POSITIVE SOLUTIONS TO SCHRODINGER EQUATIONS AND
GEOMETRIC APPLICATIONS

OVIDIU MUNTEANU, FELIX SCHULZE AND JIAPING WANG

ABSTRACT. A variant of Li-Tam theory, which associates to each end of a com-
plete Riemannian manifold a positive solution of a given Schrodinger equation
on the manifold, is developed. It is demonstrated that such positive solutions
must be of polynomial growth of fixed order under a suitable scaling invariant
Sobolev inequality. Consequently, a finiteness result for the number of ends
follows. In the case when the Sobolev inequality is of particular type, the
finiteness result is proven directly. As an application, an estimate on the num-
ber of ends for shrinking gradient Ricci solitons and submanifolds of Euclidean
space is obtained.

1. INTRODUCTION

Recall that a complete manifold (M, g) is a gradient shrinking Ricci soliton if
there exists a function f on M such that the Ricci curvature of M and the hessian
of f satisfy the equation

Ric + Hess(f) = %g.
As self-similar solutions to the Ricci flow, gradient shrinking Ricci solitons arise
naturally from singularity analysis of the Ricci flow. Indeed, according to [?, 7,
?, ?], the blow-ups around a type-I singularity point always converge to nontrivial
gradient shrinking Ricci solitons. It is thus a central issue in the study of the
Ricci flow to understand and classify gradient shrinking Ricci solitons. While the
issue has been successfully resolved for dimension 2 and 3 (see [?, 7, 7, 7, ?]), it
remains open for dimension 4, though recent work [?, ?, ?] has shed some light on
it. Presently, there is very limited information available concerning general gradient
shrinking Ricci solitons in higher dimensions.

The potential f and the scalar curvature S are related through the following
equation [?]

(1.1) IVf?+S=f

with f normalized by adding a suitable constant. By [?], S > 0 unless (M, g) is
the Euclidean space. Moreover, according to [?, ?], there exists a point p € M and
constants ¢ (n), ¢z (n) depending only on the dimension n of M such that

(12 37@ - amrE) - o) < fz) < 77@) +amr) + o)

for all z € M, where r(z) = d(p,z) is the distance from p to x, and the volume
V,(r) of the geodesic ball B,(r) centered at p of radius r satisfies

(1.3) Vp(r) <c¢(n)r™.
1
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Perelman’s entropy is given by

[ o
(1.4) ulg) =1 ((4@’5 /M )

Set

1
1.5 a:limsupi/
(15) R—oo Vp(R) JB,(R)

We have the following result.

Theorem 1.1. Let (M, g) be a gradient shrinking Ricci soliton with o < oo. Then
the number of ends of M is bounded from above by T'(n,«, u(g)), a constant de-
pending only on dimension n, u(g) and .

A gradient shrinking Ricci soliton M is called asymptotically conical if there
exists a closed Riemannian manifold (X, gs) and diffeomorphism

D:(R,00)xX = M\Q

such that A=2 p} ®* g converges in Cf2, as A — oo to the cone metric dr? +r? gs; on
[R,00) x X, where  is a compact smooth domain of M. Clearly, an asymptotically
conical shrinking Ricci soliton must satisfy a < oco.

Recall that an end of a complete manifold M with respect to a compact smooth
domain @ C M is simply an unbounded component of M \ . The number of
ends e(M) of M is the maximal number obtained over all such . The novelty
of Theorem 77 is that only the scalar curvature integral information at infinity is
needed. Another feature is that the exponent of S in the definition of « is "?71, not,
the commonly seen 5 in analysis. We emphasize that the estimate here is explicit.
That M has finitely many ends follows readily by assuming the scalar curvature
of M is bounded. Indeed, as observed in [?], (??) and (??) imply that |[Vf| > 1
outside a compact subset of M and hence M must have finite topological type. We
mention here that in [?] it was shown that any complete shrinking K&hler Ricci
soliton must have one end. The proof uses Li-Tam’s theory and a fact special to
the Kéhler situation that the gradient vector V f is real holomorphic.

For shrinking gradient Ricci solitons of dimension n > 3, by Li-Wang [?], the

following Sobolev inequality holds.

( /M¢) <cme ™ [ (Ivol +56°)

for ¢ € C§°(M). So Theorem ?7? is a consequence of the following general result.

Theorem 1.2. Let (M, g) be a complete Riemannian manifold of dimension n > 3
satisfying the Sobolev inequality

(o) " =alf v+ o)

for any ¢ € C5° (M), where A > 0 is a constant and o > 0 a continuous function.
Suppose

a = limsup (rPo) = <oo

@ ),
R—oe Vp(R) JB,(r)
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and

Vi (R)

Voo = limsup 22 < oco.
> R—o0 R

Then the number of ends of M is bounded above by a constant I' depending only on
n, A, a and V.

The well known Michael-Simon inequality [?, ?] for submanifolds in the Euclidean
space RY states that

(16) ( / |¢|nfl>n"_l <c@) [ (vel+ 1o

for any ¢ € C3°(M), where H is the mean curvature vector of M. In fact, this
inequality holds for submanifolds in Cartan-Hadamard manifolds as well [?]. These
inequalities are particularly useful in studying minimal submanifolds. We refer to
[?,?, 7, ?] and the references therein for some of the results. It is easy to see that

n—2

(/M¢> - <0 /M (IVoP + 18P %)

holds for n > 3. As a corollary of Theorem ??, we have the following result.

Corollary 1.3. Let M™ be a complete submanifold of RN with n > 2. Suppose

a = limsup (r |H)" " < 0

@ |
R—oo Vp(R) JB,(r)

V, (R
Voo = limsupﬁ) < 00
R—o0 R"

and

Then the number of ends of M is bounded above by a constant I' depending only on
the dimension n, a and V.

Strictly speaking, for the case of dimension n = 2, the conclusion does not follow
directly from Theorem ??7. Rather, it follows by a slight modification of its proof.
Our proof of Theorem ?7? is very much motivated by the work of Topping [?, ?],
where the diameter of a compact manifold M satisfying the Sobolev inequality
is estimated in terms of the constant A together with the integral [ M o™ . The
argument there is adapted to show that for each large R, the volume of E N B,(R)
satisfies V (E' N B,(R)) > ¢ R™ for some constant ¢ for at least one half of the ends
FE of M. Note that for different R the choice of such set of ends E may be different.
Nonetheless, the desired estimate of the number of ends follows as the total volume
of the ball B, (R) is at most of 2V, R™. We emphasize that the argument strongly
depends on the fact that the Sobolev exponent is of —5 with n being the dimension
of the manifold. For a Sobolev inequality with general exponent p > 1 of the form

( /M ¢2“) "o /M (1V6F +06?)

for ¢ € C§° (M), we instead develop a different approach of using positive solutions
to a Schrodinger equation to estimate the number of ends.

