Expression Isolation of Compiler-Induced
Numerical Inconsistencies in Heterogeneous Code

Dolores Miao'®9 | Ignacio Laguna?, Cindy Rubio-Gonzalez'

! University of California, Davis, Davis, CA 95616, USA
{wjmiao, crubio}@ucdavis.edu
2 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
ilaguna@llnl.gov

Abstract. As the demand for developing and porting numerical appli-
cations to heterogeneous computing platforms increases, such programs
may exhibit numerical inconsistencies caused by architectural differences
and aggressive compiler optimizations. These numerical inconsistencies
can negatively impact reproducibility and debugging. This paper presents
CIEL, designed to identify the root cause of compiler-induced numerical
inconsistencies in heterogeneous programs. CIEL uses a floating-point
precision enhancement strategy, guided by a recursive bisection search
algorithm with increasing search granularity, to identify the program ex-
pressions that induce numerical inconsistencies due to compiler optimiza-
tions. CIEL achieves 99.4% precision in isolating numerical inconsistencies
in both CPU and GPU programs, including 330 synthetic GPU programs,
benchmark applications like NAS Parallel Benchmarks and Rodinia, and
real-world scientific applications such as CLOUDSC, a cloud microphysics
parameterization mini-app for the ECMWF IFS. Furthermore, when com-
pared with the state of the art, which only isolates lines of code in CPU
programs, CIEL runs 24.5% fewer searches for statement isolation, and
produces more precise results for 84.9% of the programs. Finally, manual
inspection of hundreds of compiler-induced numerical inconsistencies in
heterogeneous programs reveals common characteristics.

1 Introduction

Heterogeneous computing uses different processing cores, such as CPUs and graph-
ics processing units (GPUs), to run programs with maximized performance [8].
Software engineers from various fields use GPUs to form heterogeneous architec-
tures and accelerate large-scale parallel computations. General-purpose computing
on GPUs (GPGPUs) has become the go-to choice for physics simulations, digital
signal processing, machine learning, and climate research.

Compiler optimizations are often the first method software engineers consider
when optimizing programs. Aggressive optimization options are also often invoked
to push program performance as much as possible. Additionally, switching or
upgrading compilers in the middle of a project is also a frequent industrial
practice. Unfortunately, such modifications on a project global scale can have a
negative impact on software reliability, particularly on floating-point arithmetic
which could result in local errors that may propagate to the final program’s
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output. In cases found in the literature [5, 18, 21], it has required significant
effort and domain knowledge to isolate and fix these issues.

Numerical Reproducibility Challenges. Given the large number of hard-
ware architectures, compilers and host environments involved in executing het-
erogeneous programs, maintaining numerical consistency and reproducibility
is equally important to their pure CPU counterparts. Most hardware devices
and compilers follow the IEEE 754-2008 standard [1], but offer optimization
options, such as -ffast-math in Clang, that further push computational per-
formance at the cost of strict IEEE 754-2008 compliance. Such non-compliant
optimizations can yield different computation results—numerical inconsisten-
cies —between CPU- and GPU-computed results, or for CPU- or GPU-only
computations optimized at different levels. These inconsistencies often result in
numerical correctness bugs, some of which are reported in widely adopted numer-
ical libraries [15]. Many applications, when ported to GPU platforms, struggle
to find a balance between performance speedup and avoiding compiler-induced
numerical variability impacting the precision of the results [21]. Such impact has
already been acknowledged by the floating-point research community concerned
with ensuring numerical accuracy on heterogeneous computing systems [17].

Simply disabling compiler optimizations, or increasing precision uniformly
across an application, may solve compiler-induced variability, but they are not
practical solutions. Instead, developers strive to find the root cause of these
compiler-induced inconsistencies and manually fix them to reduce their impact
without disabling compiler optimizations. Currently, identifying the root cause
of such issues in heterogeneous programs is a manual effort, requires domain
knowledge, and is a time-consuming task.

Main Contributions. We present CIEL (which stands for Compiler-induced
Inconsistency Expression Locator), the first tool that automatically isolates
numerical inconsistencies in heterogeneous programs at the expression level. Prior
work [18, 28] has proposed automated approaches to isolate such inconsistencies
in pure CPU programs. FLiT [28] works at the function level, while pLiner [18]
isolates lines of code that cause inconsistencies, but neither targets GPU code
nor isolates at expression level, which further reduces developer workload.

In numerical program error analysis, replacing floating-point operations with
higher precision variants is widely employed [7, 16, 30] to more accurately approx-
imate the results of operations in infinite precision. Higher precision operations
have a smaller ulp (unit in last place) error, and exceptions such as subnormal
numbers and infinity are much less likely to be triggered. It is shown in [18] that
compiler-induced inconsistencies can be minimized by enhancing precision. CIEL
operates on the same assumption that compilers will produce enhanced precision
binary instructions when specific source code regions are in enhanced precision.

Compared to the state-of-the-art [18] for CPUs where each code block at
each level is treated individually, our approach traverses the abstract syntax
tree (AST) of each function and performs a bisection search for all adjacent
sibling code blocks, maintaining the adjacency relationship between them; during
precision enhancement, adjacent code blocks are either combined into a single
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code region or have variable checkpoints where redundant type conversions are
removed. Furthermore, CIEL isolates code down to the expression level rather
than the statement level (line level in [18]). Since the program statements causing
the compiler-induced inconsistencies may include many floating-point operations
involving different operators, variables, constants, or function calls, isolating
at the expression level provides a more precise insight into the inconsistencies,
pointing users directly to their root cause and potential fix.

In particular, to adapt to features and limitations on GPU platforms, such
as the lack of floating-point arithmetic beyond double precision or the built-in
vector arithmetic, CIEL supports extended precision libraries, and can transform
built-in vector arithmetic to enhanced precision. CIEL detects code written for
different target platforms (CPU or GPU code) and automatically transforms them
according to platform specifications, e.g., platform-specific language constructs
and data types. CIEL provides a solid foundation for extending support to other
platforms, such as OpenMP or OpenCL [3], as long as they are supported by
Clang. To the best of our knowledge, CIEL is the only tool capable of isolating
code regions in heterogeneous computing programs that, combined with compiler
optimizations, produce inconsistent numerical results.

