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Abstract

Discoveries of gaps in data have been important in astrophysics. For example, there are kinematic gaps opened by
resonances in dynamical systems, or exoplanets of a certain radius that are empirically rare. A gap in a data set is a
kind of anomaly, but in an unusual sense: instead of being a single outlier data point, situated far from other data
points, it is a region of the space, or a set of points, that is anomalous compared to its surroundings. Gaps are both
interesting and hard to find and characterize, especially when they have nontrivial shapes. We present in this paper
a statistic that can be used to estimate the (local) “gappiness” of a point in the data space. It uses the gradient and
Hessian of the density estimate (and thus requires a twice-differentiable density estimator). This statistic can be
computed at (almost) any point in the space and does not rely on optimization; it allows us to highlight underdense
regions of any dimensionality and shape in a general and efficient way. We illustrate our method on the velocity
distribution of nearby stars in the Milky Way disk plane, which exhibits gaps that could originate from different
processes. Identifying and characterizing those gaps could help determine their origins. We provide in an appendix
implementation notes and additional con51derat10ns for finding underdensities in data, using critical points and the

properties of the Hessian of the dens1ty

Unified Astronomy Thesaurus concepts: Astronomy data analysis (1858); Computational astronomy (293);
Astrostatistics techniques (1886); Milky Way dynamics (1051)

1. Introduction

Hypothesis generation is a fundamentally unsolved problem
in astronomy, and even more so in the era of large data sets. We
have powerful tools for testing existing hypotheses against the
big data sets of the 2020s, but we do not have a clear path for
wholly new, unanticipated discoveries when the data scales
reach the petabyte regime and data cannot easily be inspected
by eye. Some significant progress has been made in finding rare
anomaly objects in astronomical data sets, including using
citizen science approaches (e.g., Hanny’s Voorverp object,
Lintott et al. 2009; green pea galaxies, Izotov et al. 2011;
Boyajian’s star, Boyajian et al. 2016) and machine-learning
approaches (Baron & Poznanski 2017; Margalef-Bentabol et al.
2020; Martinez-Galarza et al. 2021; Storey-Fisher et al. 2021),
as well as simply pure serendipity, as pointed out in Harwit
(2019). In this work, however, we focus on automated
detection of the paucity of sources, in the form of gaps in the
density distribution. Hence, instead of looking for anomalous,
rare (that is, “outlying”) objects, we are looking for regions of
the space (or sets of objects) that have anomalously low density
(that is, in comparison to their immediate surroundings).

T A Python implementation of t methods presented here is available at

https:/ /github.com/contardog /FindTheGap.

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

Gaps (local underdensities in the distribution) often have
significance to our understanding of the universe, or represent
important discoveries. For instance, the ‘“green valley”
(Strateva et al. 2001; Baldry et al. 2004, 2006; Schawinski
et al. 2014) is a gap in the relationship between galaxy mass
and specific star formation. In this case, it is thought that the
gap is caused by fast evolution of galaxies across the gap from
the star-forming sequence to the passively evolving quiescent
galaxies. Another gap has been discovered in the Gaia DR2
color-magnitude diagram of stars in Jao et al. (2018). It is
thought to represent either “He instabilities or transitions to full
convection in M dwarfs (Feiden et al. 2021). “Gaps” in stellar
population have also been of interest, such as the rotational gap
as defined by Barnes (2010), which was observed in Kepler
data by McQuillan et al. (2013) and in K2 data by Gordon et al.
(2021). In the exoplanet population, the “radius valley” has
also been under scrutiny, and analysis of this “gap” in the
radius of exoplanets as a function of other properties (such as
orbital period, stellar mass, and stellar age; Fulton et al. 2017;
Berger et al. 2020; Gupta & Schlichting 2020; David et al.
2021) has been conducted to further understand its underlying
mechanisms and causes. And the gaps in Saturn’s rings
(Holberg et al. 1982) and the asteroid belt (Dermott &
Murray 1983) reveal important dynamical resonances. Similar
kinds of gaps appear in velocity space in the local parts of the
Milky Way disk, although it is mainly the overdensities
(ridges) that have been studied for now (e.g., Antoja et al.
2018; Kawata et al. 2018). Their properties could be indicative
of their respective origins, thus shedding light on our Galaxy’s
structure and its evolution. We focus on this application in the
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remainder of the paper to illustrate our methods. Finally, it is
also important to understand nonphysical gaps in our data, as
caused by instrumental imperfections or errors in analysis.
While these gaps will not immediately reveal new truths about
our universe, identifying them in an automated way will help
accelerate science.

In our conception, a gap is a region of locally lower density
inside a point cloud, such that as you move away from the gap
(in some or most directions) the density rises. To be more
specific, a point is in a gap if there is (at least) one straight line
you can draw such that the density locally rises away from the
point in both directions along that line segment. Thus, a gap
can be linear or planar or hyperplanar, and it is not required, in
our conception, to be spatially compact. Furthermore, we do
not consider that the surrounding density, outside the gap, must
be homogeneous, not even approximately. Additionally, our
focus is not on finding the “emptiest” gaps (i.e., with lowest
density) but the (locally) deepest or steepest gaps: We aim at
building methods that can detect not only low-density gaps but
also regions or subspaces of substantial density but that lie
within even higher-density regions.

