
A Unifying Theory of Distance from Calibration∗

Jarosław Błasiok
Columbia University
New York City, USA
jb4451@columbia.edu

Parikshit Gopalan
Apple

Cupertino, USA
parikg@gmail.com

Lunjia Hu
Stanford University

Stanford, USA
lunjia@stanford.edu

Preetum Nakkiran
Apple

Cupertino, USA
preetum@nakkiran.org

ABSTRACT

We study the fundamental question of how to define and measure
the distance from calibration for probabilistic predictors. While the
notion of perfect calibration is well-understood, there is no con-
sensus on how to quantify the distance from perfect calibration.
Numerous calibration measures have been proposed in the litera-
ture, but it is unclear how they compare to each other, and many
popular measures such as Expected Calibration Error (ECE) fail to
satisfy basic properties like continuity.

We present a rigorous framework for analyzing calibration mea-
sures, inspired by the literature on property testing. We propose a
ground-truth notion of distance from calibration: the ℓ1 distance to
the nearest perfectly calibrated predictor. We define a consistent cal-
ibration measure as one that is polynomially related to this distance.
Applying our framework, we identify three calibration measures
that are consistent and can be estimated efficiently: smooth calibra-
tion, interval calibration, and Laplace kernel calibration. The former
two give quadratic approximations to the ground truth distance,
which we show is information-theoretically optimal in a natural
model for measuring calibration which we term the prediction-only
access model. Our work thus establishes fundamental lower and
upper bounds on measuring the distance to calibration, and also
provides theoretical justification for preferring certain metrics (like
Laplace kernel calibration) in practice.
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·Mathematics of computing→ Probability and statistics; ·
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1 INTRODUCTION

Probabilistic predictions are central to many domains which involve
categorical, even deterministic, outcomes. Whether it is doctor pre-
dicting a certain incidence probability of heart disease, a meteorol-
ogist predicting a certain chance of rain, or an autonomous vehicle
system predicting a probability of road obstructionÐ probabilistic
prediction allows the predictor to incorporate and convey epistemic
and aleatory uncertainty in their predictions.

In order for predicted probabilities to be operationally mean-
ingful, and not just arbitrary numbers, they must be accompanied
by some form of formal probabilistic guarantee. The most basic
requirement of this form is calibration [8]. Given a distribution D

on X × {0, 1} representing points with binary labels, a predictor
𝑓 : X → [0, 1] which predicts the probability of the label being 1 is
calibrated if for every 𝑣 ∈ Im(𝑓 ), we have E[𝑦 |𝑓 (𝑥) = 𝑣] = 𝑣 . Cali-
bration requires that, for example, among the set of patients which
are predicted to have a 10% incidence of heart disease, the true
incidence of heart disease is exactly 10%. Calibration is recognized
as a crucial aspect of probabilistic predictions in many applica-
tions, from their original development in meteorological forecast-
ing [11, 22, 37, 38], to models of risk and diagnosis in medicine
[6, 12, 24, 30, 34, 35, 49], to image classification settings in com-
puter vision [36, 39]. There is a large body of theoretical work on
it in forecasting, for example [10, 14, 15, 25]. More recently, the
work of [23] on multicalibration as a notion of group fairness (see
also [27, 29]), and connections to indistinguishability [13] and loss
minimization [17, 18] have spurred renewed interest in calibration
from theoretical computer science.

In practice, it is of course rare to encounter perfectly calibrated
predictors, and thus it is important to quantify their distance from
calibration. However, while there is consensus across domains on
what it means for a predictor to be perfectly calibrated, there is
no consensus even within a domain on how to measure this dis-
tance. This is because the commonly-used metrics of calibration
have fundamental theoretical flaws, which manifest as practical
frustrations. Consider the Expected Calibration Error (ECE), which
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is the de-facto standard metric in the machine learning community
(e.g. [20, 36, 40, 44]).

Definition 1.1. For a predictor 𝑓 : X → [0, 1] and distribution D

over (𝑥,𝑦) ∈ X × {0, 1}, the expected calibration error ECED (𝑓 ) is
defined as

ECED (𝑓 ) = E
D

[�

�

�

�

E
D
[𝑦 | 𝑓 (𝑥)] − 𝑓 (𝑥)

�

�

�

�

]

.

The ECE has a couple of flaws: First, it is impossible to estimate in
general from finite samples (e.g. [33, Proposition 5.1] and [1]). This
is partly because estimating the conditional expectation E[𝑦 |𝑓 (𝑥) =
𝑣] requiresmultiple exampleswith the exact same prediction 𝑓 (𝑥) =
𝑣 , which could happen with arbitrarily low probability in a fixed
and finite number of examples over a large domain X. Second, the
ECE is discontinuous as a function of the predictor 𝑓 , as noted by
[14, 25]. That is, arbitrarily small perturbations to the predictor 𝑓
can cause large fluctuations in ECED (𝑓 ). We illustrate this with a
simple example below.

Consider the uniform distribution over a two-point space 𝑋 =

{𝑎, 𝑏}, with the label for 𝑎 is 0 whereas for 𝑏 it is 1. The predictor

𝑓 which always predicts 1/2 is perfectly calibrated under D, so

ECE(𝑓 ) = 0. In contrast, the related predictor where 𝑓 (𝑎) = (1/2 −

𝜀) and 𝑓 (𝑏) = (1/2 + 𝜀), for arbitrarily small 𝜀 > 0, has ECE(𝑓 ) =

1/2 − 𝜀. Thus the infinitesimal change from 𝑓 to 𝑓 causes a jump of
almost 1/2 in ECE.

This discontinuity also presents a barrier to popular heuristics
for estimating the ECE. For example, the estimation problem is
usually handled by discretizing the range of 𝑓 , yielding an alter-
nate quantity Ð the “binned-ECEžÐ that can be estimated from
samples [41]. However, the choice of discretization turns out to
matter significantly both in theory [31, Example 3.2] and in prac-
tice [42]. For example, both [36, Section 5] and [42, Section 5.3]
found that changing the number of bins used in binned-ECE can
change conclusions about which of two models is better calibrated.
In the simple two-point example above, if we choose 𝑚 bins of
equal width, then we observe a binned-ECE of either 0 or ≈ 1/2,
depending on whether𝑚 is odd or even!

To address the shortcomings of the ECE, a long line of works have
proposed alternate metrics of miscalibration. These metrics take
a diversity of forms: some are based on modifications to the ECE
(e.g. alternate binning schemes, debiased estimators, or smooth-
ing) [26, 31, 33, 46, 50], some use proper scoring rules, some rely
on distributional tests such as KolmogorovśSmirnov [21], Kernel
MMD [32], or other nonparametric tests [1]. Yet it is not clear what
to make of this smorgasbord of calibration metrics: whether these
different metrics are at all related to each other, and whether they
satisfy desirable properties (such as continuity). For a practitioner
training a model, if their model is calibrated under some of these
notions, but not others, what are they to make of it? Should they
report the most optimistic metrics, or should they strive to be cali-
brated for all of them? Or is there some inherent but undiscovered
reason why all these metrics should paint a similar picture?

Underlying this confusion is a foundational question: what is
the ground truth distance of a predictor from calibration? To our
knowledge, this question has not been answered or even asked
in the prior literature. Without a clearly articulated ground truth

and a set of desiderata that a calibration measure must satisfy, we
cannot hope to have meaningful comparisons among metrics.

At best one can say that ECE and (certain but not all) binning
based variants give an upper bound on the true distance to cali-
bration; we prove this formally for ECE in section 4.3. Thus if a
predictor can be guaranteed to have small ECE, then it is indeed
close to being calibrated in a formal sense (see for instance [23,
Claim 2.10]). But small ECEmight an unnecessarily strong (or even
impossible) constraint to satisfy in many realistic settings, espe-
cially when dealing with predictors which are allowed to produce
real-valued outputs. For example, consider the standard setting of a
deep neural network trained from random initialization for binary
classification. The predicted value 𝑓 (𝑥) ∈ [0, 1] is likely to be dif-
ferent for every individual 𝑥 in the population, which could result
in a similar situation to our example. The ECE is likely to greatly
overstate the true distance from calibration in such a setting.

This brings us to the main motivations behind this work. We
aim to:

• Formulate desiderata for good calibrationmeasures, based on
a rigorous notion of ground truth distance from calibration.

• Use our desiderata to compare existing calibration measures,
identifying measures that are good approximations to the
ground truth distance.

• Apply theoretical insights to inform practical measurements
of calibration in machine learning, addressing known short-
comings of existing methods.

Summary of Our Contributions. We summarize the main contri-
butions of our work:

• Framework for measuring the distance to calibration

(Section 4).We propose a ground truth notion of distance
to calibration which is the ℓ1 distance to the closest per-
fectly calibrated predictor, inspired by the property testing
literature [3, 16]. We define the set of consistent calibration
measures to be those that provide polynomial upper and
lower bounds on the true distance.

• Consistent calibration measures.We identify three cali-
bration measures that are in fact consistent: two have been
proposed previously [25, 32] and the third is new. Interest-
ingly, the two prior measures (smooth and kernel calibration)
were proposed with other motivations in mind, and not as
standalone calibration measures. We consider it surprising
that they turn out to be intimately related to the ground
truth ℓ1 distance.

(1) Interval calibration error (Section 6). This is a new
measure which is reminiscent of the binning estimate that
is popular in practice [20, 36, 40]. We show that by ran-
domizing both the width of each bin and using a random
offset, and by adding the average bin width to the resulting
calibration error, one can derive a consistent estimator that
this is always an upper bound on the true distance, and it
is never more than the square root of the true distance.

(2) Smooth calibration error (Section 7) was proposed in
the work of [25]. We show using LP duality that it is a
constant factor approximation of the lower distance to
calibration, which we define to be, roughly speaking, a
particular Wasserstein distance to perfect calibration. The
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lower distance to calibration is always at most the true
distance to calibration and is always at least a constant
times the true distance squared.

(3) Laplace-kernel calibration error (Section 8). This is
a calibration measure that was proposed in the work of
[32]. While they did not recommend a particular choice
of kernel, we show that using the Laplace kernel happens
to yield a consistent measure, while using the Gaussian
kernel does not.

In contrast to these measures, other commonly used heuris-
tics (ECE and binning based) do not meet our criteria for be-
ing consistent calibration measures. Our work thus provides
a firm theoretical foundation on which to base evaluations
and comparisons of various calibration measures; such a
foundation was arguably lacking in the literature.

• Matching lower bounds. Smooth calibration and interva
calibration provide quadratic approximations to the true dis-
tance from calibration. We prove that this is the best possible
approximation, by showing an information-theoretic bar-
rier: for calibration measures depending only on the labels 𝑦
and predictions 𝑓 , which are oblivious to the points 𝑥 them-
selves (as most calibration measures are), it is impossible
to obtain better than a quadratic approximation to the true
distance from calibration. Thus, the measures above are in
fact optimal in this sense.

