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We present the precision measurements of 11 years of daily cosmic electron fluxes in the rigidity interval 

from 1.00 to 41.9 GV based on 2.0 x 108 electrons collected with the Alpha Magnetic Spectrometer (AMS) 

aboard the International Space Station. The electron fluxes exhibit variations on multiple timescales. 

Recurrent electron flux variations with periods of 27 days, 13.5 days, and 9 days are observed. We find that 

the electron fluxes show distinctly different time variations from the proton fluxes. Remarkably, a 

hysteresis between the electron flux and the proton flux is observed with a significance of greater than 66 at 

rigidities below 8.5 GV. Furthermore, significant structures in the electron-proton hysteresis are observed 

corresponding to sharp structures in both fluxes. This continuous daily electron data provide unique input 

to the understanding of the charge sign dependence of cosmic rays over an 11-year solar cycle. 

DOI: 10.1103/PhysRevLett.130.161001 

Introduction.—Cosmic rays are dominated by positively 
charged particles and nuclei: protons, helium, etc. Electrons 

Published by the American Physical Society under the terms of 
the Creative Commons Attribution 4.0 International license. 

Further distribution of this work must maintain attribution to 

the author(s) and the published article’s title, journal citation, 
and DOI. 

are the most abundant negatively charged particles, but 
cosmic electrons are rare. The precision study of cosmic 
electrons requires a magnetic spectrometer in space to 
separate electrons from positrons and the overwhelming 
number of positively charged protons and nuclei. 

Since installation on the International Space Station on 
May 20, 2011, AMS has continuously collected and 

analyzed electron events daily. Most of these events 
(around 99%) are in the low nigidity range below 
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41.9 GV. The high rigidity 1% of the spectrum up to 2 TeV 
provides unexpected results, which will be presented in a 
future publication. 

The fluxes of charged cosmic rays outside the helio- 
sphere are thought to be stable on the timescale of decades 
[1-4]. Time-dependent variations in the fluxes of galactic 

cosmic rays measured inside the heliosphere are only 
expected from the solar modulation [5]. Solar modulation 

involves convective, diffusive, particle drift, and adiabatic 

energy loss processes [6]. Only particle drift induces a 
dependence of solar modulation on the particle charge sign 
[7]. The systematic measurement of the electron flux and 

the proton flux offers a unique way to study charge-sign- 
dependent solar modulation effects. 

Cosmic electrons are primary cosmic rays [8]. Their time 
structure is of particular importance as electrons have been 
widely used to search for new phenomena in primary 
cosmic rays, such as the existence of nearby pulsars [9], 
supernovae remnants [10], or dark matter annihilation 

[11,12]. Models describing these phenomena can only 
be compared to data when time-dependent effects in the 
heliosphere are well understood [13-16]. A comprehensive 

model of the time-dependent solar modulation will have 
far-reaching consequences for the understanding of the 
newly observed unexpected features in cosmic-ray fluxes, 
such as the complex energy dependence of the positron 
spectrum [17] and of the electron spectrum [18], as well as 

for other domains of astrophysics, such as the modeling of 
galactic cosmic-ray propagation [19], the estimate of the 
galactic cosmic-ray pressure, an important ingredient for 
models of galaxy formation [20], the interpretation of 
possible anisotropies in the cosmic-ray arrival directions 
at the Earth [21], and the understanding of cosmic-ray 
spectra outside the solar system [22]. 

Previous experiments measured the time variation of the 
combined (electron + positron) flux [23-26], the electron 

flux variation averaged over six- and three-month periods 
[27], or averaged over two days for a total of two months 

[28]. AMS has reported the time dependence of the electron 

fluxes and the positron fluxes per Bartels rotations (BR: 
27 days) over six years [29]. In addition, AMS has 
observed short-term structures in the cosmic-ray proton 
flux [30] and helium flux [31]. 

In this Letter, we present the daily electron fluxes based 
on 2.0 x 10® events spanning 11 years over a rigidity 
range from 1.00 to 41.9 GV. These data cover the major 
portion of solar cycle 24, which includes the polarity 
reversal of the solar magnetic field in the year 2013 
[32], and the beginning of solar cycle 25. Therefore, the 
charge-sign-dependent effects are studied at different solar 
conditions by comparing the daily electron and daily proton 
[30] fluxes measured simultaneously over an 11-year 

period. These data provide unique and accurate input to 
modeling of the transport processes of charged cosmic rays 
inside the heliosphere. 

