
WEIGHTED POINCARÉ INEQUALITY AND THE POISSON

EQUATION

OVIDIU MUNTEANU, CHIUNG-JUE ANNA SUNG, AND JIAPING WANG

Abstract. We develop Green’s function estimates for manifolds satisfying

a weighted Poincaré inequality together with a compatible lower bound on
the Ricci curvature. This estimate is then applied to establish existence and

sharp estimates of solutions to the Poisson equation on such manifolds. As

an application, a Liouville property for finite energy holomorphic functions is
proven on a class of complete Kähler manifolds. Consequently, such Kähler

manifolds must be connected at infinity.

1. Introduction

Recently, in [25], we studied the existence and estimates of the solution u to the
Poisson equation

∆u = −φ

on a complete Riemannian manifold (Mn, g), where φ is a given smooth function
on M. Among other things, we obtained the following result.

Theorem 1.1. Let (Mn, g) be a complete Riemannian manifold with bottom spec-
trum λ1(∆) > 0 and Ricci curvature Ric ≥ − (n− 1)K for some constant K ≥ 0.
Let φ be a smooth function such that

|φ| (x) ≤ c (1 + r(x))
−k

for some k > 1, where r(x) is the distance function from x to a fixed point p ∈ M.
Then the Poisson equation ∆u = −φ admits a bounded solution u on M.

If, in addition, the volume of the unit ball B(x, 1) satisfies V (x, 1) ≥ v0 > 0 for
all x ∈ M, then the solution u decays and

|u| (x) ≤ C (1 + r(x))
−k+1

.

Recall that the bottom spectrum λ1(∆) of the Laplacian can be characterized
as the best constant of the Poincaré inequality

λ1(∆)

ˆ
M

ϕ2dx ≤
ˆ
M

|∇ϕ|2dx.

It is known that λ1 (∆) > 0 implies that M is non-parabolic, that is, there exists
a positive symmetric Green’s function G (x, y) for the Laplacian. The preceding
theorem relies on the following sharp estimate of the minimal positive Green’s
function.
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Theorem 1.2. Let (Mn, g) be an n-dimensional complete manifold with λ1 (∆) > 0
and Ric ≥ − (n− 1)K. Then for any p, x ∈ M and r > 0 we haveˆ

B(p,r)

G (x, y) dy ≤ C (1 + r)

for some constant C depending only on n, K and λ1 (∆) .

In the current paper, we continue to address similar issues for complete manifolds
satisfying more generally a so-called weighted Poincaré inequality.

Definition 1.3. A complete noncompact Riemannian manifold (M, g) satisfies a
weighted Poincaré inequality if there exists a smooth function ρ > 0 on M such that

(1.1)

ˆ
M

ρϕ2 ≤
ˆ
M

|∇ϕ|2

for any compactly supported function ϕ ∈ C∞
0 (M).

Other than being a natural generalization of λ1 (∆) > 0, there are various mo-
tivations for considering weighted Poincaré inequality. First, it is well-known (see
[18]) that M being nonparabolic is equivalent to the validity of a weighted Poincaré
inequality for some ρ > 0. Second, according to a result of Cheng [5], when the
Ricci curvature of manifold M is asymptotically nonnegative at infinity, its bottom
spectrum λ1 (∆) = 0, and one is forced to work with weighted Poincaré inequali-
ties. Third, by considering weighted Poincaré inequalities, it enables one to study
manifolds with Ricci curvature bounded below by a function. Typically, in geo-
metric analysis, curvature is assumed to be bounded by a constant so that various
comparison theorems become available. As demonstrated in [18, 21], the weighted
Poincaré inequality allows one to go beyond this realm. Indeed, they were able
to prove some structure theorems for manifolds with Ricci curvature satisfying the
inequality

Ric(x) ≥ −C ρ(x)

for a suitable constant C for all x ∈ M. Finally, weighted Poincaré inequalities occur
naturally under various geometric settings. Indeed, a result of Minerbe [23] (see
[13] for further development) implies that a complete manifold M with nonnegative
Ricci curvature satisfies a weighted Poincaré inequality with ρ(x) = c r−2(x), where
r(x) is the distance from x to a fixed point p in M, provided that the following
reverse volume comparison holds for some constant C and ν > 2