In that sense, our definition of a gap is in contrast to the usage
of the word “void” as it is conventionally used in, for example,
the study of large-scale structure in cosmology, where void
statistics have been important (see, e.g., Lavaux & Wandelt 2010;
Hamaus et al. 2016; Kreisch et al. 2022). Voids are defined to be
compact (sometimes even spherical) regions of zero or near-zero
galaxy density within the distribution of galaxies, which is
homogeneous and isotropic on large scales. Voids are found
with high completeness with tessellations or even counts of
galaxies in spherical subvolumes (Neyrinck 2008; Sutter et al.
2015; Banerjee & Dalal 2016). These methods are appropriate
when the goal is to find lower-than-mean density regions in a
homogeneous (on large or intermediate scales) distribution. That
is excellent for the distribution of galaxies in 3-space but
suboptimal when the target is an arbitrary point cloud in an
arbitrary data space, where no homogeneity can be assumed, on
any scale.

Geometric data analysis and topological data analysis (TDA)
have proposed tools to explore the properties of structure in data
space, notably by relying on derivatives and second derivatives of
a density estimate. We only briefly overview here some major
topics of interest in TDA, but for a more thorough overview of
TDA, we refer the reader to Wasserman (2018), and to Chen
(2017) for a special focus on kernel density estimators in this
context. Several works have explored the problem of mode-finding
(i.e., finding the maxima within the data), proposing methods, for
instance, using the mean-shift algorithm, to find those modes and
then perform mode-clustering (Cheng 1995; Comaniciu et al.
2002; Li et al. 2007; Chacén 2015). Another concept of interest in
TDA is the Morse—Smale (MS) complex (Morse 1925), which is
a way to partition the data space using “critical points” (maxima
and minima) and the density gradient (using “ascending flows” and
“descending flows”). It has been used notably to visualize the
multivariate density function in Chen et al. (2017). Critical points
can provide starting points to find local underdensities in the
distribution (see the Appendix for more details). However, while
the MS complex could be used, in principle, to define gaps (e.g.,
looking at the gradient flows from local minima to nearby saddle
points), it will become computationally challenging, as the number
of dimensions increases, to cover the various dimensions in which
gaps can lie, or will be restricted to 1D gaps.
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TDA is also often associated with persistent homology,
which studies how topological features change as a function of
scale. While persistence diagrams provide information on the
topological features of a set of points (e.g., number of loops or
connected components), it does not provide “localized”
information (e.g., where these features are). The problem of
interest that is the closest to our work is the problem of ridge
detection. It has been explored, for instance, in Genovese et al.
(2014), whose approach is very adjacent to ours: their goal is to
extend on mode-finding and uncover hidden structures, in the
form of overdensities, in the data, using projections of the
Hessian. However, their method focuses on overdensities and
relies on optimization to find the ridges (i.e., it does not provide
a “score” or a metric that can be computed at any given point).
Their approach will not be adaptable to find underdensities of
any shape (e.g., not 1D) and can become computationally
expensive compared to ours.

Another approach related to our problem is a clustering
method presented in Zhang et al. (2007): in order to identify the
clusters in a set of points, the authors propose to find the
valleys and use those to separate the groups. To do so, they rely
on the normalized density derivative and an approximation of
the local convexity of the density (similar to the approaches we
propose), using nonparametric density estimation based on
neighbor numbers. However, the method requires computing
the pairwise distance between each point, which will rapidly
get computationally challenging as the data set grows.

In this paper, we present a statistic that can be computed at
(almost) any point in the data space and that can be used as an
estimator of “gappiness” of a region. This statistic permits the
highlighting of a wider variety of gaps (in terms of shapes and
dimensions) in a more generic fashion than methods relying on
critical points (or mode-finding) or “ridge-finding” approaches
(which are, additionally, not designed originally for under-
densities but for overdensities). To the best of our knowledge,
there are no other methods that address the problem of gap
detection and characterization in this form. Furthermore, as we
propose a statistic that can be directly computed for a given
point, the finding of gaps does not require optimization per se,
contrary to other methods. This results in potential computa-
tional advantages. Interestingly, our statistic can be easily
reversed to perform overdensity detection (thus including
“ridges”).

This paper is organized as follows: Section 2 presents the
data set used as an example use case throughout this paper and
motivates our gap characterization goal in this context. We
define our statistic in Section 3 and showcase how it performs
on real data. Section 4 provides a discussion of the results we
observe on this application and the advantages and limitations
of our current method.

Additionally, we provide in the Appendix additional considera-
tions and implementation notes: we propose a specific twice-
differentiable density estimator with finite support (which is used
throughout this paper) that can alleviate some computational issues
compared to, e.g., a classical Gaussian kernel. We also comment
on other possible ways to identify and trace gaps, using notably
critical points, and we provide possible methodologies to do so.
These can provide different properties than the statistic presented in
the main paper that can be relevant to specific use cases.