More specifically, the approach relies on a variant of Li-Tam theory. In [?],
to each end E of M, they associate a harmonic function fg on M. The resulting
harmonic functions are linearly independent. So the question of bounding the
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number of ends e(M) is reduced to estimating the dimension of the space spanned
by those functions. The theory was successfully applied to show that e(M) is
necessarily finite when the Ricci curvature of M is nonnegative outside a compact
set. We shall refer to [?] for more applications of this theory. Here, we develop a
variant of their theory by considering instead the Schrodinger operator

L=A-¢
with ¢ being a nonnegative but not identically zero smooth function on M.

Theorem 1.4. Let (M, g) be a complete manifold and Eq, Es, - - - , E; the ends of M
with respect to a geodesic ball B,(ro) of M with | > 2. Then for each end E;, there
exists a positive solution u; to the equation Au; = ou; on M satisfying 0 < u; <1
on M\E; and

supu; = limsup wu;(x) > 1.

Moreover, the functions uy,--- ,u; are linearly independent.

One nice feature here is that all the functions u; are positive, while in the case
of harmonic functions fg is positive if and only if M is nonparabolic, that is, it
admits a positive Green’s function. With this result in hand, we set out to bound
the dimension of the space F spanned by the functions wuq,- -+ ,u;. The work of
[?, ?, ?] on the dimension of spaces of harmonic functions with polynomial growth
inspires us to consider the mean value property for positive subsolutions to L. More
precisely, assume that M admits a proper Lipschitz function p > 0 satisfying

(1.7) S<IVAl <1 and Ap< 2,
in the weak sense for p > Ry, a sufficiently large constant and some constant m > 0.
Denote the sublevel and level sets of p by
D(r) = {zeM:p(x)<r}
X(r) = {geM:p(z)=r}.
To simplify notation, we let V(r) = Vol(D(r)) and A(r) = Area(X(r)).

Definition 1.5. A manifold (M, g) has the mean value property (M) if there exist
constants Ag > 0 and v > 1 such that for any 0 < 0 <1 and R > 4Ry,

(1.8) sup u < ﬂ;/
. sr)y V(A +0)R) Jp(a+e)r)\D(Ro)

holds true for any function u > 0 satisfying Au > ou on D(2R)\D(Ryp).

u

With this definition at hand, we can now state our main estimate on positive
solutions to the Schrodinger equation Lu = 0. For ¢ > 1, define the quantity

1
(1.9) a = limsup RQ‘Z][ ol
R—o0 %(R)

where
@
! = of.
][Z(R) A(R) Js(r)
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Theorem 1.6. Assume that (M, g) admits a proper function p satisfying (??) and
has the mean value property (M) . For a polynomially growing positive solution u of
Au = ou on M\D (Ry), if « < o0 for some g > v — %, then there exists a constant
I'(m, Ay, v, ) > 0 such that

w<A(F 1) on M\D (Ry),

where A > 0 is a constant depending on u. In the critical case ¢ = v — %, the
same conclusion holds true with T = T'(m, Ag,v) provided that a < ag(m, Ag,v), a
sufficiently small positive constant.

This result is reminiscent of Agmon type estimates in [?, 7, ?], where a positive
subsolution u to L is shown to decay at a certain rate if it does not grow too fast,
provided that a Poincaré type inequality holds on M. Whether a positive solution
u to Lu = 0, under the assumptions in Theorem ?7, is automatically of polynomial
growth is unclear at this point. But we do confirm this is the case under a pointwise
assumption on o > 0 that

(1.10) sup (p’c) < oc.
M

If we let
LY(M) = {v:Av=o0v,|v| < cp? on M},

the space of polynomial growth solutions of degree at most d, then an argument
verbatim to [?] immediately gives the following estimate of the dimension.

Lemma 1.7. Assume that (M,g) admits a proper function p satisfying (77) and
has mean value property (M) . Then dim L¢4(M) < T'(m, Ag, v, d).

Summarizing, we have the following conclusion, where P is the space spanned
by all positive solutions to the equation Au = ocu on M.

Theorem 1.8. Assume that (M,g) admits a proper function p satisfying (?7)
and has mean value property (M). Suppose that o decays quadratically. Then
dim P < T'(m, Ao, v, @) provided that o < oo for some ¢ > v — % In the critical case
q=v— %, the same conclusion holds for some T'(m, Ag,v) when o < ap(m, Ag, V),
a sufficiently small positive constant. Consequently, the number of ends e(M) of
M satisfies the same estimate as well.

It is well known that the mean value property (M) is implied by the following
scaling invariant Sobolev inequality via a Moser iteration argument with the number
v determined by the Sobolev exponent p through the equation

1 1
4o =1
woov

Definition 1.9. (M, g) is said to satisfy the Sobolev inequality (S) if there exwist
constants > 1 and A > 0 such that

(1.11) <][D(R) ¢2M>” < AR? ][D(R) (|v¢|2+a¢2)

for ¢ € C3° (D (R)) and R > Ry.
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),
U= —— u
]i(R) V(R) Jpr)

for any integrable function w on D(R). Consequently, Theorem ?? continues to
hold if one replaces the mean value property (M) by the Sobolev inequality (S).
We also establish a version of Theorem ?7 localized to an end.
For an end FE of M, define

li 73% / q '
ap = Imsup a )
R—oo \ A(R) Jopm)

where E(R) = EN D(R) and 0E(R) = ENX(R).

‘We have denoted with

Proposition 1.10. Assume that (M, g) admits a proper function p satisfying (77)
and that the Sobolev inequality (S) holds. Suppose that o decays quadratically along
E. Then there exists T’ (m, A, u,ag) > 0 such that

u<A(p"+1) onE

for positive solutions u to Au = ou on E, where A > 0 is a constant depending on
u, provided that ap < oo for some q > v — % In the case ¢ = v — %, the same
conclusion holds for some T'(m, A, ) > 0 when ap < ag(m, A, u), a sufficiently

small positive constant.

Corresponding to an end F, let ug be the positive solution of Augp = cug on
M constructed in Theorem ??. Then 0 < ug < 1 on M \ E. Proposition ?? implies
that such ug must be of polynomial growth on M with the given growth order.
With this in hand and in view of Lemma ??, for the case of critical ¢ = v — %, one
concludes that the number of ends with small ag is bounded. For an asymptotically
conical gradient shrinking Ricci soliton M, it is not difficult to show that at least
one half of the ends have small ag if the total number of ends is large. Obviously,
Theorem 7?7 follows, at least for asymptotically conical shrinking Ricci solitons,
from these facts as well.

Sobolev inequalities are prevalent in geometry. Other than the aforementioned
ones for gradient shrinking Ricci solitons and submanifolds in the Euclidean spaces,
for manifolds with Ricci curvature bounded from below by a constant —K, K > 0,
according to [?], the Sobolev inequality (??) holds on any geodesic ball B, (R) with

constant A = MO+VER) anq ¢ = % Finally, for a locally conformally flat

manifold M, by [?], a suitable cover of M can be mapped conformally into S™ and
satisfies a similar Sobolev inequality of gradient shrinking Ricci solitons.

For a comprehensive study of Sobolev inequalities on manifolds and their appli-
cations, we refer to [?, ?].

