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Abstract. Two sharp comparison results are derived for three-dimensional

complete noncompact manifolds with scalar curvature bounded from below.
The first one concerns the Green’s function. When the scalar curvature is

nonnegative, it states that the rate of decay of an energy quantity over the

level set is strictly less than that of the Euclidean space unless the manifold
itself is isometric to the Euclidean space. The result is in turn converted into

a sharp area comparison for the level set of the Green’s function when in

addition the Ricci curvature of the manifold is assumed to be asymptotically
nonnegative at infinity. The second result provides a sharp upper bound of

the bottom spectrum in terms of the scalar curvature lower bound, in contrast

to the classical result of Cheng which involves a Ricci curvature lower bound.

1. Introduction

The classical Laplacian comparison theorem [21, Chapter I] states that the Lapla-
cian of a geodesic distance function is at most that of the corresponding space form
under a Ricci curvature lower bound. It is obvious that such a result is no longer
true under a scalar curvature lower bound. The purpose of this note is to search
for suitable alternatives for complete three-dimensional manifolds.

Our first result deals with the case of nonnegative scalar curvature. Recall that
a complete manifold is called nonparabolic if it admits a positive Green’s function
[11, Chapter 20]. It is well-known that in this case the minimal positive Green’s
function G(x, y) may be obtained as the limit of the Dirichlet Green’s function of
a sequence of compact exhaustive domains of the manifold. Then

∆xG (x, y) = −δ (x, y) ,

G (x, y) = G (y, x) > 0

and
lim inf
y→∞

G(x, y) = 0.

Throughout the paper we fix p ∈ M and let

G (x) = G (p, x) .

We also use the following notations to denote the level and sublevel sets of G(x).

L (a, b) = {x ∈ M : a < G (x) < b}
l (t) = {x ∈ M : G (x) = t} .

We have the following sharp comparison theorem concerning the minimal positive
Green’s function.
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Theorem 1. Let (M, g) be a complete noncompact three-dimensional manifold with
nonnegative scalar curvature. Assume that M has one end and its first Betti number
b1 (M) = 0. If M is nonparabolic and the minimal positive Green’s function G (x) =
G (p, x) satisfies limx→∞ G(x) = 0, then

d

dt

(︄
1

t

∫︂
l(t)

|∇G|2 − 4πt

)︄
≤ 0

for all regular values t > 0. Moreover, equality holds for some T > 0 if and only if
the super level set {x ∈ M : G(x) > T} is isometric to a ball in the Euclidean space
R3.

Some remarks are in order. First, the conclusion may be restated as

d

dt

(︄
1

t

∫︂
l(t)

|∇G|2
)︄

≤ d

dt

(︄
1

t

∫︂
l̄(t)

⃓⃓
∇̄Ḡ

⃓⃓2)︄
for all t > 0, where Ḡ(x̄) = 1

4π|x̄| is the Green’s function of R3 and l̄(t) the level

set of Ḡ. As such, it may be viewed as a comparison of the decay rate concern-
ing the energy quantity 1

t

∫︁
l(t)

|∇G|2 of M with that of R3. Second, the fact that

limx→∞ G(x) = 0 together with the topological information of M is to ensure that
the level set l(t) is compact and connected. Without those assumptions, one may
work with the Dirichlet Green’s function of an arbitrary bounded domain instead.
The resulting conclusion now depends on the number of components of l(t) as well.
Third, it is unclear to us if an analogous conclusion holds in higher dimensions,
though our proof is very dimension specific.

Under the additional assumption that the Ricci curvature is nonnegative at in-
finity, the preceding result may be converted into an area comparison theorem for
the level sets of the Green’s function.

Corollary 2. Let (M, g) be a complete noncompact three-dimensional manifold
with nonnegative scalar curvature and asymptotically nonnegative Ricci curvature,
that is,

lim inf
x→∞

Ric (x) ≥ 0.

Assume that M has one end and its first Betti number b1 (M) = 0. If M is non-
parabolic and the minimal Green’s function G (x) = G (p, x) satisfies limx→∞ G(x) =
0, then ∫︂

l(t)

|∇G|2 ≤ 4πt2

and

Area (l (t)) ≥ 1

4πt2

for all t > 0. Moreover, if equality holds for some T > 0, then (M, g) is isometric
to R3.

Note that in the case that M has nonnegative Ricci curvature, its minimal posi-
tive Green’s function G always satisfies limx→∞ G(x) = 0 by [16] and the number of
ends is necessarily one due to the Cheeger-Gromoll splitting theorem [3]. Therefore,
Theorem 1 and Corollary 2 are both applicable to the universal cover of M.
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Theorem 1 is motivated by the work of Colding [6] and Colding-Minicozzi [8],
where monotonicity formulas for functionals of the form

wp (r) =
1

rn−1

∫︂
b=r

|∇b|p

are derived for n-dimensional manifolds with nonnegative Ricci curvature, where

the function b = G− 1
n−2 . So Theorem 1 concerns w2 for dimension n = 3, while

the exponent p = 3 in [6], and more generally p ≥ 2n−3
n−1 in [8], for all dimensions

n. These monotonicity results have been applied to the study of uniqueness of the
tangent cones for Ricci flat manifolds with Euclidean volume growth [9]. We refer
the readers to [7] for an exposition on monotonicity formulas in geometric analysis,
and [1] for their applications to Willmore-type inequalities.

Our second result concerns the bottom spectrum. Recall that the bottom spec-
trum λ1 (M) is characterized by

λ1 (M) = inf
f∈C∞

0 (M)

∫︁
M

|∇f |2∫︁
M

f2
.