V(B(p, t))

V(B(p, s))
≥ C

(︃
t

s

)︃ν

for all 0 < s < t < ∞. Also, for a minimal submanifold Mn of the Euclidean space

RN , a weighted Poincaré inequality is valid on M with ρ(x) = (n−2)2

4 r̄−2(x), where
r̄(x) denotes the extrinsic distance function from x to a fixed point (see [3, 18]). On
the other hand, for a stable minimal hypersurface in a manifold with nonnegative
Ricci curvature, by the second variation formula, a weighted Poincaré inequality
holds with ρ(x) being the length square of the second fundamental form.

We remark that weighted Poincaré inequalities in various forms have appeared
in many important issues of analysis and mathematical physics. Agmon [1] has
used them in his study of eigenfunctions for Schrödinger operators. In [8, 9], Fef-
ferman and Phong considered the more general weighted Sobolev type inequalities
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for pseudodifferential operators. There are many interesting results concerning the
sharp form of the weight ρ. The classical Hardy inequality for the Euclidean space

Rn implies that ρ(x) = (n−2)2

4 r−2(x) and it is optimal. In [2], it is shown that a

sharp ρ on the hyperbolic space Hn is given by ρ(x) = (n−1)2

4 + 1
4r2(x) + (n−1)(n−3)

4 sinh2 r(x)
.

We also refer to [7] for a more systematic approach to finding an optimal ρ for more
general second order elliptic operators.

Throughout the paper, we will assume the weight ρ(x) additionally satisfies both
(1.2) and (1.3), that is, the ρ-metric defined by

(1.2) ds2ρ = ρ ds2

is complete; and for some constants A > 0 and δ > 0,

(1.3) sup

B

(︃
x, δ√

ρ(x)

)︃ ρ ≤ A inf
B

(︃
x, δ√

ρ(x)

)︃ ρ

for all x ∈ M.
We point out that these two conditions obviously hold true for a weight of the

form ρ(x) = c (1 + r(x))
α
with α ≥ −2. The metric ds2ρ was first used by Agmon

[1] to obtain decay estimates for eigenfunctions. It was later employed to establish
L2 decay estimates for the minimal positive Green’s function in [18].

Our first result is an integral estimate for the minimal positive Green’s function
G (x, y) on M. In the following, we denote geodesic balls centered at point x of
radius r with respect to the background metric ds2 and the metric ds2ρ by B (x, r)
and Bρ (x, r) , respectively.

Theorem 1.4. Let (Mn, g) be a complete manifold satisfying the weighted Poincaré
inequality (1.1) with weight ρ having properties (1.2) and (1.3). Assume that Ric ≥
−K ρ on M for some K ≥ 0. Thenˆ

Bρ(p,r)

ρ (y)G (x, y) dy ≤ C (r + 1)

for all p and x in M, and all r > 0, where C depends only on n, K, δ and A.

While it is possible to prove Theorem 1.4 by following a similar strategy as in [25],
we instead adopt a complete different approach here. The important observation is
that the problem of estimating the Green’s function for ∆ may be transformed into
one for the weighted Laplacian on a suitable smooth metric measure space with
positive bottom spectrum. Recall a smooth metric measure space (N, g, e−f dv)
is nothing but a smooth Riemannian manifold (N, g) equipped with a weighted
measure e−f dv, where f is a smooth function on N and dv the Riemannian measure
induced by the metric g. The weighted Laplacian ∆f is defined by ∆fu = ∆u −
⟨∇f,∇u⟩ . Indeed, the Laplacian ∆ of (M, g) may be realized as ∆ = ρ ∆̃f , where

∆̃ is the Laplacian of (M,ds2ρ) and ∆̃f the weighted Laplacian of the smooth metric

measure space (M,ds2ρ, e
−f dvρ) with a suitably chosen f and dvρ the Riemannian

measure with respect to the metric ds2ρ. In particular, both ∆ and ∆̃f have the same
Green’s function. Now the weighted Poincaré inequality (1.1) is translated into the

fact that the bottom spectrum of the weighted Laplacian ∆̃f satisfies λ1(∆̃f ) ≥ 1.
This immediately leads to an exponential decay estimate for the heat kernel of
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the weighted Laplacian for large time t. For small time t, an estimate of the heat
kernel follows from the Ricci curvature assumption. From these estimates and the
fact that the Green’s function is the time integral of the heat kernel, Theorem 1.4
follows. Incidentally, this new approach applies to Theorem 1.2 as well and seems
to be simpler than the original argument in [25].