A Python implementation of the methods and the density
estimator is available at https://github.com/contardog/
FindTheGap.
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Figure 1. (a) 2D data set of velocities v, and vg visualized as a hexagonal binning plot. (b) Density estimated with our quadratic kernel density estimator (see
implementation notes in the Appendix), with a bandwidth A = 0.15. Data are rescaled using standard normalization beforehand.

2. Example Data

We test and demonstrate the methods presented here on
Galactic velocity and position data, where the identification and
characterization of gaps are of crucial importance. We provide
more details on the different data sets we build in the remainder
of this section.

The second data release (DR2; Gaia Collaboration et al.
2018) from the European Space Agency’s (ESA) Gaia mission
(Gaia Collaboration et al. 2016) revolutionized our view of the
Milky Way by providing position on the sky, parallaxes, and
proper motions for over a billion stars across a large portion of
the Galaxy. It also provided radial velocities for around 7
million stars, mostly within a few kiloparsecs of the solar
neighborhood. This 6D phase-space sample revealed numerous
disequilibrium features in the positions and kinematics of stars
in the solar neighborhood and beyond.

Such disequilibrium features manifest as ridges and gaps in
various dimensions. For example, Antoja et al. (2018) found a
striking spiral pattern in the distribution of vertical position, z,
versus vertical motion, v,, which shows that the Milky Way is
still phase mixing after some vertical perturbation, e.g., the
passage of a satellite such as the Sagittarius dwarf galaxy (e.g.,
Antoja et al. 2018) or the buckling of the Galactic bar
(Khoperskov et al. 2019). Antoja et al. (2018) and Kawata et al.
(2018) also found ridges in the Galactocentric rotation velocity
v, as a function of Galactic radius R, which can be signatures of
the same satellite passage (e.g., Khanna et al. 2019; Laporte
et al. 2019), Galactic spiral arms (e.g., Hunt et al. 2018), or
resonances from the Galactic bar (e.g., Fragkoudi et al. 2019),
or most likely a complex combination of all three.

These ridges and gaps are an extension of the long-known
structure in the local vg—v4 kinematics across the observable
disk. However, the change in the location of the ridges or gaps in
kinematic space as a function of position in the Galaxy can shed
light on their origin. For example, a gap with a resonant origin
will move with a rate dependent on the order of the resonance in
Galactic azimuth, ¢. Developing methods that can not only find
gaps in phase space but also quantify their rate of change in

higher-dimensional space will allow us to determine the origin of
specific kinematic substructure, which in turn informs us on the
structure and evolutionary history of our Galaxy. In this work we
concentrate on the development and showcasing of the gap-
finding algorithm at work in the Gaia data, and we defer the
scientific interpretation of the substructure to future work.

For our sample, we use the recent intermediate data release
(eDR3; Gaia Collaboration et al. 2021), which brings updated
astrometry but no new radial velocity measurements, which are
taken from DR2. We perform the photometric quality cuts that
were suggested in Schonrich et al. (2019) for DR2, namely, we
select stars with a color of Ggp — Grp < 1.5, a magnitude of
G < 14.5, a fractional parallax error of w/0,.>5, a parallax
uncertainty cut of o, <0.1, a BP-RP excess flux factor of
1.172 < Egprp < 1.3, and with more than five visibility periods
used, which may be overkill for eDR3. We derive distances
naively as d = 1 /7. Such an approximation is only valid for highly
accurate parallaxes, yet the purpose of this work is to detect gaps,
not make rigorous measurements. We use GALPY (Bovy 2015) to
convert from the Gaia frame («, 6, 7, o, [t Vg) to cylindrical
coordinates (R, ¢, z, Vg, V4, V) assuming a distance to the Galactic
center of Ry = 8.178 kpc (Gravity Collaboration et al. 2019) and
the Sun’s height about the disk plane as 20.8 pc (Bennett &
Bovy 2019). We calculate the vertical and azimuthal solar motion
by combining R, with the proper-motion measurement of
Sgr A* of (1, 1) =(—6.411+0.008, —0.219 +0.007) (Reid
& Brunthaler 2020). Thus, we have v, = 248.5 km s~ and We =
85kms . Finally, we perform an additional cut on the velocities,
selecting stars with —125 < v < 125 and 100 < v < 300.

From these data, we create the following data sets:

1. A 2D data set D,, using vg and v, with an additional cut
selecting stars within a distance of 200 pc from the Sun,
resulting in a data set of ~217,000 stars. Visualization of
this data set is provided in Figure 1(a).

2. Two 3D data sets, adding R and ¢ as a third dimension,
respectively:
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Figure 2. Projection of the 3D data set Dy (features vy, vg, R — Rp) in velocity space, with all data (left panel), stars within 0.1 < R — Ry < 0.6 (middle panel), and
stars within —0.7 < R — Ry < —0.2 (right panel). Gaps in the distribution are most visible in the subsampled data (middle and right panels) and are visibly different
for the two cuts, indicating a dependency with R — R
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Figure 3. (a) Map of the maximum eigenvalue of the second derivative (Hessian) of the density estimated with a bandwidth A = 0.15 on a grid in the data space of D,,
with density estimate shown as contour lines. We highlight a region with high values for AH that is, however, not a gap in the density distribution according to our
definition, as it is not between two regions with higher density. White circles show the 15 critical points with the highest Hessian’s maximum eigenvalues (see the
Appendix for details). (b) Map of the maximum eigenvalue of ITHII for a bandwidth A =0.15 on a grid in the data space of D,, with density estimate shown as
contour lines. This criterion, compared to the maximum eigenvalue of the Hessian alone, efficiently removes areas with steep curvatures in the density that are,
however, not gaps.