According to Cheng’s theorem [4], for an n-dimensional complete manifold M,

λ1 (M) ≤ (n− 1)
2

4
K

if the Ricci curvature of (M, g) satisfies Ric ≥ − (n− 1)K for some nonnegative
constant K. By considering the example of the form M = H2 × Sn−2(r), where H2

is the standard hyperbolic plane of sectional curvature −1 and Sn−2(r) the sphere
of radius r in Rn−1, one sees that a direct extension of Cheng’s result to the scalar
curvature lower bound is not possible for dimension n ≥ 4. Indeed, by choosing
r accordingly, the scalar curvature of M can be made as large as one desires, yet
λ1(M) = 1

4 . However, for n = 3, one does have the following theorem.

Theorem 3. Let (M, g) be a three-dimensional complete noncompact Riemannian
manifold with scalar curvature S ≥ −6K on M for some nonnegative constant K.
Suppose that M has finitely many ends and its first Betti number b1(M) < ∞.
Moreover, the Ricci curvature of M is bounded from below and the volume Vx(1) of
unit ball Bx(1) satisfies

Vx(1) ≥ C(ϵ) exp
(︂
−2

√
K + ϵ r(x)

)︂
for every ϵ > 0 and all x ∈ M, where r(x) is the geodesic distance from x to a fixed
point p. Then the bottom spectrum of the Laplacian satisfies

λ1 (M) ≤ K.

Note that in the case that the Ricci curvature of M is bounded by Ric ≥ −2K,
the Gromov-Bishop volume comparison theorem [11, Chapter 2] readily implies
that volume lower bound for Vx(1) holds. So, by considering the universal cover
of M if necessary and modulo the topological assumption of finitely many ends,
Theorem 3 provides a faithful generalization of Cheng’s result to three-dimensional
manifolds with only scalar curvature lower bound.

Corollary 4. Let (M, g) be a three-dimensional complete noncompact Riemannian
manifold with nonpositive sectional curvature. Assume that the scalar curvature S
is bounded by



4 OVIDIU MUNTEANU AND JIAPING WANG

S ≥ −6K on M

for some nonnegative constant K. Then

λ1 (M) ≤ K.

This is because Theorem 3 is applicable to the universal cover M̃ of M as M̃ is
a Cartan-Hadamard manifold with bounded curvature. Since the bottom spectrum
satisfies λ1(M) ≤ λ1(M̃), the corollary follows.

Both Theorem 1 and Theorem 3 are proved by working with the minimal positive
Green’s function G of M. The idea of using Green’s function to bound the bottom
spectrum was introduced by the first author in [17]. Roughly speaking, one takes a

test function f = |∇G|
1
2 ϕ with a carefully chosen cut-off function ϕ which in turn

depends on G. The proofs of both theorems hinge on manipulating the Bochner
formula for the Green’s function.

∆ |∇G| =
(︂
|Gij |2 − |∇ |∇G||2

)︂
|∇G|−1

+Ric (∇G,∇G) |∇G|−1
.

A crucial point is to rewrite the Ricci curvature term by mimicking a trick which
originated in the work of Schoen and Yau [18, 19, 20] on stable minimal surfaces in
three-dimensional manifolds.

Ric (∇G,∇G) |∇G|−2
=

1

2
S − 1

2
Sl(r) +

1

|∇G|2

(︃
|∇ |∇G||2 − 1

2

⃓⃓
∇2G

⃓⃓2)︃
,

where Sl(r) denotes the scalar curvature of the level set l (r) . One can then pro-
ceed by integrating the formula over the level sets and applying the Gauss-Bonnet
theorem. We note that this kind of idea has been exploited recently in [23, 2] as
well.

In order to make the argument work, however, we need to ensure that the level
sets l(t) of G are compact with controlled number of components. This is where all
the extra assumptions are used to show the following.

lim
x→∞

G (x) = 0,(1.1)

#Conn (l (t)) ≤ A(1.2)

for all t, where A is a fixed constant and #Conn (l(t)) the number of connected
components of the level set l(t).

Ideally, one would like to prove Theorem 3 under the sole assumption that the
scalar curvature S ≥ −6K. Another natural question is what happens if λ1(M)
achieves its maximum value K in Theorem 3. In the case of the aforementioned
Cheng’s theorem, there are rigidity results [13, 14].

The study of scalar curvature has a long history with many significant results.
The recent lecture notes [10] and the survey paper [22] are good sources for the
state of the affairs and references.

The structure of the paper is at follows. After collecting some preliminary results
in Section 2, we supply the proofs of Theorem 1 and Theorem 3 in Section 3 and
Section 4, respectively.
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2. Preliminaries

In this section we make some preparations for proving Theorem 1 and Theorem
3. Let us start with the following result. It relies on an idea from Schoen-Yau’s
work on minimal surfaces [18, 19, 20] and appears as Lemma 4.1 in [2]. We include
details here for completeness.

Lemma 5. Let (M, g) be a three-dimensional complete noncompact Riemannian
manifold with scalar curvature S and u a harmonic function on M. Then on each
regular level set l (r) of u,

Ric (∇u,∇u) |∇u|−2
=

1

2
S − 1

2
Sl(r) +

1

|∇u|2

(︃
|∇ |∇u||2 − 1

2

⃓⃓
∇2u

⃓⃓2)︃
,

where Sl(r) denotes the scalar curvature of l (r) .

Proof. On a regular level set l (r) of u, its unit normal vector is given by

e1 =
∇u

|∇u|
.

Choose {ea}a=2,3 , unit vectors tangent to l (r) , such that {e1, e2, e3} forms a local
orthonormal frame on M. Since u is harmonic, the second fundamental form and
the mean curvature of l (r) are given by

hab =
uab

|∇u|
and H = − u11

|∇u|
, respectively.