As an application of Theorem 1.4, we obtain the following solvability result for
the Poisson equation.

Theorem 1.5. Let (Mn, g) be a complete manifold satisfying the weighted Poincaré
inequality (1.1) with weight ρ having properties (1.2) and (1.3). Assume that Ric ≥
−Kρ on M for some K ≥ 0. Then for smooth function φ such that

|φ| (x) ≤ c (1 + rρ(x))
−k

for some k > 1, where rρ(x) is the ρ-distance function from x to a fixed point
p ∈ M, the Poisson equation ∆u = −ρφ admits a bounded solution u on M.

If, in addition, there exists v0 > 0 such that

Vρ (x, 1) =

ˆ
Bρ(x,1)

ρ (y) dy ≥ v0

for all x ∈ M, then the solution u decays and

|u| (x) ≤ C (1 + rρ(x))
−k+1

.

Obviously, these results are faithful generalization of the ones from λ1 (∆) > 0.
We also point out that Theorem 1.4 is sharp, see Section 3. In passing, we mention
that recently Catino, Monticelli and Punzo [4] have studied the solvability of the
Poisson equation by only assuming the essential spectrum of M is positive. In
view of this, one may speculate that some of the preceding results generalize with
the weighted Poincaré inequality holds only for smooth functions ϕ with support
avoiding a fixed geodesic ball.

As an application of the solvability of the Poisson equation, we prove the follow-
ing result concerning the connectivity at infinity.

Theorem 1.6. Let (M, g) be a complete Kähler manifold satisfying (1.1) with
weight ρ having properties (1.2), (1.3) and ρ ≤ C. Assume that there exists v0 > 0
so that for all x ∈ M

Vρ (x, 1) =

ˆ
Bρ(x,1)

ρ (y) dy ≥ v0 > 0

and that the Ricci curvature lower bound Ric ≥ −ζρ holds for some function ζ (x) >
0 converging to zero at infinity. Then M has only one end.

The novelty of the result is that the assumption on the Ricci curvature is es-
sentially imposed only at infinity, yet we are able to conclude that the manifold
is connected at infinity. This is of course not true in the Riemannian setting.
Indeed, the connected sum of copies of Rn for n ≥ 3 has non-negative Ricci curva-
ture outside a compact set and satisfies a weighted Poincaré inequality of the form
ρ(x) = c r−2(x). Obviously, it can have as many ends as one wishes.

We remark that our assumption is vacuous when ρ = λ1 (∆) is constant according
to the aforementioned result of Cheng [5]. However, in the case λ1 (∆) > 0, there
are various results concerning the number of ends for both Riemannian and Kähler
manifolds. We refer to the papers [17, 20, 19, 24] for more information and further



WEIGHTED POINCARÉ INEQUALITY AND THE POISSON EQUATION 5

references. It should also be noted, although not explicitly stated there, that the
argument in [18] already implies that M necessarily has finitely many ends.

To prove Theorem 1.6, we first observe the assumption that

Vρ (x, 1) =

ˆ
Bρ(x,1)

ρ (y) dy ≥ v0 > 0

ensures all ends of M must be nonparabolic. Therefore, by the result of Li and Tam
[16], M admits a nonconstant bounded harmonic function u with finite energy if
it is not connected at infinity. According to [14], such u must be pluriharmonic as
M is Kähler. One may view u as a holomorphic map from M into the hyperbolic
disk. The proof is then completed by establishing a Liouville type result for such
maps. It is well-known from Yau’s Schwarz lemma [30] that such map u must be
constant if the Ricci curvature of the domain manifold M is nonnegative. The
result was generalized by Li and Yau [22] to the case that the negative part of the
Ricci curvature of M is integrable. They concluded that u is necessarily a constant
map if M is in addition nonparabolic. Our next result may be viewed as further
development along this line.