We evaluate CIEL on a set of heterogeneous programs, including 330 synthetic
GPU programs, and on GPU programs from the NAS [6] and Rodinia [10]
benchmarks. CIEL achieves a precision of 99.4% in isolating compiler-induced
inconsistencies in these programs. Moreover, CIEL finds the root cause of a real-
world compiler-induced inconsistency in the C version of ECMWEF Cloud Physics
mini-app CLOUDSC [14] in only 7 minutes. The root cause of the inconsistency
has been confirmed by ECMWF domain experts. Finally, compared to pLiner [18],
the state of the art in isolating lines of code in CPU programs, CIEL performs
24.5% fewer searches for statement isolation, and produces more precise isolation
results for 84.9% of the pLiner’s CPU benchmarks.

In summary, the contributions of this paper are as follows:

— An approach for isolating minimal code regions that cause compiler-induced
numerical inconsistencies in heterogeneous programs. Our approach uses a
more efficient bisection search compared to the state of the art for CPU
programs that operates on simplified ASTs and provides a finer search
granularity at the expression level (Sections 3.1 and 3.2).

— A precision enhancement strategy that more accurately reflects the resolvabil-
ity of inconsistencies under precision enhancement, and addresses challenges
specific to transforming heterogeneous code to higher precision (Section 3.3).

— An implementation of our approach in the tool CIEL, and an evaluation that
shows (1) efficacy at isolating inconsistencies in a large and diverse set of
heterogeneous programs: 330 synthetic GPU programs, NAS and Rodinia
GPU benchmarks, and the real-world mini-app CLOUDSC (Section 4.1),
and (2) higher precision and efficiency in comparison with the state of the
art in isolating numerical inconsistencies in CPU programs (Section 4.2).

— A manual inspection of the isolated code that causes compiler-induced incon-
sistencies, which reveals common characteristics (Section 4.1).
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2 Examples of Compiler-Induced Inconsistencies

Compilers for CPU and GPU code, Table 1: Inconsistencies in BT.S.

such as Clang [4] and nvce [2], of-

fer various levels of optimization flags  Compiler Options Runtime  Error

from -00 to -03. With higher opti- nvcc-00 0.104s  6.98176E-13
: . nvce -0O3 -use_fast math 0.052s  9.73738E-13

mization levels, program performance clang -00  — ~ 03105  8.32928F-13

is improved, sometimes significantly, clang -O3 -flast-math 0.059s  3.50905E-12
but at the cost of potentially gener-

ating non-compliant IEEE 754-2008

floating-point code. There are optimization flags that explicitly violate the IEEE
754-2008 standard, but in cases where precision is of less concern, they offer good
speedups. For example, consider the CUDA version of the BT NAS program with
input class S. Table 1 shows the program runtime and the maximum relative error
for each compiler and optimization flag combination. Using -03 -use_fast_math
with nvee yields 100% speedup compared to -00, but at the cost of the error
being 39% larger. Performance and error with Clang is generally worse, with the
largest error in clang -03 -ffast-math being 403% larger than nvcc -00.

In real-world applications, such compiler-induced numerical inconsistencies
occur frequently. They can happen when migrating software to other hardware/-
software platforms, switching applications to a new compiler, or just using more
aggressive optimization flags for compilation. These inconsistencies may cause
major software failures that take tremendous amount of effort to identify and
resolve. A documented case [18, 21] in the Laghos (LAGrangian High-Order
Solver) application [9] is observed when ported to the Lawrence Livermore Na-
tional Laboratory’s Sierra system using the IBM xlc compiler. This triggered an
inconsistency in the energy computed by the application under x1c -03 but not
with x1c -02. In another documented case in [5], the Community Earth System
Model (CESM) failed its verification using the CESM-ECT quality assurance
framework when it was ported to the Mira machine at Argonne National Labora-
tory. Both took from weeks to months for scientists and engineers to identify the
source code that caused such failures.

Issues like the above are bound to occur when real-world scientific applications
are written or ported to new platforms. Automatically resolving such issues without
extensive domain knowledge would save a massive amount of time and increase
programming productivity.

3 Technical Approach

Problem Statement. Given heterogeneous programs with known compiler-
induced numerical inconsistencies, a practical problem for software developers
is how to isolate the expressions that cause such inconsistencies in a precise
and efficient manner. CIEL is designed with the goal of tackling this problem.
Specifically, CIEL takes as input a program P and its associated input, which
under compilers C7, Cs, ..., C,, and optimization flags O;1, O;a, ..., O for each
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Fig.1: The workflow of CIEL.

compiler C;, produces inconsistent results. CIEL outputs the minimal region R,
in m searches, which means that by generating program variants Py, Py, ..., P/ it
isolates the root cause of the inconsistency to a code region as narrow as possible.
Below we present definitions that will be used throughout the rest of the paper.

Definition 1. The output of program P given a specific error threshold € under
compiler C; and optimization flags O;; is written as f(P,e,C;, O;j).

Definition 2. Compiler-induced inconsistencies occur if there are two sets of
compiler/optimization flag combinations C;, O;; and Cy, Oy, where f(P, €, C;, O;;)
# f(P,¢,Ck,Oi). When any two sets of combinations have the same output, the
inconsistencies are considered to be resolved.

Definition 3. A region set R of a program P is defined as a set of regions in
P, each of which is a straight-line code fragment with an entry point and one or
more exit points.

Definition 4. A region set R,, is minimal if (a) the inconsistency is resolved
when code in Ry, is executed in higher precision, and (b) either R,, consists of
only one expression, or leaving any expression in R, in lower precision would
result in unresolved inconsistencies.

