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We present the precision measurement of 2824 daily helium fluxes in cosmic rays from May 20, 2011 to 

October 29, 2019 in the rigidity interval from 1.71 to 100 GV based on 7.6 x 10° helium nuclei collected 

with the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. The helium flux and 

the helium to proton flux ratio exhibit variations on multiple timescales. In nearly all the time intervals from 

2014 to 2018, we observed recurrent helium flux variations with a period of 27 days. Shorter periods of 

9 days and 13.5 days are observed in 2016. The strength of all three periodicities changes with time and 

rigidity. In the entire time period, we found that below ~7 GV the helium flux exhibits larger time 

variations than the proton flux, and above ~7 GV the helium to proton flux ratio is time independent. 

Remarkably, below 2.4 GV a hysteresis between the helium to proton flux ratio and the helium flux was 

observed at greater than the 7o level. This shows that at low rigidity the modulation of the helium to proton 

flux ratio is different before and after the solar maximum in 2014. 

DOI: 10.1103/PhysRevLett.128.231102 

The temporal evolution of the interplanetary space 
environment causes cosmic-ray intensity variations. This 
is particularly visible at rigidities below 100 GV. These 
variations correlate with solar activity at different 

Published by the American Physical Society under the terms of 
the Creative Commons Attribution 4.0 International license. 

Further distribution of this work must maintain attribution to 

the author(s) and the published article’s title, journal citation, 
and DOI. 

timescales [1,2]. The most significant long-term variation 
is the 1 1-yr solar cycle [3,4]. Shorter-scale variations can be 

either recurrent or nonrecurrent. The nonrecurrent varia- 
tions are mainly due to the interactions of cosmic rays with 
strong transient disturbances in the interplanetary magnetic 
field, such as shock waves generated by interplanetary 
coronal mass ejections, especially during solar maxima, 
that can last from days to weeks [5,6]. Recurrent variations 

with a period of 27 days, corresponding to the synodic solar 
rotation, and at multiples of that frequency (e.g., periods of 
13.5 and 9 days) are related to the passage of corotating 
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interaction regions originating from one or more coronal 
holes of the Sun [7-15], as first observed in 1938 [16]. 

Neutron monitor studies on the estimated rigidity depend- 
ence in periodicities, for example, in Ref. [12], generally 
concluded that the power of the periodicity decreases with 
increasing rigidity. This formed the paradigm over the 
Alpha Magnetic Spectrometer (AMS) rigidity range (1.71- 
100 GV) that the strength of the 27-day (and 13.5- and 9- 
day) periodicities steadily decreases with increasing 
rigidity of cosmic rays, differently in solar maximum 
and minimum [17]. However, recent AMS results on 

periodicities in the proton daily fluxes [18] do not support 
that the strength of the periodicities would always decrease 
with increasing rigidity. 

Cosmic-ray transport in the heliosphere is rigidity 
dependent. Hence, the time variation of different particle 

spectra (p, He, etc.) evaluated at the same rigidity are 
expected to exhibit a similar behavior. However, according 
to models based on the Parker equation [1], the time 

dependence of distinct nuclei fluxes evaluated at the same 
rigidity might differ because of (a) differences in the flux 
rigidity dependence outside the heliosphere, (b) differences 
in velocity because of distinct mass-to-charge ratio [19], 
and (c) solar wind turbulence and other interplanetary 
parameters. 

Previously, AMS has reported the time dependence of 
proton and helium fluxes on the timescale of Bartels 
rotations (BR, 27 days). A significant long-term time 
dependence was observed in the p/He flux ratio at rigidities 
below 3 GV [20]. 

In the past, many experiments measured the time 

variation of proton and helium fluxes [21]. In this Letter, 

we present the daily time evolution of the helium flux from 
1.71 to 100 GV. The measurement is based on 7.6 x 108 
helium nuclei collected by AMS during the first 8.5 yr 

(May 20, 2011 to October 29, 2019, a total of 2824 days or 

114 BRs) of operation aboard the International Space 

Station. For the first time, daily helium and proton fluxes 
are simultaneously measured from 1.71 to 100 GV. This is 
also the first continuous daily measurement of the rigidity 
dependence of 9-, 13.5-, and 27-day periodicities in the 

helium fluxes over an extended period of time and a broad 
range of rigidities. 