Theorem 1.7. Let (M, g) be a complete Kähler manifold satisfying the assumptions
of Theorem 1.6. Assume that F : M → N is a finite energy holomorphic map into
a complex Hermitian manifold N of non-positive bisectional curvature. Then F
must be a constant map.

The paper is organized as follows. In Section 2, we study Green’s function
estimates and the Poisson equation for the weighted Laplacian on smooth metric
measure spaces with positive bottom spectrum. In Section 3, after making some
preliminary observations relating ρ-balls to the background metric balls, we prove
Theorem 1.4 and Theorem 1.5 by applying the results from Section 2. In Section 4,
we discuss applications of the Poisson equation and prove Theorem 1.7 concerning
the Liouville property of finite energy holomorphic maps.

2. Poisson equation for weighted Laplacian

In this section we study the Poisson equation for the weighted Laplacian on
smooth metric measure spaces, strengthening our previous results in [25] by a new
approach involving the heat kernel.

Throughout this section, (M, g) is assumed to be a complete noncompact Rie-
mannian manifold. To a fixed smooth function f ∈ C∞ (M) we associate the
weighted volume dvf = e−fdv and call

(︁
M, g, e−f dv

)︁
a smooth metric measure

space. The weighted Laplacian ∆f acting on functions is defined by

∆fu = ∆u− ⟨∇u,∇f⟩ .
It is self-adjoint with respect to the weighted volume dvf . Its bottom spectrum is
defined by

λ1 (∆f ) = inf
ϕ∈C∞

0 (M)

´
M

|∇ϕ|2 e−f´
M

ϕ2e−f
.

Function Gf (x, y) is called a Green’s function of ∆f if

∆fGf (x, y) = −δ (x, y) .
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To ease the notation, throughout this section we use G(x, y) instead of Gf (x, y).
Recall that λ1 (∆f ) > 0 guarantees the existence of the minimal positive Green’s
function, obtained as the limit of the Dirichlet Green’s function Gi of a compact
exhaustion Ωi of the manifold M.

The Bakry-Emery Ricci curvature Ricf of
(︁
M, g, e−fdv

)︁
is given by

Ricf = Ric + Hess (f) .

In [25], by assuming a lower bound on the Bakry-Emery curvature of the form

(2.1) Ricf ≥ −Kg

and that the weight f satisfies

(2.2) sup
y∈B(x,1)

|f (y)− f (x)| ≤ a

for some fixed constants K and a > 0, we have proved a sharp integral estimate for
the Green’s function of ∆f .

Theorem 2.1. Let
(︁
M, g, e−fdv

)︁
be an n-dimensional smooth metric measure

space satisfying (2.1) and (2.2). If λ1 (∆f ) > 0, then the minimal positive Green’s
function G(x, y) of ∆f satisfies

ˆ
B(p,r)

G (x, y) e−f(y)dy ≤ C (r + 1)

for any p, x ∈ M and any r > 0. The constant C > 0 depends only on n, K, a and
λ1 (∆f ) .

The proof of Theorem 2.1 is based on integral estimateˆ
Lx(α,β)

G (x, y) e−f(y)dy ≤ C

(︃
1 + ln

β

α

)︃
for any 0 < α < β, where

Lx (α, β) = {y ∈ M : α < Gf (x, y) < β}
and C is a constant.

Our goal in this section is to improve Theorem 2.1 by relaxing the assumptions
(2.1) and (2.2) to a local Sobolev inequality.

Definition 2.2. Smooth metric measure space
(︁
M, g, e−fdv

)︁
is said to satisfy the

Sobolev inequality (S) if there exist positive constants µ > 1, r0 > 0 and CS > 0
such that

(2.3) CS

(︄ 
B(x,r)

ϕ2µe−f

)︄ 1
µ

≤ r2
 
B(x,r)

|∇ϕ|2 e−f +

 
B(x,r)

ϕ2e−f

for all x ∈ M, 0 < r ≤ r0 and any ϕ ∈ C∞
0 (B (x, r)) .