(@) Dgusing vg, v, and R — Ry, with an additional cut 3. A 4D data set Dg 4 including both velocities vg, v4 and
selecting stars within 2 kpc in R — Ry and 300 pc in both positions R — Ry, ¢. We keep stars within 2 kpc in R
¢, resulting in a data set of ~910,000 stars. Figure 2 and within 15° in ¢, resulting in a data set of ~1,670,000
shows the entire data set Dy in the velocity space, as stars.

well as two subsets of the data in subwindows in

5 w We rescaled all data sets before computing density estimations
R — Ry. The gaps in those subsets are more visible,

and our methods throughout the paper, using standard

and one can see that their locations and shape (e.g., normalization (other scaling methods could be used), in order
width) change from one subset to the other. to ensure coherent scale across dimensions. The methods
() Dy using vg, v, and ¢, with an additional cut presented here assume that all dimensions in the data are
selecting stars within 200 pc in R — R and within 15° properly rescaled for the task at hand and/or according to
in ¢, resulting in a data set of ~752,000 stars. underlying assumptions regarding the data. This might play a
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Figure 4. Map of the maximum eigenvalue of ITHII for different bandwidths A (columns) and different bootstrapping samplings (rows). Smaller bandwidths can
grasp finer and smaller gap structures (e.g., bandwidth of 0.1); however, extremely low bandwidth becomes susceptible to finding spurious “gaps,” which will not be
stable or consistent across bootstraps (e.g., plots in the first column). At larger bandwidths, detected gaps become more stable across bootstraps, and the criterion can

detect larger and wider structures.

crucial role in finding structures in the density distribution, as
our kernel is symmetric in all dimensions.

3. Method

This section details the statistic we propose to estimate the
“gappiness” of a point in the data space.

As a reminder, our goal is to provide a measure or statistic
that can be interpreted as “how much a point can be considered
to be lying within a gap,” for any point in the space. Our
definition of a gap is a region of locally lower density, such that
there is (at least) one straight line along which density rises as
we go away from the region in either direction along that line.

This definition is more generic than, for instance, relying on
critical points, which are points where the gradient of the density

is 0 (and could be minima, maxima, or saddle points; see the
Appendix for more notes on that aspect). While a gap will have (at
least) one critical point, its structure or surface can extend beyond
that critical point. Our definition, without additional constraints,
potentially extends a “gap” arbitrarily, as long as there is density
rising on both sides.

Let us consider a data set (or point cloud) D of n points
x; € R?, with boundaries (limits in R¢) S. The approach we
propose relies on a density estimator that can be of any nature, as
long as it is twice differentiable. In the remainder of the paper, we
consider a kernel-based density estimator (see the Appendix for
the specific implementation used in our experiments), but the
proposed statistic is agnostic to the actual estimator. We denote
the density estimator p. As we consider a kernel-based estimator,
p is associated with a bandwidth that we denote A. The estimator
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pa is fitted on all the points within D. For any given point
x € R4, it is possible to compute the density estimate of that point
and the gradient and second derivative (Hessian) of that density
estimate. We denote the gradient vector of the density estimate
Vp and the Hessian matrix H, dropping the notation of the point
of interest x for simplicity.

Following our definition of a gap, it makes sense to look at
the properties of the second derivative (Hessian) of the density,
as it is an indicator of the curvature of the density field. The
maximum eigenvalue of the Hessian H gives us an estimate of
the regions of the space that have the biggest positive curvature
in the density field: this is illustrated in Figure 3 on our 2D data
set. Negative values correspond to “peaks” or “islands” in the
density. High positive values align with regions where the
density drops sharply (at that given bandwidth). These can be
“valleys” (matching our gap definition), or they can be “cliffs”:
edges where the densities do not rise in any other direction
(highlighted by black rectangles in Figure 3). These regions are
not considered gaps in our definition.

Therefore, we need to examine the properties of the Hessian
in a slightly different fashion, to account for this. The second
derivative makes most sense to examine along directions where
there is no first derivative, that is, where the second derivative
delivers the most important nontrivial term in the Taylor series.
Put another way, the second derivative confined to the
subspace perpendicular to the gradient vector is the second
derivative along all directions in which there is no first
derivative. Because of that, every point in the d-dimensional
data space can be thought of as a critical point (point of zero
first derivative) in the (d — 1)-dimensional subspace locally
perpendicular to the local gradient at that point. Thus, it makes
sense to examine the eigenvalues of the Hessian in that local
subspace to ask whether the point is a local underdensity or
local overdensity in the subspace. For our gappiness statistic,
therefore, we propose to use the eigenvalues of the projection
of the Hessian into the orthogonal subspace of the density
gradient.