Detector.—The layout and description of the AMS 
detector are presented in Refs. [22,23] and shown in 

Fig. Sl in Supplemental Material [24]. The key elements 
used in this measurement are the permanent magnet [25], 
the silicon tracker [26—28], and the four planes of time of 

flight scintillation counters [29]. Further information on the 
AMS layout, performance, trigger, and the Monte Carlo 

(MC) simulation [30,31] is detailed in Supplemental 
Material [24]. 

Event selection.—AMS has collected 1.5 x 10'! cosmic- 
ray events from May 20, 2011 to October 29, 2019. Helium 
events are required to be downward going and to have a 

reconstructed track in the inner tracker. See Fig. S2 in 
Supplemental Material [24] for a reconstructed helium 
event. Details of the event selection and backgrounds are 
contained in Refs. [20,32-36] and in Supplemental 
Material [24]. After selection, the event sample contains 

7.6 x 108 helium nuclei. . 
Data analysis.—The daily isotropic flux ®/ in the ith 

rigidity bin (R;,R; + AR;) and jth day is given by 

Ni 

Ale! TIAR; i (1) 

where N/ is the number of events corrected for bin-to-bin 
migration, A‘ is the effective acceptance, e/ is the trigger 
efficiency, and T? is the daily collection time. In this Letter, 
the helium flux was measured in 26 bins from 1.71 to 
100 GV. Bin-to-bin migration of events was corrected using 
the unfolding procedures described in Ref. [37] independ- 
ently for each day. 

Extensive studies were made of the systematic errors 
[33]. These errors include the uncertainties in the back- 

ground evaluation, the trigger efficiency, the geomagnetic 
cutoff, the acceptance calculation, the rigidity resolution 
function, the unfolding, and the absolute rigidity scale. 

The time-dependent systematic error on the helium 
fluxes associated with the daily trigger efficiency meas- 
urement is < 1% over the entire rigidity range and for 
all days. 

The geomagnetic cutoff was calculated as described in 
Supplemental Material [24], and the resulting systematic 
error on the fluxes is negligible (< 0.4%) over the entire 
(1.71-100 GV) rigidity range. 

The daily effective acceptances A? were calculated using 
MC simulation and corrected for small differences between 
the data and simulated events related to (a) event 

reconstruction and selection, namely, in the efficiencies 

of velocity vector determination, track finding, charge 

determination, and tracker quality cuts, and (b) the details 
of inelastic interactions of nuclei in the AMS materials. The 
time-dependent systematic error on the fluxes associated 
with the daily reconstruction efficiencies is < 1% over the 
entire rigidity range for all days. The material traversed by 
nuclei within AMS is composed primarily of carbon and 
aluminum. The survival probabilities of helium due to 
interactions in the materials were measured using cos- 
mic-ray data collected by AMS as described in Ref. [31]. 

Short-term variations, due to temperature changes, are small 

(< 0.2%). Long-term variations (< 3%), due to monitored 

minute changes in detector elements, are included in the MC 

simulation. After the time-dependent corrections, the daily 
effective acceptances and the daily reconstruction efficien- 
cies are constant within errors. The time-independent 
systematic error on the helium fluxes due to uncertainties 
in the evaluation of the inelastic interactions is < 1% over 
the entire rigidity range [32]. 

231102-3



PHYSICAL REVIEW LETTERS 128, 231102 (2022) 
  

The time-independent rigidity resolution function for 
helium has a pronounced Gaussian core and non-Gaussian 
tails. The systematic error on the fluxes due to the rigidity 
resolution function was obtained by repeating the unfolding 
procedure while independently varying the width of the 
Gaussian core by 5% and the amplitude of the non- 
Gaussian tails by 10% [33]. The resulting systematic error 
on the fluxes is < 1% in the entire rigidity range. The daily 
flux variation leads to an additional uncertainty in the 
unfolding procedure. The resulting time-dependent sys- 
tematic error is < 1.3% at 1.71 GV and is negligible 
(< 0.2%) above 5 GV for all days. 

