
and t3 = 1 − (t1 + t2) are close to 1. This indicates that just using the graphs
{G2, G3} could allow us to approximately determine the common variable, while us-
ing {G1, G2} or {G1, G3} would give bad results. Why is this the case? By definition
points in X1, X2 have the same z-coordinate, and points in X1, X3 have the same
y-coordinate, while the only common variable for points in X2, X3 is the distance of
a point from the origin. For example, if we just consider X1, X2, then the function
f(x, y, z) = z is smooth with respect to G1 and G2, but not smooth with respect to
G3.

3.5 Horizontal and vertical barbell example

Next, we provide a degenerate example, where we are given three graphs G1, G2,
G3, and the optimal value of t = (t1, t2, t3) occurs on the boundary of the region
{(t1, t2) : 0 ≤ t1, t2 and t1 + t2 ≤ 1}. Let D = {x ∈ R

2 : ‖x‖ℓ2 ≤ 1} be the unit disc,
and define the functions f, g : R2 → R

2 by

f(x, y) =
(

x, y · (1 − cos πx)
)

, and g(x, y) =
(

x · (1 − cos πy), y
)

.

Informally speaking, the maps f and g squeeze the disc into a horizontal barbell
shape and a vertical barbell shape, respectively. Let X1 = {x1, . . . , xn} be a set of
n = 250 independent uniformly random points from the unit disc D. Set X2 = f(X1),
and X3 = g(X1), and let G1, G2, G3 be 6-nearest neighbor graphs of X1, X2, X3,
respectively, see Figure 7.
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Fig. 7 The graphs G1 (left), G2 (middle), and G3 (right).

Let L1, L2, and L3 be the bi-stochastic graph Laplacians of G1, G2, and G3,
respectively. We plot λ1(Lt) versus (t1, t2) in Figure 8.
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Fig. 8 Contour plot of λ1(Lt) for (t1, t2) such that 0 ≤ t1, t2 and t1 + t2 ≤ 1. The maximum
is attained at the star.

Using numerical optimization we find that

t∗ ≈ (2.871019259460022 × 10−15, .5005153871788890, .4994846128211081);

and using Theorem 1 to compute an error estimate gives

∣

∣

∣

∣

max
k∈{1,2,3}

sLk
(ψ1(Lt∗ )) − λ1(Lt∗ )

∣

∣

∣

∣

≤ 2.807697995876879 × 10−6,

which verifies that we have solved the optimization problem correctly. Interestingly,
the optimal value occurs on the boundary on of {(t1, t2) : 0 ≤ t1, t2 and t1 + t2 ≤ 1}.
Since we know how the graphs were created, this behavior makes sense: the sets X2

and X3 are modifications of X1 where points have been squeezed together, which
makes the corresponding vertices highly connected in the graphs G2 and G3. This
in turn imposes extra conditions for a function to be smooth with respect to G2 or
G3. Furthermore, most of the edges appearing in G1 appear either in G2 or G3.

For this example, the common variable is less straightforward to define. However,
one property that is maintained under the deformation is as follows: points in the
same quadrant of the plane should remain connected across all graphs. In particular,
we can partition the points in X1 into four groups

NE = {(x, y) ∈ X1 : x ≥ 0, y ≥ 0},
NW = {(x, y) ∈ X1 : x < 0, y > 0},
SW = {(x, y) ∈ X1 : x < 0, y < 0}, and
SE = {(x, y) ∈ X1 : x ≥ 0, y < 0}.

To understand what the optimal Laplacian Lt∗ is encoding, we plot the first three
(nontrivial eigenvectors) of this operator, see Figure 9.
Running k-means clustering on the embedding in Figure 9 would approximately
recover the different groups of points NE, NW, SW, and SE.

Remark 3 (Common information spectral clustering) Spectral clustering is a cluster-
ing method whose first step is to embed the given data points using the eigenvectors
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Fig. 9 The first three nontrivial eigenvectors of Lt∗ with markers indicating the quadrant of
the points in X1.

of an operator followed by running the k-means clustering algorithm. The method
in this paper can be used to perform a common information spectral clustering algo-
rithm by using the eigenvectors Lt∗ to embed the points, and then running k-means
clustering. Running k-means on Figure 9 is an example of this common information
spectral clustering.

3.6 Spiral and Torus

We conclude with an example illustrating Remark 2: it can be advantageous to
change the notion of smoothness. The two graphs in this example are a spiral in
the plane and a two-dimensional torus embedded in R

3 (see Figure 10). Formally,
let {θ1, . . . , θn} and {φ1, . . . , φn} be n = 500 independent uniformly random angles
from [0, 2π), and let {t1, . . . , tn} be independent uniformly random points from the
interval [.25, 1.5). We define the Spiral set X1 = {x1,1, . . . , xn,1} ⊂ R

2 by

x1,j = (tj + 0.45φj/(2π))
(

cos(4π(tj − .25)/1.5), sin(4π(tj − .25)/1.5)
)

.

and define the Torus set X2 = {x2,1, . . . , x2,n} ⊂ R
3 by

x2,j =
(

(.75 + .25 cos(φj)) cos(θj), (.75 + .25 cos(φj)) sin(θj), .25 sin(φj)
)

.