By the Gauss curvature equation, we have

Sl(r) = S − 2R11 +H2 − |h|2.
Therefore,

2Ric (∇u,∇u) |∇u|−2
= 2R11

= S − Sl(r) +
1

|∇u|2
(︂
|u11|2 − |uab|2

)︂
= S − Sl(r) +

1

|∇u|2
(︂
2 |∇ |∇u||2 − |uij |2

)︂
,

where we have used the fact that

|∇ |∇u||2 = |u11|2 + |u1a|2

and

|uij |2 = |u11|2 + 2 |u1a|2 + |uab|2 .
This proves the result. □

We will also use the following well known Kato inequality for harmonic functions.

Lemma 6. Let (M, g) be a three-dimensional complete noncompact Riemannian
manifold and u a harmonic function on M. Then⃓⃓

∇2u
⃓⃓2 ≥ 3

2
|∇ |∇u||2 on M.
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Proof. It suffices to prove this at points where |∇u| ≠ 0. Let

e1 =
∇u

|∇u|
and choose {ea}a=2,3 such that {e1, e2, e3} is a local orthonormal frame on M. Then

|uij |2 = |u11|2 + 2 |u1a|2 + |uab|2

≥ |u11|2 + 2 |u1a|2 +
1

2
|u22 + u33|2

=
3

2
|u11|2 + 2 |u1a|2 ,

where in the last line we have used the fact that u is harmonic. Therefore,

|uij |2 ≥ 3

2

(︂
|u11|2 + |u1a|2

)︂
=

3

2
|∇ |∇u||2 .

□

We also need the following topological lemma concerning the number of com-
ponents of the level sets of a proper Green’s function. The proof is inspired by
[12].

Lemma 7. Let (M, g) be a complete noncompact Riemannian manifold with k ends
and finite first Betti number b1(M). Assume that (M, g) is nonparabolic and its
minimal positive Green’s function G satisfies limx→∞ G(x) = 0. Then there exists
t0 > 0 such that the level set l(t) of G has exactly k components for all t ≤ t0. In
the case that M has only one end and the first Betti number b1 (M) = 0, the level
set l (t) is connected for all t > 0.

Proof. We first claim that

(2.1) L (a,∞) is connected

for all a > 0. Indeed, if this is not true, then there exists a connected component
L0 of L (a,∞) which does not contain the pole p of G. Moreover, L0 is bounded by
the fact that limx→∞ G(x) = 0. Then the harmonic function G on L0 must achieve
its maximum in the interior of L0, which is a contradiction.

We also note that L(0, a) contains no bounded components for any a > 0. Oth-
erwise, on such a bounded component the function G would achieve its minimum
at an interior point.

The fact that M has k ends means there exists a compact set Ω ⊂ M so that
M\Ω′ has k unbounded connected components for any compact Ω ⊂ Ω′ ⊂ M .

Since the first Betti number of M is finite, we may choose t0 sufficiently small
so that all the representatives of H1 (M) lie in L (t0,∞) . As

(2.2) lim
x→∞

G(x) = 0,

by arranging t0 to be even smaller if necessary, we may assume that L(0, t0) ⊂ M\Ω
and hence L(0, t) has exactly k unbounded components for any t ≤ t0. By the fact
that L(0, t) contains no bounded components, it follows that L(0, t) has exactly k
components for any t ≤ t0.
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From (2.2) and l(t) ⊂ M\Ω, we have that

(2.3) l (t) has at least k components,

for all t ≤ t0.
We prove that in fact l(t) cannot have more than k components. For t < t0

and ρ > 0 such that t + ρ < t0, since M = L (t,∞) ∪ L (0, t+ ρ) , we have the
Mayer-Vietoris sequence

H1 (L (t,∞))⊕H1 (L (0, t+ ρ)) → H1 (M) → H0 (L (t, t+ ρ))

→ H0 (L (t,∞))⊕H0 (L (0, t+ ρ)) → H0(M).

Note that H1 (L (0, t+ ρ)) is trivial because all the representatives of H1 (M) lie
inside L (t0,∞) . In view of (2.1), we therefore conclude that

H0 (L (t, t+ ρ)) = H0 (L (0, t+ ρ)) = Z⊕ ..⊕ Z
with k summands. In other words, L (t, t+ ρ) has k components. Since ρ > 0 can
be arbitrarily small, this proves that

(2.4) l (t) has at most k components

for t ≤ t0. Therefore, by (2.4) and (2.3) we see that l(t) has exactly k components
for t ≤ t0.

In the special case that M has only one end and b1 (M) = 0, the number t0 can
be taken arbitrarily large. By (2.4), one concludes that l (t) is connected for all
t > 0. □

3. Nonnegative scalar curvature

In this section, we work with three-dimensional complete manifolds with non-
negative scalar curvature and prove Theorem 1 which is restated below.

Theorem 8. Let (M, g) be a complete noncompact three-dimensional manifold with
nonnegative scalar curvature. Assume that M has one end and its first Betti number
b1 (M) = 0. If M is nonparabolic and the minimal positive Green’s function G (x) =
G (p, x) satisfies limx→∞ G(x) = 0, then

d

dt

(︄
1

t

∫︂
l(t)

|∇G|2 − 4πt

)︄
≤ 0

for all regular values t > 0. Moreover, equality holds for some T > 0 if and only if
the super level set {x ∈ M : G(x) > T} is isometric to a ball in the Euclidean space
R3.

Proof. Recall that

l (t) = {x ∈ M : G (x) = t}
L (a, b) = {x ∈ M : a < G (x) < b} .