• Better efficiency in samples and run time.We present
improved algorithms and sample complexity bounds for com-
puting some calibration measures. We present the first ef-
ficient algorithm for computing smooth calibration error
using a linear program. We also observe that the techniques
of [45] yield an alternate algorithm to computing kernel cal-
ibration error which is (somewhat surprisingly) reminiscent
of randomized binning.

• Insights for Practice. Our results point to concrete take-
aways for practical measurements of calibration. First, we
recommend using either Laplace kernel calibration or Inter-
val calibration, as calibration measures that are theoretically
consistent, computationally efficient, and simple to imple-
ment. Second, if Binned-ECE must be used, we recommend
randomly shifting the bin boundaries together, and adding
the average width of the bins to the calibration estimate.
These modifications turn binning into a upper-bound on cal-
ibration distance, and bring it closer to interval calibration
error which is a consistent calibration measure (Section 2.3).
Finally, we experimentally evaluate our calibration measures
on a family of synthetic data distributions, to demonstrate
their behavior in more natural settings (beyond worst-case
guarantees) (see Section 10 of the full version [5]).

Organization of this paper. The rest of this paper is organized as
follows. In Section 2 we present an informal overview of our main
results, highlighting the definitions and key conceptual ideas. We
discuss related works in Section 3. Section 4 sets up our notion of
true distance from calibration and the desiderata that we seek from
calibration measures. We also explain how ECE and some other
measures fail these desiderata. Section 5 defines the upper and lower
distance to calibration. Section 6 analyzes Interval Calibration error,

Section 7 analyzes Smooth calibration error and Section 8 analyzes
the Laplace kernel calibration error. In the full version of this paper
[5] we give sample complexity bounds and efficient algorithms for
estimating various calibration measures using random sample, and
we experimentally evaluate our calibration measures on a repre-
sentative family of synthetic data distributions. The full version [5]
includes all the technical proofs for this paper.

2 OVERVIEW OF OUR RESULTS

We start by setting up some notation for calibration in the binary
classification setting. LetX be a discrete domain, defining the input
space. We are given samples (𝑥,𝑦) drawn from a distribution D on
X × {0, 1}. A predictor is a function 𝑓 : X → [0, 1], where 𝑓 (𝑥) is
interpreted as an estimate of Pr[𝑦 = 1 | 𝑥]. For a predictor 𝑓 and
distribution D, we often consider the induced joint distribution of
prediction-label pairs (𝑓 (𝑥), 𝑦) ∈ [0, 1] × {0, 1}, which we denote
D𝑓 . We say a prediction-label distribution Γ over [0, 1] × {0, 1} is
perfectly calibrated if E(𝑣,𝑦)∼Γ [𝑦 | 𝑣] = 𝑣 . For a distribution D over
X × {0, 1}, we say a predictor 𝑓 : X → [0, 1] is perfectly calibrated

w.r.t.D if the induced distributionD𝑓 is perfectly calibrated. Finally,
a calibration measure 𝜇 is a function that maps a distributionD and
a predictor 𝑓 : X → [0, 1] to a value 𝜇D (𝑓 ) ∈ [0, 1].

2.1 Framework for Measuring Distance from
Calibration

The primary conceptual contribution of this work is a formal frame-
work in which we can reason about and compare various measures
of calibration. We elaborate upon the key ingredients of this frame-
work.

The true distance to calibration. We define the ground truth dis-
tance from calibration as the distance to the closest calibrated pre-
dictor. Measuring distance requires a metric on the space of all
predictors. A natural metric is the ℓ1 metric given by ℓ1 (𝑓 , 𝑔) =

ED |𝑓 (𝑥) − 𝑔(𝑥) |. Accordingly we define the true distance from
calibration as

dCED (𝑓 ) := inf
𝑔∈cal(D)

E
D
|𝑓 (𝑥) − 𝑔(𝑥) |, (1)

where cal(D) denotes the set of predictors that are perfectly cal-
ibrated w.r.t. D. This definition is intuitive, and natural from a
property testing point of view [3, 16, 43], but has not been pro-
posed before to our knowledge. Note that it is not clear how to
compute this distance efficiently: the set cal(D) is non-convex, and
in fact it is discrete when the domain X is discrete. A more subtle
issue is that it depends on knowing the domain X, whereas tradi-
tionally calibration measures only depend on the joint distribution
D𝑓 of predictions and labels.

Access model. Calibration measures 𝜇D (𝑓 ) can depend on the
entire distribution D, as well as on the predictor 𝑓 : X → [0, 1].
However, we would prefer measures which only depend on the
prediction-label joint distributionD𝑓 , similar to standard loss func-
tions inmachine learning and classic calibrationmeasures [9, 10, 15].
This distinction has important consequences for the power of cali-
bration measures, which we describe shortly. We delineate the two
levels of access as follows:
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(1) Sample access (SA). In the SA model, 𝜇D (𝑓 ) is allowed to
depend on the full joint distribution (𝑥, 𝑓 (𝑥), 𝑦) for (𝑥,𝑦) ∼
D. This terminology follows [13].

(2) Prediction-only access (PA). In the PA model, 𝜇D (𝑓 ) is
only allowed to depend onD𝑓 , the joint distribution (𝑓 (𝑥), 𝑦)

for (𝑥,𝑦) ∼ D. In particular, 𝜇 cannot depend on the input
domain X.

Observe that the ground truth distance (dCE) is defined in the
sample access model, since Equation (1) depends on the domain
and distribution of 𝑥 . On the other hand, we often desire measures
that can be computed in the prediction access model.

Robust completeness and soundness. We propose two desiderata
for any calibration measure 𝜇: robust completeness and robust
soundness, in analogy to completeness and soundness in proof
systems.

(1) Robust completeness requires 𝜇D (𝑓 ) ≤ O(dCED (𝑓 )𝑐 )

for some constant 𝑐 . This guarantees that any predictor
which is close to a perfectly calibrated predictor (in ℓ1) has
small calibration error under 𝜇. This is a more robust guaran-
tee than standard completeness, which in this setting would
mean just that dCED (𝑓 ) = 0 implies 𝜇D (𝑓 ) = 0, but would
not give any guarantees when dCED (𝑓 ) is non-zero but
small.

(2) Robust soundness requires 𝜇D (𝑓 ) ≥ Ω(dCED (𝑓 )𝑠 ) for
some constant 𝑠 . That is, if dCED (𝑓 ) is large then so is
𝜇D (𝑓 ).

We call a calibration measure consistent (or more precisely, (𝑐, 𝑠)-
consistent) if it satisfies both robust completeness and robust sound-
ness, for some parameters 𝑐, 𝑠 > 0:

Ω(dCED (𝑓 )𝑠 ) ≤ 𝜇D (𝑓 ) ≤ O(dCED (𝑓 )𝑐 ) . (2)

Consistent measures are exactly those that are polynomially-related
to the true distance from calibration, dCED (𝑓 ). The reader might
wonder if, in our definition of consistent calibration measures
(Equation 2), we could require constant factor approximations to
dCED (𝑓 ) rather than polynomial factors. It turns out that there
are information-theoretic barriers to such approximations in the
prediction-access model. The core obstacle is that the true distance
dCE is defined in the SA model, and one cannot compute it exactly
in the prediction-only access model or approximate it within a
constant factor. Indeed, we show that any calibration measure com-
putable in the prediction-access must satisfy 𝑠/𝑐 ≥ 2: information
theoretically, a quadratic approximation is the best possible.

Another nice property of our definition is that the set of all
consistent measures stays the same, even if we define distances
between predictors using the ℓ𝑝 metric for 𝑝 > 1 in place of ℓ1,
since all ℓ𝑝 measures are polynomially related.

Desiderata for calibration measures. Given the discussion so far,
we can now stipulate three desiderata that we would like calibration
measures 𝜇 to satisfy:

(1) Access: 𝜇 is well-defined in the Prediction-only access model
(PA).

(2) Consistency: 𝜇 is (𝑐, 𝑠)-consistent ś that is, 𝜇 is polynomi-
ally related to the true distance from calibration dCE. Ideally

we have 𝑠/𝑐 = 2, which is optimal in the PA model (Corol-
lary 4.6).

(3) Efficiency: 𝜇D (𝑓 ) can be computed within accuracy 𝜀 in
time poly(1/𝜀) using poly(1/𝜀) random samples from D𝑓 .

Various notions that have been proposed in the literature fail one or
more of these desiderata; ECE for instance fails robust completeness
since an arbitrarily small perturbation of a perfectly calibrated
predictor could result in high ECE. We refer the reader to Table 1
for a more complete treatment of such notions.

2.2 Information-Theoretic Limitations of the
Prediction-Access Model

Upper and Lower Distances. We start with the following question,
which formalizes how well one can approximate the true distance
to calibration in the prediction-only access (PA) model.

For a given distribution D and predictor 𝑓 , how large or small

can dCED′ (𝑓 ′) be, among all other (D′, 𝑓 ′) which have the same

prediction-label distribution (D′
𝑓 ′

= D𝑓 )?

We denote the minimum and maximum using dCED (𝑓 ) and

dCED (𝑓 ) respectively, which we call the lower and upper distance
to calibration respectively. Hence

dCED (𝑓 ) ≤ dCED (𝑓 ) ≤ dCED (𝑓 ). (3)

Both these quantities are defined in the PA model, in which they
represent the tightest lower and upper bounds respectively that one
can prove on dCE. As framed, they involve considering all possible
domains and distributions D′ over them. But we can give simpler
characterizations of these notions.

The upper distance dCE can be alternatively viewed as the mini-
mum distance to calibration via post-processing: it is the distance
to the closest calibrated predictor 𝑔 ∈ cal(D) such that 𝑔 = 𝜅 (𝑓 )

can be obtained from 𝑓 by post-processing its predictions. For the
lower distance dCE, we can abstract away the domain and ask only
for a coupling between 𝑓 and a perfectly calibrated predictor:

Consider all joint distributions Π of (𝑢, 𝑣,𝑦) over [0, 1] × [0, 1] ×

{0, 1} where (𝑣,𝑦) ∼ D𝑓 and the distribution of (𝑢,𝑦) is perfectly

calibrated. How small can E |𝑢 − 𝑣 | be?

Limiting ourselves to couplings of the form (𝑔(𝑥), 𝑓 (𝑥), 𝑦) ∼ D

where 𝑔 ∈ cal(D) would recover dCE. Our definition also permits
couplings that may not be realizable on the domain X, giving a
lower bound.

An equivalent view of these distances is that the upper distance
only considers those calibrated predictors whose level sets are
obtained by a coarsening of the level sets of 𝑓 . The lower distance
allows calibrated predictors that are obtained by a finer partitioning
of the level sets of 𝑓 . Theorem 5.5 proves the equivalence of these
various formulations of dCE and dCE.