Without loss of generality we may assume that r0 ≤ 1. Here and in the following,
we use

ffl
B(x,r)

ue−f to denote the weighted average of a function u over the ball

B (x, r) , namely,
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B(x,r)

ue−f =
1

Vf (x, r)

ˆ
B(x,r)

ue−f ,

where Vf (x, r) =
´
B(x,r)

e−f is the weighted volume of B (x, r) .

According to [26], assumptions (2.1) and (2.2) imply a Sobolev inequality (2.3)
with µ = µ (n) , r0 = 1 and the constant CS depending only on dimension n, K in
(2.1) and a in (2.2).

Let H (x, y, t) denote the minimal positive heat kernel of ∆f . That is, H satisfies

∂tH = ∆fH

lim
t→0

H (x, y, t) = δ (x, y) ,

where the second identity is understood in L2
(︁
e−fdv

)︁
sense, and H is obtained as

the limit of the Dirichlet heat kernel of ∆f on compact exhaustion Ωi of M.

Lemma 2.3. Let
(︁
M, g, e−fdv

)︁
be a smooth metric measure space satisfying the

Sobolev inequality (S). Then there exists constant C > 0, depending only on µ, r0
and CS in (2.3), such that the following holds.

• For x ∈ M and t0 =
√
r0, the weighted heat kernel satisfies

(2.4) H (x, x, t0) ≤
C

Vf (x, r0)
.

• For x ∈ M and r ≥ r0, the weighted volume satisfies

(2.5)
Vf (x, r)

Vf (x, r0)
≤ eCr.

Proof. Since the results are standard and can be found in [11, 12], we only sketch
the ideas of proof. For (2.4), it is well known that the Sobolev inequality (2.3)
implies a mean value inequality for positive subsolutions of the heat equation (see
[29] or Chapter 19 of [15]).

u (x, t0) ≤
C

Vf (x, r0)

ˆ t0

0

ˆ
B(x,r0)

u (y, s) e−f(y)dyds,

As the heat kernel satisfies ˆ
M

H (x, y, t) e−f(y)dy ≤ 1,

(2.4) follows immediately.
Concerning (2.5), as pointed out in Section 2 of [12], the Sobolev inequality (2.3)

implies the volume comparison property

Vf (y, r0) ≤ CVf

(︃
y,

1

4
r0

)︃
,

for any y ∈ M. By a covering argument (see [12]), this implies the weighted volume
comparison estimate claimed in Theorem 2.3. □

We can now extend Theorem 2.1 to the more general setting with (2.1) and (2.2)
replaced by (2.3).
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Theorem 2.4. Let
(︁
M, g, e−fdv

)︁
be a smooth metric measure space satisfying the

Sobolev inequality (S). If λ1 (∆f ) > 0, then the minimal positive Green’s function
G of ∆f satisfies the estimate

ˆ
B(p,r)

G (x, y) e−f(y)dy ≤ C (r + 1)

for any p, x ∈ M and r > 0 with the constant C > 0 depending only on µ, r0, CS

in (2.3) and λ1 (∆f ) .

Proof. We first remark that it suffices to prove the result for x ∈ B (p, r) . Indeed,
consider the function

Φ (x) =

ˆ
B(p,r)

G (x, y) e−f(y)dy.

We claim that the maximum value of Φ on M\B (p, r) must occur on ∂B (p, r) . In
fact, for

Φi (x) =

ˆ
B(p,r)

Gi (x, y) e
−f(y)dy,

where Gi (x, y) is the Dirichlet Green’s function of ∆f on a compact exhaustion Ωi

of M, we have Φi (x) → Φ (x) as i → ∞. This is because G (x, y) is the limit of
Gi(x, y). Since ∆fΦi = 0 on Ωi \B (p, r) , by the maximum principle, the maximum
value of Φi (x) on Ωi \ B (p, r) is achieved on ∂B (p, r) . Therefore, the same must
be true for Φ (x) .