The paper is organized as follows. In Section 77, we present the proof of Theorem
7?7 and derive some of its consequences. In Section ?? we focus on the proof of
Theorem ?7. We then turn to estimates of positive solutions to Au = owu in
Section ?? and prove Theorem ?7?. The dimension estimate given in Lemma 77 is
proved in Section ?7. Section 7?7 is devoted to proving the fact that the mean value
property (M) follows from the Sobolev inequality (S).
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2. SOBOLEV INEQUALITY AND ENDS

In this section, we prove Theorem ?? following the ideas in [?, ?]. To include the
case n = 2, we consider more generally complete noncompact Riemannian manifold
(M, g) satisfying the Sobolev inequality

(2.1) ( / qsf"q) Ta ( [ ver [ aqsq)

for some ¢ with 1 < ¢ <nm—1 and any ¢ € C§° (M), where A > 0 is a constant
and o > 0 a continuous function. Define

1 n—1
(2.2) a =limsup ——= / (rio) o
Roo Vp(R) /B, (r)
and
(2.3) Voo = limsup L(R),
R—o00 R

where p € M is a fixed point, r(x) = r(p,z) is the distance function to p, and
Vp (R) = Vol(B, (R)), the volume of the geodesic ball B,(R) centered at p of
radius R.

We restate Theorem 7?7 below under this more general Sobolev inequality.

Theorem 2.1. Let (M,g) be an n dimensional complete Riemannian manifold
satisfying the Sobolev inequality (??). If both a of (?7) and Vi of (?7) are finite,
then the number of ends of M is bounded from above by a constant I" depending
only onn, A, a and V.

Proof. For an end E of M we denote E(R) = B,(R) N E. Assume that M has at
least k ends with k£ > 1 large, to be specified later. We may take R > 0 large
enough such that

B, (2R)\By(R) = UL, E:2R)\Ex(R).
Moreover, we have from (?7?) that
Va(?)
tn
for all t > R. Similarly, by (??) we have,

(2.4) <2V,

k
Z/ (7“‘10)7%1 < 2a V,(3R).
‘=1 J E;(3R)\E;(R)

This implies that
k

n—

1
[ SC()

V,(3R)

(2.5) 1

i=1 /Ez (BR\E;(R)

Here and below constants C; depend only on n, A, o and V.
We may assume that the ends E1,- -+ , Ej are labeled so that

/ 0_71;1
E;(3R)\E;(R) =1 k
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is an increasing sequence. Then (??) implies that

n— 2
(2.6) / ot < &Vp(?’_ff)
B BR)\E:(R) k R"
forallt=1,2,---, [g}
For i € {1,2,~-~ , [%]}, pick
(2.7) z; € OE;(2R).

By relabeling Ei, .., E[ 5] if necessary, we may assume that
2

{Vzi (R)}izly... 7[%]
is increasing.
Assume by contradiction that
C
where C; = 3"2 V. Since

B.,(R) C E;(3R)\E;i(R)

k
and {B,, (R)}Z[i]1 are disjoint in B,(3R), it follows from (??) that

]
V,3R) > S V.. (R) > [’;} Cipn s O

> o= SR =3V 3R)

as O = 3""2V,. This contradicts (??). In conclusion, (??) does not hold and
G
k

For convenience, from now on we simply write £ = E; and z = z;. Hence, we have
z € OE(2R) and

V..(R) < =X R".

(2.9) V.(R) < — R".

By (??) we also have

(2.10) / oa < — —.
E(BR)\E(R) kRt

Let v(t) be a minimizing geodesic from p to z with 0 < ¢ < 2R. For t € [% R, % R
and z = 7(t), since

d(r,2) < 2 R,

the triangle inequality implies

R
(2.11) B, (3) C B.(R).
Consequently, (?7?) yields

R Cy
2.12 v, (B) <& pn
(212) (5) <%

for all z = 4(t) with t € [§ R, 3 R].
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Assume by contradiction that

(213) / o< 67"% (Vm (7«)) n—1
Bo(r)

forall 0 <71 < %, where § > 0 is small constant to be set later.
For0<r < % fixed, we apply the Sobolev inequality to cut-off function ¢ with
support in By (r) such that ¢ =1 on B, (%) and |V¢| < 2. Then (??) implies that

1) (v (2) ™ <4 (2 e f ) .

Using (??) we obtain that

1) (Va(3) T <A (G s (V) )

r

for any 0 < r < %. Let us assume there exists 0 < r < % so that

(2.16) Va(r) <6 @ .
Then by (?7?) we have

()7 <wasnsto
Hence,

r n_ nmn—1 _n-1 /T\T
. —) <2m (29 A gna s e (=) .
(2.17) v$(2)_2 (29 A +1)77 653 65 (2)

We now choose ¢ to be small enough so that
2" (29 A+ 1)77 §na < 1.
Then (?7?) implies
r n—1 r\n
2.18 v, (f) < 5% (7) .
( ) 2/~ 2
In conclusion, assuming that (?7) holds for any 0 < r < ?, we have shown that

(??) implies (?7).

By assuming k to be sufficiently large such that ?’n% ) %, (?7) says that

R w1 (R\"
v, (=) <57 (2)
()= (5)

that is, (?7) holds for r = %. Applying (?7?) and (??) inductively, we conclude that

R n—1 R "
- <0 a -
v () =0 ()

for all m > 0. Letting m — oo we reach a contradiction by further arranging § to be

sufficiently small such that § < Wy, the volume of the unit ball in the Euclidean
space R™.

The contradiction implies that (??) does not hold. Therefore, for any x =~ (¢),
te [% R, g R] , there exists 0 < r, < % such that

n—g—1

(2.19) /B o> 5 (re) 7T (Vo)) 55
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By the Holder inequality we have

n—1 n=1 n—qg—1
/ o< (/ o 4 > (Vo (re)) =1
B (rs) B.(r.)

Thus, by (?77) we get

n—1 1
2.20 / o4 > —r,
(2.20) . c

for any x =~ (t) and t € [3 R, 2 R].

By a covering argument as in [?, ?], we may choose at most countably many
disjoint balls {Bx.,, (rz,,)}ns1 With @ = 5 (tn) , tm € [§ R, 5 R] , each satisfying
(?7?). Moreover, these balls cover at least one third of the geodesic v ([% R, % RD .
Therefore,

Together with (??) we have

7R< ZTIT’L—C?’Z/

m>1 m>1 B, (T, )

L—l n—1
a S C*3 g 1,
B (R)

where for the last inequality we have used (??) and that the balls {B.,, (7z,,)},,51
are disjoint in B,(R).
Combining this with (”") and (?7?) we conclude that
ot < @Vp (3R) .
— k Rnr-1

"< ],
903 E(BR)\E(R)
In other words,
V,(3R) > —R”
JBR) = o
which contradicts (??) if £k > 2V, C43™. This proves the theorem. O

For a shrinking gradient Ricci soliton, the asymptotic volume ratio Vo, is always
finite. By Li-Wang [?], the following Sobolev inequality holds for dimension n > 3.

(/Mgb,?’z) <C( Je “”’/ (Ivol + 56?)

provided ¢ € Cg°(M). This implies Theorem ?7.