A Quadratic Barrier. How tight are the lower and upper bounds
in Equation (3)? That is, how tightly can dCE be determined in the
Prediction-only access model? In Lemma 4.5, we show that there
can be at least a quadratic gap in between any two adjacent terms
in Equation (3). We construct two distributions D1 and D2 and a
predictor 𝑓 such that

• D1
𝑓
= D2

𝑓
, so the upper and the lower distance are equal

for both distributions, but they are well-separated from each
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other; dCED𝑖 (𝑓 ) = Θ(𝛼2) whereas dCED𝑖 (𝑓 ) = Θ(𝛼) for
𝑖 ∈ {1, 2}.

• dCED𝑖 (𝑓 ) equals either dCE or dCE depending on whether
𝑖 = 1 or 2.

This example raises the question of whether an even bigger gap
can exist, which we answer next.

2.3 Consistent Calibration Measures

Wedescribe three consistent calibrationmeasures, and their relation
to the true distance from calibration.

Interval calibration (Section 6). Interval calibration error is a
subtle modification to the heuristic of binning predictions into
buckets and computing the expected calibration error. Formally,
given a partition I = {𝐼1, . . . , 𝐼𝑚} of [0, 1] into intervals of width
bounded by𝑤 (I), we first consider the standard quantity

binnedECED (𝑓 ,I) =
∑︁

𝑗∈[𝑚]

| E[(𝑓 − 𝑦)1(𝑓 ∈ 𝐼 𝑗 )] |. (4)

This quantity, as the name suggests, is exactly the Binned-ECE for
the bins defined by the partition I. We then define our notion of
Interval calibration error (intCE) as the minimum of this Binned-
ECE over all partitions I, when “regularizedž by maximum bin
width𝑤 (I):

intCED (𝑓 ) := inf
I: Interval partition

(binnedECED (𝑓 ,I) +𝑤 (I)) .

In Theorem 6.2, we show that intCE satisfies the following bounds.

dCED (𝑓 ) ≤ intCED (𝑓 ) ≤ 4
√︃

dCED (𝑓 ).

This shows that the measure intCE is (1/2, 1)-consistent, and gives
the best possible (quadratic) approximation to the true distance to
calibration. The outer inequality implies that the gap between the
lower and upper distance is no more than quadratic, hence the gap
exhibited in Lemma 4.5 is tight.

We now address the computational complexity. While the defi-
nition of interval calibration minimizes over all possible interval
partitions, in Section 6.2 of the full version [5], we show that it
suffices to consider a geometrically decreasing set of values for the
width 𝑤 , with a random shift, to get the desired upper bound on
dCE.

Our result suggests an additional practical takeaway: if the stan-
dard binning algorithm must be used to measure calibration, then
the bin width should be added to the binnedECE. This yields a
quantity which is at least an upper bound on the true distance
to calibration, which is not true without adding the bin widths.
Specifically, for any interval partition I, we have:

dCED (𝑓 ) ≤ binnedECE(𝑓 ,I) +𝑤 (I). (5)

Thus, if we add the bin width, then binnedECE can at least be used
to certify closeness to calibration. The extreme case of width 0

buckets corresponds to ECE, while the case when the bucket has
width 1 corresponds to the weaker condition of accuracy in ex-
pectation [23]. It is natural to penalize larger width buckets which
allow cancellations between calibration errors for widely separated
values of 𝑓 . The notion of using bucket width as a penalty to com-
pare calibration error results obtained from using differing width

buckets is intuitive in hindsight, but not done in prior work to our
knowledge (e.g. [36]).

Smooth Calibration (Section 7). Smooth calibration is a calibration
measure first defined by [25], see also [14, 19]. Smooth calibration
error is defined as the following maximization over the family 𝐿 of
all bounded 1-Lipschitz functions𝑤 : [0, 1] → [−1, 1]:

smCED (𝑓 ) := smCE(D𝑓 ) = sup
𝑤∈𝐿

E
(𝑣,𝑦)∼D𝑓

[𝑤 (𝑣) (𝑦 − 𝑣)] .

Without the Lipschitz condition on functions 𝑤 , this definition
would be equivalent to ECE(𝑓 ). Adding the Lipschitz condition
smooths out the contribution from each neighborhood of 𝑣 and
results in a calibration measure that is Lipschitz in 𝑓 with respect to
the ℓ1 distance. This notion has found applications in game theory
and leaky forecasting [14, 25]. Our main result is that the smooth
calibration error captures the lower distance from calibration up to
constant factors:

1

2
dCED (𝑓 ) ≤ smCED (𝑓 ) ≤ 2 dCED (𝑓 ) .

We find this tight connection to be somewhat surprising, since
smCE (as a maximization over weight functions𝑤 ) and dCE (as a
minimization over couplings) have a priori very different definitions.
They turn out to be related via LP duality, in a way analogous
to Kantorovich-Rubinstein duality of Wasserstein distances. We
present a high-level overview of the proof at the start of Section 7.
Along the way, we give an efficient polynomial time algorithm for
estimating the smooth calibration error, the first such algorithm
to our knowledge. To summarize the relations between notions
discussed so far, we have

smCE ≈ dCE ≤ dCE ≤ dCE ≤ intCE ≤ 4
√︁

dCE (6)

For each of the first three inequalities, we show that the gap can be
quadratic. The final inequality shows that these gaps are at most

quadratic.

Kernel Calibration (Section 8). The notion of kernel calibration
error was introduced in [32] as Maximum Mean Calibration Error

(MMCE). Kernel calibration can be viewed as a variant of smooth
calibration error, where we use as weight functions𝑤 : [0, 1] → R

which are bounded with respect to a norm ∥ · ∥𝐾 on the Reproducing
Kernel Hilbert Space associated with some positive-definite kernel
𝐾 :

kCE𝐾D (𝑓 ) := sup
𝑤:∥𝑤 ∥𝐾 ≤1

E
(𝑣,𝑦)∼D𝑓

[𝑤 (𝑣) (𝑦 − 𝑣)] .

WhenD𝑓 is an empirical distribution over samples {(𝑣1, 𝑦1), . . . ,
(𝑣𝑛, 𝑦𝑛)}, this can be computed as

kCE𝐾D (𝑓 ) =

√︄

1

𝑛2

∑︁

𝑖, 𝑗

(𝑦𝑖 − 𝑣𝑖 ) (𝑦 𝑗 − 𝑣 𝑗 )𝐾 (𝑣𝑖 , 𝑣 𝑗 ).

The original motivation of introducing the kernel calibration
error was to provide a differentiable proxy for ECE Ð allowing for
the calibration error to be explicitly penalized during the training
of a neural network. However, [32] does not discuss how the choice
of the kernel affects the resulting measure, although they used
Laplace kernel in their experiments. We prove here that this choice
has strong theoretical justification Ð the kernel calibration error
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Table 1: Calibration measures proposed in, or based on, prior

works. Here P.S.R. is short for proper scoring rules.

Metric Continuity Completeness Soundness

(ℓ𝑝 -)ECE ✗ ✓ ✓

Binned-ECE ✗ ✓ ✗

P.S.R. (Brier, NLL) ✓ ✗ ✓

NCE [48] ✓ ✗ ✓

ECCE [1] ✗ ✓ ✓

MMCE [32] ✓ ✓ ✓

smCE [25] ✓ ✓ ✓

with respect to Laplace kernel is a consistent calibration measure;
specifically for some positive absolute constants 𝑐1, 𝑐2 > 0,

𝑐1dCE(𝑓 ) ≤ kCELap (𝑓 ) ≤ 𝑐2

√︃

dCE(𝑓 ).

This says that we can view kernel calibration with respect to the
Laplace kernel as fundamental measure in its own right, as op-
posed to a proxy for (the otherwise flawed) ECE. We also show that
the choice of kernel is in fact crucial: for the Gaussian kernel, an-
other commonly used kernel across machine learning, the resulting
measure is not robustly sound anymore (Theorem 8.6).

2.4 Better Algorithms and Sample Complexity

For many of the measures discussed in the paper, we provide effi-
cient algorithms yielding an 𝜀 additive approximation to the mea-
sure in question, using samples from the distribution D𝑓 . In most
cases, those results follow a two step paradigm, we give an algo-
rithm that approximates the measure on a finite sample, followed
by a generalization bound. Our generalization bounds follow from
essentially standard bounds on Rademacher complexity of the func-
tion families involved in defining our measures (e.g. bounding the
Rademacher complexity of 1-Lipshitz functions for smCE). On the
algorithmic side, we prove that the smCE on the empirical distri-
bution over a sample of size 𝑛 can be computed by solving a linear
program with O(𝑛) variables and constraints. Similarly, the dCE
can be approximated up to an error 𝜀, by linear time prepossessing
followed by solving a linear program with O(𝜀−1) variables and
constrains.

We provide an alternate algorithm for estimating the kernel
calibration error with Laplace kernel, using the Random Features

Sampling technique from [45]. This algorithm does not improve on
naive estimators in worst-case guarantees, but it reveals an intrigu-
ing connection. After unwrapping the random features abstraction,
the final algorithm is similar to the popular interval binning cal-
ibration estimator, where we choose the length of the interval at
random from a specific distribution, and introduce a uniformly
random shift. We find it surprising that an estimate of this type is
exactly equal to (kCELap)2 in expectation.

3 RELATED WORK

We start by discussing the high-level relation between our work
and other areas of theoretical computer science, and then discuss
work on calibration in machine learning and forecasting.

Property testing. Our framework for defining the distance to cal-
ibration is inspired by the elegant body of literature on property
testing [3, 16, 47]. Indeed, the notions of ground truth distance to
calibration, robust completeness and robust soundness are in direct
correspondence to notions in the literature on tolerant property
testing and distance estimation [43]. Like in property testing, algo-
rithms for estimating calibration measures operate under stringent
resource constraints, although the constraints are different. In prop-
erty testing, the algorithm only has a local view of the object based
on a few queries. In our setting, the constraint comes from having
the operate in the prediction-only access model whereas the ground
truth distance is defined in the sample-access model.

Multicalibration. Recent interest in calibration and its variants in
theoretical computer science has been spurred by the work of [23]
introducing multicalibration as a group fairness notion (see also [28,
29]). This notion has proved to be unexpectedly rich even beyond
the context of fairness, with connections to indistinguishability [13]
and loss minimization [18]. Motivated by the goal of finding more
computationally efficient notions of multicalibration, notions such
as low-degree multicalibration [19] and calibrated multiaccuracy
have been analyzed in the literature [17], some of these propose
new calibration measures.