CI1eEL’s Workflow. The overall workflow of CIEL is illustrated in Figure 1. To
find the minimal region that causes the numerical inconsistency, CIEL performs
hierarchical bisection search on the source code—first between functions, then
between code regions in the suspected functions. Each iteration increases the
search granularity. The search algorithm identifies regions suspected of caus-
ing compiler-induced inconsistencies. For each region Ry, Ra, ..., Ry, CIEL then
creates a mutated variant of the program Pj, Pj, ..., P/ for which code in the
corresponding region is in enhanced precision. Whether the variant resolves these
inconsistencies is then used to guide the further, narrower isolation of source code
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that triggers inconsistencies. The isolation process ends when region R, satisfies
the conditions of a minimal region. The modules in CIEL are described below:
Hierarchy Extraction traverses the AST of the functions under analysis,
extracting information relevant to floating-point operations, and generating a
simplified AST for these functions. This is the entry point of the analysis.
Hierarchical Code Isolation performs a hierarchical bisection search on
the simplified AST to generate regions for subsequent precision enhancement.
@ Precision Enhancement increases the precision of the code regions identi-
fied by hierarchical code isolation. The output is the transformed source code with
the floating-point operations in specific code regions written in higher precision.
@ Differential Testing compiles and runs the transformed program with
specified compilers and optimization flags in parallel. The output of these combi-
nations of compilers and flags is compared to determine if the compiler-induced
inconsistencies are resolved.
The rest of the section describes modules 1-3 in more detail.

3.1 Hierarchy Extraction

The hierarchy extraction module traverses the program AST and extracts source
code hierarchy information for each function in the form of a simplified AST. The
simplified AST acts as a data exchange format between modules, and contains
additional data specific to CIEL that includes whether a node should be enhanced
in precision (enabled/disabled), and the list of all floating-point operations such
as reads, writes, declarations, function calls, and constants in every statement
under a node. The simplified AST classifies statement structure of a function
into five node categories:

1. Each statement that ends with a semicolon (declaration, expression, and
return/break) is a statement node on the simplified AST. Each statement
node also contains its expression AST hierarchy.

2. A set of statements with only one entry point and one exit point is grouped
as a basic block (BB) node.

3. For a selection statement such as if-else or switch-case statement, one BB
node is assigned to each branch; and then a conditional block node is
assigned for the whole selection statement as a code block.

4. For a loop statement such as a for or do-while statement, one BB node is
assigned to the condition, another to the loop body, and then a loop block
node is assigned for the whole loop statement as a code block.

5. A function node is assigned to the whole function.

The relationship between a sample program and its simplified AST represen-
tation is shown in Figure 2. Each expression statement (for-loop header in Line
2; if condition in Line 6; statements in Lines 3, 4, 5, 7, 10) in Subfigure 2a has
its own statement node, which is organized into block nodes. The corresponding
simplified AST is shown in Subfigure 2b.3

3 Statements and blocks with no floating-point operations are recorded but excluded
from precision enhancement.
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1 void compute (/*var args*/){

2 for(int i=0; i<n; ++i) { //ST1-3
3 comp = x-1.6f; //ST4

4 float t = +1.4697E36f; //ST5
5 comp += t+1.4E-41f; //ST6

6 if (comp < sinhf(y)) { //ST7

7
8

comp = tanf(z); //ST8

)
9 . . .
10 irintf(..%.”g" ,comp); //ST9 (b) Simplified AST of compute. The incon-
113 sistency is in ST6. Dark filled nodes are hi-

erarchically isolated. Stripe filled nodes are
(a) Sample function compute. Variables considered in the bisection search at each level
comp, x, y and z are function arguments of hierarchy, but not isolated. White nodes
of type float. are not considered during bisection search.

Fig. 2: Sample function and its simplified AST.

3.2 Hierarchical Code Isolation

When hierarchy extraction is complete, the simplified ASTs for all functions are
output to the hierarchical code isolation module. As code isolation progresses, it
marks nodes on the simplified ASTs as enabled or disabled depending on whether
the node is still in consideration as a potential cause of inconsistencies.

Bisection search is the basis for the approach, followed by a 1-minimal
check [31]. Bisection has shown to be an effective search strategy in the context of
code isolation in CPU programs [18, 28]. CIEL bases its search algorithm on the
same idea of partitioning the program into functions, code blocks, and statements,
but improves on how the hierarchical search is performed to reduce search time
and improve precision. In particular, CIEL proposes a refined hierarchical region
isolation with the explicit goal of improving isolation accuracy by reducing
unnecessary type conversions when enhancing precision. Furthermore, unlike
previous work, CIEL explores expression-level granularity during the search.

CIEL isolates a minimal region of code amongst a set of code regions by recur-
sively bisecting suspicious code regions into two halves and verifying if enhancing
either half resolves the inconsistency (Line 1 in Algorithm 1). Hierarchical search
first sets the whole program in enhanced precision (Line 17 in Algorithm 1), then
finds the minimal region in increasing granularity, following two stages:

1. Function Isolation. During the function isolation stage (Line 16 in Algo-
rithm 1), bisection search is performed at the function level, and the result is
a minimal set of functions that cause the inconsistencies.

2. Hierarchical Region Isolation. For each function isolated in the first stage,
during the hierarchical region isolation (Line 11 in Algorithm 1), bisection
search is performed at increasingly granular levels, from code block level to
statement level, and ultimately to expression level.

CIEL traverses the simplified AST of each function isolated in the function
isolation stage, and isolates child nodes of the current node(s) that cause the
compiler-induced inconsistency: from the child nodes of the function node, to
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Algorithm 1: Hierarchical Code Isolation.