By the assumption that limx→∞ G(x) = 0, the level set l (t) is compact for every
t > 0. Moreover, since M is assumed to have one end and b1 (M) = 0, Lemma 7
implies that l (t) is connected for all t > 0.
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Consider the function

w (t) =

∫︂
l(t)

|∇G|2 .

Whenever l (t) is regular, its mean curvature H is given by

Hl(t) =

∑︁
a Gaa

|∇G|
= − G11

|∇G|
= −⟨∇ |∇G| ,∇G⟩

|∇G|2
,

where e1 = ∇G
|∇G| and {ea}a=2,3 are unit tangent vectors on l (t) such that {e1, e2, e3}

is a local orthonormal frame on M. It follows that

dw

dt
(t) =

∫︂
l(t)

⎛⎝
⟨︂
∇ |∇G|2 ,∇G

⟩︂
|∇G|2

+
Hl(t)

|∇G|
|∇G|2

⎞⎠
=

∫︂
l(t)

⟨∇ |∇G| ,∇G⟩
|∇G|

.

Multiplying the equation by t−2 we get

(3.1) t−2 dw

dt
(t) =

∫︂
l(t)

⟨∇ |∇G| ,∇G⟩
|∇G|

G−2.

On the other hand, by Green’s identity we have∫︂
L(t,T )

(︁
G−2∆ |∇G| − |∇G|∆G−2

)︁
(3.2)

=

∫︂
l(T )

(︄
G−2 ⟨∇ |∇G| ,∇G⟩

|∇G|
− |∇G|

⟨︁
∇G−2,∇G

⟩︁
|∇G|

)︄

−
∫︂
l(t)

(︄
G−2 ⟨∇ |∇G| ,∇G⟩

|∇G|
− |∇G|

⟨︁
∇G−2,∇G

⟩︁
|∇G|

)︄
.

Since G is harmonic on L (t, T ),

|∇G|∆G−2 = 6G−4 |∇G|3 .
Recall that G(x) is the limit of Dirichlet Green’s functions Gi(x) of a compact
exhaustion of M , and the convergence is uniform on compact subsets of M\{p},
where p ∈ M is the pole of G(x). Therefore, we note that as x → p,

G (x) =
1

4π
(1 + o(1))

1

r (x)
(3.3)

|∇G| (x) =
1

4π
(1 + o(1))

1

r2 (x)⟨︃
∇|∇G|, ∇G

|∇G|

⟩︃
=

1

2π
(1 + o(1))

1

r3 (x)
.

Hence, it follows that

lim
T→∞

∫︂
l(T )

G−2 ⟨∇ |∇G| ,∇G⟩
|∇G|

= 0 and lim
T→∞

∫︂
l(T )

|∇G|
⟨︁
∇G−2,∇G

⟩︁
|∇G|

= 0.
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In conclusion, (3.2) implies that⃓⃓⃓⃓
⃓
∫︂
L(t,∞)

(︁
G−2∆ |∇G| − |∇G|∆G−2

)︁⃓⃓⃓⃓⃓ < ∞,

and the following identity holds∫︂
l(t)

(︄
G−2 ⟨∇ |∇G| ,∇G⟩

|∇G|
− |∇G|

⟨︁
∇G−2,∇G

⟩︁
|∇G|

)︄

= −
∫︂
L(t,∞)

(︂
G−2∆ |∇G| − 6G−4 |∇G|3

)︂
.

Together with (3.1), we conclude that

t−2 dw

dt
(t) =

∫︂
l(t)

G−2 ⟨∇ |∇G| ,∇G⟩
|∇G|

(3.4)

= −2

∫︂
l(t)

G−3 |∇G|2 −
∫︂
L(t,∞)

G−2∆ |∇G|

+6

∫︂
L(t,∞)

G−4 |∇G|3 .

Note that by the co-area formula,∫︂
L(t,∞)

G−4 |∇G|3 =

∫︂ ∞

t

r−4

∫︂
l(r)

|∇G|2

=

∫︂ ∞

t

r−4w (r) dr.

Hence, (3.4) can be written as

t−2 dw

dt
(t) = −2t−3w (t) + 6

∫︂ ∞

t

r−4w (r) dr(3.5)

−
∫︂
L(t,∞)

G−2∆ |∇G| .

We now estimate the last term. Using the Bochner formula

∆ |∇G| =
(︂
|Gij |2 − |∇ |∇G||2

)︂
|∇G|−1

+Ric (∇G,∇G) |∇G|−1
,

we have ∫︂
l(r)

|∇G|−1
∆ |∇G| =

∫︂
l(r)

(︂
|Gij |2 − |∇ |∇G||2

)︂
|∇G|−2

+

∫︂
l(r)

Ric (∇G,∇G) |∇G|−2
.

Applying Lemma 5 to G gives

Ric (∇G,∇G) |∇G|−2
=

1

2
S − 1

2
Sl(r) +

(︃
|∇ |∇G||2 − 1

2
|Gij |2

)︃
|∇G|−2

,
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where Sl(r) is the scalar curvature of l (r) . We therefore conclude that

(3.6)

∫︂
l(r)

|∇G|−1
∆ |∇G| = 1

2

∫︂
l(r)

(︂
|Gij |2 |∇G|−2

+ S − Sl(r)

)︂
.

Note that by Lemma 6,

|Gij |2 ≥ 3

2
|∇ |∇G||2 .

Also, since l (r) is compact and connected for any r > 0, the Gauss-Bonnet theorem
implies that ∫︂

l(r)

Sl(r) = 4πχ (l (r)) ≤ 8π

whenever r is a regular value of G. Therefore, on any regular level set l(r), one
obtains from (3.6) that

(3.7)

∫︂
l(r)

|∇G|−1
∆ |∇G| ≥ 3

4

∫︂
l(r)

|∇ |∇G||2 |∇G|−2 − 4π.