Corollary 2.2. Let (M, g) be a gradient shrinking Ricci soliton with o < oo, where

(5727

1
a = limsup —— /
R—co Vp(R) JB,(R)
Then the number of ends of M is bounded from above by T'(n,«, u(g)), a constant
depending only on dimension n, u(g) and a.

For a submanifold M in Euclidean space RY, the well known Michael-Simon
inequality [?, ?] states that

n—1

</M'¢'"L> <0 /M<IV¢\+|H| 1))
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for any ¢ € C5°(M), where H is the mean curvature vector of M. By Theorem 2.1,
we have the following conclusion.

Corollary 2.3. Let M™ be a complete submanifold of RN with n > 2. Suppose

& = lim sup (r [H)" " < o0

@ .
R—oo Vp(R) JB,(R)

and

V,(R
Voo = limsup p(R) < 0.
R—o0 R
Then the number of ends of M is bounded above by a constant I' depending only on

the dimension n, & and V.

Recall that a hypersurface M C R"*! is a self shrinker of the mean curvature
flow if it satisfies the equation

1
H:§<$,n>,

where z is the position vector, H the mean curvature and n the unit normal vector.
Self shrinkers arise naturally in the singularity analysis of mean curvature flow. In
fact, it follows from the monotonicity formula of Huisken [?] that tangent flows at
singularities of the mean curvature flow are self shrinkers. Many examples have
been constructed by gluing methods by Kapouleas, Kleene, and Moller in [?] and
Nguyen in [?].

A self shrinker M is asymptotically conical if there exists a regular cone C C R™*1
with vertex at the origin such that the rescaled submanifold AM converges to C
locally smoothly as A — 0. By a theorem of Wang [?], the limiting cone C uniquely
determines the shrinker M.

For an asymptotically conical shrinker, clearly both & and V., are finite.

Corollary 2.4. Assume that M™ C R"*1 is an asymptotically conical self shrinker
of the mean curvature flow of dimension n > 2. Then the number of ends e(M) <
I'(n, Voo, &), where & is defined in Corollary 2.3.

We would also like mention a recent result of Sun-Wang [?] which bounds e(M)
in terms of the entropy and genus when n = 2.

3. ENDS AND SOLUTIONS TO SCHRODINGER EQUATIONS

In this section we prove Theorem ??. The standing assumption in this section is
that M is complete and that o is a nonnegative, but not identically zero, smooth
function on M.

We first recall an interior gradient estimate for positive solution u of Au = ou
established by Cheng and Yau (see Theorem 6 in [?]).

Lemma 3.1. Suppose u > 0 is a solution to Au = ou on the geodesic ball B, (2r)
centered at p € M and of radius 2r. Then

|VInu| < C(r) on By(r),

where C(r) is a constant depending on r, o and the Ricci curvature lower bound of

M on By(2r).
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In particular, the lemma implies that on any compact subset K of B,(2r), the
Harnack inequality u(z) < C'(K)wu(y) holds for z,y € K with a constant C'(K)
independent of u.

We now construct nontrivial solutions of the equation Au = ou when M has
more than one end. In contrast to [?], there is no need to distinguish the two cases
of M being parabolic or nonparabolic.

Theorem 3.2. Let (M, g) be a complete manifold and Ey, Ea,--- , E; the ends of
M with respect to the geodesic ball By(ro) with | > 2. Then for each end E;, there
exists a positive solution u; to the equation Au; = ou; on M satisfying 0 < u; <1
on M\E; and

supu; = limsup wu; (z) > 1.

Moreover, the functions uy,--- ,u; are linearly independent.
Proof. We first construct the functions u;. To ease notation, let £ = E; and F =
F; = M\E,. Asl > 2, F must be unbounded. For R > 7, denote E(R) = ENB,(R)
and F(R) = FNB,(R). Let vg : Bp(R) — R be the solution of the Dirichlet problem
Avg = ovg in By(R)

vp =0 on JF(R)

vg =1 on 0E(R).
Since o > 0 on M, by the strong maximum principle, it follows that 0 < vgp < 1 in
B,(R). We now normalize vg by setting

ur = CR VR,

where

-1
Cr = <max UR> > 1.
BP(TO)
Then ug is a solution of
Aug = ougr in By(R)
ur =0 on OF(R)
UR = CR on 3E(R)
In addition,

(3.1) Egl(ar);) ur = 1.
Hence, by Lemma ?? and the remark following it, we conclude from (??) that for
any fixed r > 0,
sup ug < C(r)
By (r)
and
sup |Vug| < C(r),
By (r)
where C () is a constant independent of R. It is now easy to see that a subsequence
of up converges to a solution u > 0 of Au = ou on M. Note that v can not be a
constant function as o is not identically 0.
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Since ug = 0 on OF(R), the strong maximum principle implies that supypg () ur
is strictly increasing in 7 and supy p(,) ur decreasing in r. Therefore, the same holds
true for function w. In particular, by the fact that

(3.2) max u = 1,
By (o)

one concludes that 0 < u <1 on FF= M\FE and
supu = limsup u (z) > 1.

This finishes our construction of function ;.
We now turn to prove that the functions wuq,--- ,u; are linearly independent.
Assume that

l
(33) Zajuj =0
J=1

for some constants a; € R. For an arbitrary but fixed j, if u; is unbounded on Ej;,
then clearly a; = 0 as u; is bounded on E; for all 4 # j.
So we may assume from here on that each u; is bounded on Ej. Let

Sj =supu; > 1.
3

Then there exists a sequence x;; € E; such that
4 li i —uj) (z56) = 0.
(3.4) o (55 —uj) (zj%) =0

Note that S; —u; > 0 on M. In particular, there exists a constant C; > 0 satisfying
S; —u; > 2 on By(rg). We now claim that for i # j,
J

(3.5) ui < Cj (55 — uy)
on Ej.
Indeed, recall from the construction that w; is the limit of a subsequence of u; g
satisfying
Aui,R = 0U;,R in BP(R)

Ui, R = 0 on 8F,(R)

Ui,R = Cz’,R on 8Ei(R),
where F; = M\ E;, together with

max u; g = 1.

By(ro) "
Now the function

wi.r = ui,r — Cj (5j — ;)
satisfies Aw; g > 0 on F;(R) \ Fi(ro) as o > 0. Also, w; g < 0 on 0F;(R)UOF;(ro).
By the maximum principle, w; g < 0 on F;(R)\F; (rg). After taking limit, one
concludes that u; < C; (S; —u;) on F;\F; (rg). Since i # j and E; C F;\F; (1),
the claim follows.
By (??) and (??) it follows that

{0 ifi#j

fim wi (@jk) = S, ifi=j.

k—o0
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Plugging this into (?7), one infers that a; = 0. But j is arbitrary. This proves that
u1,- -+ ,u; are linearly independent. ([
4. GROWTH ESTIMATES

Our focus in this section is on growth rate estimates for positive solutions to
Au = ou. We fix a large enough positive constant Ry and assume that the manifold
M admits a proper function p satisfying

1
(4.1) 3 <|Vp| <1 and Ap < m
P
in the weak sense for p > Ry, where m is a positive constant. Denote the sublevel
and level set of p by
D(ry={zeM:p(x)<r} and Z(r)={zx e M :p(z)=r}

respectively. They are compact as p is proper. Denote with V(r) the volume of
D(r) and with A(r) the area of X(r).