1 Function BisectionSearch(regions) :

2 if regions.size() > 1 then

3 regionsi, regionss = ArraySplit(regions, 2);

4 if HasResolvedInHighPrecision(regions;) then
5 L BisectionSearch(regionsi);

=]

else if HasResolvedInHighPrecision(regionss) then
L BisectionSearch(regionsa);

N

8 else
9 BisectionSearch(regionsi);
10 BisectionSearch(regionssz);

11 Function RegionIsolation(regions) :

12 BisectionSearch(regions);

13 foreach region in regions do

14 if region.hasSubBlocks() €6 region.inHighPrecision() then
15 | RegionIsolation(region.getSubBlocks());

16 Function FuncIsolation(Funcs ):

17 Funcs.setHighPrecision();

18 BisectionSearch(Funcs);

19 minFuncs = Funcs.getHighPrecisionFuncs();
20 foreach func in minFuncs do

21 L RegionIsolation(func.getBlocks());

child nodes of BB nodes, to all isolated statement nodes, until within the smallest
subexpression in a statement node, e.g., a variable, constant, or function call. A
difference of this code isolation method, compared to prior work, is that these child
nodes are continuous blocks or statements, which are split into two continuous
sets of code blocks or statements. For example, n continuous code blocks are split
into the first [n/2] blocks and the remaining n — |n/2| blocks. Combined with
the region merge pass (Section 3.3), all blocks are merged into as few continuous
code regions as possible, reducing redundant type conversions. Section 4.2 shows
that by removing redundant type conversions, the transformed program can more
accurately and efficiently reflect the resolvability of compiler-induced numerical
inconsistencies under precision enhancement.

Furthermore, given how statements in loops could accumulate errors that
could exacerbate compiler-induced inconsistencies, our bisection search prioritizes
loop structures. Thus, loop BBs at the current level of the AST hierarchy are
isolated first. If inconsistencies are resolved then the search is narrowed down to
the identified loop BBs; otherwise the search proceeds normally.

We use the sample function from Subfigure 2a to illustrate hierarchical region
isolation within a function. The statement that causes the compiler-induced
inconsistency is in Line 5 (ST6 in Subfigure 2b). The algorithm first searches in
the loop BBs at the top level, between BB1 and BB6. The inconsistency is resolved
with BB1 in enhanced precision, thus BB1 is isolated and further split into BB2
and BB3. BB3 is isolated next, which is then split into BB4 and BB5, with BB4 then
isolated and split into statements ST4, ST5 and ST6, from which the constant
expression 1.4F — 41 f in ST6 is found to be the root cause of the inconsistency.
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3.3 Source-to-Source Precision Enhancement

The precision enhancement module takes as input the marked simplified AST
from the hierarchical code isolation module, and produces a transformed program
where all floating-point operations in an enabled code region, whether it is a whole
function or a continuous code segment, are in enhanced precision. Source-to-source
program transformation allows the resulting programs to be successfully compiled
by the same compilers that trigger the original inconsistencies. Furthermore, a
source-level transformation, in contrast to IR or assembly level, is not affected
by aggressive optimization passes such as instruction reordering which would
obscure and obfuscate the boundaries between source code statements during
binary generation.

CIEL detects and classifies CUDA host and device functions according to
language-specific modifiers in the AST, such as the __global__ and __device__
modifiers in the function signature, and transforms code accordingly.

In terms of enhancing precision for CUDA kernels, while CPU programming
platforms generally natively support floating-point types beyond double precision,
GPU platforms do not. Thus we design CIEL to support precision enhancement
with custom extended precision floating-point types that support operator over-
loading and math functions. Some examples of extended precision libraries include
CAMPARY [19] and CUMP [25], but only GPUprec [24] fits the above criteria
for integration. GPUprec only requires modest effort to be integrated with CIEL.
We use its quadruple precision type to perform precision enhancement because it
offers the most support for math functions.

Ideally, all code executed is available to CIEL when isolating code within a
code region. However, external functions whose code is not available may be
called within a code region. Even though it would not be possible to isolate
individual expressions within such external functions, isolating the function call
site itself may still be helpful in isolating numerical inconsistencies. In cases where
inconsistencies exist in external functions, and an enhanced precision version
of the same function is available, replacing the original function calls with calls
to their corresponding enhanced-precision functions is expected to resolve the
inconsistencies. Thus, for functions called within enhanced code regions, CIEL
automatically replaces those given in a customizable replacement function list,
most of which are math library functions, with an enhanced precision version.
In the example in Subfigure 2a, sinhf and tanf would be replaced with sinh
and tan, respectively. On the other hand, precision enhancement of variables
and constants consists of two stages: region and expression transformation, with
targeted strategies for different categories of variables.

Stage 1: Region Transformation. This stage enhances the precision of floating-
point operations in a specific code region including scalar variables, built-in vectors
and constants. Region transformation consists of three passes: region merge, vari-
able categorization, and code transformation.
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Pass 1: Region Merge. This pass merges all basic blocks and statements to be
enhanced into as few continuous code regions as possible. Compared to prior
work, this pass is added specifically as an improvement in removing unnecessary
type conversions in precision enhanced code. If two adjacent code blocks on the
same level of the AST hierarchy are to be enhanced, then these blocks are merged
into one single block. For example, ST5 and ST6 in Subfigure 2b are adjacent
and on the same level in the AST, thus they are merged into one block. If two
adjacent code blocks that are on different levels of the AST hierarchy are to be
enhanced, we insert a wvariable checkpoint between them so that redundant type
conversions can be detected and removed during the Code Transformation pass.
For example, ST6 and BB5 in Subfigure 2b are adjacent but on different levels
in the AST, a variable checkpoint is inserted here so that there would be no
redundant type conversions in between for variables such as comp.

Pass 2: Variable Categorization. This pass iterates through all variable uses in a
code region, and categorizes scalar and built-in vector floating-point variables?
into four groups. Our variable categorization algorithm is based on [18] which,
in essence, separates read-after-write variables in a code region that require
allocating temporary storage from variables that just require casting when refer-
enced. We then categorize the read-after-write variables into two groups based on
whether the variable declaration is inside (revise Vars) or outside (replaceVars)
the code region since they require different transformation strategies. Finally we
group the variables that only require casting when referenced by checking if they
are only read (rdVars) or only written (wrVars). The last category (wrVars)
was added in CIEL to implement precision enhancement in GPU programs with
custom extended precision floating-point types described later in this subsection.