In that sense, our statistic relies on similar motivations to the
ridge-finding optimization method presented by Genovese et al.
(2014; low-dimensional overdensities in data). For1 < d’ < d
(where d is the number of dimensions of the data set), a
d’-dimensional gap is characterized by a Hessian with d — d’
large, positive values, and where the projection of the gradient
on that subspace is 0.

We denote this projected second derivative tensor IIHII,
where H is the Hessian matrix and II is a projection operator
that projects into an orthogonal subspace, orthogonal to the
gradient vector Vp. If Vp is seen as a column vector, then

Y Vp'

I=I ,
Vp'Vp

ey

where [ is the identity. This measure IIHII can be computed at
any point in the data space. However, it will be undefined
precisely at the true critical points (where the gradient
vanishes), and indefinite for any truly empty gap (zero density
at a given bandwidth).

We also note that other statistics, over IIHII or its
eigenvalues, could be interesting to explore, such as the trace
of IIHII, which would provide different properties, especially
at higher dimensions. Using the minimum eigenvalues of
ITHII, on the other hand, will provide a “ridge” (or local
overdensity) statistic.
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Figure 3(b) illustrates the map of the maximum eigenvalues
of IIHTI for all the points on a grid for the 2D data set D,, with
the density estimate shown as contour lines, as well as the 15
critical points with the highest maximum eigenvalue of the
Hessian (see the Appendix). We can see that this measure
efficiently eliminates the irrelevant regions compared to using
the maximum eigenvalue of the Hessian only and highlights the
gap regions relevant to our definition. This visualization also
shows that the regions with high values align with concave
areas in the contour lines of the density, as expected given our
target definition of a gap. We can see, however, that some of
the “wider” gap regions (e.g., near 0.0 in vg and —1.0 in v) are
not entirely covered and evaporate. This is related to the
relationship between our gap statistics and the bandwidth A
used by the density estimator.

Indeed, the choice of bandwidth will be critical to the
properties of the gaps detected, as it will play a role, e.g., in the
size of the gaps that can be detected. Deciding on a single
bandwidth to do the analysis might be nontrivial and might
leave out some important gaps. Small bandwidth might allow
us to find smaller gaps, but they might be more sensitive to
noise as well and will tend to undersmooth. This might make
“spurious” gaps appear. On the other hand, large bandwidth
will tend to oversmooth, and some gaps will disappear. There is
also a relationship with the number of data points in the data
set. The problem of bandwidth selection for kernel-based
density estimators has been actively studied, and several
methods have been proposed, such as Scott’s rule of thumb
(Scott 2015), Silverman’s rule of thumb (Silverman 1998), and
the Sheather and Jones method (Sheather & Jones 1991),
among others. However, the problem remains unsolved in
general. Therefore, ensuring the stability of our statistic
evaluating the “gappiness” of a region/point in the data space
is crucial. We propose to explore summary statistics of the
maximum eigenvalues of ITHII when run across different
bandwidths and using bootstrapping.
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Figure 7. Data points selected in the (a) 3D data set Dg and (b) 4D data set Dg 4, such that their maximum eigenvalue of I[IHII is above the 95th percentile and the
98th percentile, respectively. Points are colored by R.

Figure 4 shows the maximum eigenvalue of the IIHII By taking summary statistics across the different runs, it is
criterion for different bandwidths (columns) and different possible to alleviate the instability of some gaps and to combine
samplings (rows). It is apparent there that at the smallest the stable gaps of different widths. First, we rescale each gap
bandwidth the gap estimation is dominated by noise, hence measurement map (maximum eigenvalue of ITHII) for each
unstable per point. At larger bandwidth, some gaps disappear individual run so that its values lie between 0 and 1. Then, we take
entirely, but the wider “valleys” get a better and more stable the mean across the different bootstrap run, in order to remove the
coverage. “unstable” gaps at smaller bandwidths. Finally, computing the
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Figure 8. Data points selected in the (a) 3D data set D4 and (b) 4D data set Dg 4, such that their maximum eigenvalue of I[IHII is above the 95th percentile and the

98th percentile, respectively. Points are colored by ¢.

mean of the mean maps across bandwidth allows us to keep the
stable gaps of different width. We show in Figure 5 the final
summary map averaging all the rescaled maps shown in Figure 4.
Compared to Figure 3(b), using a summary across bandwidths
allows us to better recover the wider gaps. However, we note that,
in more general cases, users want to be careful in merging the
statistic across bandwidths, as, in some instances, a bigger
bandwidth might merge two smaller gaps together.

We also note that, although we explicitly perform bootstraps
in Figures 4 and 5, it is probable that an explicit bootstrap is not
required here to assess the shot noise (sample variance): the
density estimate and its first and second derivatives are
weighted sums over neighbors. Since we explicitly have a
sum over weights to construct the density and its derivatives,
we could look at the statistics of those weights to determine the
shot noise variance in the density estimate. That would deliver
further speed improvements to any pipeline making use of
these tools.

Similarly, our “gap” statistic can be computed on our 3D
data sets by gridding them and using the statistic as a selection
threshold to highlight which regions are gaps in the distribu-
tion. Figure 6 shows the regions in Dg and D with a maximum
eigenvalue of IIHII above the 99.7th percentile, on a
80 x 80 x 80 grid, with our quadratic kernel density estimator,
with a bandwidth of 0.15. The selected regions are visualized in
two dimensions vg and v, colored by their third dimension (R
and ¢, respectively). This clearly shows several gaps that move
strongly as a function of R and more subtly in ¢.