Observe from (3.1) that

|w′ (r)| =

⃓⃓⃓⃓
⃓
∫︂
l(r)

⟨∇ |∇G| ,∇G⟩
|∇G|

⃓⃓⃓⃓
⃓(3.8)

≤
∫︂
l(r)

|∇ |∇G||

≤

(︄∫︂
l(r)

|∇ |∇G||2 |∇G|−2

)︄ 1
2
(︄∫︂

l(r)

|∇G|2
)︄ 1

2

,

which says that ∫︂
l(r)

|∇ |∇G||2 |∇G|−2 ≥ (w′)
2

w
(r) .

Combining with (3.7) we conclude that

(3.9)

∫︂
l(r)

|∇G|−1
∆ |∇G| ≥ 3

4

(w′)
2

w
(r)− 4π.

By (3.9) and the co-area formula it follows that

−
∫︂
L(t,∞)

G−2∆ |∇G| = −
∫︂ ∞

t

r−2

∫︂
l(r)

|∇G|−1
∆ |∇G|(3.10)

≤ −3

4

∫︂ ∞

t

r−2 (w
′)
2

w
(r) dr +

4π

t
.

From the elementary inequality
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0 ≤ w

(︃
w′

w
− 2

r

)︃2

(3.11)

=
(w′)

2

w
− 4

r
w′ +

4

r2
w,

one sees that

−3

4

∫︂ ∞

t

r−2 (w
′)
2

w
(r) dr ≤ −3

∫︂ ∞

t

r−3w′ (r) dr + 3

∫︂ ∞

t

r−4w (r) dr.

Furthermore, integrating by parts implies that

−3

∫︂ ∞

t

r−3w′ (r) dr = −3r−3w (r) |∞t − 9

∫︂ ∞

t

r−4w (r) dr

= 3t−3w (t)− 9

∫︂ ∞

t

r−4w (r) dr.

In conclusion,

(3.12) −3

4

∫︂ ∞

t

r−2 (w
′)
2

w
(r) dr ≤ 3t−3w (t)− 6

∫︂ ∞

t

r−4w (r) dr.

Plugging (3.12) into (3.10) we get

(3.13) −
∫︂
L(t,∞)

G−2∆ |∇G| ≤ 3t−3w (t)− 6

∫︂ ∞

t

r−4w (r) dr +
4π

t
.

Hence, by (3.13) and (3.5) we obtain

t−2 dw

dt
(t) ≤ t−3w (t) +

4π

t
,

or equivalently,

(3.14)
d

dt

(︃
1

t
w (t)− 4πt

)︃
≤ 0.

Finally, if

d

dt

(︃
1

t
w (t)− 4πt

)︃
= 0 for t = T,

then all the inequalities in Lemma 6, (3.11) and (3.8) become equality on L(T,∞).
That is, for any regular value t > T of G it follows that the Hessian of G is diagonal
in the frame {e1 = ∇G

|∇G| , e2, e3}, and

(3.15) G11 = |∇|∇G||.
Furthermore, there exists λ(t) ∈ R so that

(3.16) |∇|∇G|| = λ(t)|∇G| on l(t)

and

(3.17)
dw

dt
(t) =

2

t
w(t).
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By (3.8), (3.15) and (3.16) we find that dw
dt = λ(t), so (3.17) implies

(3.18) t
dλ

dt
(t) = λ(t).

Along the gradient flow dΦ
dt = ∇G

|∇G|2 we have d|∇G|
dt = λ(t), therefore by (3.18) we

conclude that all values t > T are regular. Furthermore, (3.18) and (3.3) imply
that λ(t) = 8πt, for all t > T .

It follows from above that ∇
(︁
|∇G| − 4πG2

)︁
= 0, from which we deduce that

|∇G| = 4πG2.
In particular, the Hessian of G on L (T,∞) must be of the form

G11 = 32π2G3

G22 = −16π2G3

G33 = −16π2G3

Gij = 0 otherwise

and |∇G| = 4πG2. Now consider the function f(x) = 1
4πG(x) . Then |∇f | = 1 and

the Hessian of the function 1
2 f

2 is the identity matrix. This immediately implies

that L (T,∞) is isometric to the ball B0(
1

4π T ) in R3. □

We conclude this section with the following corollary.

Corollary 9. Let (M, g) be a complete noncompact three-dimensional manifold
with nonnegative scalar curvature and asymptotically nonnegative Ricci curvature,
that is,

(3.19) lim inf
x→∞

Ric (x) ≥ 0.

Assume that M has one end and its first Betti number b1 (M) = 0. If M is non-
parabolic and the minimal Green’s function G (x) = G (p, x) satisfies limx→∞ G(x) =
0, then ∫︂

l(t)

|∇G|2 ≤ 4πt2

and

Area (l (t)) ≥ 1

4πt2

for all t > 0. Moreover, if equality holds for some T > 0, then (M, g) is isometric
to R3.

Proof. Let us note that by Theorem 8 we have

(3.20)
1

t
w (t)− 4πt ≤ 1

δ
w (δ)− 4πδ

for all 0 < δ < t. Now the gradient estimate in [5] together with the assumption
(3.19) implies that for any ε > 0 there exists sufficiently small δ > 0 such that

(3.21) |∇ lnG| ≤ ε on L (0, δ) .

Therefore,
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1

δ
w (δ) =

1

δ

∫︂
l(δ)

|∇G|2 ≤ ε,

where we have used the fact that

(3.22)

∫︂
l(δ)

|∇G| = 1.