Level of access to the distribution. The sample access model is
considered in the work of [13], who relate it to the notion of mul-
ticalibration [23]. Prediction-only access is a restriction of sample
access which is natural in the context of calibration, and is incom-
parable to the no-access model of [13] where on gets access to point
label pairs. This model is not considered explicitly in [13], and the
name prediction-only access for it is new. But the model itself is
well-studied in the literature on calibration [7, 10, 15], indeed all
existing notions of calibration that we are aware of are defined in
the PA model, as are the commonly used losses in machine learning.

Prior work on calibration measures. Several prior works have
proposed alternate measures of calibration (Table 1 lists a few of
them). Most focus on the how: they give a formula or procedure
for computing of the calibration measure from a finite set of sam-
ples, sometimes accompanied by a generalization guarantee that
connects it to some property of the population. There is typically
not much justification for why the population quantity is a good
measure of calibration error, or discussion of its merits relative to
other notions in the literature (notable exceptions are the works
of [14, 25]). The key distinction in our work is that we start from a
clear and intuitive ground truth notion and desiderata for calibra-
tion measures, we analyze measures based on how well they satisfy
these desiderata, and then give efficient estimators and generaliza-
tion guarantees for consistent calibration measures.

Our desiderata reveal important distinctions between measures
that were proposed previously; Table 1 summarizes how well cali-
bration measures suggested in prior works satisfy our desiderata. It
shows that a host of calibration measures based on variants of ECE,
binning and proper scoring rules fail to give basic guarantees. We
present these guarantees formally in section 4.3. Briefly, many ECE
variants suffer from the same flaws as ECE itself, and proper scoring
rules suffer different issues we describe below. More discussions
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about other notions of calibration from the literature can be found
in Appendix A of the full version [5].

Proper Scoring Rules. Proper scoring rules such as the Brier
Score [4] or Negative-Log-Loss (NLL) are popular proxies for mis-
calibration. Every proper scoring rule satisfies soundness, since if
the score is 0, the function 𝑓 is perfectly calibrated. However, such
rules violate completeness: there are perfectly-calibrated functions
for which the score is non-zero. For example, if the true distribu-
tion on labels 𝑝 (𝑦 |𝑥) = Bernoilli(0.5), then the constant function
𝑓 (𝑥) = 0.5 is perfectly calibrated but has non-zero Brier score. This
is because proper scoring rules measure predictive quality, not just
calibration. The same holds for Normalized Cross Entropy (NCE),
which is sound but not complete.

Smooth and Kernel Calibration. We show that some def-
initions in the literature do satisfy our desiderataÐ namely the
notions of weak calibration (smooth calibration in our terminology)
introduced in [25], and MMCE (calibration with a Laplace kernel
in our terminology) introduced in [32]. Smooth calibration was
introduced under the name “weak calibrationž in [25], the terminol-
ogy of smooth calibration is from [19]1. Interestingly, these were
developed with different motivations. MMCE was proposed by [32]
for practical reasons: as a differentiable proxy for ECE, to allow
optimizing for calibration via backpropagation. One of the moti-
vations behind smooth calibration, discussed in both [14, 25] was
to address the discontinuity of the standard binning measures of
calibration and ECE. But it main application was as a weakening of
perfect calibration, to study the power of deterministic forecasts in
the online setting and derandomize the classical result of [15] on
calibrated forecasters.

Our work establishes that these measures are not just good ways
to measure calibration, they are more fundamental than previously
known. Smooth calibration is within constant factors of the lower
distance to calibration, and yields the best possible quadratic ap-
proximation to the true distance to calibration.

4 A FRAMEWORK FOR CALIBRATION
MEASURES

In this section, we will present our framework for calibration mea-
sures. We start by characterizing the set of perfectly calibrated
predictors. We then propose our ground truth notion of distance
from calibration, in analogy to the distance from a code in property
testing. Building on this, we formulate robust completeness and
soundness guarantees that we want calibration measures to satisfy.
Finally, we show information theoretic reasons why any calibration
measure can only hope to give a quadratic approximation to the
ground truth distance. We start with some notation.

Notation. Let X be a discrete domain.2 Let D be a distribution
onX× {0, 1}; we denote a sample fromD by (𝑥,𝑦) ∼ D where 𝑥 ∈

1[14] introduced a notion of “smooth calibrationž with an unrelated definition, but
thankfully, they proved that their “smooth calibrationž is in fact polynomially related
to the [19] notion Ð therefore in our framework it is also a consistent calibration
measure.
2We will assume that the domain X is discrete but possibly very large. As a conse-
quence, Im(𝑓 ) is discrete, and events such as 𝑓 (𝑥 ) = 𝑣 for 𝑣 ∈ Im(𝑓 ) are well
defined. We can think of the finiteness assumption reflecting the fact that inputs to
any model have finite precision. We do this to avoid measure-theoretic intricacies, but
assuming 𝑓 : X → [0, 1] is measurable should suffice when X is infinite.

X, 𝑦 ∈ {0, 1}. A predictor is a function 𝑓 : X → [0, 1], where 𝑓 (𝑥)
is an estimate of Pr[𝑦 = 1|𝑥]. We define the Bayes optimal predictor
𝑓 ∗ as 𝑓 ∗ (𝑥) = E[𝑦 |𝑥]. Note that D is completely specified by the
marginal distribution DX on X, and the conditional expectations
𝑓 ∗. We let FX denote the set of all predictors 𝑓 : X → [0, 1]. We
define the ℓ1 distance in FX as

ℓ1 (𝑓 , 𝑔) = E
D
|𝑓 (𝑥) − 𝑔(𝑥) |.

For a distribution D and predictor 𝑓 , we use D𝑓 to denote the
distribution over Im(𝑓 ) × {0, 1} of (𝑓 (𝑥), 𝑦) where (𝑥,𝑦) ∼ D. Two
predictors 𝑓 and 𝑔 might be far apart in ℓ1, yet 𝐷 𝑓 and D𝑔 can be

identical. 3

A calibration measure 𝜇 is a function that maps a distribution D

and a predictor 𝑓 : X → [0, 1] to a value 𝜇D (𝑓 ) ∈ [0, 1]. A crucial
question is the level of access to the underlying distribution that a
procedure for computing 𝜇 has. We refer to the setting where an
algorithm has access to (𝑥, 𝑓 (𝑥), 𝑦) for (𝑥,𝑦) ∼ D as the sample-
access model or SA model for short following [13]. Calibration
measures are typically defined in the more restricted prediction-

only access model or PA model for short, where we only get access
to the joint distribution D𝑓 of prediction-label pairs (𝑓 , 𝑦). Such
calibration measures 𝜇 can be defined as follows: we first define
𝜇 (Γ) ∈ [0, 1] for every distribution Γ over [0, 1]×{0, 1}, and then for
a distribution D and a predictor 𝑓 , we define 𝜇D (𝑓 ) to be 𝜇 (D𝑓 ).

We say a distribution Γ over [0, 1] × {0, 1} is perfectly calibrated

if E(𝑣,𝑦)∼Γ [𝑦 |𝑣] = 𝑣 . For a distribution D over X × {0, 1}, we say
a predictor 𝑓 : X → [0, 1] is perfectly calibrated w.r.t. D if D𝑓 is
perfectly calibrated. We use cal(D) to denote the set of predictors
𝑓 that is perfectly calibrated w.r.t. D.

There is an injection from cal(D) to the set of partitions of the
domain X. A consequence is that when X is finite, so is cal(D). In
particular, cal(D) is not a convex subset of FX . We describe the
injection below for completeness, although it is not crucial for our
results. For a partition S = {𝑆𝑖 }

𝑚
𝑖=1, we define 𝑔S (𝑥) = 𝐸 [𝑦 |𝑥 ∈ 𝑆𝑖 ]

for all 𝑥 ∈ 𝑆𝑖 . It is clear that 𝑔S ∈ cal(D). For a predictor 𝑓 , let
level(𝑓 ) be the partition of the domain X given by its level sets. By
the definition of calibration, 𝑓 ∈ cal(D) iff it is equal to 𝑔level(𝑓 ) ,
which establishes the injection.

4.1 Desiderata for Calibration Measures

A calibration measure 𝜇 is a function that for a given distributionD,
maps predictors 𝑓 in FX to values in [0, 1]. We denote this value as
𝜇D (𝑓 ). At the bare minimum, we want 𝜇D to satisfy completeness
and soundness, meaning that for all D, 𝑓 ,

𝜇D (𝑓 ) = 0 if 𝑓 ∈ cal(D) (Completeness)

𝜇D (𝑓 ) > 0 if 𝑓 ∉ cal(D) (Soundness)

Ideally, we want these guarantees to be robust: 𝜇 (𝑓 ) is small if 𝑓 is
close to calibrated, and large is 𝑓 is far from calibrated. Formalizing
this requires us to specify how we wish to measure the distance
from calibration. A family of metrics𝑚 is a collection of metrics

3Consider the uniform distribution on X = {0, 1} and let 𝑓 ∗ (𝑥 ) = 1/2 so labels
are drawn uniformly. Consider the predictors 𝑓 (𝑥 ) = 𝑥 and 𝑔 (𝑥 ) = 1 − 𝑥 . While
ℓ1 (𝑓 , 𝑔) = 1, the distributions D𝑓 and D𝑔 are identical, since 𝑓 /𝑔 is uniform on
{0, 1}, and the labels are uniform conditioned on 𝑓 /𝑔.
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𝑚D on FX for every distribution D on X. For instance, the ℓ𝑝
distance on FX under distribution D for 𝑝 ≥ 1 is given by

ℓ𝑝,D (𝑓 , 𝑔) = E
D
[|𝑓 (𝑥) − 𝑔(𝑥) |𝑝 ]1/𝑝

We note that𝑚D only ought to depend on the marginal DX on X.
When the distribution D is clear, we will sometimes suppress the
dependence on the distribution and refer to𝑚 as a metric rather
than a family. Indeed, it is common to refer to the above distance
as ℓ𝑝 distance, ignoring the dependence on D.

Definition 4.1 (True distance to calibration). Given a metric family
𝑚 on FX , we define the true𝑚-distance to calibration under D as

dCE𝑚D (𝑓 ) = min
𝑔∈cal(D)

𝑚D (𝑓 , 𝑔) .

With this definition in place, we define consistent calibration
measures with respect to𝑚.