In many use cases and applications, it might be interesting to
focus instead on which data points lie within gaps. This might
prove useful from a scientific or data exploration point of view
(studying the distribution and properties of the data lying in
underdensities). It also provides an indirect way to trace the gap
regions in a possibly less computationally expensive way than
a fine-enough gridding would require, especially on higher-
dimensional data sets. However, this “trick” will obviously fall
short in the case of truly empty gaps.

Our gap statistic can be applied similarly to the data points
within the data set directly. Depending on use cases, one can
decide to keep all data points above a certain value of the
maximum eigenvalue of IITHII depending on its distribution
(we note that this statistic is not a normalized statistics), to
keep the data points above some percentile, or another
criterion for cut.

We apply this selection process on our 3D data sets Dg
and D, integrating the positions in R and ¢ individually.
Figures 7(a) and 8(a) show the data points above the 95th
percentile for the maximum eigenvalue of IIHII, for three
different bandwidths, with the points colored by their respective
additional position features R and ¢. We see a very similar
pattern to that in Figure 6, with gaps moving strongly as a
function of R, and a more complex relationship with ¢. We can
apply a similar approach to our 4D data set Dy, 4, combining both
R and ¢ position. Figures 7(b) and 8(b) show the 98th percentile
selection on our gap criterion computed with three different
bandwidths (similar to the previous figures), respectively colored
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by ® and R as well. We can see that the “clusters” formed by the
selected points become more blurry. While we show results with
the same three bandwidths for the 3D and 4D cases for sake of
illustration, it is unlikely that the “best” bandwidth for the 3D
case will translate to the 4D case.

4. Results and Discussion

We present in this paper a statistic that can be used to
highlight gaps, or local underdensities, in data distribution. We
showcase the ability of our statistic to retrieve the observed
gaps in the velocity distribution of nearby stars in the Milky
Way and its potential to gain insights on the properties of those
gaps. Our method relies on the use of a twice-differentiable
density estimator. Such methods might themselves depend on a
choice of bandwidth, which in turn impacts the possible gaps
found by those methods. We illustrate that it is possible to
combine different bandwidths sensibly to detect gaps of various
widths, combined to a methodological way to ensure robust-
ness of the gaps detected, using bootstrapping. When applied to
our 3D and 4D data sets, we confirmed our expectations that
the gaps in the kinematic space have dependencies with R and
¢ in terms of position and slope evolution. However, we defer
further investigation on the underlying physics driving those
gaps to future works.

Several paths for future investigation still remain. First and
foremost, it remains nontrivial to go to much higher
dimensions: one limitation will come from the natural limits
of (kernel) density estimators to provide confident density
estimates on higher-dimensional data sets. Besides this crucial
problem, visualizing and extracting the characteristics of the
gaps detected by our methods, when in higher dimensions,
might become nontrivial as well.

Additionally, we presented here an analysis and tools using
specific choices of “gap criterion” that approximate well our gap
definition. But it would be interesting to investigate other
possible criteria and statistics that could be computed on the gaps
and underdensities. For instance, characterizing the “depth” of a
gap instead might be relevant. However, such a measurement
will be nontrivial to define and to compute efficiently. Another
limitation of our methods might lie in the “summary” across
bandwidths: in doing so, small gaps (in size) might merge and
become difficult to distinguish. Exploring protocols to better
handle those cases (e.g., in terms of bandwidth choice) will be
crucial for some applications.

Conversely, similar investigations of “bumps” and ridges
might also be of interest in many fields of applications. This
problem has been more investigated in TDA, applied, for
instance, on a cosmological data set to identify and characterize
filaments of the cosmic web, as in, e.g., Xu et al. (2019). Our
gap criterion as the maximum eigenvalue of IIHII can easily
be reversed by taking the minimum eigenvalue instead, which
will highlight the ridges and bumps in a density distribution.

It is a pleasure to thank Dan Foreman-Mackey (Flatiron) and
Soledad Villar (Johns Hopkins University) for valuable
discussions. Some of the ideas in this project were work-
shopped in the Astronomical Data Group Meetings at the
Flatiron Institute and at the Machine Learning for Astronomy
meeting at Max Planck Ringberg.

Software: This work used and benefited from the following
Python libraries: astropy (Astropy Collaboration et al. 2018),
galpy (Bovy 2015), jupyter (Pérez & Granger 2007), matplotlib
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(Hunter 2007), numpy (Harris et al. 2020), pyTorch (Paszke
et al. 2019), sklearn (Pedregosa et al. 2011), scipy (Jones et al.
2001).

Appendix
Implementation Notes and Additional Considerations

In this appendix, we provide specific implementation notes
and additional considerations on ways to find and characterize
underdensities in data distribution that might be useful to
readers in specific use cases.

We first describe a specific kernel for kernel density
estimation that approximates a Gaussian kernel while providing
finite support for faster computation. Then, we provide some
comments on critical points and how they can be used to
identify and trace specific types of gaps. We propose an
algorithm for approximating the critical points and illustrate on
our application how, using the gradient of the density estimate,
one can trace “1D” valley gaps.