From now on, we assume that x ∈ B (p, r) . It is well known (see Chapter 10 in
[10]) that for the heat kernel H (x, y, t) of ∆f ,

(2.6) eλ1(∆f )tH (x, x, t) is nonincreasing in t > 0.

In fact, by the semi-group property,

d

dt
H (x, x, t) =

d

dt

ˆ
M

H

(︃
x, y,

t

2

)︃2

e−f(y)dy

=

ˆ
M

H

(︃
x, y,

t

2

)︃
∆fH

(︃
x, y,

t

2

)︃
e−f(y)dy

= −
ˆ
M

⃓⃓⃓⃓
∇H

(︃
x, y,

t

2

)︃⃓⃓⃓⃓2
e−f(y)dy

≤ −λ1 (∆f )

ˆ
M

H

(︃
x, y,

t

2

)︃2

e−f(y)dy

= −λ1 (∆f )H (x, x, t) .

Therefore,

(2.7) H (x, x, t) ≤ e−λ1(∆f )(t−t0)H (x, x, t0)

for all t ≥ t0 > 0.
Furthermore, by the semi-group property and the Cauchy-Schwarz inequality,

we get
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H (x, y, t) =

ˆ
M

H

(︃
x, z,

t

2

)︃
H

(︃
y, z,

t

2

)︃
e−f(z)dz

≤

(︄ˆ
M

H

(︃
x, z,

t

2

)︃2

e−f(z)dz

)︄ 1
2
(︄ˆ

M

H

(︃
y, z,

t

2

)︃2

e−f(z)dz

)︄ 1
2

= H (x, x, t)
1
2 H (y, y, t)

1
2 .

Together with (2.7), this proves that

(2.8) H (x, y, t) ≤ e−λ1(∆f )(t−t0)H (x, x, t0)
1
2 H (y, y, t0)

1
2

for all x, y ∈ M and t ≥ t0 > 0.
By Lemma 2.3, for all x ∈ M we have

(2.9) H (x, x, t0) ≤
C

Vf (x, r0)

and
Vf (x, r)

Vf (x, r0)
≤ eCr

for all r ≥ r0. Here t0 =
√
r0 and C depends only on µ, r0 and CS in (2.3). So for

x ∈ B (p, r) and any r > 0, the triangle inequality implies that

Vf (p, r)

Vf (x, r0)
≤ Vf (x, 2r)

Vf (x, r0)
(2.10)

≤ eCr.

Hence, for x, y ∈ B (p, r) , we get from (2.9) and (2.10) that

H (x, x, t0)
1
2 H (y, y, t0)

1
2 ≤ CeCr

Vf (p, r)
.

Plugging this into (2.8) we conclude that

H (x, y, t) ≤ C e−λ1(∆f )t+Cr

Vf (p, r)

for x, y ∈ B (p, r) and t ≥ t0. This immediately implies there exists C1 > 0 such
that

(2.11)

ˆ
B(p,r)

H (x, y, t) e−f(y)dy ≤ C1e
−λ1(∆f )t+C1r

for x ∈ B (p, r) and t ≥ t0. In particular, for t ≥ Λ with

(2.12) Λ = max

{︃
t0,

2C1r

λ1 (∆f )

}︃
,

one has

ˆ
B(p,r)

H (x, y, t) e−f(y)dy ≤ C e−
1
2λ1(∆)t
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for x ∈ B (p, r) . We integrate this inequality from t = Λ to t = ∞ and use Fubini’s
theorem to conclude that

(2.13)

ˆ
B(p,r)

(︃ˆ ∞

Λ

H (x, y, t) dt

)︃
e−f(y)dy ≤ C

for x ∈ B (p, r) .
On the other hand, it is well know that the minimal heat kernel satisfies

ˆ
M

H (x, y, t) e−f(y)dy ≤ 1

for all x ∈ M. Therefore,

ˆ
B(p,r)

(︄ˆ Λ

0

H (x, y, t) e−f(y)dt

)︄
dy =

ˆ Λ

0

(︄ˆ
B(p,r)

H (x, y, t) e−f(y)dy

)︄
dt

≤ Λ.