Pass 8: Code Transformation. This pass transforms variables according to their
categorization:

T1 For revise Vars, the declarations of these variables (originally inside the region)
are replaced with a temporary variable in higher precision; any reference
to this variable inside the code region is replaced with its corresponding
temporary variable; the declaration of the original variable is moved prior to
the region’s exit points, and initialized with the temporary variable.

T2 For replaceVars, a temporary variable declaration is inserted at the entry of
the region, initialized with the value of the original variable (declared outside
the region); any reference to this variable inside the code region is replaced
with the temporary variable; the value of the temporary variable is assigned
back to the original variable at region exit points.

T3 For rdVars, any reference to the variable inside the code region is explicitly
upcast to higher precision.

T4 For wrVars, any assignment to the variable inside the code region is explicitly
downcast to lower precision (reads may occur only outside the region).

4 Pointers and array references are not categorized; their dereferences are directly cast.
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Lastly, type conversion statements from /back to original precision are inserted
at the entry/exit point(s) of a code region. Note that calls to functions that are
not included in the replacement function list are treated as special exit points
of the code region, and their arguments are cast to original precision prior to
the function call. Additionally, if the exit/entry of a code region is a variable
checkpoint, CIEL finds all the variables shared between the two code regions, and
simply assigns the enhanced-precision replacement variable in the first region
to the one in the second region. By doing so, CIEL prevents redundant type
conversions between these two code regions.

Custom extended-precision floating-point types present unique challenges
compared to built-in floating-point types. C++ allows implicit conversions among
floating-point types, even when such conversions incur precision loss, such as
from double to float. However, such implicit conversions are not possible for
custom floating-point types. For example (assuming the type name is dd_real):

dd_real a = 1.0; dd_real b = a + 2.0;

There is ambiguity in a + 2.0, which can either be interpreted as an addition
of two dd_real values or two double values before assigning the result to b.
For such code to pass compilation, CIEL inserts explicit casts back to original
precision in value assignments, function arguments, and other possible situations.
These explicit casts require CIEL to categorize variables that are only written in
a code region, hence a new category, wrVars, was added.

Another challenge when enhancing the precision of CUDA kernels is built-in
floating-point vector classes. These classes provide vertex and matrix calculation
in 2 to 4 dimensions and are widely used. CIEL supports transforming built-in
vector type operations to enhanced precision, including type conversions for func-
tion arguments passed by reference or by dereferencing. This requires creating
temporary variables that are live only during the function call. For this purpose,
we implemented converter template class instances as anonymous variables in
function arguments. Upon construction, they accept a reference or a pointer of
the source variable, convert it to the target type, and provide a reference or a
pointer in the target type to the function calls. When the function call is finished,
destructors for these converter classes are invoked, and we assign the return value
of these references/pointers back to the original variable.

Stage 2: Expression Transformation. This transformation is only applied
when the code has been successfully isolated at the statement level. Specified
subexpressions in each isolated statement are converted to enhanced precision.
CIEL traverses the AST starting from the subexpression node, cast all variable
reads and constants from subexpressions to enhanced precision, and the whole
subexpression is explicitly converted back to original precision. For example,
the subexpression b*2.0f in expression a = b*2.0f+c would be transformed to
(float) ((double)b*2.0) in enhanced precision.
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4 Experimental Evaluation

This experimental evaluation answers the following research questions:

RQ1 How effective is CIEL at isolating compiler-induced numerical inconsisten-
cies in heterogeneous programs?

RQ2 How does CIEL compare with the state of the art in isolating compiler-
induced numerical inconsistencies in CPU programs?

4.1 RQ1: Numerical Inconsistencies in Heterogeneous Programs

Benchmarks. We collected a total of 339 compiler-induced inconsistencies:
330 inconsistencies observed in floating-point synthetic GPU programs, 5 incon-
sistencies triggered in NAS Parallel Benchmarks for GPU (NPB-GPU) [6], 3
inconsistencies triggered in the CUDA version of the Rodinia Benchmark suite
for heterogeneous computing [10], and a real-world inconsistency found in the C
version of the ECMWF Cloud Physics mini-app CLOUDSC [14].

The synthetic GPU programs were generated with Varity [21], a framework
that randomly generates small programs written in CUDA C along with an input
for which a numerical inconsistency is observed when using nvcc -03 -fastmath
in comparison to nvcc -00. These programs use single-precision floating-point
arithmetic, various C syntax mechanisms such as for-loop and if statements,
and calls to external math functions.

The CUDA NAS Parallel Benchmarks demonstrate the ability of CIEL to
isolate compiler-induced floating-point inconsistencies in programs originally
written for CPU architectures and ported to GPUs. These programs use double
precision, which means the extended precision capabilities of CIEL are used. On
the other hand, the Rodinia programs are originally written as heterogeneous
applications for which single and double precision implementations are available.
Therefore, we use the version in single precision.

Finally, CLOUDSC is a standalone mini-app of the ECMWF cloud micro-
physics parameterization, which tests the CLOUDSC cloud microphysics scheme
of the ECMWF Integrated Forecasting System (IFS). We choose CLOUDSC
as a candidate to demonstrate the efficacy of CIEL in finding compiler-induced
inconsistencies in real-world applications, and show its capability of adapting to
other software platforms and languages supported by Clang.