Detector.—The layout and description of the AMS 
detector are presented in Refs. [8,33] and shown in Fig. S1 

of the Supplemental Material (SM) [34]. The key elements 

used in this measurement are the permanent magnet [35], the 

silicon tracker [36-38], the transition radiation detector 

(TRD) [39], the four planes of time-of-flight (TOF) scintil- 

lation counters [40], and the electromagnetic calorimeter 

(ECAL) [41]. Further information on the AMS layout, 

performance, trigger, and the Monte Carlo (MC) simulation 
[42,43] is detailed in the SM [34]. 

Event selection. —AMS has collected 1.9 x 10!! cosmic- 
ray events. In the rigidity range from 1.00 to 41.9 GV, 
we select electron samples using the combined informa- 
tion of the TRD, TOF, and inner tracker. The details of 

the event selection and backgrounds are contained in 
Refs. [17,18,4446] and in the SM [34]. After selection, 

we obtained 2.0 x 10° electrons. 

Data analysis—The daily isotropic flux in the ith 
absolute rigidity bin (R;, R; + AR;) and jth day is given by 

ob! = N; (1) 
© AIL + 8)eTFAR; 

where N! is the number of events corrected for background 

and bin-to-bin migration; A! is the effective acceptance 

calculated from the Monte Carlo simulation, including 
geometric acceptance, event selection efficiencies, and 

interactions of electrons in the AMS materials; é! is the 
small correction to the acceptance due to the difference in 
the event selection efficiencies between data and 

Monte Carlo simulation; e! is the trigger efficiency; and 

T! is the daily collection time. See the SM [34], Figs. $2 

and §3, for more details. In this Letter, the electron flux is 

measured in ten rigidity bins from 1.00 to 41.9 GV. 
The background contribution from antiprotons and light 

mesons in the data sample is estimated using a template fit 
to the distribution of TRD estimator Arpp [8]. The back- 

ground contribution from charge confusion positrons is 
estimated to be negligible [8]. 

Bin-to-bin migration of events is corrected using the 
unfolding procedures described in Ref. [47]. 

The small corrections 5; are estimated by comparing the 
efficiencies in data and Monte Carlo simulation of every 
selection cut using information from the detectors unrelated 

to that cut. The 6 are found to have a small rigidity 

dependence: from —5% at 1 GV, decreasing to —2.4% at 

10 GV, and becoming constant at —2.8% above 30 GV. 
There are extensive studies of the systematic errors. 

These errors include the uncertainties in the templates 
definition, the trigger efficiency, the geomagnetic cutoff, 
the acceptance calculation, the rigidity resolution function, 
the unfolding, and the absolute rigidity scale. 

The uncertainty associated with the Aypp templates 

definition includes two parts: the event selection and the 
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statistical fluctuations [18]. These two errors are added in 

quadrature. The time-dependent systematic error due to the 
templates definition amounts to less than 0.5% of the flux 
below 41.9 GV. 

The time-dependent systematic error on the electron 
fluxes associated with the trigger efficiency measurement is 
less than 1% over the entire rigidity range and for all days. 

The geomagnetic cutoffis calculated as described in the SM 
[34], and the resulting systematic error on the fluxes is less 
than 2% at 1 GV and negligible (less than 0.4%) above 2 GV. 

The correction 6} is stable with time within its error, and 
the associated time-dependent systematic error on the fluxes 
is less than 1.5% over the entire rigidity range for all days. 

The time-independent rigidity resolution function for 
electrons has a pronounced Gaussian core and non- 
Gaussian tails. The systematic error on the fluxes due to 
the rigidity resolution function is obtained by repeating the 
unfolding procedure while independently varying the width 
of the Gaussian core by 5% and the amplitude of the non- 
Gaussian tails by 10% [47]. The resulting systematic error 
on the fluxes is 2% at 1 GV and less than 1% above 2 GV. 

The daily variation of the spectral shape leads to an 
additional uncertainty in the unfolding procedure. The 
resulting time-dependent systematic error is less than 1% 
at 1 GV and is negligible (less than 0.2%) above 5 GV for 

all days. 
There are two contributions to the systematic uncertainty 

on the rigidity scale [47]. The first is due to residual tracker 
misalignment. This error is estimated by comparing the 
E/ p ratio for electrons and positrons, where E is the energy 
measured with the electromagnetic calorimeter and p is the 
momentum measured with the tracker. It is found to be 
1/30 TV [48]. The error is negligible (less than 0.2%) 

below 41.9 GV. The second systematic error on the rigidity 
scale arises from the magnetic field map measurement and 
its temperature corrections. The total time-independent 
error on the fluxes due to uncertainty on the rigidity scale 
has been calculated to be less than 0.5% over the rigidity 
range below 41.9 GV. 