Definition 4.2 (Consistent calibration measures). For 𝑐, 𝑠 ≥ 0, we
say that 𝜇 satisfies 𝑐-robust completeness w.r.t.𝑚 if there exist a
constant 𝑎 ≥ 0 such that for every distribution D on X × {0, 1},
and predictor 𝑓 ∈ FX

𝜇D (𝑓 ) ≤ 𝑎(dCE𝑚D (𝑓 ))𝑐 (Robust completeness)

and 𝑠-robust soundness w.r.t.𝑚 if there exist 𝑏 ≥ 0 such that for
every distribution D on X × {0, 1}, and predictor 𝑓 ∈ FX

𝜇D (𝑓 ) ≥ 𝑏 (dCE𝑚D (𝑓 ))𝑠 . (Robust soundness)

We say that 𝜇 is an (𝑐, 𝑠)-consistent calibration measure w.r.t𝑚 if
both these conditions hold, and we define its approximation degree
to be 𝑠/𝑐 . 4 We say 𝜇 it is an consistent calibration measure w.r.t.𝑚
if there exists 𝑐, 𝑠 ≥ 0 for which (𝑐, 𝑠)-consistency for𝑚 holds.

To see that these names indeed make sense, observe that if 𝑓 is
𝜀-close to being perfectly calibrated, then robust completeness en-
sures that 𝜇D (𝑓 ) is𝑂 (𝜀𝑐 ) and hence goes to 0with 𝜀. Robust sound-
ness ensures that if 𝜇D (𝑓 ) = 𝜀 → 0, then dCE𝑚

D
(𝑓 ) = 𝑂 (𝜀1/𝑠 ) → 0.

Conversely, when the true𝑚-distance to calibration for 𝑓 is 𝜂 ≫ 0,
robust soundness ensures that 𝜇D (𝑓 ) = Ω(𝜂𝑠 ) is also bounded
away from 0.

Given a sequence of predictors {𝑓𝑛}, we say that the sequence
converges to 𝑓 ∈ FX , denote 𝐹𝑛 → 𝑓 if

lim
𝑛→∞

𝑚D (𝑓𝑛, 𝑓 ) = 0.

Robust soundness ensures that if 𝑓𝑛 → 𝑔 ∈ cal(D), then 𝜇 (𝑓𝑛) → 0.
dCE𝑚

D
satisfies a stronger continuity property, namely that it is

1-Lipshcitz with respect to𝑚D :

|dCE𝑚D (𝑓 ) − dCE𝑚D (𝑓 ′) | ≤ 𝑚D (𝑓 , 𝑓 ′) .

This property is easy to verify from the definition. It implies that
for any 𝑓 ∈ FX not necessarily calibrated, if 𝑓𝑛 → 𝑓 , 𝜇 (𝑓𝑛) →

𝜇 (𝑓 ). Not every ℓ1-consistent calibrationmeasure have this stronger
property of convergence everywhere, although some do.

Indeed, the following lemma implies that among all calibration
measures that satisfy completeness and are 1-Lipschitz with re-
spect to𝑚D , dCE𝑚

D
is the largest. Thus any consistent calibration

measure that can grow as 𝜔 (dCE𝑚) cannot be Lipschitz.

4For metrics that can take on arbitrarily small values (such as the ℓ𝑝 metrics), it follows
that 𝑠 > 𝑐 .

Lemma 4.3. Any calibration measure 𝜇D which satisfies complete-

ness and is 𝐿-Lipschitz w.r.t𝑚D must satisfy 𝜇D (𝑓 ) ≤ 𝐿 dCED (𝑓 )

for all 𝑓 ∈ FX .

Metric families that are particularly important to us are the ℓ𝑝
metrics. Since all ℓ𝑝 measures are polynomially related, the set of
ℓ𝑝 consistent calibration metrics is independent of 𝑝 for bounded 𝑝 .

Lemma 4.4. The set of ℓ𝑝 -consistent calibration measures is identi-

cal for all 𝑝 ∈ [1,∞).

Given this result, we will focus on the ℓ1 metric and define the
true distance to calibration by

dCED (𝑓 ) := dCE
ℓ1
D
(𝑓 ) = min

𝑔∈cal(D)
ℓ1,D (𝑓 , 𝑔) .

(True distance from calibration)

It has good continuity properties, and the resulting set of consis-
tent calibration measures does not depend on the choice of the ℓ𝑝
metric. Henceforth when we refer to (𝑐, 𝑠)-consistent calibration
metrics without making𝑚 explicit, it is assumed that we mean the
ℓ1 distance. We note that there might be settings (not considered in
this work) where other metrics on FX are suitable.

4.2 Approximation Limits in the PA Model

Given the desirable properties of dCE, one might wonder: why not
use dCE as a calibration measure in itself? The main barrier to this
is that dCE cannot be computed (or even defined) in the prediction
access model. Indeed, if it were, there would be no need to look for
alternative notions of approximate calibration.

Lemma 4.5. Let 𝛼 ∈ (0, 1/2]. There exists a domain X, a predictor

𝑓 ∈ FX , and distributions D
1,D2 on X × {0, 1} such that

• The distributions D1
𝑓
and D2

𝑓
are identical.

• dCED1 (𝑓 ) ≤ 2𝛼2, while dCED2 (𝑓 ) ≥ 𝛼 .

This leads us to the quest for approximations that can be com-
puted (efficiently) in the Prediction-access model. It implies that
one can at best hope to get a degree 2 approximation to dCE.

Corollary 4.6. Let 𝜇 (𝑓 ) be a (ℓ1, 𝑐, 𝑠)-consistent calibration mea-

sure computable in the prediction access model. Then 𝑠 ≥ 2𝑐 .

Given this setup, we can now state our desiderata for an ideal
calibration measure 𝜇.

(1) Access: 𝜇D (𝑓 ) = 𝜇 (D𝑓 ) is well defined in the Prediction-
only access model.

(2) Consistency: It is (𝑐, 𝑠)-consistent. Ideally, it has degree
𝑠/𝑐 = 2.

(3) Efficiency: It can be computed within accuracy 𝜀 in time
poly(1/𝜀) using poly(1/𝜀) random samples from D𝑓 .

4.3 On ECE and Other Measures

Recall that for a predictor 𝑓 , we define its expected calibration error
ECE(𝑓 ) as

ECE(𝑓 ) = E[| E[𝑦 |𝑓 ] − 𝑓 |] .

Clearly, ECE is well defined in the PAmodel. We analyze ECE in our
framework and show that it satisfies 1-robust soundness, but not
robust completeness. For the former, we present an alternate view
of ECE in terms of ℓ1 distance. Recall that level(𝑓 ) is the partition
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of X into the level sets of 𝑓 , and that for a partition S = {𝑆𝑖 }, the
predictor 𝑔S maps each 𝑥 ∈ 𝑆𝑖 to E[𝑦 |𝑆𝑖 ].

Lemma 4.7. Let S = level(𝑓 ). We have ECE(𝑓 ) = ℓ1 (𝑓 , 𝑔S) ≥

dCED (𝑓 ).

The main drawbacks of ECE are that it does not satisfy robust
completeness, and is discontinuous at 0.

Lemma 4.8. ECED (𝑓 ) does not satisfy 𝑐-robust completeness for

any 𝑐 > 0. It can be discontinuous at 0.

Table 1 summarize how other calibration measures that have
been studied in the literature fare under our desiderata. Further
discussion of these measures can be found in Appendix A of the
full version [5].

5 DISTANCE BASED MEASURES IN THE PA
MODEL

We start by defining upper and lower bounds to the true distance
to calibration in the PA model. Our main result in this subsection
is Theorem 5.5 showing that these are the best possible bounds one
can have on dCE in the PA model. To define and analyze these
distances, we need some auxiliary notions.

Definition 5.1. Let Γ be a distribution over [0, 1] × {0, 1}. De-
fine the set ext(Γ) to consist of all joint distributions Π of triples
(𝑢, 𝑣,𝑦) ∈ [0, 1] × [0, 1] × {0, 1}, such that

• the marginal distribution of (𝑣,𝑦) is Γ;
• the marginal distribution (𝑢,𝑦) is perfectly calibrated:
EΠ [𝑦 |𝑢] = 𝑢.

We define lift(Γ) to be all pairs (D, 𝑓 ) where

• D is a distribution over X × {0, 1} for some domain X.
• 𝑓 : X → [0, 1] is predictor so that D𝑓 = Γ.

We first define the upper distance to calibration.

Definition 5.2 (Upper distance to calibration). For a distribution
Γ over [0, 1] × {0, 1},let 𝐾 (Γ) denote the set of transformations 𝜅 :

[0, 1] → [0, 1] such that the distribution of (𝜅 (𝑣), 𝑦) for (𝑣,𝑦) ∼ Γ

is perfectly calibrated. We define the upper distance from calibration

dCE(Γ) as

dCE(Γ) = inf
𝜅∈𝐾 (Γ)

E
(𝑣,𝑦)∼Γ

[|𝑣 − 𝜅 (𝑣) |],

For a distribution D over X × {0, 1} and a predictor 𝑓 : X →

[0, 1], we define the upper distance from calibration dCED (𝑓 ) to be
dCE(D𝑓 ), or equivalently,

dCED (𝑓 ) := inf
𝜅:[0,1]→[0,1]
𝜅◦𝑓 ∈cal(D)

E
(𝑥,𝑦)∼D

[|𝑓 (𝑥) − 𝜅 (𝑓 (𝑥)) |] .

We call this the upper distance since we only compare 𝑓 with
a calibrated predictor 𝜅 ◦ 𝑓 that can be obtained by applying a
postprocessing 𝜅 to 𝑓 . It follows immediately that dCED (𝑓 ) ≥

dCED (𝑓 ).
We next define the lower distance to calibration.

Definition 5.3 (Lower distance to calibration). We define the lower
distance to calibration denoted dCE(Γ) as

dCE(Γ) := inf
Π∈ext(Γ)

E
(𝑢,𝑣,𝑦)∼Π

|𝑢 − 𝑣 |. (7)

For a distribution D and a predictor 𝑓 , we define dCED (𝑓 ) :=

dCE(D𝑓 ).

The following lemma justifies the terminology of upper and
lower distance.

Lemma 5.4. We have dCED (𝑓 ) ≤ dCED (𝑓 ) ≤ dCED (𝑓 )

Proof. Every calibrated predictor 𝑔 ∈ cal(D) gives a distri-
bution Π ∈ ext(D𝑓 ) where we sample (𝑥,𝑦) ∼ D and return
(𝑔(𝑥), 𝑓 (𝑥), 𝑦). Note that E(𝑢,𝑣,𝑦)∼Π [|𝑢 −𝑣 |] = ℓ1 (𝑓 , 𝑔). Minimizing
over 𝑔 ∈ cal(D) gives the first inequality. The second follows be-
cause in the definition of dCE we minimize over a subset of cal(D),
namely only those 𝑔 = 𝜅 ◦ 𝑓 that can be obtained from 𝑓 via a
postprocessing 𝜅. □

We now show that these are the best possible bounds one can
have on dCE in the PA model.

Theorem 5.5. The following identities hold

dCE(Γ) = inf
(D,𝑓 ) ∈lift(Γ)

dCED (𝑓 )

dCE(Γ) = sup
(D,𝑓 ) ∈lift(Γ)

dCED (𝑓 ) .