Experimental Environment. We use a PC with octa-core Intel(R) i7-11800H
processors, and NVIDIA RTX 3070 GPU with 5120 CUDA cores, running
Ubuntu 20.04 LTS. We use Clang version 14.0.6 to perform source-to-source
transformation, which supports CUDA SDK versions up to 11.1 with Compute
Capability up to 8.6. Clang 14.0.6 and nvce 11.1 are also the compiler versions
we use to compile transformed GPU programs. For CPU programs, we use gcc
9.4.0. Our methodology is independent of GPU models as long as they have the
same Compute Capability. For all compilers, we considered two sets of compiler
flags: -00, and -03 with fastmath.
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Table 2: Numerical inconsistencies in NAS, Rodinia and CLOUDSC programs.

Benchmark  Program LOC Input Epsilon Compilation Command
NPB-GPU BT 5062 S 3.0e-12  clang -03 -ffast-math
NPB-GPU  CG 1868 S 1.1e-15 clang -03 -ffast-math
NPB-GPU  CG 1868 W 4.0e-16  clang -03 -ffast-math
NPB-GPU LU 4437 S 1.9e-12 nvcc -03 -use_fast_math
NPB-GPU MG 2349 W 2.9e-14 clang -03 -ffast-math
Rodinia LUD 77 256 1.2e-5 nvcc -00

Rodinia CFD 647 097K 7.2e-2 nvcc -00

Rodinia CFD 647 193K 1.9e-1 nvecc -00 & -03 -ffast-math
N/A CLOUDSC 2593 N/A  1.0e-11 gcc -03 -ffast-math

Methodology for Triggering Numerical Inconsistencies. The compiler-
induced numerical inconsistencies in NAS, Rodinia and CLOUDSC were pre-
viously unknown, and were discovered through testing. Specifically, we rely on
verification routines that compare the relative errors in output values to an
epsilon value € to determine whether the results meet accuracy constraints. A
compiler-induced inconsistency exists if a program passes its verification routines
for some compiler settings but not for others.

For six of the NAS programs (BT, CG, FT, LU, MP and SP) and Rodinia
LUD, we utilize existing verification routines where results are either compared
to precalculated ground truth embedded in the program source code, or in
the case of Rodinia LUD, the resulting two matrices are multiplied and then
compared against the original matrix. For the Rodinia CFD Solver, we calculate
the total density energy (TDE) as specified in [22] and compare it to the reference
TDE value precalculated by running the double-precision version of CFD Solver
compiled with nvec -00. For CLOUDSC, we compare relative errors for the main
variables at the end of program execution against ground truth precalculated by
running the original cloud scheme from IFS in FORTRAN.

We follow an existing methodology to trigger numerical inconsistencies, first
introduced in [18]. Specifically, we set the epsilon value € between the minimum
and maximum errors observed amongst all compiler/optimization flag combi-
nations for a given program, and maximize the e value such that the program
passes its verification routines only for some compiler settings but not for others.
Table 2 lists the inputs, epsilon values, and compiler commands used to trigger
each of the 9 numerical inconsistencies reported for these programs.

Evaluation Results. We find that CIEL is effective at isolating code responsible
for the numerical inconsistencies in 337 out of 339 instances (99.4%). In terms of
isolation granularity, CIEL isolates at expression level in 318 out of 339 instances
(93.8%), while the rest of the inconsistencies are isolated at line, block, or function
level. Below we describe the results per benchmark.

Synthetic GPU Programs. CIEL isolates all inconsistencies: individual expressions
in 310 cases, a code block in 18, and a function in the remaining 2. We manually
examined the source code, inputs, outputs, and in some cases the assembly code
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Table 3: Categorization of inconsistencies found in synthetic GPU programs.

Categories # Programs  Percentage Sample Code
Subnormal Arithmetic 125 37.9% +1.8922E-42f + var_3
Inf or NaN Arithmetic 53 16.0% +1.3797E-35f / -0.0f
Math Functions 41 12.4% sinf (+1.0195E25¢f)
Rounding Errors 18 55% -16458 / 1.67329e-16
Program Inputs 164 49.7% N/A
Print Statements 11 3.3% N/A

of each of program. Our inspection revealed that CIEL correctly isolated 328 out
of 330 (99.4%) inconsistencies while only 2 (0.6%) were false positives.

We identified six categories of true compiler-induced numerical inconsistencies
isolated by CIEL. Table 3 lists these categories, the number of occurrences, and
sample code. Note that an inconsistency may belong to multiple categories.

The first four categories are purely related to floating-point operations. Sub-
normal arithmetic indicates that subnormal numbers are involved in the floating-
point operations. Math functions are often involved in which extreme values
may be computed differently depending on the implementations. For example,
nvce compiles sinf () as a single fast approximation instruction instead of a full
function. Also in some cases, Inf or NaN values are involved, which are not strictly
IEEE 754-2008 compliant under fast math. We also found that the results of
some operations differ under different optimization flags due to rounding errors.

The last two categories are related to the setup of the benchmark programs
themselves. We observed cases where resolving compiler-induced inconsistencies
also required enhancing the precision of their program inputs. And lastly, we
found a few instances for which the final line of code where the computation
result is printed byte by byte is the cause of the inconsistency. This is because the
result of the computation is subnormal when converted from enhanced precision.

As for false positives, we found two cases where CIEL isolates statements that
have no effect on the computation. Specifically, a variable is assigned a value
that is immediately overwritten by another value. These assignment statements
are located inside a loop. When the precision of the entire loop is enhanced,
the inconsistency is resolved; but if only the precision of the statements after
the initial assignment is enhanced, the inconsistency persists because of type
conversions inserted by CIEL at the end of the region inside the loop.

Overall, CIEL took a total of 3 hours and 2 minutes to analyze all 330 programs,
and 33 seconds per program on average.

NAS and Rodinia. CIEL isolated all 8 numerical inconsistencies in NAS and
Rodinia programs. Table 4 shows the results for each program for both statement
and expression level isolation. For BT.S, LU.S, MG.W, CIEL isolates variable
expression(s) in one statement that causes the compiler-induced inconsistency.
In CFD 097K, CIEL isolates a function call with a variable parameter. For CG
and CFD 193K, CIEL isolates 2 variables across 2 to 3 statements as the cause of
the inconsistencies. In all cases above, the isolated expressions are inside deeply
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Table 4: NPB-GPU and Rodinia Experiment Results. Time is given in mm:ss.