This shows that the right hand side of (3.20) goes to 0 as δ → 0. Hence, w(t) ≤ 4πt2,
or ∫︂

l(t)

|∇G|2 ≤ 4πt2

for all t > 0.
We now derive a sharp area estimate for the level sets of the Green’s function.

Indeed,

1 =

∫︂
l(t)

|∇G| ≤

(︄∫︂
l(t)

|∇G|2
)︄ 1

2

(Area (l (t)))
1
2 .

It follows that

Area (l (t)) ≥ 1

4πt2

for all t > 0.
Moreover, if there exists T > 0 such that∫︂

l(T )

|∇G|2 = 4πT 2,

then (3.20) implies that ∫︂
l(t)

|∇G|2 = 4πt2,

for all 0 < t < T . Hence, we have equality in Theorem 8 for all t < T . This implies
that (M, g) is isometric to R3. □

We note that under the hypothesis of Corollary 9 if

(3.23) lim sup
t→∞

(︄
1

t

∫︂
l(t)

|∇G|2 − 4πt

)︄
≥ 0,

then (M, g) is isometric to R3. Indeed, by (3.20) and (3.23) we have

0 ≤ 1

δ

∫︂
l(δ)

|∇G|2 − 4πδ

for any δ > 0. Hence, equality must hold in Corollary 9 and (M, g) is isometric to
the Euclidean space R3.
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4. Negative scalar lower bound

We now turn to the proof of Theorem 3. We start by establishing some lemmas
under the assumption that (M, g) admits a positive Green’s function G satisfying

lim
x→∞

G (x) = 0,(4.1)

#Conn (l (t)) ≤ A(4.2)

for all t ≤ t0, where t0 and A > 0 are fixed constants, and #Conn (l(t)) denotes
the number of connected components of the level set l(t) of G.

Lemma 10. Let (M, g) be a three-dimensional complete noncompact Riemann-
ian manifold satisfying (4.1) and (4.2). Assume that the Ricci curvature of M is
bounded from below and the scalar curvature S is bounded by

S ≥ −6K on M.

Then for any ε > 0,∫︂
L(ε,t0)

|∇ |∇G||2 |∇G|−1 ≤ 4K

∫︂
L( 1

2 ε,2t0)
|∇G|+ 32π

3
t0A+ C,

where C is a constant depending only on t0 and the Ricci curvature lower bound of
M, but not ε.

Proof. According to the Bochner formula,

1

2
∆ |∇G|2 = |Gij |2 + ⟨∇∆G,∇G⟩+Ric (∇G,∇G)

= |Gij |2 +Ric (∇G,∇G)

on M\ {p} . Therefore,

(4.3) ∆ |∇G| =
(︂
|Gij |2 − |∇ |∇G||2

)︂
|∇G|−1

+Ric (∇G,∇G) |∇G|−1

holds on M\ {p} whenever |∇G| ≠ 0.
Fix 0 < ε < t0 < ∞ and let ϕ be the Lipschitz function with support in

L
(︁
1
2ε, 2t0

)︁
defined by

(4.4) ϕ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

lnG−ln( 1
2 ε)

ln 2
ln(2t0)−lnG

ln 2
0

on L (ε, t0)
on L

(︁
1
2ε, ε

)︁
on L (t0, 2t0)
otherwise

By the co-area formula, we have∫︂
M

(︂
|Gij |2 − |∇ |∇G||2 +Ric (∇G,∇G)

)︂
|∇G|−1

ϕ2

=

∫︂ 2t0

1
2 ε

ϕ2 (r)

∫︂
l(r)

(︂
|Gij |2 − |∇ |∇G||2 +Ric (∇G,∇G)

)︂
|∇G|−2

dr.

However, Lemma 5 says that



COMPARISON THEOREMS FOR THREE-MANIFOLDS 15

(︂
|Gij |2 − |∇ |∇G||2 +Ric (∇G,∇G)

)︂
|∇G|−2

=
1

2
S − 1

2
Sl(r) +

1

2
|Gij |2 |∇G|−2

.

Applying Lemma 6 for the last term, we conclude that

(︂
|Gij |2 − |∇ |∇G||2 +Ric (∇G,∇G)

)︂
|∇G|−2

(4.5)

≥ 1

2
S − 1

2
Sl(r) +

3

4
|∇ |∇G||2 |∇G|−2

.

According to the Gauss-Bonnet theorem, on each regular connected component
lk (r) of l (r) , ∫︂

lk(r)

Sl(r) = 4πχ (lk (r)) ≤ 8π

as lk (r) is compact by (4.1). Since by hypothesis (4.2) there are at mostA connected
components of l (r) , it follows that∫︂

l(r)

Sl(r) ≤ 8πA

for all regular value r with r ≤ t0. Therefore, using that S ≥ −6K, we conclude
from (4.5) that

∫︂
l(r)

(︂
|Gij |2 − |∇ |∇G||2 +Ric (∇G,∇G)

)︂
|∇G|−2

≥
∫︂
l(r)

(︃
1

2
S − 1

2
Sl(r) +

3

4
|∇ |∇G||2 |∇G|−2

)︃
≥ −3KArea (l (r)) +

3

4

∫︂
l(r)

|∇ |∇G||2 |∇G|−2 − 4πA.

Consequently, this implies that

∫︂
M

(︂
|Gij |2 − |∇ |∇G||2 +Ric (∇G,∇G)

)︂
|∇G|−1

ϕ2

≥
∫︂ 2t0

1
2 ε

ϕ2 (r)

(︄
−3KArea (l (r)) +

3

4

∫︂
l(r)

|∇ |∇G||2 |∇G|−2

)︄
dr − 8πt0A

= −3K

∫︂
M

|∇G|ϕ2 +
3

4

∫︂
M

|∇ |∇G||2 |∇G|−1
ϕ2 − 8πt0A.