The gap between each of these quantities can be at least qua-
dratic, as the distributions D1 and D2 in Lemma 4.5 shows. Under
both distributionsD1 andD2, we have dCE(𝑓 ) ≤ 2𝛼2, dCE(𝑓 ) = 𝛼 .
But dCED1 (𝑓 ) = 2𝛼2 while dCED2 (𝑓 ) = 𝛼 . We will show that this
gap is indeed tight in the next section using the notion of Interval
calibration.

6 INTERVAL CALIBRATION

In this section, we introduce the notion of interval calibration. Our
main result is Theorem 6.2 which shows that it is quadratically re-
lated to the true distance from calibration. Since intCE is defined in
the PA model, this implies in particular, that there might be at most
quadratic gap between dCE and dCE. We exhibit a gap instance
showing that this is tight (Lemma 6.5). As defined, it is unclear
if Interval calibration can be efficiently estimated. We propose a
surrogate version of interval calibration which gives similar bounds
and can be efficiently estimated from samples in Section 6.2 of the
full version [5].

An interval partitionI of [0, 1] is a partition of [0, 1] into disjoint
intervals {𝐼 𝑗 } 𝑗∈[𝑚] . Let𝑤 (𝐼 ) denote the width of interval 𝐼 .

Definition 6.1 (Interval Calibration Error). For a distribution Γ

over [0, 1] × {0, 1} and interval partition I define

binnedECE(Γ,I) :=
∑︁

𝑗∈[𝑚]

| E
(𝑣,𝑦)∼Γ

[(𝑣 − 𝑦)1(𝑣 ∈ 𝐼 𝑗 )] |.

We define the average interval width

𝑤Γ (I) :=
∑︁

𝑗∈[𝑚]

E
(𝑣,𝑦)∼Γ

[1(𝑣 ∈ 𝐼 𝑗 )𝑤 (𝐼 𝑗 )] .

The interval calibration error intCE(Γ) is then the minimum of
binnedECE(Γ,I) +𝑤Γ (I) over all interval partitions I:

intCE(Γ) := min
I: Interval partition

(binnedECE(Γ,I) +𝑤Γ (I)) .
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For a distribution D over X × {0, 1} and a predictor 𝑓 : X →

[0, 1], we define intCED (𝑓 ,I) := intCE(D𝑓 ,I) and intCED (𝑓 ) :=

intCE(D𝑓 ).

Our main theorem about interval calibration is the following.

Theorem 6.2. We have dCE(Γ) ≤ intCE(Γ) ≤ 4
√︁

dCE(Γ).

Combining this with Lemma 5.4, we conclude that intCE is in-
deed a quadratic approximation to the true distance from calibration,
which is the best achievable in the PA model by Corollary 4.6.

Corollary 6.3. intCE is a (1/2, 1)-consistent calibration measure.

We have

dCED (𝑓 ) ≤ intCED (𝑓 ) ≤ 4
√︁

dCED (𝑓 ) .

Another corollary is the following bounds for distance measures,
which shows that the gaps presented in Lemma 4.5 are the largest
possible.

Corollary 6.4. We have

dCED (𝑓 ) ≤ dCED (𝑓 ) ≤ 4
√︃

dCED (𝑓 ),

1

16
dCED (𝑓 )2 ≤ dCED (𝑓 ) ≤ dCED (𝑓 ) .

Quadratic Gap between Interval Calibration and Upper Calibra-

tion Distance. For a distribution D and a predictor 𝑓 , our results
in previous subsections imply the following chain of inequalities
(omitting D in the subscript for brevity):

dCE(𝑓 ) ≤ dCE(𝑓 ) ≤ intCE(𝑓 ) ≤ 4

√︃

dCE(𝑓 ). (8)

These inequalities completely characterize the relationship between
dCE(𝑓 ) and dCE(𝑓 ) and also the relationship between dCE(𝑓 )

and intCE(𝑓 ) for the following reason. By Lemma 4.5, we know
that dCE(𝑓 ) can be as large as Ω(

√︁

dCE(𝑓 )), which implies that

intCE(𝑓 ) can be as large as Ω(
√︁

dCE(𝑓 )). Also, it is easy to show
that intCE(𝑓 ) can be as small as 𝑂 (dCE(𝑓 )) by choosing 𝑓 to be

a constant function, which implies that dCE(𝑓 ) can be as small as
𝑂 (dCE(𝑓 )).

The remaining question is whether (8) completely characterizes
the relationship between dCE(𝑓 ) and intCE(𝑓 ). We show that the
answer is yes by the following lemma (Lemma 6.5) which gives
examples where intCE(𝑓 ) = Ω((dCE(𝑓 ))1/2). We also show that
intCE(𝑓 ) can be discontinuous as a function of 𝑓 in Lemma 6.6.

Lemma 6.5. For any 𝛼 ∈ (0, 1/4), there exist distribution D and

predictor 𝑓 such that

dCED (𝑓 ) ≤ 5𝛼2 and intCED (𝑓 ) ≥ 𝛼.

Lemma 6.6. There exist a distribution D over X × {0, 1} and a

sequence of predictors 𝑓𝑛 : X → [0, 1] converging uniformly to a

predictor 𝑓 : X → [0, 1] as𝑛 → ∞ such that lim𝑛→∞ intCED (𝑓𝑛) ≠

intCED (𝑓 ).

7 SMOOTH CALIBRATION AND THE LOWER
DISTANCE TO CALIBRATION

In this section, we define and analyze the notion of smooth calibra-
tion. The main result of this section is that the smooth calibration
error smCE is equivalent, up to a constant factor, to dCE. We also

give algorithms that can compute both these quantities to within
an additive 𝜀 in time poly(1/𝜀) on an empirical distribution.

At a high level, the proof that dCE and smCE are related proceeds
as follows.

(1) For a distribution Γ over [0, 1] × {0, 1}, our definition of
dCE(Γ) (Definition 5.3) is based on couplings Π ∈ ext(Γ)

that connect Γ to calibrated distributions Γ
′. For a given

distribution D, the space of predictors 𝑓 : X → [0, 1] which
are calibrated is non-convex (for finiteX, it is a finite set). But
when we move to the space of distributions Γ′ over [0, 1] ×
{0, 1}, then the space of perfectly calibrated distributions is
convex. This is because for (𝑣, 𝑏) ∈ [0, 1] × {0, 1} if Γ′ (𝑣, 𝑏)
denotes the probability assigned to it, then the calibration
constraint states that for every 𝑣 ,

Γ
′ (𝑣, 1)

Γ′ (𝑣, 0) + Γ′ (𝑣, 1)
= 𝑣

which is a linear constraint for every 𝑣 . This allows us to
view the problem of computing dCE as optimization over
couplings Π connecting Γ to some Γ′ satisfying such linear
constraints.

(2) We show that by suitably discretizing [0, 1], we can write
the problem of computing dCE as a linear program. The
dual of this program (after some manipulation) asks for a
2-Lipschitz function 𝑤 : [0, 1] → [−1, 1] which witnesses
the lack of calibration of 𝑓 , by showing that E[𝑤 (𝑣) (𝑦 − 𝑣)]

is large. Rescaling gives a 1-Lipschitz function which proves
that smCED (𝑓 ) ≥ dCED (𝑓 )/2. The other direction which
corresponds to weak duality is easy to show.

We now proceed with the formal definitions and proof. We start
by defining a general family of calibration measures called weighted
calibration error from [19].

Definition 7.1 (Weighted calibration). [19] Let𝑊 be a family
of functions 𝑤 : [0, 1] → R. The weighted calibration error of a
distribution Γ over [0, 1] × {0, 1} is defined as

wCE𝑊 (Γ) := sup
𝑤∈𝑊

�

�

�

�

�

E
(𝑣,𝑦)∼Γ

[(𝑦 − 𝑣)𝑤 (𝑣)]

�

�

�

�

�

.

Given a distributionD overX×{0, 1} and predictor 𝑓 : X → [0, 1],
we denote the weighted calibration error of 𝑓 under D as

wCE𝑊D (𝑓 ) := wCE𝑊 (D𝑓 ) = sup
𝑤∈𝑊

�

�

�

�

�

E
(𝑥,𝑦)∼D

[(𝑦 − 𝑓 (𝑥))𝑤 (𝑓 (𝑥))]

�

�

�

�

�

.

Clearly, any weighted calibration error notion is well defined
in the PA model. Moreover, all of those at the very least satisfy
completeness: if Γ is perfectly calibrated, than for any𝑤 , we have

E
Γ

[(𝑦 − 𝑣)𝑤 (𝑣)] = E[E[(𝑦 − 𝑣)𝑤 (𝑣) |𝑣]],

and since E[𝑦 |𝑣] = 𝑣 for a perfectly calibrated predictor, this latter
quantity is zero.

A particularly important calibration measure among those is the
smooth calibrationwhere𝑊 is the family of all 1-Lipschitz, bounded
functions. This was introduced in the work of [25] who termed
it weak calibration, the terminology of smooth calibration is from
[19].
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Definition 7.2 (Smooth calibration). Let 𝐿 be the family of all 1-
Lipschitz functions 𝑤 : [0, 1] → [−1, 1]. The smooth calibration

error of a distribution Γ over [0, 1] × {0, 1} is defined as weighted
calibration error with respect to the family of all 1-Lipschitz func-
tions

smCE(Γ) := wCE𝐿 (Γ). (9)

Accordingly, for a distribution D and a predictor 𝑓 , we define

smCED (𝑓 ) := smCE(D𝑓 ) = wCE𝐿 (D𝑓 ) = wCE𝐿D (𝑓 ).

Our main result on the smooth calibration error is the following.

Theorem 7.3. For any distribution Γ over [0, 1] × {0, 1}, we have

1

2
dCE(Γ) ≤ smCE(Γ) ≤ 2dCE(Γ) .

Combining this with corollary 6.4, we conclude that smCE is a
(1, 2)-consitent calibration measure, and yields an optimal degree-2
approximation to dCE. Along the way, we will find an efficient
algorithm for computing dCE(Γ) (see Remark 7.10).

As it is often the case, the inequality smCE(Γ) ≤ 2dCE(Γ) is
significantly easier to prove (corresponding to the weak duality).
We will start by proving this easier direction. The following lemma
is a strengthening of the fact that smCE is Lipschitz continuous in
the predictor 𝑓 (i.e. for two predictors 𝑓 , 𝑔 defined on the same set
X, we have |smCED (𝑓 ) − smCED (𝑔) | ≤ 2ℓ1 (𝑓 , 𝑔)).