Definition 4.1. A manifold (M, g) has the mean value property (M) if there exist
constants Ag > 0 and v > 1 such that for any 0 < 0 <1 and R > 4Ry,

Ag 1
(4.2) sup u < —7/
S(R) 02 V(1 + 0)R) Jp(a+0)r)\D(Ro)

holds true for any function u > 0 satisfying Au > ou on D(2R)\D(Ry).

u

We begin with a simple observation. Integrating by parts, one immediately sees
that for any C! function w and r > Ry,

/ wAp+/ (Vw, Vp) :/ wo—
D(r) D(r) s On

where 7 is the unit normal vector to X(r) given by n = ~2. Taking a derivative in

Vol
r of this identity yields the following formula:

d Vw,V A
(4.3) a w|vp|:/ M# wlp
dr Js( sy Vol sty Vol

The following lemma provides volume and area estimates.
Lemma 4.2. Let A(r) be the area of 3(r) and V(r) the volume of D(r). Then
A < W)
V((1+0)r) < (1+0)™V(r),
V(r) < Y (m)
for allr> Ry and 0 < 6 < 1, where c¢(m) and v(m) depend only on m.

Proof. By the co-area formula, there exists § <t < r such that

(4.4) V(r) > Vol (D(r)\D (g))

_i/ b
2 Jsw Vol
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From (?7?) we have
4
Ap < 7m Vo|®

for all » > Ry. Hence, applying (??) with w = 1 implies

d / Ap
Gl e[ A
dr Js(r | sty Vol

Integrating in r we conclude that

S(t
r 4m,/ 1
<(0) oo
t s Vol
Together with (?7?), this implies

c(m)

(45) [, 1w = V.

Now the area estimate follows from (?7?).
Note that (?7?) and (?7?) also imply

c(m)

Vi(r) <

Integrating in 7 we obtain

(4.6) V(R) < (f)cw V(r)

15

for all Ry < r < R. Clearly, it gives both the volume doubling property and growth

estimate. This proves the result.

O

The next lemma is our starting point for establishing growth estimates for posi-

tive solutions to Au = ou.

Lemma 4.3. A positive solution u of Au= ou on D(R)\D(Ry) satisfies

d 1 1 1 Vu,Vp
r A\ s T4 ] DN\ D(ro) ™ Jswey Vo

for all R>1r >1rg > Ry.

Proof. Applying (??) to w = u and taking into account that

/ (Vu, Vp) :/ Au+/ (Vu,Vp)’
s Vol D(r)\D(ro) sty 1V

Ap

we obtain
(Vu, Vp)

d
(4.7) — u|Vp :/ au—i-/ U +/ .
dr Js Ve D(r\D(ro) sy Vol Jseey  1VP
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By (??) we have that

J ARy T
sy Vol 7 Jsey Vol T s

for r > rg > Ry. Plugging this into (?7?) implies
d 4 Vu,V
@ u\Vp|§/ gu+ﬂ/ u|Vp|+/ {Vu, Vp)
dr Js ) D(r)\D(ro) r Jser) Sty VP

This proves the result. U

We now prove a preliminary growth estimate by imposing a pointwise quadratic
decay assumption on o of the form

T
(4.8) o< E on M\D(rp),
where rg > 4Ry and T > 0 is a constant.

Proposition 4.4. Assume that (M, g) admits a proper function p satisfying (77)
and has the mean value property (M) . If o decays quadratically as in (??), then
there exists a constant C = C(m,T) > 0 such that

u< (p+1)° sup u on D(R>
D(ro) 2

for any positive solution of Au = ou on D (R) with R > ry.

Proof. The result is obvious if R < 2ry. Hence, we may assume from now on that

R > 2ry. By Lemma 77, it follows that there exists C(rg) > 0 such that

/ (Vu, Vp)
stro) VP

(4.9) < C(rg) sup u

2(ro)

with the constant C(rg) independent of w.
By normalizing u if necessary, we may assume that

(4.10) sup u = 1.
D(ro)

/ (Vu, Vp)
stro) VP

By Lemma ?? and (??) we have that

d 1 1 1 (Vu, Vp)
o\ / ulVol | < 7 / ou+ o / N
2(r) r D(r)\D(ro) r (ro) Vol

4 1 (Vu, Vp)

< — ou |Vp\2 + —
4™ | DN\ D(ro) R TR ]

So we get

(4.11) < C(ro).

IN

(4.12)

for all r € [ro, R].
Combining (?7?), (??) and (??), we conclude

d {1 47 Vo2 C
@) o m/ ulVol | < ulVeL Cl)
dr \ r*™ Jsr) " I pgn\D(re) P r
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for all r € [rg, R] . If we set

2
(4.14) w(r)z/ u| §| ,
D(r\D(ro) P

then the co-area formula gives

1
w’(r):—/ u|Vpl.
2 3(r)

& <1w’ (r)) < gw (r) + C(ro)

So (??) becomes

dr \ r4m—2 rdm rém
or
(4.15) r2W” (r) — (4m — 2) rw’ (r) — 4Yw (r) < C(ro)
for all 7 € [rg, R]. Direct calculation then implies that the function
(4.16) E(r) =r®w(r)
satisfies
(4.17) re" (r) — (2a +4m —2) & (r) < C (ro) r* !

for all r € [rg, R], where

\/(4m — 124167 — (4m — 1)

(4.18) a= 5

Rewriting (??) into

d’f’ r2a+4m72 — T.a+4m

and integrating from rg to r, we get

4 (LY < Clr

r 2a+4m—2
(1.19) g0 (L) con+Carn

7o
for all r € [ro, R].
According to (??) and (??) we have

€/ (ro) = ra~? /E il

Hence, by (77?),
£ (ro) < C(ro)rg.
Plugging into (??) we conclude that

é-/(r) < C(TO)T2a+4m72
for all r € [rg, R] . After integrating from 7 to r, this immediately leads to
w(r) < C(rg)ratim=1,

In view of (??) and (?7?), we have

/ u < C(ro)rc(m’n
D(r)
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for all r € [rg, R] . Finally, the mean value property implies that
sup u < C(A, p,70)r¢m™)
2(z7)
for all € [2rg, R] . This proves the result. O

We remark that the assumption of o being of quadratic decay is optimal in the
sense that any slower decay will render the result to fail. Indeed, on Euclidean space,
the function u(z) = exp (r€(x)) satisfies the equation Au = ou with o decaying of
order 2 — 2e.

Our main result of this section is that the order of polynomial growth of u in
fact only depends on an integral quantity of the function o provided that u is a
priori of polynomial growth, namely,

lu < p© on M\D(Ro)

for some constant C > 0.
In the following, we denote

1
q
o = limsup [ R* ][ o
R—oo Z(R)

with ¢ > 1 to be specified.