Together with the Bochner formula (4.3), we arrive at

(4.6) −3K

∫︂
M

|∇G|ϕ2 +
3

4

∫︂
M

|∇ |∇G||2 |∇G|−1
ϕ2 ≤

∫︂
M

ϕ2∆ |∇G|+ 8πt0A.

To estimate the right hand side, we make use of the gradient estimate for positive
harmonic functions. Choose R0 > 0 so that L (0, 2t0) ⊂ M\B (p,R0) , where p is the
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pole of G. Since the Ricci curvature is bounded from below on M, applying Cheng-
Yau’s gradient estimate [5] to the positive harmonic function G on M\B

(︁
p, R0

2

)︁
,

one concludes that

(4.7) |∇ lnG| ≤ Λ on M\B (p,R0) ,

where the constant Λ depends only on R0 and Ricci curvature lower bound of M.
Integration by parts implies that

∫︂
M

ϕ2∆ |∇G| = −
∫︂
M

⟨︁
∇ϕ2,∇ |∇G|

⟩︁
= −

∫︂
L( 1

2 ε,ε)

⟨︁
∇ϕ2,∇ |∇G|

⟩︁
−
∫︂
L(t0,2t0)

⟨︁
∇ϕ2,∇ |∇G|

⟩︁
.

Further integration by parts on each term leads to

−
∫︂
L( 1

2 ε,ε)

⟨︁
∇ϕ2,∇ |∇G|

⟩︁
=

∫︂
L( 1

2 ε,ε)
|∇G|∆ϕ2 −

∫︂
l(ε)

⟨︁
∇ϕ2,∇G

⟩︁
−
∫︂
L(t0,2t0)

⟨︁
∇ϕ2,∇ |∇G|

⟩︁
=

∫︂
L(t0,2t0)

|∇G|∆ϕ2 +

∫︂
l(t0)

⟨︁
∇ϕ2,∇G

⟩︁
.

Noting that G is harmonic, we get that on L
(︁
1
2ε, ε

)︁
∆ϕ2 = 2ϕ∆ϕ+ 2 |∇ϕ|2

= 2

(︄
− 1

ln 2
ϕ+

1

(ln 2)
2

)︄
|∇ lnG|2 .

Similarly, on L (t0, 2t0) ,

∆ϕ2 = 2

(︄
1

ln 2
ϕ+

1

(ln 2)
2

)︄
|∇ lnG|2 .

In both cases, in view of (4.7), we have

⃓⃓
∆ϕ2

⃓⃓
≤ c |∇ lnG|2

≤ cΛ |∇ lnG| ,

where c is a universal constant. Hence, by the co-area formula and the fact that

(4.8)

∫︂
l(r)

|∇G| = 1,

we get
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⃓⃓⃓⃓
⃓
∫︂
L( 1

2 ε,ε)
|∇G|∆ϕ2

⃓⃓⃓⃓
⃓ ≤ cΛ

∫︂
L( 1

2 ε,ε)
|∇G|2 G−1

= cΛ

∫︂ ε

1
2 ε

1

r
dr

= cΛ ln 2.

The other term is estimated as follows.⃓⃓⃓⃓
⃓
∫︂
l(ε)

⟨︁
∇ϕ2,∇G

⟩︁⃓⃓⃓⃓⃓ ≤ 2

ln 2

∫︂
l(ε)

|∇G|2 G−1

≤ cΛ.

Similarly, ⃓⃓⃓⃓
⃓
∫︂
L(t0,2t0)

|∇G|∆ϕ2

⃓⃓⃓⃓
⃓+
⃓⃓⃓⃓
⃓
∫︂
l(t0)

⟨︁
∇ϕ2,∇G

⟩︁⃓⃓⃓⃓⃓ ≤ cΛ.

In conclusion, we have shown that

(4.9)

⃓⃓⃓⃓∫︂
M

ϕ2∆ |∇G|
⃓⃓⃓⃓
≤ cΛ and

∫︂
M

|∇ϕ|2 |∇G| ≤ cΛ.

Plugging into (4.6) implies that

3

4

∫︂
M

|∇ |∇G||2 |∇G|−1
ϕ2 ≤ 3K

∫︂
M

|∇G|ϕ2 + cΛ + 8πt0A,

which is what to be proved. □

Lemma 11. Let (M, g) be a three-dimensional complete noncompact Riemann-
ian manifold satisfying (4.1) and (4.2). Assume that the Ricci curvature of M is
bounded from below and the scalar curvature S is bounded by

S ≥ −6K on M.

Then

λ1 (M) ≤ K.

Proof. According to Lemma 10,

(4.10)
1

4

∫︂
M

|∇ |∇G||2 |∇G|−1
ϕ2 ≤ K

∫︂
M

|∇G|ϕ2 + cΛ +
8π

3
t0A,

where ϕ is given in (4.4).
We now bound the left hand side from below using the bottom spectrum λ1(M).

Note that

λ1 (M)

∫︂
M

|∇G|ϕ2 = λ1 (M)

∫︂
M

(︂
|∇G|

1
2 ϕ
)︂2

≤
∫︂
M

⃓⃓⃓
∇
(︂
|∇G|

1
2 ϕ
)︂⃓⃓⃓2

.

Expanding the right side, we get
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∫︂
M

⃓⃓⃓
∇
(︂
|∇G|

1
2 ϕ
)︂⃓⃓⃓2

=
1

4

∫︂
M

|∇ |∇G||2 |∇G|−1
ϕ2 +

∫︂
M

|∇G| |∇ϕ|2

+
1

2

∫︂
M

⟨︁
∇ |∇G| ,∇ϕ2

⟩︁
.