The contributions to the systematic error from the 
trigger efficiency, the reconstruction efficiencies, and the 
unfolding are evaluated independently each day and are 
added in quadrature to derive a time-dependent systematic 
error, which is less than 2% at 1 GV and about 1% above 

3 GV for all days. 
The daily total systematic error is obtained by adding 

in quadrature the individual contributions of the time- 

independent systematic errors discussed above and the 

time-dependent systematic errors. At 1 GY, it is less than 

3%, and above 3 GY, it is about 1.5% for all days. 

Most importantly, several independent analyses were 
performed on the same data sample by different study groups. 
The results of those analyses are consistent with this Letter. 

Results —The daily electron fluxes (®,-) including 
statistical errors, time-dependent systematic errors, and 

total systematic errors are tabulated in Tables S1—S3300 
of the SM [34,49] as functions of the rigidity at the top of 
the AMS detector. These daily data are in agreement with 
our earlier 27-day results [29] in the overlapping time 
period but with improved accuracy. The daily proton flux 
(®,,) data from May 2011 to November 2019 are taken 

from Ref. [30]. The new ®, data up to November 2021 will 

be published separately. 
Figure | shows ®,- and ©, for four rigidity bins from 

1.00 to 11.0 GV; see also Fig. S6 of the SM [34] for ®,- in 
circular format. In this and subsequent figures, the error 
bars on the fluxes are the quadratic sum of the statistical and 
time-dependent systematic errors. As seen, ®,- exhibits 
both short-term variations on the scale of days to months 
and long-term variations on the scale of years, and the 
relative magnitude of these variations decreases with 
increasing rigidity. The time-dependent behavior of the 
®,- and @®, is distinctly different, and the differences 

decrease with increasing rigidity. From 2011 to 2014, ®,- 
decreases faster with time than ®,. From 2015 to mid- 

2017, ®,- increase more slowly than ®,, below about 4 GV 

[Figs. l(a) and 1(b)]. From mid-2020 to 2021, ®,- 
decreases faster than ®,. 

Short-term flux variations can be either recurrent or 
nonrecurrent. The nonrecurrent variations are mainly 
caused by transient disturbances in the interplanetary 
magnetic field [26,28,30,31,50,51]. The comparison of 

the nonrecurrent variation of daily ®,- and ®, for three 
short time intervals is shown in Fig. S7 of the SM [34]. As 

seen, during lower solar activity (left and nght columns of 
Fig. S7), a difference between the short-term evolution of 
electrons and protons is observed, while during the solar 
maximum (middle column of Fig. S7), the difference 

vanishes. For instance, in Figs. S7(b) and $7(j), the slope 
of the recovery after the dip is different between electrons 
and protons. These observations indicate a charge-sign 
dependence in nonrecurrent solar modulation. 

Recurrent variations with a period of 27 days and its 
harmonics are related to solar rotation [52-60]. To study the 

recurrent variations in ®,-, a wavelet time-frequency 
technique [61] was used to locate the time intervals where 

the periodic structures emerge. The details on the wavelet 
analysis are described in the SM [34]. All the power spectra 
in the subsequent figures are drawn with normalized power 
defined in the SM [34]. The ®,- for four rigidity intervals 
from 1.00 to 11.0 GV in each year (2011-2021 defined in 
Table SA of the SM [34]), together with their time-averaged 

power spectra and 95% confidence levels, are shown in 
Figs. S8-S18 of the SM [34]. 