There are two contributions to the systematic uncertainty 
on the rigidity scale [37]. The first is due to residual tracker 
misalignment. This error was estimated by comparing the 
E/ p ratio for electrons and positrons, where E is the energy 
measured with the electromagnetic calorimeter and p is the 
momentum measured with the tracker. It was found to be 
1/30 TV~! [38]. The error is negligible (< 0.3%) below 
100 GV. The second systematic error on the rigidity scale 
arises from the magnetic field map measurement and its 
temperature corrections. The total time-independent error 
on the fluxes due to uncertainty on the rigidity scale has 
been calculated to be < 0.6% over the rigidity range 
below 100 GV. 

The contributions to the systematic error from the trigger 
efficiency, reconstruction efficiencies, and the unfolding 

are evaluated independently each day and are added in 
quadrature to derive a time-dependent systematic error, 
which is < 1.5% at 1.71 GV and < 1% above 3 GV for all 
days. The daily total systematic error is obtained by adding 
in quadrature the individual contributions of the time- 
independent systematic errors discussed above and the 
time-dependent systematic errors. At 1.71 GV itis < 2.4%, 
and above 3 GV it is < 1.4% for all days. 

Most importantly, several independent analyses were 
performed on the same data sample by different study 
groups. The results of those analyses are consistent with 
this Letter. 

Results —The measured daily helium fluxes (®,,) and 
helium to proton flux ratios (Py./®, ) including statistical 
errors, time-dependent systematic errors, and total system- 
atic errors are tabulated in Tables S1-S2824 of 
Supplemental Material [24] as functions of the rigidity 
at the top of the AMS detector. The presented daily data are 
in agreement with our earlier 27-day results [20] in the 

overlapping time period, but with improved accuracy. The 
®, data are from Ref. [18]. For the days when AMS 

detected solar energetic particles (SEPs), the fluxes below 
3 GV will be included in a future publication [39] and 

not here. 
Figure 1 shows ®,, for six rigidity bins from 1.71 to 

10.10 GV; see also Fig. $3 in Supplemental Material [24] 
for ®,. in rectangular format. In this and subsequent 
figures, the error bars on the fluxes and flux ratios are 

  
FIG. 1. The daily AMS helium fluxes ®,, for six rigidity bins 

from 1.71 to 10.10 GV measured from May 20, 2011 to October 

29, 2019 which includes a major portion of solar cycle 24 (from 

December 2008 to December 2019). The scale of daily helium 

fluxes ®,,, is shown on the radius. The AMS data cover the 

ascending phase, the maximum, and descending phase to the 

minimum of solar cycle 24. Days with SEPs are removed for 

the two lowest rigidity bins shown. The gaps in the fluxes are due 

to detector studies and upgrades. As seen, ®,, exhibit large 

variations with time, and the relative magnitude of these 
variations decreases with increasing rigidity. 

the sum in quadrature of the statistical and time-dependent 
systematic errors. As seen, the daily helium flux ®y, 

exhibits variations on different timescales, from days to 

years (years are defined in Table SA in Supplemental 
Material [24]). The relative magnitude of these variations 

decreases with increasing rigidity. At low rigidities, recur- 
rent flux variations are clearly visible. An explanation of 

the dip in 2017 is presented in Supplemental Material [24]. 
Figure S4 in Supplemental Material [24] shows ®y, 

measured in 2016 for three rigidity bins [1.71—1.92], [5.90— 

6.47], and [16.60—22.80] GV. As seen, double-peak and 

triple-peak structures are visible in different Bartels 
rotations. 

To study the recurrent time variations in ®y., a wavelet 
time-frequency technique [40] was used to locate the time 
intervals where the periodic structures emerge. The details 
on the wavelet analysis are described in Supplemental 
Material [24]. All the power spectra in the subsequent 
figures of the text and Supplemental Material [24] are 
drawn with normalized power defined in Supplemental 
Material [24] to show the strength of the periodicities. The 
®,,. for three rigidity bins [1.71—1.92], [5.90-6.47], and 
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FIG. 2. The normalized power of helium fluxes as a function of rigidity and period for (a) the first and (b) the second half of 2016 from 

1.71 to 20 GV and from 20 to 100 GV. As seen, the strength of 9-, 13.5-, and 27-day periodicities is rigidity dependent. In particular, the 

strength of 9-day periodicity in the first half of 2016 increases with increasing rigidity up to ~5 GV and then decreases with increasing 

rigidity up to 100 GV. The strength of 13.5-day periodicity in the second half of 2016 increases with increasing rigidity up to ~20 GV 

and then decreases with increasing rigidity up to 100 GV. 