Statement Level Expression Level

Program Isolated Function Line(s) # Cfgs Time Exp. # Cfgs Time

BT.S exact_solution 1874-1886 10 1:23 zeta 20 2:10

CG.S sparse 1710,1722 18 1:23 size,shift 24 1:52

CG.W sparse 1710,1713,1765 19 1:34 size,scale 28 2:24

LU.S ssor_gpu_kernel_2 4023 8 1:03 tmp 11 1:15

MG.W rprj3_gpu_kernel 2045-2050 14 1:16 x2,y2 34 3:02

CFD 097K cuda_compute_step_factor 283 14 6:01 sqrtf, 26 10:10
speed_sqd

CFD 193K compute_speed_sqd 252 10 7:29 velocity, 40 22:11
257 speed_sqd

LUD 256 1lud_internal — 17 1:16 — = =

nested loops, so even a slight offset can be accumulated into a larger inconsistency
that exceeds the error threshold. The only exception is the LUD program where
only a function, lud_internal is isolated. Upon inspection, the reason seems to
be that a variable sum is read and written throughout the function, affecting the
whole matrix, and any type conversion would cause the inconsistency to persist.

CIEL isolated each inconsistency within 22 minutes, used less than 20 searches
(configurations) for statement isolation, and used no more than 40 searches for
expression isolation. About 1%-5% of run time is used on code transformation.

CLOUDSC. CIEL isolated a constant expression (float)0.4 as the cause of the
inconsistency. After looking further into the code repository [13] and reporting
the issue to ECMWTF scientists, we confirmed CIEL’s result. It turns out ECMWEF
scientists had meant to temporarily introduce a bug during testing with the type
casting but had forgotten to remove it; CIEL correctly suggests increasing the
precision of that same argument to resolve the inconsistency. CIEL took 7 minutes
to isolate the inconsistency, from which 8% is spent on program transformation.

Answer to RQ1: CIEL isolated 337 out of 339 inconsistencies in minutes with
a precision of 99.4%, which included 328 synthetic GPU programs, NAS and
Rodinia programs, and the mini-app CLOUDSC. In 318 cases (93.8%), CIEL
isolated expressions. Manual inspection revealed inconsistency characteristics,
such as the involvement of Inf, NaN, or subnormal numbers in arithmetic.

4.2 RQ2: Comparison with the State of the Art

Baseline. We compare CIEL to pLiner [18], to the best of our knowledge, the only
tool available to isolate inconsistencies at the statement level in CPU programs.
Benchmarks. Due to pLiner capabilities, this evaluation is limited to CPU
programs. We adopt benchmarks from the publicly available pLiner repository
(SHA ef94b40)° originally used to evaluate pLiner, which include 50 floating-point
synthetic CPU programs on Intel CPU platforms, and 3 programs from the C

% https://github.com/LLNL/pLiner/commit /ef94b40
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Table 5: NPB CPU Experiment Results. Time is in minutes:seconds.

CIEL Statement Level pLiner Statement Level CIEL Expression
Prog. Function Line(s) #Cfgs Tjine Function Line(s) #Cfgs Tiine Exp. #Cfgs Teap
CG.B sparse 814,819,876 19 16:23 sparse — 7 3:53 — — —
SP.A tzetar 65,69 16 6:56 y_solve 68 25 7:50r4,t2 23 9:36
SP.B exact_solution  44-47 9 17:28 exact_solution 44-47 17 24:51 zeta 19 34:57

version of the NAS Parallel Benchmark: CG.B, SP.A, and SP.B. We use the
same compiler, optimization flags, and error thresholds as pLiner in our evaluation.

Evaluation Results. CIEL achieves more precise isolation results than pLiner
for 84.9% of the programs. When isolating at the same statement level as pLiner,
CIEL is 24.5% more efficient in terms of number of searches. The rest of this
section describes the results per benchmark.

Synthetic CPU Programs. In 42 out of 50 programs, CIEL successfully isolates
code at the statement level, and subsequently at the expression level. In 36
of these programs, CIEL isolates the same statement (line) as pLiner. In the
remaining 6 cases, CIEL isolates at the statement level while pLiner can only
isolate at code block or function level. CIEL explores 29.7% fewer configurations
to achieve this result. On average, CIEL explores 5.2 configurations for statement
isolation compared to 7.4 configurations explored by pLiner. Expression level
isolation incurs in exploring additional configurations: 16.5 on average.

For the remaining 8 programs, there are two cases in which CIEL isolates a
smaller code block than pLiner. There are four programs for which neither CIEL
nor pLiner can resolve the inconsistencies by using precision enhancement. Lastly,
there are two programs for which we were not able to reproduce the numerical
inconsistencies. Note that in these cases, pLiner still proceeded with the search
while CIEL immediately detected the absence of an inconsistency.

NAS CPU Benchmarks. Results for the NAS CPU benchmark are shown in Ta-
ble 5. In CG.B, CIEL isolates three statements in function sparse, which has 227
lines of code, while pLiner can only isolate the whole function. pLiner stopped
after it failed to resolve the inconsistency even when all basic blocks in sparse
are in enhanced precision; CIEL prevents this by avoiding unnecessary type
conversions between basic blocks. In SP.B, CIEL first isolates the same statement
as pLiner in function exact_solution, and then further isolates a variable. Fi-
nally in SP.A, CIEL and pLiner isolate different functions (tzetar vs. y_solve)
due to exploring different areas of the search tree. We confirmed that precision
enhancement of either function resolves the inconsistency. If we were to limit the
search in CIEL to only explore function y_solve, then CIEL would isolate the
same statement as pLiner. Ultimately, CIEL isolates two variables.