Theorem 4.5. Assume that (M, g) admits a proper function p satisfying (?7) and
has the mean value property (M) . For a positive function u of polynomial growth,
satisfying Au = ou on M\D (Ry), if a < oo for some ¢ > v — %, then there exists
a constant T'(m, Ag,v, ) > 0 such that

u<A(p" +1) on M\D(Ry),

where A > 0 is a constant depending on u. The same estimate for u holds true

in the case ¢ = v — % with T' = T'(m, Ao, v) provided that o < ag(m, Ao, V), a

sufficiently small positive constant.

Proof. By the Holder inequality, « is increasing in gq. So we may restrict our atten-
tion to those ¢ that

1

0<e< 5,

where
2 1-2
(4.20) P ki
q

To treat both cases ¢ > v — % and g =v — % at the same time, we let
(4.21) a =min{a,1} and @ = max{«,1}.

Note that @ = a a. In the following,
(422) Co=Cy (m, Ao, v, &) > 1

is a fixed large constant, depending only on m, Ay, v and «, to be specified later.
In view of the definition of «, there exists rqg > 4Ry such that

/ o < 3alr%A(r)
3(r) |vp| N
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for all » > rg. From Lemma 77 it follows that

o4
(4.23) / —— < c(m)adr 2V (r),
st 1Vl
for all 7 > rg.
Denote
2
(4.24) x(r) :/ U%.
D(r)\D(Ro) P
We claim that x satisfies the following inequality.
azm) )< S [ o) iy
q ro
for all r > rg and 0 < 8 < 1, where
(4.26) Ao = / (u+ |Vul).
Z(ro)
We first prove (??) for ¢ > 1. By the co-area formula,
1
(4.27) X0 === [ ulval.
s

Hence, using Lemma 7?7, we have

d 1
7
= v
X (T) dr (,,Am /Z(r) U| p|>

1 1
oL SR gy A7)
T4 Dr\D(ro) r stro) Vol

The first term can be estimated by the co-area formula and Hélder inequality as

/ [ L )
ou = —
D(r\D(ro) ro \Jz) VPl
r o q / uP P
< T~ I T~ I dt7
/rg (/E(t) |VP> ( $(t) |VP|>

11
S4s=1
poq

(4.28)

(4.29)

where

Invoking (?7?) we conclude

r P % %
(4.30) / ou < c(m)oz/ / v V(t)l dt.
D(r)\D(ro) ro \Juw Vol | £2+4

On the other hand, the mean value property (??) implies
Ay 1

supu < 71/7/
=(t) 62 V((1+0)t) Jp((1+6)0)\D(Ro)

440 (L+0)1)"™ / Vel
-0 V(1) D((140))\D(Ry) P*™

< L L+ o)

u

(4.31)

19
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for all £ > ry. Therefore,

/ w \ 7 . i / u 3
s Vol S(t) s Vol

c(m)Ag £ 1 u
0% V(t)%x (1+6)%) </Z(t) VP|)

c(m)A§ ™

IA

S

IN

< X (14 0)t) (¢ ()7,

where in the last line we have used (77?).
Plugging this into (??) we conclude that

(4.32) / ou < 00 / i ((1+0)t) (' ()7 t™ 27,
D(r\D(ro)

— 2v
9‘1 0

where Cy = ¢(m)Aj @ for some c¢(m) depending only on m.
By (??) and (??) it follows that
Coa " L gm—o—1
)2 [ oy (v @) e

9 4 T4m T0

1 Vu,V
2(ro)

7.4m

In view of (??), this can be rewritten into

Coa [" 1 —1 o1
rimx(r) < 92—“ / X7 (L4 0)t) (X' (8)' 77 £ wdt + Ao.
q ro

Hence, (??) holds for any ¢ > 1.

To extend the result to ¢ = 1, we simply let ¢ — 1 in (??) and note that both
sides are continuous as functions of q.

In conclusion, we have

Coax [T _1
< 92—? / XL+ 0)8) (X ()77 '™ 270 dt + Ag

q ro

forallr > rgand 0 < 0 < 1. B
~ Since u is assumed to be of polynomial growth, there exist constants b > 0 and
A > 0 such that

(4.33) 4y (r)

u < Ap® on M\D(rg).
Together with Lemma 77 we get

1 -
X'(r) = m/ uw|Vp| < e(m)ArP+rm),
r (r)

Therefore, for r > rq,
(4.34) X'(r) < Ar?

for some constants b > 0 and A > 0.
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Obviously, the constant b in (??) can be chosen in such a way that (?7?) no longer
holds with b replaced by b — 1 for whatever constant A. Also, the constant A can
be arranged to satisfy that A > Ay and

(4.35) A> / (u+ [Vul).
D(ro)\D(Ro)

For € in (??) and Cy = Cp (m, Ag, v, @) from (??) we assume by contradiction
that

(4.36) min {ba b} > (100Cy)>.

We now prove by induction on k > 0 that

(4.37) X'(r) < A((;)grb +rb1>

for all r > rg.
Clearly, (??) holds for k = 0 in view of (??). We assume it is true for k& and
prove it for k + 1. Integrating (??) we obtain that

X(r) < A/T ((;) oy tbl)dt + x(ro)

To

<G ) o

where the last line follows from (?7?). Since

A
A< Erb,

this implies

2N (a3

=5 {(5) )
for all r > rg. Therefore,
2A o

(4.38) (1 +0)r) < ?(1 + o)t <(;) P pbtl Tb)

forallr>rgand 0 < 0 < 1.
By (??) and (??) we get

[ o0 et

0o
S%(l—k@)%/ ((;)th+tb1>t4m2dt

q 0

< ﬂ 1 +9)% ((a %T.b-‘rélm—l +rb+47n—2>.
b

Y =\ k
X"(r) < W(1+9)T((Q)2rb1+rbz> L Ao

—_ 1
9 pite rim

for all » > ry. Integrating in r then yields

3ACHa 1 a5 1
(4.39) Y (r) < 2200 (1 4 gyt <(;‘) 4 rbl) + 40 + X' (r0)

2v 1
07a bt
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for all » > rg and 0 < 6 < 1. Note that by (?7?)
1 1
X/(’]"o) = m/ u ‘vp| S §AO
To S(ro)
Setting 6 = ¢ in (??) and using (??), we obtain that
- _ ok
X'(r) < 4600;A((;) rh rb_1> + Ao
In view of (77?),
a 1 /a2
iz <5 ()
Hence, the preceding inequality becomes
1 a\ s _
X'(r) < 2A<(b5) b4 1) + Ao.
However,
1
Ao <A< §Arb_1

for r > rg. In conclusion,

— k41

X'(T)SA((;) 2 Tb+rb1>
for all r > rq.

This completes the induction step and (??) holds for all k& > 0. We have thus
established that

=k
(4.40) X(r) < A((:) rb rbl)
for all kK > 0 and all » > rg.
By (??) we have = < 1. Hence, by letting k — oo in (??) one sees that
X' (r) < Arb~1

for all » > rg. This clearly contradicts with the choice of b.
In conclusion, we must have

(4.41) min{ba,b} < (100C)?

for some constant Cy = Cy(m, Ag, v, &@).