Lemma 7.4. Let Π be a distribution over [0, 1] × [0, 1] × {0, 1}. For

any 1-Lipschitz function𝑤 : [0, 1] → [−1, 1], we have
�

�

�

�

�

E
(𝑢,𝑣,𝑦)∼Π

[(𝑦 − 𝑢)𝑤 (𝑢)] − E
(𝑢,𝑣,𝑦)∼Π

[(𝑦 − 𝑣)𝑤 (𝑣)]

�

�

�

�

�

≤ 2 E
(𝑢,𝑣,𝑦)∼Π

|𝑢 − 𝑣 |.

In the full version [5], we use the lemma above to prove the
upper bound on smCE(Γ) in Theorem 7.3. To prove Theorem 7.3,
it remains to prove the lower bound on smCE(Γ). We prove that in
the rest of the section.

7.1 Linear Program Formulation of Lower
Calibration Distance

For a distribution Γ over [0, 1] × {0, 1}, we show that a discretized
version of dCE(Γ) can be formulated as the optimal value of a
linear program, and the error caused by the discretization can be
made arbitrarily small. We then use the strong duality theorem
of linear programming to prove the lower bound of smCE(Γ) in
Theorem 7.3. The linear programming formulation also allows us
to give an alternative proof of the upper bound in Theorem 7.3
using the weak duality theorem. Moreover, the linear program
formulation gives us an efficient algorithm for estimating dCE(Γ).

Our first step is to assume that Γ is a distribution over 𝑉 ×

{0, 1} for some finite set 𝑉 ⊆ [0, 1]. This is mostly without loss of
generality because for 𝜀 > 0 we can round every value 𝑣 ∈ [0, 1]

in (𝑣,𝑦) ∼ Γ to the closest value in {0, 𝜀, 2𝜀, . . .} ∩ [0, 1] without
changing dCE(Γ) by more than 𝜀. The following definition allows
us to further define discretized versions of ext(Γ) and dCE(Γ):

Definition 7.5. Let𝑈 ,𝑉 ⊆ [0, 1] be finite sets. Let Γ be a distribu-
tion over 𝑉 × {0, 1}. Define the set ext𝑈 (Γ) to consist of all joint
distributions Π of triples (𝑢, 𝑣,𝑦) ∈ 𝑈 ×𝑉 × {0, 1}, such that

• the marginal distribution of (𝑣,𝑦) is Γ;
• the marginal distribution (𝑢,𝑦) is perfectly calibrated:
EΠ [𝑦 |𝑢] = 𝑢.

We define dCE𝑈 (Γ) to be

dCE𝑈 (Γ) := inf
Π∈ext𝑈 (Γ)

E
(𝑢,𝑣,𝑦)∼Π

|𝑢 − 𝑣 |. (10)

Later in Lemma 7.11 we will show that dCE𝑈 (Γ) is close to
dCE(Γ) as long as𝑈 is a suitably rich class. For now, we show how
to formulate dCE𝑈 (Γ) as the optimal value of a linear program:

Lemma 7.6. Let 𝑈 ,𝑉 , Γ be defined as in Definition 7.5 and assume

{0, 1} ⊆ 𝑈 . By a slight abuse of notation, we define Γ(𝑣,𝑦) to be the

probability mass of Γ on (𝑣,𝑦) ∈ 𝑉 × {0, 1}. Then the following linear

program with variables Π(𝑢, 𝑣,𝑦) for (𝑢, 𝑣,𝑦) ∈ 𝑈 × 𝑉 × {0, 1} is

feasible and its optimal value equals dCE𝑈 (Γ):

minimize
∑︁

(𝑢,𝑣,𝑦) ∈𝑈 ×𝑉 ×{0,1}

|𝑢 − 𝑣 | Π(𝑢, 𝑣,𝑦) (11)

s.t.
∑︁

𝑢∈𝑈

Π(𝑢, 𝑣,𝑦) = Γ(𝑣,𝑦)

for every (𝑣,𝑦) ∈ 𝑉 × {0, 1}; (𝑟 (𝑣,𝑦))

(1 − 𝑢)
∑︁

𝑣∈𝑉

Π(𝑢, 𝑣, 1) = 𝑢
∑︁

𝑣∈𝑉

Π(𝑢, 𝑣, 0)

for every 𝑢 ∈ 𝑈 ; (𝑠 (𝑢))

Π(𝑢, 𝑣,𝑦) ≥ 0

for every (𝑢, 𝑣,𝑦) ∈ 𝑈 ×𝑉 × {0, 1}.

Moreover, the dual of the linear program (11) is the following linear
program (12) with variables 𝑟 (𝑣,𝑦) and 𝑠 (𝑢) for 𝑢 ∈ 𝑈 , 𝑣 ∈ 𝑉 and

𝑦 ∈ {0, 1}. By the duality theorem, the optimal value of (12) is also
dCE𝑈 (Γ).

maximize
∑︁

(𝑣,𝑦) ∈𝑉 ×{0,1}

𝑟 (𝑣,𝑦)Γ(𝑣,𝑦) (12)

s.t. 𝑟 (𝑣,𝑦) ≤ |𝑢 − 𝑣 | + (𝑦 − 𝑢)𝑠 (𝑢)

for every (𝑢, 𝑣,𝑦) ∈ 𝑈 ×𝑉 × {0, 1}. (Π(𝑢, 𝑣,𝑦))

Proof. Any distribution Π over 𝑈 ×𝑉 × {0, 1} corresponds to
a function Π : 𝑈 × 𝑉 × {0, 1} → R where Π(𝑢, 𝑣,𝑦) is the proba-
bility mass on (𝑢, 𝑣,𝑦) ∈ 𝑈 ×𝑉 × {0, 1}. It is easy to check that if
the distribution Π belongs to ext(Γ), then the function Π satisfies
the constraints of (11), and conversely, any function Π satisfying
the constraints also corresponds to a distribution Π ∈ ext(Γ). In
particular, for (𝑢, 𝑣,𝑦) ∼ Π, the first constraint ensures that the mar-
ginal distribution of (𝑣,𝑦) is Γ, and the second constraint ensures
that the marginal distribution of (𝑢,𝑦) is calibrated. Moreover, the
objective of (11) corresponds to the expectation E(𝑢,𝑣,𝑦)∼Π |𝑢 − 𝑣 |

in (10). This proves that dCE𝑈 (Γ) is equal to the optimal value
of the linear program (11). To show that the linear program (11)
is feasible, consider setting Π(𝑢, 𝑣,𝑦) = Γ(𝑣,𝑦) if 𝑢 = 𝑦, and set-
ting Π(𝑢, 𝑣,𝑦) = 0 if 𝑢 ≠ 𝑦. It is easy to check that this choice
of Π satisfies the constraints of (11) using our assumption that
{0, 1} ⊆ 𝑈 . □

Claim 7.7. Let 𝑈 ,𝑉 ⊆ [0, 1] be finite sets and assume {0, 1} ⊆ 𝑈 .

The optimal value of the dual linear program (12) does not change
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even if we add the additional constraints −1 ≤ 𝑠 (𝑢) ≤ 1 for every

𝑢 ∈ 𝑈 .

Remark 7.8. Since Γ(𝑣,𝑦) in the objective of (12) is nonnegative,
it is always without loss of generality to assume that 𝑟 (𝑣,𝑦) is as
large as possible, i.e.,

𝑟 (𝑣,𝑦) = min
𝑢∈𝑈

(

|𝑢 − 𝑣 | + (𝑦 − 𝑢)𝑠 (𝑢)
)

. (13)

Assuming (13), it is easy to check that 𝑟 (𝑣,𝑦) is 1-Lipschitz in 𝑣 , i.e.,
|𝑟 (𝑣1, 𝑦) − 𝑟 (𝑣2, 𝑦) | ≤ |𝑣1 − 𝑣2 | for every 𝑣1, 𝑣2 ∈ 𝑉 and 𝑦 ∈ {0, 1}.
When {0, 1} ⊆ 𝑈 , Claim 7.7 allows us to assume that −1 ≤ 𝑠 (𝑢) ≤ 1

without loss of generality. When this assumption and (13) are both
satisfied, it is easy to verify that 𝑟 (𝑣,𝑦) ∈ [−|𝑣−𝑦 |, |𝑣−𝑦 |] ⊆ [−1, 1]

and 𝑟 (𝑣, 1) −𝑟 (𝑣, 0) ∈ [−1, 1] for every 𝑣 ∈ 𝑉 and 𝑦 ∈ {0, 1}. Indeed,
in (13) we have |𝑢 − 𝑣 | + (𝑦 − 𝑢)𝑠 (𝑢) ≥ |𝑢 − 𝑣 | − |𝑦 − 𝑢 | ≥ −|𝑣 − 𝑦 |

and thus 𝑟 (𝑣,𝑦) ≥ −|𝑣 − 𝑦 |. The upper bound 𝑟 (𝑣,𝑦) ≤ |𝑣 − 𝑦 | can
be proved by setting 𝑢 = 𝑦 in (13) using our assumption {0, 1} ⊆ 𝑈 .

Remark 7.9. When 𝑈 ,𝑉 are finite sets satisfying {0, 1} ⊆ 𝑈 =

𝑉 ⊆ [0, 1], using Remark 7.8 one can verify that the dual linear
program (12) has the same optimal value as the following linear
program:

maximize
∑︁

(𝑣,𝑦) ∈𝑉 ×{0,1}

𝑟 (𝑣,𝑦)Γ(𝑣,𝑦) (14)

s.t. |𝑟 (𝑣1, 𝑦) − 𝑟 (𝑣2, 𝑦) | ≤ |𝑣1 − 𝑣2 |

for every (𝑣1, 𝑣2, 𝑦) ∈ 𝑉 ×𝑉 × {0, 1}; (15)

𝑟 (𝑣,𝑦) ≤ (𝑦 − 𝑣)𝑠 (𝑣)

for every (𝑣,𝑦) ∈ 𝑉 × {0, 1}.

The constraints (15) can be enforced simply by checking neighbor-
ing pairs (𝑣1, 𝑣2) when the values in𝑉 are sorted. Thus the effective
number of constraints in (15) is 𝑂 ( |𝑉 |).

Remark 7.10. Let 𝑈 ⊆ [0, 1] be a finite set satisfying {0, 1} ⊆

𝑈 . Given a distribution Γ over 𝑉 × {0, 1} for a finite 𝑉 ⊆ [0, 1],
Lemma 7.6 allows us to efficiently compute dCE𝑈 (Γ) by solving
either the primal linear program (11) or the dual linear program (12).
When𝑈 = 𝑉 , it may be more efficient to solve the equivalent linear
program (14) which effectively has only 𝑂 ( |𝑉 |) constraints as we
mention in Remark 7.9. Moreover, given two distributions Γ and Γ

′

that are close in a certainWasserstein distance, using the dual linear
program (12) we can show that dCE𝑈 (Γ′) and dCE𝑈 (Γ) are close
(we make this formal in Lemma 9.11 of the full version [5]). This
allows us to estimate dCE𝑈 (Γ) only using examples drawn from
Γ (see Section 9.2 of the full version [5]). In Lemma 7.11 below we
show that choosing |𝑈 | = 𝑂 (1/𝜀) suffices to ensure that dCE𝑈 (Γ)

approximates dCE(Γ) up to an additive error 𝜀.