[16.60—22.80] GV in each of the nine years (2011-2019 

defined in Table SA in Supplemental Material [24]), 
together with their time-averaged power spectra and 
95% confidence levels, are shown in Figs. S5—S13 in 

Supplemental Material [24]. Similar to proton fluxes in 
Ref. [18], we observed recurrent flux variations with a 

period of ~27 days with a significance above the 95% con- 
fidence level in nearly all the time intervals from 2014 to 
2018. Shorter periods of ~13.5 and ~9 days are significant 
only in 2016. 

To study the details of periodicity in 2016, Fig. $14 in 
Supplemental Material [24] shows the wavelet time-fre- 
quency power spectra of ®,, for the same three rigidity 
bins. As seen, periods of 9, 13.5, and 27 days are observed 

at different time intervals. The strength of all three 
periodicities changes with time and rigidity. In particular, 
shorter periods of 9 and 13.5 days, when present, are more 
visible at [5.90-6.47] and [16.60—22.80] GV compared to 

[1.71-1.92] GV. We define two time intervals of interest 

marked on the top of Fig. S14 in Supplemental Material 
[24]: The first time interval (BRs 2489-2495) is when the 

9-day period is visible; the second time interval (BRs 
2496-2502) is when the 9-day period is not visible. 

Figure 2 shows the normalized power as a function of 
rigidity and period for the two time intervals (BRs 2489- 
2495 and 2496-2502); see also Fig. S15 in Supplemental 
Material [24] for details. The two figures show that the 

strength of all three periodicities is rigidity dependent. In 
particular, the strength of 9-day periodicity in the first half 
of 2016 increases with increasing rigidity up to ~5 GV. 
The strength of 13.5-day periodicity in the second half of 
2016 increases with increasing rigidity up to ~20 GV. The 
strength of 27-day periodicity in the first half of 2016 
increases with increasing rigidity up to ~10 GV. The AMS 
results on three periodicities (9-, 13.5-, and 27-day) from 

1.71 to 100 GV show that the strength of the periodicities 
can increase with increasing rigidity and, thus, do not 
support the general conclusion that the strength of the 
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FIG. 3. The 3D functional dependence of (Oy./®,, time, and ®,, in units of [m? srs GV]~') for the rigidity bin [1.71-1.92] GV. 

(a) The dependence of ®},/®,, on time; (b) the dependence of ®},, on time; (c) the relation between ®y./@, and Oy. Different colors 

indicate different years from 2011 to 2019. The blue curves are moving averages of length 14 BRs with a step of one day. 

periodicities of cosmic-ray fluxes decreases with increasing 
rigidity. 

Note that both the unnormalized power of these perio- 
dicities and the flux variance in the two time intervals 
decrease with increasing rigidity as shown in Fig. S16 in 
Supplemental Material [24]. The peak values of the 
normalized power around 27 days as a function of rigidity 
for each year are shown in Fig. S17 in Supplemental 
Material [24]. As seen, the 27-day periodicity becomes 
significant only from 2014 to 2018, and its rigidity 
dependence varies in different time intervals. 

The intensity variations of cosmic rays are caused by the 
temporal evolution of the interplanetary space environment 
[41] as discussed in Supplemental Material [24] and in 

Ref. [18] (see also Ref. [42]). 