Let us consider first the case ¢ > v — 1

5 or € > 0. It is easy to see from (?7) that

2
€

b < (100C,)

u
= < ApPe?

T. = (100C,)% + 4m + 1.
Integrating in r and applying the mean value inequality (??), we get
(4.42) u < Ap'c on M\D(ry),

A _ 2'=A
where A = W

Therefore,

for all r > rq, where
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Assume now that ¢ = v — % or e = 0. Then (??) implies

1
(4.43) min {a,b} < (100Cy)>.
So if a < o with .
1 2
ap ( OOCO) )
then ) .
= == > (100C)*
« «

and (??) implies that
b < (100C,)° .
As above, we conclude that
(4.44) uw< Ap" on M\D(ro)
for some T'(m, Ag,v), where A = VQ(FR/(\))'
By (??) and (??), the theorem is proved. O

Combining Proposition ?? with Theorem 7?7, we have the following corollary
concerning positive solutions u to Au = ocu on M \ D(Ryp).

Corollary 4.6. Assume that (M, g) admits a proper function p satisfying (77 ) and
has the mean value property (M) . Suppose that o decays quadratically. Then there
exists T'(m, Ag, v, ) > 0 such that

u<A(p"+1) on M\D(Ry),

where A > 0 is a constant depending on w, provided that o < oo for some q¢ > v — %

In the case ¢ = v — %, the same conclusion holds for some I'(m, Ag,v) > 0 when
a < ag(m, Ag,v), a sufficiently small positive constant.

5. DIMENSION ESTIMATE

In this section, we establish a dimension estimate for the space P spanned by all
positive solutions to the equation Au = ou on M. We continue to assume that M
admits a proper function p satisfying (??) and has the mean value property (M) .
Our argument closely follows that in [?].

Define

LYM)={v:Av=0v,|v| <cp® on M},
the space of polynomial growth solutions of degree at most d.

Lemma 5.1. Assume that (M, g) admits a proper function p satisfying (??7) and
has the mean value property (M) . Then dim LY(M) < T'(m, Ao, v,d).

Proof. Let W, be any I-dimensional subspace of L4(M), where [ > 1. For R > 0,

define inner product
Ag(u,v) = / uv
D(R)

for u,v € W;. We claim that there exists R > Ry large enough so that for
{u1,- -+ ,w}, an orthonormal basis of W, with respect to Asg,

l
l
(5.1) §j/ ul > =,
i—1 7 D(R)

=
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where T = 27(m)+2d+1 with 4(m) being the same constant from Lemma ?7?.

Indeed, assume by contradiction that (??) fails for all R > Ry. To simplify
notation, for Ry > R;, we denote by

l
tran, Ar, = Z/D( v?
i=1

R1)
for orthonormal basis {vy, - ,v;} with respect to Agr,. Since (??) fails for all R >
Ry, we have that
1 tra,,A 1
=> % > (deta,, Ar)T,

where the last estimate follows from the arithmetic-geometric mean inequality. In
other words,

| —

(5.2) deta,,Ar < 7

=

for all R > Ry. Iterating (??) and using that

(detATAR) (detARAs) = detATAs,

we get
A 1
detA2j R R S ﬁ .
Equivalently,
(5.3) deta,Asig > Y

for all j > 0 and R > Ry.
On the other hand, Lemma ?? implies that V(27 R) < (27 R)Y(™). Together with
the fact that uw € W; is of polynomial growth of order at most d, we conclude

detapAgi g < A2 (2T R)O(M+2DL,

As T' > 270m)+2d this contradicts (??) after letting j — oco. This proves (?7).

For z € D(R) we note that there exists a subspace W, of W, of codimension at
most one, such that u(x) = 0 for all w € W,. So one may choose an orthonormal
basis in W, with ug, - -+ ,u; € W,. By the mean value property (M) we get

We have thus proved that
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for x € D(R). Together with (??) we get

Therefore,
I < C(A,p)T.
Since this holds true for any [-dimensional subspace W, of Ld(M ), we conclude that
dim LY(M) < C(A, u)T

as well. This proves the result. ([

Summarizing, we have the following theorem. Recall P is the space spanned by
all positive solutions to the equation Au = ou.

Theorem 5.2. Assume that (M,g) admits a proper function p satisfying (?7)
and has the mean value property (M) . Suppose that o decays quadratically. Then
dimP < T'(m, Ag,v,a) provided that @ < oo for some ¢ > v — % In the case
q=v— %, the same conclusion holds for some T'(m, Ag,v) when a < ap(m, Ag, V),
a sufficiently small positive constant. Consequently, the number of ends e(M) of
M satisfies the same estimate as well.

Proof. According to Theorem 77, the number of ends e(M) is at most the dimension
of P. However, Corollary ?? implies that P C L4(M) with d = I'(m, Ag,v, ) in
the case ¢ > v — % and d = I'(m, Ap,v) in the case ¢ = v — %, respectively. The
conclusion on the dimension estimate of P then follows from Lemma ??. This
proves the theorem. O

6. SOBOLEV INEQUALITY

In this section, we show that a scaling invariant Sobolev inequality implies the
mean value property (M), a classical fact proven by a well-known Moser iteration
argument. For the sake of completeness, we will spell out the details below. We
continue to assume that M admits a proper Lipschitz function p > 0 satisfying
(??), namely,

(6.1) <|Vp|<land Ap< =
P

DN =

in the weak sense for p > Ry. The sublevel and level sets of p are denoted by
D(r)y={xeM:px)<r}
N(r)={veM:p(x)=r},
respectively, and their volume and area by
V(r) = Vol(D(r))
A(r) = Area(X(r)).
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Recall that (M, g) satisfies the Sobolev inequality (S) if there exist constants
i >1and A > 0 such that

@ (f) s, (o)

for ¢ € C§°(D(R)) and R > Ry. Here and in the following,

fo= v

for a compact subset @ C M and an integrable function u on 2. We denote v to
be the number determined by
1 1
4 =1
W
Proposition 6.1. Assume that (M,g) admits a proper function p satisfying (77)
and that the Sobolev inequality (S) holds. Then there exists a constant C(A, ) >0
such that
C(A, ) /
sup u < ————
S(R) 02"V(2R) Jp(1+0)r)\D(2)

for any 0 < 8 <1 and a positive subsolution u of Au > ou on D(2R)\D(Ry) with
R > 4Ry. In particular, M has the mean value property (M).

u

Proof. The proof is by Moser iteration and can be found in Chapter 19 of [?]. We
may assume 0 < 0 < %. For a function ¢ with compact support in D(2R) and a
positive integer & > 1, applying the Sobolev inequality (??) to ¢u¥, we get

69 ([ 00™) g [ (T i),

where % =1- i Integrating by parts and using Au > ou, we compute the first
term of the right side as

/ v (o) =K / [Vul* u?* 26" + / Vol u*t
D(2R) D(2R) D(2R)
1

+ = / (Vu** V)
2 /p@er)
= —k(k— 1)/ (V| u?F—2¢? — k/ (Au) u?F—1¢?
D(2R) D(2R)
o et
D(2R)

< —/ ou?k p? +/ IVo|? u?*.
D(2R) D(2R)

Plugging into (??) we conclude

1 2
4 k 2/1) s 4AR 2k 2 .
(64) </D(2R) (u ¢) = V(2R)5 /D(QR) Vel
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For fixed constants T3, To, 61 and 05 with g <T <Tr < % and 0 < §1, 0o < %R,
let
on D(T3)\D(Ty)
(Ty 4 62 — p(x)) on D(Tx + 52)\D(T2)
(p(x) =11 +61) on D(Ty)\D(T1 — 61)
otherwise.