In terms of efficiency, CIEL uses fewer configurations than pLiner to isolate
inconsistencies in SP.A (16 vs. 25) and SP.B (9 vs. 17) at the statement level. CIEL
uses more configurations for CG.B (19 vs. 7), but it isolates the same function
with only 4 configurations, and isolates at a finer granularity. Expression isolation
requires an additional 7 and 10 configurations for SP.A and SP.B, respectively.
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Answer to RQ2: CIEL shows comparable or superior results in isolating the
inconsistencies in 44 out of 48 (92%) of synthetic CPU programs and the NAS
programs. Overall, CIEL isolates inconsistencies at the same level of granularity
than pLiner but with higher efficiency, or at a finer level of granularity with
an additional cost, in particular in the case of expression isolation.

4.3 Threats to Validity

While our evaluation set of programs is large and diverse, our results may not
generalize to all applications. Also, compiler-induced numerical inconsistencies
are input dependent, thus it is possible that other inputs could trigger additional
inconsistencies in the same code regions, or elsewhere. Complementary use of
dynamic analysis or code coverage information may be useful. CIEL does not
handle non-deterministic applications, but some of such programs could still be
analyzed by removing certain sources of non-determinism for testing purposes [27].

CIEL’s implementation only handles a subset of C/C++ and CUDA platform
constructs. Features such as anonymous functions or the auto keyword, intro-
duced in C++11, are not currently supported. Handling some of these features
may require a new approach in simplified AST generation and code isolation.
Nevertheless, given how CIEL can differentiate between host and device code,
it could be adapted to any platform supported by the Clang compiler frontend,
such as OpenMP and OpenCL [3].

Code isolation may be further impacted by special floating-point values such as
£0.0, Inf, and NaN. The processing of these values, if consistent across precisions
but inconsistent between different optimization flags, may become a blind spot for
precision enhancement. The choice of extended precision library may also impact
search results and efficacy. GPUprec, for example, has known issues with math
functions when it should return NaN but returns zero instead, which could affect
isolation results. Finally, CIEL requires source code when enhancing precision.
However, if the source code for a function is not available, CIEL may still isolate
the call site if an enhanced precision variant of the function exists.

5 Related Work

Detecting and Isolating Numerical Errors. pLiner [18] isolates known
compiler-induced numerical inconsistencies in C/C++ CPU programs at the line
level. pLiner’s approach also includes hierarchical code isolation and precision
enhancement as a method to isolate inconsistencies. Unlike pLiner, CIEL works on
heterogeneous programs, which pose unique challenges when isolating numerical
inconsistencies, as described in Section 3.3. Furthermore, CIEL isolates inconsis-
tencies to the expression level rather than lines. FLiT [28] generates and runs
custom-made tests under different optimization levels to trigger compiler-induced
numerical inconsistencies, which are then isolated at the function level only. Com-
pared to CIEL, FLiT does not employ precision enhancement for inconsistency
isolation, and focuses on CPU programs.
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There are also tools that automatically detect or isolate specific categories of
numerical errors but not compiler-induced inconsistencies. FPChecker [20] is a
tool that automatically detects floating-point exceptions in GPU applications,
which also uses Clang to transform CUDA code, but it does so at the IR level.
While FPChecker operates on GPU programs, it does not isolate compiler-induced
numerical inconsistencies. FPChecker also inspired other tools, such as Predoo [33]
in the field of precision testing for Deep Learning (DL) operators. On the other
hand, PFPSanitizer [12]| detects numerical errors by performing shadow execution
with higher precision in parallel. Shadow execution with precision enhancement
is also employed by Herbgrind [26] and FPDebug [7] with the goal of finding
floating-point precision errors.

Testing Compilers and Numerical Code. CIEL transforms source code in
small increments and tests whether numerical inconsistencies are resolved. CIEL
is inspired by prior work on compiler mutation testing. Le et al. [23]| introduce
equivalent modulo inputs (EMI) which mutates programs on unexecuted paths
to expose compiler bugs that incorrectly execute these paths. ClassFuzz [11]
uses EMI by mutating Java classfiles on predefined mutation operators, and
send them to various JVM implementations for differential testing. Zhu and
Zaidman [34] propose new mutator operations alongside conventional ones to
expose bugs in GPU programs, but their work does not involve floating-point
arithmetic. HeteroFuzz [32] introduces a multi-pronged fuzzing approach to detect
platform-dependent divergence in heterogeneous programs running on FPGAs,
using techniques including dynamic probabilistic mutations to reduce the long
latency between invocations to hardware simulators. Overall, none of the above
tools focus on exposing or isolating compiler-induced numerical inconsistencies.

CIEL performs differential testing to check whether compiler-induced incon-
sistencies exist by providing the same input to a series of programs compiled
from the same source code but with various compilers and optimization flags.
Differential testing has been applied before to numerical programs. FPDIiff [29]
performs differential testing between automatically identified synonymous func-
tions across various numerical libraries to identify inconsistencies between the
results from these functions under certain inputs. Unlike CIEL, FPDiff tests
different implementations of a given function, and it does not consider different
compilers or optimization flags.

6 Conclusion

With scientific code ported or developed on GPUs, compiler-induced numerical
inconsistencies can arise at various stages of development. Unfortunately, auto-
matic tools to isolate such problems are nonexistent, which harms productivity
in GPU computing. In this paper, we demonstrate a practical method to identify
the root cause of such inconsistencies in heterogeneous code. We implemented
our approach in the tool CIEL based on the effective bisection search algorithm,
and improved over the state of the art for CPU programs in both efficiency and
accuracy. Most importantly, CIEL addresses a number of challenges to handle
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heterogeneous code. Our evaluation on synthetic GPU programs, GPU bench-
marks, and real world mini-app shows the effectiveness of CIEL at isolating
inconsistencies in heterogeneous code with a precision of 99.4%. Our code and
experimental data are publicly available at https://github.com/LLNL/Ciel/.
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