For each set X1 and X2 we construct 6-nearest neighbor graphs G1 and G2, see
Figure 10.
The common variable used to define both graphs is the parameter φj . The parameter
φj controls the location in the width of the spiral (the width is very small compared
to the height), and similarly, controls the location of a point along the smaller circle
used to form the torus. The definition

sL(x) =
1

λ1(L)
x⊤Lx (14)

has, in this example, a significant downside: the spiral is only weakly connected and
has a very small first Laplacian eigenvalue. The renormalization ensures that sL(x) is
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Fig. 10 The graph G1 (left), and graph G2 (right).

1, when x is the first Laplacian eigenvector, however, it will be exceedingly large for
all vectors in the orthogonal complement. The degeneracy in the spectrum implies
that sL(x) simply does not accurately capture the spectral geometry of the spiral.
The normalization from Remark 2

aL(x) =

(

1

n − 1

n−1
∑

j=1

λj(L)

)−1

x⊤Lx (15)

provides a reasonable alternative: we keep the quadratic form x⊤Lx but use a nor-
malization which maintains the global structure of the spectrum better. This is also
illustrated in Figure 11.
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Fig. 11 Using sL (left) and aL (right).

Remark 4 (More general definitions of smoothness) In this paper, we considered two
notions of smoothness based on the quadratic form x⊤Lx: the ‘smoothest function’
normalization, and the ‘average smoothness’ normalization, see Remark 2. There
are several ways to define intermediate notions of smoothness. For example, given
weights w1, . . . , wn−1 one could define a notion of smoothness by normalizing by a
weighted sum of the eigenvalues:

wL(x) =

(

n−1
∑

j=1

wjλj(L)

)−1

x⊤Lx.
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It is also possible to modify the Laplacians used in the definition; since Theorem
1 and Theorem 2 only require that L is symmetric positive semi-definite, and has
eigenvalue 0 of multiplicity 1 corresponding to constant functions, then it is also
possible to define a notion of smoothness by taking a matrix function of the graph
Laplacian L. For example, for α > 0 we could define

sα
L

(x) =
1

λ1(L)α
x⊤Lαx.

Such a normalization could be used to adjust for different growth rates of eigenvalues
between different graphs. For example, if the given graphs are approximating man-
ifolds of different dimensions, as in Figure 10, then by Weyl’s Law the eigenvalues
of the Laplace-Beltrami operator on the underlying manifolds will grow at different
rates.

4 Technical lemma

4.1 Bi-stochastic normalization

We say that an n×n nonnegative matrix B is bi-stochastic if B1 = B⊤1 = 1, where
1 denotes the n-dimensional vector whose entries are all 1.

Lemma 2 (Sinkhorn and Kopp [15]) Let A be an n × n nonnegative symmetric
matrix with a positive main diagonal. Then, there exists a unique positive definite
diagonal matrix D such that

B = D−1/2AD−1/2

is a bi-stochastic matrix. Moreover, the matrix B can be determined by alternating
between normalizing the rows and columns (as detailed below).

The iterative procedure of alternating between normalizing the rows and columns
of a symmetric matrix can be expressed as follows. We initialize Q0 = I, and define

Qj+1 = diag
(

AQ−1
j

~1
)

, (16)

and set D = limk→∞ Q2k+1Q2k, then D−1/2AD−1/2 will be bi-stochastic. Given
an adjacency matrix A satisfying the conditions of Lemma 2, and unique positive
definite matrix D from Lemma 2, we define the bi-stochastic graph Laplacian L by

L = I − D−1/2AD−1/2.

Remark 5 The bi-stochastic Laplacian is closely related to other operators such as
the graph Laplacian L = Q − A (where Q = A1), the normalized graph Laplacian
L = I − Q−1/2AQ−1/2 , and the random walk graph Laplacian L = I − Q−1A.
The bi-stochastic Laplacian L is symmetric positive semi-definite, has eigenvector
1 of eigenvalue 0, and forms a Markov transition matrix when subtracted from the
identity matrix.
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Remark 6 Numerically, the bi-stochastic graph Laplacian is similar to other graph
Laplacians. For example, if D = Q0Q1, where Qj is defined above in (16), then I −
D−1/2AD−1/2 is the normalized graph Laplacian. In practice, the normalized graph
Laplacian and random walk graph Laplacian are often used instead of the standard
graph Laplacian. The reason we use the bi-stochastic Laplacian for our numerical
results is that it is closely related to the normalized graph Laplacian and random
walk graph Laplacian, and has all the properties we require: symmetric positive
definite with eigenvalue 0 of multiplicity 1 corresponding to constant functions.