By (4.9) we have ∫︂
M

|∇G| |∇ϕ|2 + 1

2

∫︂
M

⟨︁
∇ |∇G| ,∇ϕ2

⟩︁
≤ cΛ.

Therefore, ∫︂
M

⃓⃓⃓
∇
(︂
|∇G|

1
2 ϕ
)︂⃓⃓⃓2

≤ 1

4

∫︂
M

|∇ |∇G||2 |∇G|−1
ϕ2 + cΛ.

In conclusion,

λ1 (M)

∫︂
M

|∇G|ϕ2 ≤
∫︂
M

⃓⃓⃓
∇
(︂
|∇G|

1
2 ϕ
)︂⃓⃓⃓2

(4.11)

≤ 1

4

∫︂
M

|∇ |∇G||2 |∇G|−1
ϕ2 + cΛ.

Combining (4.10) and (4.11) we arrive at the following inequality.

(4.12) λ1 (M)

∫︂
M

|∇G|ϕ2 ≤ K

∫︂
M

|∇G|ϕ2 + cΛ +
8π

3
t0A,

where c is a universal constant. Assume by contradiction that

(4.13) λ1 (M) > K.

Then in view of the definition of ϕ in (4.4) and (4.12) we conclude that

(4.14) (λ1 (M)−K)

∫︂
L(ε,t0)

|∇G| ≤ c (Λ + t0A) .

However, applying (4.8) and the co-area formula, we have

∫︂
L(ε,t0)

|∇G|2 G−1 =

∫︂ t0

ε

1

r

(︄∫︂
l(r)

|∇G|

)︄
dr

= ln
(︁
t0ε

−1
)︁
.

On the other hand, Cheng-Yau’s gradient estimate shows that∫︂
L(ε,t0)

|∇G|2 G−1 ≤ Λ

∫︂
L(ε,t0)

|∇G| .

We thus conclude that

(4.15)

∫︂
L(ε,t0)

|∇G| ≥ Λ−1 ln
(︁
t0ε

−1
)︁
.

Finally, we infer from (4.15) and (4.14) that
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(4.16) λ1 (M)−K ≤ cΛ (Λ + t0A)

ln (t0ε−1)
.

Note that c is a universal constant and that both A and Λ are independent of ε.
Taking ε → 0 leads to a contradiction. Therefore, we have

λ1 (M) ≤ K.

□

We are now ready to prove Theorem 3. The only thing left to do is to verify
that both (4.1) and (4.2) hold.

Theorem 12. Let (M, g) be a three-dimensional complete noncompact Riemannian
manifold with scalar curvature S ≥ −6K on M for some nonnegative constant K.
Suppose that M has finitely many ends and its first Betti number b1(M) < ∞.
Moreover, the Ricci curvature of M is bounded below and the volume Vx(1) of unit
ball Bx(1) satisfies

Vx(1) ≥ C(ϵ) exp
(︂
−2

√
K + ϵ r(x)

)︂
for every ϵ > 0 and all x ∈ M, where r(x) is the geodesic distance from x to a fixed
point p. Then the bottom spectrum of the Laplacian satisfies

λ1 (M) ≤ K.

Proof. We prove the result by contradiction. Suppose that λ1 (M) > K. Then M is
necessarily nonparabolic as λ1(M) > 0, see [11, Chapter 22]. Let G be the minimal
positive Green’s function. We first show that limx→∞ G(x) = 0, that is, (4.1) holds.

According to a result of Li and the second author [15],

(4.17)

∫︂
Bp(R+1)\Bp(R−1)

G2 ≤ C e−2
√

λ1 (M)R

∫︂
Bp(2)\Bp(1)

G2

for all R > 4, where C > 0 is a constant depending only on λ1 (M) . Since the Ricci
curvature is bounded from below, by (4.7), the mean value inequality holds for the
function G. That is, for any x ∈ M \Bp(2),

(4.18) G2 (x) ≤ C

Vx (1)

∫︂
B(x,1)

G2

for some constant C only depending on the Ricci curvature lower bound. Now fix
ϵ > 0 such that λ1(M) ≥ K + 2ϵ. Combining (4.17) and (4.18), we conclude that

(4.19) G2 (x) ≤ C

Vx (1)
e−2

√
K+2ϵ r(x)

∫︂
Bp(2)\Bp(1)

G2,

where r(x) is the geodesic distance from x to point p. Using the assumption that

Vx(1) ≥ C(ϵ) exp
(︂
−2

√
K + ϵ r(x)

)︂
,

one sees immediately from (4.19) that limx→∞ G(x) = 0.
The fact that G satisfies (4.2) follows directly from Lemma 7. Therefore, Lemma

11 is applicable and λ1(M) ≤ K. □
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We now draw a corollary.

Corollary 13. Let (M, g) be a three-dimensional complete noncompact Riemann-
ian manifold with nonpositive sectional curvature. Assume that the scalar curvature
S is bounded by

S ≥ −6K on M

for some nonnegative constant K. Then

λ1 (M) ≤ K.

Proof. This is because Theorem 12 is applicable to the universal cover M̃ of M as
M̃ is a Cartan-Hadamard manifold with bounded curvature. Indeed, being diffeo-
morphic to R3, M̃ has first Betti number 0 and exactly one end. Also, the volume
Vx(1) of unit balls Bx(1) is at least that of the unit ball in R3 by the volume com-

parison theorem. Therefore, λ1(M̃) ≤ K. However, the bottom spectrum satisfies

λ1(M) ≤ λ1(M̃), so the corollary follows. □
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