Figure 3 shows the 3D functional dependence of 
(Dy./®,, time, and ®y.) for the rigidity bin [1.71- 
1.92] GV. Moving averages of length 14 BRs with a step 
of one day are also shown. Figure 3(a) shows ®y,/®,, as a 
function of time at this rigidity bin. As seen in Fig. 3(a) and 
Fig. S20 in Supplemental Material [24], ®y./®, exhibits 
variations on multiple timescales. On short timescales, 
®,./®, has a dip in 2017 lasting months corresponding 
to the dip observed in ®}, [Fig. 3(b)]. On long timescales, 
the ®y./®, reaches a minimum in 2013-2014, when ®y, 

is also in its minimum, and a maximum in 2018-2019, 

when ®;, 1s also in its maximum. As shown in Fig. 3(a), 
Oy./P, (2018-2019) > Oye /P, (2013-2014). This 
implies My.(2018-2019) /@y, (2013-2014) > ®, (2018- 
2019)/®,,(2013-2014); iec., ®y. exhibits larger time 
variations than ®,. By. /®,, as a function of time for other 

rigidity bins is shown in Fig. S21 in Supplemental Material 
[24]. As seen, above ~7 GV, ®y,/®, is time independent. 
The comparison of ®y,/®,(2018-2019) and ®y,/ 
® ,(2013-2014) as a function of rigidity is shown in 
Fig. S22 in Supplemental Material [24]. As seen, Py. 
exhibits larger time variations than ®, below ~7 GV. 

To investigate the difference of modulation in helium 
fluxes and proton fluxes, we consider in more detail daily 

®y./®, as a function of daily By, as shown in Fig. 3(c). 
Figure 4 shows ®,./®, as a function of ®y. both 
calculated with the moving average of length 14 BRs with 
a step of one day for the rigidity bins [1.71-1.92] and 
[2.15-2.40] GV. As seen in Fig. 4, below 2.4 GV, a 

hysteresis between ®y,./®, and Py, is observed before 

and after the solar maximum in 2014. To assess the 
significance of this hysteresis, in Fig. $23 in 
Supplemental Material [24], we study the difference (in 
units of o) of By. /®, at the same ®,, but different solar 
conditions. As seen, the hysteresis is observed at ~60 in 

each of the three consecutive rigidity bins below 2.4 GY, 
with a combined significance greater than 7o. The same 
investigation is performed on daily ®y./®,, as a function of 
daily ®, as shown in Figs. $24-S26 in Supplemental 
Material [24]. As seen in Fig. S26 in Supplemental Material 
[24], the hysteresis between ®y./@,, and ®, is observed at 

greater than 60 in each of the three consecutive rigidity bins 
below 2.4 GV, with a combined significance greater than 

7o. These combined significances show that at low rigidity 
the modulation of ®y,/®,, is different before and after the 

solar maximum in 2014. These unexpected observations 
provide inputs to the understanding of cosmic-ray 
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FIG. 4. ®y,./®, as a function of ®y, both calculated with a 

moving average of length 14 BRs with a step of one day for the 

rigidity bins (a) [1.71-1.92] and (b) [2.15—2.40] GV. Different 

colors indicate different years from 2011 to 2019. As seen, below 

2.4 GV a hysteresis between Oy,/P,, and By, is observed before 
and after the solar maximum in 2014. 

propagation in the heliosphere and its dependence on 
rigidity, on velocity, on solar wind turbulence, and on 
other interplanetary parameters. 

In conclusion, we have presented the precision mea- 
surements of 2824 daily helium fluxes in cosmic rays from 
1.71 to 100 GV between May 20, 2011 and October 29, 

2019 based on 7.6 x 10° helium nuclei. The helium flux 
®,. and the helium to proton flux ratio By./®, exhibit 
variations on multiple timescales. In nearly all the time 
intervals from 2014 to 2018, we observed recurrent flux 

variations with a period of 27 days. Shorter periods of 9 and 
13.5 days are observed in 2016. The strength of all three 
periodicities changes with both time and rigidity. In the 
entire time period, we found that below ~7 GV the helium 

flux exhibits larger time variations than the proton flux, and 

above ~7 GV the helium to proton flux ratio is time 
independent. Remarkably, below 2.4 GV, a hysteresis 

between the helium to proton flux ratio and the helium 
flux was observed at greater than the 7o level. This shows 

that at low rigidity the modulation of the helium to proton 
flux ratio is different before and after the solar maximum in 
2014. These results provide unique inputs to the under- 
standing of cosmic rays in the heliosphere. 
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