A.l. A Fast, Twice-differentiable Density Estimate

The statistic presented in this paper, as well as the methods
presented below in this appendix, relies on the use of a twice-
differentiable density estimator. The methods described are
independent of the nature of the density estimator, so one could
use whichever estimator that seems best for their applications,
for instance, kernel density estimate, or even normalizing
flows, as long as gradients and Hessians are available.

However, as a practical consideration, a Gaussian kernel, for
instance, might become very slow for large data sets, as it is not
compact. On the other hand, compact kernels, leading to faster
kernel density estimators, are generally not twice differentiable
at their edges. To address this issue, we propose to create a
kernel that has finite support, is twice differentiable every-
where, and conforms to conventional ideas about bandwidth
and resolution. It is the kernel used for all experiments shown
in this paper.

We propose a custom quadratic kernel that approximates a
Gaussian kernel near its center while offering finite support and
being twice differentiable everywhere, including at the edge of
the support. This density estimator is not properly normalized
—it is designed to mimic a normalized Gaussian density
estimator at the center of the kernel, rather than in the integral
over the kernel. Nothing in our method relies on the density
estimator being normalized, so this does not matter for our
purposes, but if this density estimator is used for some
integration or probability applications, it would make sense to
normalize it correctly instead.

Namely, we build a kernel that is a close approximation to a
Gaussian at small separations but goes smoothly to zero and
has its slope and second derivative go smoothly to zero at what
would be 3¢ in the original Gaussian. This kernel k(s) can be
expressed as a quadratic polynomial:

N 2 N 3 N 4

0 fors >3
N\ -
S:\/(x x)Agx x7) (A2)
N 1
K(xfx)—Wk(s), (A3)
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where s is a dimensionless separation between a data point at d-
dimensional location x and an evaluation point at d-dimensional
location x’ (computed with a Euclidean metric), and A is the
bandwidth. Implicitly x and x” are d x 1 column vectors. The
factor of (2 A)¥/? normalizes the kernel comparably to the
Gaussian it matches at small separations. The integral of the
kernel over space is not unity.

Density estimation with this kernel can be made fast,
because the kernel has compact support: in order to compute
the density at a position x, it is only necessary to find
neighboring data points out to separations of 3 A in the x-space
(or s = 3 in the scaled separation variable s); we do not need all
neighbors. Beyond separation s = 3, the kernel and its first two
derivatives exactly vanish everywhere. Density estimation with
this kernel can be performed with only neighbors out to s = 3.
We obtain the list of s <3 neighbors exactly using the scipy
(Jones et al. 2001) ckdtree implementation of the kd-tree,
which has scales like In N rather than N for problems like ours
(where the bandwidth is smaller than the distribution of points).
This can potentially speed up the density estimation
enormously relative to methods that sum over all points.

A.2. 1D Gaps: Valleys in the Density Field

Critical points are points where the derivatives (slopes) of
the density estimate are zero (i.e., they can be a minimum, a
maximum, or a saddle). Since a gap will necessarily contain
either a saddle point or a minimum point, critical points could
be used to pinpoint gap regions in a local way.

First, we present an empirical way to approximate critical
points in a given data set (or point cloud) in practice (although
other methods could be used, e.g., as in Rosen et al. 2021).

Then, we propose a statistic that can be used to rank critical
points in order to select the ones that lie in the gaps. We show
on our application that this statistic is a sound proxy to select
critical points lying in gaps in the distribution.

From these points, we then show how using the gradient of
the density field can trace and highlight specific types of gaps,
flowing from the saddle points, in the form of “valleys” or
“‘streaks” in the density flow. This approach thus allows us to
focus on “1D” gaps. We provide examples of our application to
illustrate in which setups this might prove useful, e.g., for
easier downstream analysis or visualization, by applying this
“valley finder” on 2D slices from our 3D data sets.

A.2.1. Approximating Critical Points

To approximate the critical points within the boundary S of
R? for a given estimator pa, we propose the following
methodology:

1. Create a grid of points G within the boundaries S, spaced
by A, the bandwidth for the density estimator.

2. For each point x € G, optimize to minimize the squared
gradient of the density estimate. We use the BFGS
algorithm provided in the scipy optimization library.

3. Group the resulting critical points so that points close to
each other (e.g., within a distance function of the
bandwidth A) are aggregated. In the following, we group
together points that are closer than 0.01A”? and
summarize them as a single point being the mean of the
group of points.

10

Contardo et al.

This process allows us to empirically approximate the set of
relevant critical points (i.e., minimum, maximum, and saddles)
in the density field, for a given bandwidth. However, we note
that this method might be suboptimal in terms of computational
efficiency, especially as the number of dimensions increases.
We propose to use it here for the sake of simplicity and
practicality for our use case. Other methods can be used, e.g.,
relying on contour trees as in Rosen et al. (2021).