In view of the choice of Λ from (2.12) we conclude that

(2.14)

ˆ
B(p,r)

(︄ˆ Λ

0

H (x, y, t) dt

)︄
e−f(y)dy ≤ C (r + 1)

for x ∈ B (p, r) .
Combining (2.13) and (2.14), we obtain that

ˆ
B(p,r)

(︃ˆ ∞

0

H (x, y, t) dt

)︃
e−f(y)dy ≤ C (r + 1)

for x ∈ B (p, r) . Since

G (x, y) =

ˆ ∞

0

H (x, y, t) dt,

this shows that ˆ
B(p,r)

G (x, y) e−f(y)dy ≤ C (r + 1)

for all x ∈ B (p, r) . The theorem is proved. □

We now record several applications to the solvability of the Poisson equation.
The methods are similar to those in [25].

We adopt the same convention that c and C denote positive constants depending
on λ1 (∆f ), and µ, r0, CS in (2.3). Fix p ∈ M and let

r (x) = r (p, x)

be the distance function to p.

Theorem 2.5. Let
(︁
M, g, e−fdv

)︁
be a smooth metric measure space with positive

spectrum λ1 (∆f ) > 0 and the Sobolev inequality (S). Then for any smooth function
φ satisfying

|φ| (x) ≤ ω (r (x)) ,
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where ω (t) is a non-increasing function such that
´∞
0

ω (t) dt < ∞, the Poisson
equation ∆fu = −φ admits a bounded solution u on M with

sup
M

|u| ≤ c

(︃
ω (0) +

ˆ ∞

0

ω (t) dt

)︃
.

Proof. We first prove that

(2.15)

ˆ
M

G (x, y) |φ| (y) e−f(y)dy ≤ c

(︃
ω (0) +

ˆ ∞

0

ω (t) dt

)︃
for all x ∈ M. Note that by Theorem 2.4 we haveˆ

B(p,1)

G (x, y) |φ| (y) e−f(y)dy ≤ c sup
B(p,1)

|φ|

≤ c ω (0)

as ω is non-increasing. Therefore,

ˆ
M

G (x, y) |φ| (y) e−f(y)dy(2.16)

=

∞∑︂
j=0

ˆ
B(p,2j+1)\B(p,2j)

G (x, y) |φ| (y) e−f(y)dy

+

ˆ
B(p,1)

G (x, y) |φ| (y) e−f(y)dy

≤
∞∑︂
j=0

(︄ˆ
B(p,2j+1)\B(p,2j)

G (x, y) e−f(y)dy

)︄
sup

B(p,2j+1)\B(p,2j)

|φ|

+cω (0) .

The hypothesis on φ implies

sup
B(p,2j+1)\B(p,2j)

|φ| ≤ ω
(︁
2j
)︁

and Theorem 2.4 says thatˆ
B(p,2j+1)\B(p,2j)

G (x, y) e−f(y)dy ≤ c 2j−1.

Using these estimates in (2.16) we obtain
ˆ
M

G (x, y) |φ| (y) e−f(y)dy ≤ cω (0) + c

∞∑︂
j=0

2j−1 ω
(︁
2j
)︁

≤ cω (0) + c

∞∑︂
j=0

ˆ 2j

2j−1

ω (t) dt

≤ c

(︃
ω (0) +

ˆ ∞

0

ω (t) dt

)︃
.

This proves (2.15). As
´∞
0

ω (t) dt < ∞, it follows that the function

u (x) :=

ˆ
M

G (x, y)φ (y) e−f(y)dy
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is well defined, bounded on M, and verifies

∆fu = −φ.

Furthermore, we have the estimate

sup
M

|u| ≤ c

(︃
ω (0) +

ˆ ∞

0

ω (t) dt

)︃
.

This proves the theorem. □

Our next step is to prove that the solution u in Theorem 2.5 decays to zero at
infinity by assuming a uniform lower bound on Vf (x, 1) , that is,

(2.17) Vf (x, 1) =

ˆ
B(x,1)

e−f(y)dy ≥ v0 > 0

for all x ∈ M.
We first establish a pointwise decay estimate for the Green’s function. For the

rest of the section, constants c and C depend only on λ1 (∆f ), v0 in (2.17) and µ,
r0, CS in (2.3).