¢(z) =

Sl

Plugging into (??) we get

4AR?
V (2R)” min{dy, 6,}2

1
a,Ty,T> = / ua N
( D(T2)\D(T1)

We now iterate the inequality. Fix % < Ry < Ry < %R and 0 < €1, €3 < %. For
each integer ¢ > 0, set

1
k
) Hu||2k,T1751,T2+52 ’

(65) ||uH2k;L,T1,T2 < (

where

[[u

ki = Mi
e1Ry €2 Ry
51,z' = 9it1’ 52,i = 9i+1

T17Z‘1(1761)R1+2517j7 T27¢:(1+62)R272527j.
7=0 7=0
Applying (??) with k£ = kj, 51 = 51,]‘, 52 = 52,]‘ and T1 = T17j and TQ = TQJ, and
iterating from j = 0 to j = ¢, one obtains

1

i 207
4AR? 2w
I ”2u LT ,5,T e (V(QR)i min{51,j752,j}2> |

|2,(1761)R1,(1+52)R2 :

Letting i — oo yields
C(mA ) ’
U < U
il < (i) W ii-aonaren,

for 38 < Ry <Ry < 3Rand 0 < e, e3 < 1.
So we have

C (A, p)
V (2R)? min {e1, €2}
C (A, p)
~ V(2R)? min {e1, e2}”
Applying (??) for each ¢ with

||U||OO,R1,R2 = ||U||2,(1—61)R1,(1+62)R2

(6.6)

1 1
||u||0207(1—€1)R1,(1+€2)R2 ||u||l2,(l—€1)R1,(1+62)R2 °

R AR~ 1 Ry
T T Y Ty Leg T Ru,
Jj=1 ’

‘1 Rs 11
32:R2,i:R+9RE % €2 = €25 = Ro -1

=1 :
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and iterating, we conclude that

C(4,p)

ull o, 2 r < VR lully, -0y (14+0)R -

This proves the result. O

We note that only |Vp| < 1 on M\ D(Rp) from (??) was used in the proof of
Proposition ??. The following corollary is immediate.

Corollary 6.2. Assume that (M, g) admits a proper function p satisfying (?7) and
that the Sobolev inequality (S) holds. Then there exists C(A, u) > 0 such that

C(A
sup u < %f u
D(R) 0 D((146)R)
for any 0 < 6 <1 and positive subsolution u of Au > ou on D(2R) with R > Ry.

By combining Proposition ?? with Theorem 7?7, we have the following result.

Theorem 6.3. Assume that (M, g) admits a proper function p satisfying (??) and
that the Sobolev inequality (S) holds. Suppose that o decays quadratically. Then
dim P < T'(m, A, v, ) provided that o < oo for some q > 1/—%. In the case ¢ = V*%,
the same conclusion holds for some I'(m, A,v) when a < ag(m, A,v), a sufficiently
small positive constant. Consequently, the number of ends e(M) of M satisfies the
same estimate as well.

We also remark that Proposition 7?7 can be localized to an end F of M as follows.
For r > Ry, we denote

E(r)=EnND(r),
OE(r) = ENX(r).

Corollary 6.4. Assume that (M, g) admits a proper function p satisfying (?7) and
that the Sobolev inequality (S) holds. Then there exists a constant C(A, ) > 0 such

that
C(A, p) /
sup U < ———
OE(R) 02"V (2R) Jp(+o)r)\B(2)

for any 0 < 6 < 1 and positive subsolution u of Au > ou on E(2R)\E(Ry) with
R > 4R,.

u

Proof. In the proof of Proposition ?? one may choose the cut-off ¢ with support in
the end F as follows.

on E(TQ)\D(Tl)
(T2 + 62 — p(x)) on E(Ty + 62)\D(T2)
(p(l‘) — Tl + (51) on E(Tl)\D(Tl — (51)
otherwise.

p(x) =

o&‘*—ﬁ""—‘ —

with % <T <Ty < % and 0 < 41, dy < iR. The rest of the proof is verbatim. [J

It is perhaps worth pointing out that the normalization in Corollary 77 is by
the volume of D(2R), not of its intersection with E. We now apply this localized
version to improve Corollary ?7.
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For an end E of M, define

(6.7) I e / )
. ap = limsup o .
F e~ \A(R) 9E(R)

Corollary 6.5. Assume that (M, g) admits a proper function p satisfying (??) and
that the Sobolev inequality (S) holds. Suppose that o decays quadratically along E.
Then there exists T'(m, A,v,ag) > 0 such that

uSA(pF+1) on E

for any positive solution u to Au = ou on E, where A > 0 is a constant depending
on u, provided that ag < oo for some ¢ > v — % In the case q = v — %, the same
conclusion holds for some I'(m, A,v) > 0 when ag < ap(m, A,v), a sufficiently
small positive constant.

Proof. First, Lemma 7?7 can be localized to the end F to yield

d 1 1 1 Vu,V
4 W/ ulVpl | < — ocu+ W/ (Vu, Vp)
dr \ " Jop@) T ] B\ E(ro) ™ Jopte) IV

for any rg > Ry. Using the fact that o decays quadratically along FE, one con-
cludes that u is of polynomial growth along E by adopting the same argument as
Proposition ?77.

Recall by Corollary 7?7 that

CAp) 1 /
6.8 sup u <
(6.8) 9E(R) 0% V(2R) Je(1+0)r)\E(Ro)

for R > 4Ry and 0 < 6 < 1. Following the proof of (??) we obtain that the function

u

Vp 2
XE(T> = / ul 417'1
E(r)\E(Ro) P

satisfies the following inequality:

Cha r 1 1 1
FT () < ;;‘iE / X (14 0)1)7 (X () 75425 dt 4 A
q 0

for r > rg and 0 < 8 < 1, where

aE(To)

and &g = min {ag, 1}, with the constant Cy depending only on m, A, u and ag.
Using an induction argument as in Theorem 77, we arrive at

/ u< ArCmApar)
OE(r)

for r > rg. Integrating in r and using (?7?), we conclude
u<A(ple+1)

on end FE. This proves the result. O
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Corresponding to an end F, let ug be the positive solution of Aug = cug on
M constructed in Theorem ??. Then 0 < up < 1 on M \ E. In particular, under
the assumptions of Corollary 7?7, up must be of polynomial growth on M with the
given growth order.
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