5 Comments and Remarks

We conclude with a couple of general comments.

5.1 Extension to multiple functions

Recall we defined the smoothest function or common variable ψ1 for a collection of
graph G by

ψ1 = argmin
x∈X

max
k∈{1,...,m}

sLk
(x).

By induction we can define

Xk = {x ∈ X : ψ⊤
1 x = · · · = ψ⊤

k x = 0},

and
ψk+1 = argmin

x∈Xk

max
k∈{1,...,m}

sLk
(x),

for k = 1, 2, 3, . . .. Informally speaking, ψk+1 is the smoothest function on G that
is orthogonal to ψ1, . . . ,ψk. Moreover, by restricting the operators L1, . . . , Lm to
Xk the minimax principle of Theorem 2 can be applied to solve this optimization
problem. For applications, one might suspect that only the first, or possibly two or
three, of these functions would be useful; however, from a theoretical perspective
considering the orthogonal basis ψ1, . . . ,ψn−1 may be interesting.

5.2 Sum of diffusions

We quickly mention another approach that is quite similar. Given graphs G1, . . . , Gm

over the same set of vertices V , we can define m different Laplacians L1, . . . , Lm

which we restrict to the space orthogonal to constants and normalize via

L∗
i =

1

λ1(Li)
Li.

This gives rise to diffusion operators

Hi(t) = exp (−tL∗
i ) .

The normalization implies that all these m diffusion operators have the same operator
norm

‖Hi(t)‖ = e−t.
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If there was a common variable, then it would diffuse slowly among all these different
diffusion operators and we would expect that the triangle inequality is almost sharp

∥

∥

∥

∥

∥

m
∑

i=1

Hi(t)

∥

∥

∥

∥

∥

≤ me−t.

This allows us to define a numerical score

1 ≤ et

∥

∥

∥

∥

∥

m
∑

i=1

Hi(t)

∥

∥

∥

∥

∥

≤ m

measuring how many of these graphs do indeed have a common variable. Naturally,
Hi(t) will be close to the identity for t small, so the inequality becomes more inter-
esting for t large (and t can play the role of a consistency parameter). This may be
interpreted as a simple ‘one-shot’ version of our main idea.

5.3 Random Matrices

We note that the dual version of this idea, the matrix exponential of a linear combina-
tion of Laplacians as opposed to a linear combination of matrix exponentials of Lapla-
cians, has a probabilistic interpretation. When we consider applying small multiples
of random Laplacians, the main question is the following: if X1, . . . , Xm ∈ R

n×n are
m matrices what can be said about products

Xs =
(

I +
ε

s
Xi1

)(

I +
ε

s
Xi2

)

. . .
(

I +
ε

s
Xis

)

,

as s → ∞ Here we think of ij as randomly (independently and uniformly) chosen
elements from {1, 2, . . . , m}. An even more general question was studied by Emme
and Hubert [6] whose result implies that

lim
s→∞

Xs = exp

(

ε

m

m
∑

k=1

Xk

)

.

In our setting, we note that

exp

(

−
ε

λ1(Lk)
Lk

)

= I −
ε

λ1(Lk)
Lk +O(ε2)

implying that the proper limit of random products of matrix exponentials of suitably
rescaled Laplacians Lk chosen with probability proportional to t∗

k would result in

lim
s→∞

Xs = exp (−εLt∗ ) ,

which is a natural variant of our approach.
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5.4 Summary and discussion

We repeat the main problem: suppose we are given a collection G of m different
graphs over the same set of vertices V

G = {G1 = (V, E1), . . . , Gm = (V, Em)}.

Among all nonconstant functions f : V → R which is the ‘smoothest’ with respect to
G? We believe this problem to be of substantial interest. Naturally, there is a certain
vagueness in how the problem is posed: 1) what does it mean for a function to be
smooth? and 2) what does it mean for a function to be commonly smooth?

In this paper, we propose the classical spectral definition for 1) and a minimax
approach for 2). One could, naturally, consider a great many other approaches and we
believe it to be a fascinating question for further study. For example, the maximum
norm in the definition of smoothness could be replaced by an ℓp norm

ψ1 = argmin
x∈X

‖(sL1
(x), . . . , sLk

(x))‖ℓp ,

for some 1 ≤ p ≤ ∞, alternatively, the quadratic form in smoothness score sLk
(x)

could be replaced by a different quantity, for example, the Laplacians could be taken
to a power as discussed in Remark 4. In summary, there are many potentially in-
teresting ways to formalize our main question; the minimax theorem established in
this paper solves the problem for a specific notion of smoothness inspired by spectral
graph theory, and provides a basis for further work.
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