The following lemma relates dCE𝑈 (Γ) and dCE(Γ):

Lemma 7.11. Let Γ be a distribution over 𝑉 × {0, 1} for a finite

𝑉 ⊆ [0, 1]. Let𝑈 be a finite 𝜀 covering of [0, 1] satisfying {0, 1} ⊆ 𝑈 .

That is, there exists 𝜎 : [0, 1] → 𝑈 such that |𝑢 − 𝜎 (𝑢) | ≤ 𝜀 for every

𝑢 ∈ [0, 1]. Then we have

dCE(Γ) ≤ dCE𝑈 (Γ) ≤ dCE(Γ) + 2𝜀.

We prove lower and upper bounds for smCE(Γ) using dCE𝑈 (Γ)

in the two lemmas below.

Lemma 7.12. Let Γ be a distribution over 𝑉 × {0, 1} for a finite

𝑉 ⊆ [0, 1]. Define𝑈 = 𝑉 ∪ {0, 1}. Then dCE𝑈 (Γ) ≤ 2smCE(Γ).

Lemma 7.13. Let Γ be a distribution over𝑉 ×{0, 1} for a finite𝑉 ⊆

[0, 1]. For any finite𝑈 ⊆ [0, 1], we have smCE(Γ) ≤ 2dCE𝑈 (Γ).

In the proofs of Lemmas 7.12 and 7.13 above, we use the fact that
dCE𝑈 (Γ) is equal to the optimal value of the dual linear program
(12). However, for Lemma 7.12 we only need the fact that dCE𝑈 (Γ)

is at most the optimal value, whereas for Lemma 7.13 we only need
the fact that dCE𝑈 (Γ) is at least the optimal value. That is, our proof
of Lemma 7.12 is based on the strong duality theorem, whereas the
proof of Lemma 7.13 is based on the weak duality theorem. Below
we apply Lemma 7.12 and Lemma 7.13 to prove the lower and upper
bounds of smCE(Γ) in Theorem 7.3, respectively.

Proof of Theorem 7.3. For 𝜀1 > 0, we round the value 𝑣 ∈

[0, 1] in (𝑣,𝑦) ∼ Γ to the closest value 𝑣 ′ ∈ {0, 𝜀1, 2𝜀1, . . . , } ∩

[0, 1]. Let Γ′ be the distribution of (𝑣 ′, 𝑦). It is clear that |dCE(Γ′) −
dCE(Γ) | ≤ 𝜀1, and by Lemma 7.4 we have |smCE(Γ′)−smCE(Γ) | ≤

2𝜀1.
By Lemma 7.11, for any 𝜀2 > 0, there exists a finite set𝑈 ⊆ [0, 1]

such that dCE(Γ′) ≤ dCE𝑈 (Γ′) ≤ dCE(Γ′) + 𝜀2. Moreover, we can
always choose𝑈 so that {0, 1} ∪𝑉 ⊆ 𝑈 . Now by Lemma 7.12,

dCE(Γ) − 𝜀1 ≤ dCE(Γ′) ≤ dCE𝑈 (Γ′) ≤ 2smCE(Γ′)

≤ 2smCE(Γ) + 4𝜀1 .

By Lemma 7.13,

smCE(Γ) − 2𝜀1 ≤ smCE(Γ′) ≤ 2dCE𝑈 (Γ′)

≤ 2dCE(Γ′) + 2𝜀2

≤ 2dCE(Γ) + 2𝜀1 + 2𝜀2 .

Taking 𝜀1, 𝜀2 → 0 completes the proof. □

We conclude with an efficient algorithm for smooth calibration
error. The generalization bound to accompany it will be proved in
Corollary 9.9 in Section 9 of the full version [5].

Theorem 7.14. For the empirical distribution Γ over a sample

𝑆 = ((𝑣1, 𝑦1), . . . (𝑣𝑛, 𝑦𝑛)) ∈ ([0, 1] × {0, 1})𝑛 we can calculate

smCE(Γ) := sup
𝑤∈𝐿

1

𝑛

∑︁

𝑖

(𝑦𝑖 − 𝑣𝑖 )𝑤 (𝑣𝑖 )

in time poly(𝑛), where 𝐿 is the family of all 1-Lipschitz functions

𝑤 : [0, 1] → [−1, 1].

8 KERNEL CALIBRATION ERROR

We now consider kernel calibration (kCE𝐾 ), which is a special case
of weighted calibration (Definition 7.1) where the family of weight
functions lies in a Reproducing Kernel Hilbert SpaceH . This notion
was previously defined in [32] (called “MMCEž), motivated as a
differentiable proxy for ECE.

We advance the theory of kernel calibration in several ways.
First, we show that the kernel calibration error for the Laplace

kernel is in fact a consistent calibration measure. This provides
strong theoretical justification for measuring kernel calibration,
and also gives a reason to use the Laplace kernel specifically, among
other choices of kernel. Indeed, we complement the Laplace kernel
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with a negative result: using the Gaussian kernel does not yield a
consistent calibration measure.

Finally, as a curiosity, we observe that the techniques of [45] yield
an alternate estimator for Laplace kernel calibration error, which
bears similarity to the randomized-binning estimator of interval
calibration error.

8.1 Preliminaries

We consider a Reproducing Kernel Hilbert Space of functions on a
real line R, i.e. a Hilbert space H of functions ℎ : R→ R, with the
associated norm ∥ · ∥H . This space is equipped with the feature map
𝜙 : R → H , satisfying ⟨ℎ, 𝜙 (𝑣)⟩H = ℎ(𝑣). The associated kernel
𝐾 : R × R→ R is now defined as 𝐾 (𝑢, 𝑣) = ⟨𝜙 (𝑢), 𝜙 (𝑣)⟩H .

Definition 8.1 (Kernel Calibration Error [32]). Given a RKHSH
with the norm ∥ · ∥H , we can consider a class of functions bounded
by 1 with respect to this norm 𝐵H := {ℎ ∈ H : ∥ℎ∥H ≤ 1}, and we
can study the associated weighted calibration error wCE𝐵H (as in
Definition 7.1).

The kernel calibration error of a distribution Γ over [0, 1] × {0, 1}

associated with the kernel𝐾 is defined as weighted calibration error
with respect to the family of weight functions 𝐵H

kCE𝐾 (Γ) := wCE𝐵H (Γ) . (16)

Accordingly, for a distribution D and a predictor 𝑓 , we define
kCE𝐾,D (𝑓 ) := kCE𝐾 (D𝑓 ).

The following results are standard, from [32]. First, kCE𝐾 can
be written as the 𝐾-norm of a certain function, without explicitly
maximizing over weight functions ℎ ∈ H .

Lemma 8.2 ([32]). For any kernel 𝐾 and the associated RKHSH ,

and any distribution Γ over [0, 1] × {0, 1},

kCE𝐾 (Γ) = ∥ E
(𝑣,𝑦)∼Γ

[(𝑦 − 𝑣)𝜙 (𝑣)] ∥H .

This expression can be efficiently evaluated for an empirical
distribution on a samples 𝑆 = {(𝑦1, 𝑣1), . . . (𝑦𝑘 , 𝑣𝑘 )}.

Claim 8.3 ([32]). Let Γ be the empirical distribution over a given

sample {(𝑣1, 𝑦1), . . . , (𝑣𝑛, 𝑦𝑛)}. We can compute kCE𝐾 (Γ) in time

O(𝑛2) using O(𝑛2) evaluations of the kernel function:

kCE𝐾 (Γ)2 =
1

𝑛2

∑︁

𝑖, 𝑗

(𝑦𝑖 − 𝑣𝑖 ) (𝑦 𝑗 − 𝑣 𝑗 )𝐾 (𝑣𝑖 , 𝑣 𝑗 ). (17)

In Section 9 of the full version [5] we discuss the convergence
of the kernel calibration error for the empirical distribution over
the sample, to the kernel calibration error of the entire distribution
Ð this convergence, together with Claim 8.3 gives an efficient way
to estimate the kernel calibration error of a given predictor from a
boudned number of samples from the underlying distribution.

The Laplace Kernel. We recall standard facts about the Laplace
kernel𝐾Lap (𝑢, 𝑣) := exp(−|𝑢−𝑣 |), and its associated RKHS. It turns
out that the norm induced by functions in the associated RKHS has
simple explicit expression Ð the corresponding space is a Sobolev
space.

Fact 8.4 ([2]). For the Laplace kernel 𝐾Lap (𝑢, 𝑣) = exp(−|𝑢 − 𝑣 |),

we have associated RKHS HLap = {ℎ : R → R :
∫

ℎ̂(𝜔)2 (1 +

𝜔2) d𝜔 < ∞}, where ℎ̂ denotes the Fourier transform of 𝑢. The asso-

ciated inner product is given by

⟨ℎ1, ℎ2⟩𝐾Lap
=

∫ ∞

−∞
ℎ̂1 (𝜔)ℎ̂2 (𝜔) (1 + 𝜔

2) d𝜔,

in particular, for function ℎ : R→ R,

∥ℎ∥2𝐾Lap
=

∫ ∞

−∞
ℎ̂(𝜔)2 (1 + 𝜔2) d𝜔 = ∥ℎ∥22 + ∥ℎ′∥22 .

8.2 Laplace Kernel Calibration Error Is a
Consistent Calibration Measure

We now ask whether there is a kernel 𝐾 for which kCE𝐾 is a
consistent calibration measure. The main result in this section is to
show that this is the case for the Laplace kernel. Specifically, we
prove that:

Theorem 8.5. The Laplace kernel calibration error kCELap :=

kCE𝐾Lap satisfies the following inequalities

1

3
smCE(Γ) ≤ kCELap (Γ) ≤

√︃

dCE(Γ) .

By Corollary 6.4 and Theorem 7.3 it follows that kCELap is a
(1/2, 2)-consistent calibration measure. Interestingly, the choice of
kernel is crucial: we show that for the Gaussian kernel, the resulting
measure does not satisfy robust soundness anymore. Specifically,
we prove the following theorem.

Theorem 8.6. For every 𝜀, there is a distribution Γ𝜀 over [0, 1] ×

{0, 1}, such that smCE(Γ𝜀 ) ≥ Ω(𝜀O(1) ), and kCEGauss (Γ𝜀 ) ≤ O(

exp(−1/𝜀)), where kCEGauss := kCE𝐾Gauss is the Gaussian kernel

calibration error with 𝐾Gauss (𝑢, 𝑣) = exp(−(𝑢 − 𝑣)2).
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