The peak values of the normalized power around 27 days, 
13.5 days, and 9 days as a function of rigidity for each year 
are shown in Figs. S19-S21 of the SM [34], respectively. 
As indicated by the shaded areas of Fig. S19, the 27-day 
periodicity is most prominent in the second half of 2011, 
the second half of 2015, the first half of 2016, and the first 
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FIG. 1. Eleven-year daily AMS electron fluxes ®,- and daily proton fluxes ®, in units of [m-? sr! s-! GV~'] for four rigidity bins 

from 1.00 to 11.0 GV from May 20, 2011 to November 2, 2021. Days with solar energetic particle events are removed from ®, for the 

lowest rigidity bins shown. The gaps in the fluxes are due to detector studies and upgrades. Note that ®,, is multiplied by different scale 

factors as indicated. The scale factor of ®, is chosen such that ®,- and ®, for each rigidity bin are at the same magnitude, on average, 

during 2014 and 2015. The vertical dashed lines indicate the three time intervals studied in Fig. S7 of the SM [34]. As seen, ®,- exhibits 

large variations with time, and the relative magnitude of these variations [(a)—(d)] decreases with increasing rigidity. The time-dependent 

behavior of the ®,- and ®,, are distinctly different. From 2011 to 2014, ®,- decreases faster with time than ®,. From 2015 to mid-2017, 

®,- increases more slowly than ®, below about 4 GV (a),(b). From mid-2020 to 2021, ®,- decreases faster than ®,,. 

half of 2017. As seen in Fig. S20, the 13.5-day periodicity 
is most prominent in the second half of 2011, the second 

half of 2015, and the second half of 2016. As seen in 

Fig. S21, the 9-day periodicity is most prominent in the 
second half of 2015, the first half of 2016, and the second 

half of 2016. 
The rigidity dependence of the strength of all three 

periodicities varies in different time intervals, but it does 

not always decrease with increasing rigidity. These obser- 
vations do not support the paradigm that, over the AMS 
rigidity range, the strength of the 27-day (and 13.5- and 
9-day) periodicities steadily decreases with increasing 
rigidity of cosmic rays [62]. 

Figure 2 shows the normalized power as a function of 
rigidity and period for ®,- and ®, during two time 
intervals when the 27-day periodicity is most prominent 
(second half of 2011 and first half of 2017). As seen, the 

rigidity dependence behavior of the normalized power of 
electrons and protons is different in these two time 
intervals. In particular, in the second half of 2011 
[Figs. 2(a) and 2(b)], the strength of the 27-day period 

of electrons is greater than that of protons, while in the first 
half of 2017 [Figs. 2(c) and 2(d)], the strength of the 27-day 

period of electrons is less than that of protons. Figures $22— 
S24 show the comparison of the peak values of the 
normalized power including the 95% C.L. between ®,- 
and ® , around 27, 13.5, and 9 days, respectively. As seen, 

the rigidity dependence of the electron periodicities is 
different from that of protons [30]. 

The long-term variations on the scale of years are related 
to the 11- and 22-year cycles of the solar magnetic field [5]. 
To further investigate the difference in the modulation of 
®,- and ®,,, Fig. 3 shows ®,- as a function of ®, for four 

rigidity intervals from 1.00 to 11.0 GV. For Figs. 3(a)—3(d), 

the data points are the daily AMS measurements of ®,- and 
®,. For Figs. 3(e)-3(h), both ®,- and ®, are calculated 

with a moving average of 14 BRs with a step of 1 day. 
Different colors indicate different years from 2011 to 2021. 
As seen, a hysteresis between ®,- and ®, is observed; that 

is, from 2011 to 2018 at a given electron flux, the proton 

flux shows two distinct branches with time, one before 

2014-2015 and one after. Both electron and proton fluxes 
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FIG. 2. Normalized power of (a),(c) electron fluxes and (b),(d) proton fluxes as a function of rigidity and time for (a),(b) the second 

half of 2011 (May 20 to December 16, 2011) and (c),(d) the first half of 2017 (January 22 to July 2, 2017). The rigidity range is from 

1.00 to 22.8 GV. As seen, the rigidity dependence behavior of the normalized power of electrons and protons is different in these two 

time intervals. In particular, in the second half of 2011 [shown in (a) and (b)], the strength of the 27-day period of electrons is greater than 

that of protons, while in the first half of 2017 [shown in (c) and (d)], the strength of the 27-day period of electrons is less than that of 

protons. 
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FIG. 3. Electron fluxes ®,- versus the proton fluxes ® , for four rigidity intervals from 1.00 to 11.0 GV. For (a)-(d), the data points are 

the daily ®,- and ® ,. For (e)-(h), both ®,- and ®, are calculated with a moving average of 14 BRs with a step of | day. Different colors 

indicate different years from 2011 to 2021. As seen, a hysteresis between ®,- and ®, is observed; that is, from 2011 to 2018 at a given 

electron flux, the proton flux shows two distinct branches with time, one before 2014-2015 and one after. Both ®,- and ®, peak in 