A.2.2. Ranking Critical Points

We now need a way to rank the critical points in order of
interest. First, it is relevant to point out that the nature of a
critical point (i.e., if it is maximum, minimum, or saddle) can
be determined through its index, i.e., the number of negative
eigenvalues of the Hessian matrix H (second derivative) of the
density estimate at that point, since the eigenvalues of the
Hessian give us indications on the direction of the curvature of
the density field. A maximum point will have an index of d
(number of dimensions of the data space), while a minimum
point will have an index of 0. Critical points with indexes
above 0 and below d are saddle points. This can potentially be
used to reduce the set of critical points in the first place.

The statistic presented in this paper is undefined exactly at
critical points and thus cannot be used as a “score” to rank the
critical points. However, the maximum eigenvalue of the
Hessian matrix is a good proxy criterion for our task, as it will
rank higher the critical points that have the biggest positive
curvature in the density field. While in theory this criterion
selection could end up selecting critical points that are not
corresponding to gaps by our definition (e.g., if the density field
is in the form of a cliff with a perfectly flat bottom, a minimum
critical point could land at the bottom there and have a high
score), we observe that it is in practice a sensible choice, as the
critical points “at cliffs” will move far enough away to have a
lower maximum eigenvalue of the Hessian.

As an illustration, we compute the critical points estimated
on the 2D data set D, described in Section 2, with a density
estimator with a bandwidth A of 0.15. Figure 9(a) shows the
resulting critical points colored by the value of the maximum
eigenvalue of the Hessian at that location. We see that the
critical points with the lowest value correspond to maximum,
while the critical points with the highest values lie on saddle or
local minimum regions. The critical points with values closer to
zero tend to be in flatter, outer-skirt regions.

A.3. Tracing “1D” Valley Gaps

We now proceed to use the “best” candidate critical points
(i.e., the ones with the highest scores) as a “starting point” to
highlight gaps: indeed, while those points identify the local
minimum point of the basin formed by a gap, they do not cover
or characterize the entire gap “region” (or, in this instance,
“valley”) per se. However, we can see a saddle point as the
“origin” of a valley gap, from which the gradient of the density
can go either uphill (in the direction of the Hessian’s
eigenvectors with positive eigenvalues) toward higher-density
regions or downhill (in the direction of the Hessian’s
eigenvectors with negative eigenvalues) toward lower-density
regions. We propose to use these geometrical properties of the
density field to trace the valley from a saddle point x in practice
as follows:
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Figure 9. (a) Critical points found with a density estimator of bandwidth A = 0.15, circled in black and colored by the value of the maximum eigenvalue of the
Hessian of their density, for 2D data set D. Critical points with negative value (blue) correspond to maximum, while positive points correspond to local minimum and
saddle. Points with values closest to zero lie mostly in the flat region of the density space. (b) Selection of N = 15 best critical points based on the value of the
maximum eigenvalue of the Hessian of their density, with their “paths” (following the gradient direction) traced in white.
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Figure 10. Best five critical points and their associated paths for each 2D “slice” in (a) Dg and (b) D, colored by their respective R and ¢ window value, with density
estimators of bandwidth 0.15.
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b)

1. Starting from a critical point x, take a small (e.g., a A =0.15, selecting the best 15 critical points using the
fraction of the bandwidth 0.1A) step away from x in the maximum eigenvalue of their Hessian. We can see that those
direction of the Hessian’s eigenvector associated with the paths neatly trace the visible valleys in the density distribution.
smallest Hessian’s eigenvalue. Some of the selected critical points end up being connected to

2. Descend “downhill” following the gradient of the density each other.

field in small steps of, e.g., a fraction of the bandwidth

1 LG8 ' ¢ While tracing the “valleys” in this way restricts us to 1D
0.1A until a low gradient is reached or until reaching the

gaps, it can provide an interesting method for a specific use

boundary . case, if one has knowledge of the topology of the gaps of
Figure 9(b) illustrates the paths we obtain with this process on interest. Additionally, it might make the visualization and
the 2D data set D,, with a density estimator with a bandwidth characterization of the properties of the gaps easier in higher
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dimensions. We illustrate a different experimental protocol to
analyze the gaps in a 3D data set, where we “slice” the original
data set into 2D chunks. We then compute the critical points,
rank and select the K “best” critical points, and finally compute
their “paths” on slices (subset) of the original data instead,
resuming to a 2D setting for each run.

Figure 10 illustrates this methodology on our original 3D
data set Dg (Figure 10(a)) and D, (Figure 10(b)). The data sets
were respectively sliced into 30 and 24 slices, creating 2D data
sets with overlapping windows of similar size (0.2kpc in
R — Ry for Dg, and 0.035 rad in ¢ for D). The bandwidth used
for the density estimator was 0.15. For each slice, we keep the
best five critical points. This methodology highlights again the
change in gap location as a function of R and ¢. Additionally,
we can visually see the critical points that seem to belong to the
same gaps. The inclination and rate of change also look
different for each gap. Another interesting aspect of this
methodology, compared to the selection using our IIHII
criterion in Figure 6, is that the “paths” can extend to regions
that would not be selected using a ITHII -based cut (note the
axis range of Figure 10). This approach might provide an easier
path to properly analyze the rate and nature of the change, by
characterizing each path individually, instead of the entire 3D
structure or region selected through gridding.

We defer a deeper analysis of the characterization of the gaps
and their links to physical origins to future works.
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