2020, after which the hysteresis curve starts to trace the earlier behavior (2018-2020) backwards. Fluxes are in units of 

[m-? sr-! s-! GV-!]. 
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FIG. 4. (a) Daily electron fluxes ®,- (red, left axis) and daily 

proton fluxes ®, (green, right axis) as a function of time for the 

rigidity interval of 1.00 to 1.71 GV. The arrows I, I, and IT indicate 

the location of sharp dips in the proton and electron fluxes, and the 

colored bands IV and V mark the time intervals around the dips in 

2015 and 2017. (b) ®,- versus ®,, both calculated with a moving 

average of 2 BRs and a step of 1 day. The locations of I, II, and II 

correspond to the flux dips in (a). To assess the significance of the 

structures in the hysteresis, during dips [TV and V (indicated by 

white boxes), two pairs (white squares and triangles) of non- 
overlapping intervals with the same ®, but different ®,- are 

chosen. As shown in Fig. S25 of the SM [34], the large dips in 2015 

(IV) and 2017 (V) correspond to additional structures in the overall 

hysteresis with significance of 15.96 and 7.0o, respectively. Fluxes 

are in units of [m~? sr-! s~-! GV~!}. 

peak in 2020, after which the hysteresis curve starts to trace 
the earlier behavior (2018-2020) backwards. This is con- 

sistent with the differences in electron and proton modu- 
lation being symmetric with respect to the minimum solar 
modulation. To assess the significance of this hysteresis, as 
detailed in the SM [34] (see also Figs. $25 and $26), we 

study, at different solar conditions, the values of ®, at the 

same ®,-. As seen, the hysteresis is observed with a 

significance of 47o at [1.00—-1.71] GV, greater than 60 

below 8.48 GV, and 4.lo at [8.48-11.0] GV. Different 
methods have been used by several independent analysis 
groups to quantify the significance of the hysteresis, and 
they show similar results [63]. 

To probe structures in the hysteresis, the moving averages 
of the ®,- and ®, are calculated with a finer time window. 

The results for the rigidity interval of [1.00-1.71] GV are 
shown in Fig. 4. Figure 4(a) shows the daily ®,- and ®, asa 

function of time for the 1 1-year period. The arrows I, I, and 

III indicate the location of sharp dips in the proton and 
electron fluxes, and the colored bands [Vand V mark the time 

intervals around the dips in 2015 and 2017. The moving 
average of ®,- and ®,, with the time window of 2 BRs anda 

step of | day for this rigidity interval is shown in Fig. 4(b). 
The detailed behavior around the dips IV and V is shown in 
Fig. S27. To assess the significance of these structures in 
hysteresis, we study the difference of ®,- at the same ®,; see 

SM [34] for details. The significance of the hysteresis 
structure at [1.00-1.71] GV corresponding to the large dip 
in 2015 is 15.96 (IV) and to the large dip in 2017 is 7.00 (V). 
The analysis at [1.71—2.97] GV is presented in Fig. S28. The 
significance of the hysteresis structure corresponding to the 
large dip in 2015 1s 14.60 and to the large dip in 2017 is 5.30. 

The structures in the hysteresis in 2015 and 2017 are 
likely caused by a series of interplanetary coronal mass 
ejections [64]. The clear deviation from the long-term trend 

implies a charge-sign-dependent modulation during those 
solar transients on the timescale of several Bartels rotations. 

In conclusion, we presented the precision measurements 
of 11 years of daily cosmic electron fluxes in the rigidity 
interval from 1.00 to 41.9 GV based on 2.0 x 108 electrons. 

The electron fluxes exhibit variations on multiple time- 

scales. In the 11-year period, the electron fluxes show 
distinctly different time variations from the proton fluxes. 

Recurrent electron flux variations with periods of 27 days, 

13.5 days, and 9 days are observed. The strength of all three 
periods of electron fluxes shows different rigidity and time 

dependence compared to protons. Remarkably, a hysteresis 

between the electron flux and the proton flux is observed 

with a significance greater than 60 at rigidities below 

8.5 GV. Furthermore, significant structures in the electron- 

proton hysteresis are observed, corresponding to sharp 

variations in the fluxes. These continuous daily electron 

data provide unique input to the understanding of the 

charge sign dependence of cosmic rays over an 11-year 

solar cycle. 
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