Let us note a general fact that if w ≥ 0 satisfies

∆fw ≥ −Cw on B (x, r0) ,

then by (2.3) and the DeGiorgi-Nash-Moser iteration it follows that

w (x) ≤ C

Vf (x, r0)

ˆ
B(x,r0)

w (y) e−f(y)dy(2.18)

≤ C

ˆ
B(x,r0)

w (y) e−f(y)dy.

The second line follows from (2.17) and (2.5), as

v0 ≤ Vf (x, 1)

≤ CVf (x, r0) .

Theorem 2.6. Let
(︁
M, g, e−fdv

)︁
be a smooth metric measure space with positive

spectrum λ1 (∆f ) > 0 and the Sobolev inequality (S). Assume (2.17) holds on M.
Then

G (x, z) ≤ C e−
√

λ1(∆f )r(x,z)

for z ∈ M with r (x, z) ≥ 1.

Proof. By Corollary 2.2 in [18] (cf. Theorem 2.5 in [25]) we have thatˆ
B(x,r+1)\B(x,r−1)

G2 (x, y) e−f(y)dy(2.19)

≤ Ce−2
√

λ1(∆f )r

ˆ
B(x,3)\B(x,1)

G2 (x, y) e−f(y)dy

for any r ≥ 4.
We first estimate the right hand side of (2.19). For fixed y ∈ B (x, 3) \B (x, 1) ,

the function w (z) = G (x, z) satisfies ∆fw = 0 on B (y, 1) . Since r0 ≤ 1, (2.18)
implies that

(2.20) w (y) ≤ C

ˆ
B(y,r0)

w (z) e−f(z)dz.
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Hence, using (2.20) and Theorem 2.4, we get

G (x, y) ≤ C

ˆ
B(y,r0)

G (x, z) e−f(z)dz(2.21)

≤ C

for y ∈ B (x, 3) \B (x, 1) .
By (2.19) and Theorem 2.4 we conclude

ˆ
B(x,r+1)\B(x,r−1)

G2 (x, y) e−f(y)dy(2.22)

≤ Ce−2
√

λ1(∆f )r

ˆ
B(x,3)\B(x,1)

G (x, y) e−f(y)dy

≤ C e−2
√

λ1(∆f )r

for any r ≥ 4.
For z ∈ ∂B (x, r) with r ≥ 4, since

B (z, r0) ⊂ B (x, r + 1) \B (x, r − 1) ,

it follows that

(2.23)

ˆ
B(z,r0)

G2 (x, y) e−f(y)dy ≤ Ce−2
√

λ1(∆f )r.

As the function w (y) = G2 (x, y) satisfies ∆fw ≥ 0 on B (z, r0) , by (2.18) we
conclude

G (x, z) ≤ Ce−
√

λ1(∆f )r(x,z)

for z ∈ M with r (x, z) ≥ 4. Together with (2.21), this proves the result. □

We now establish a decay estimate of the solution u to the Poisson equation.

Theorem 2.7. Let
(︁
M, g, e−fdv

)︁
be a smooth metric measure space with positive

spectrum λ1 (∆f ) > 0 and the Sobolev inequality (S). Assume (2.17) holds on M.
Then for any smooth function φ satisfying

|φ| (x) ≤ ω (rρ (x)) ,

where ω (t) is a non-increasing function such that
´∞
0

ω (t) dt < ∞, the Poisson
equation ∆fu = −φ admits a bounded solution u on M such that

|u| (x) ≤ C

(︄ˆ ∞

αr(x)

ω (t) dt +Vf (p, 1)ω (0) e−
1
2

√
λ1(∆f )r(x)

)︄
for all x ∈ M, where 0 < α < 1

4 is a constant depending only on µ, r0 and CS in
(2.3).

Proof. According to (2.5), there exists a constant c1 > 0 so that

(2.24) Vf (p, t) ≤ ec1
√

λ1(∆f ) t Vf (p, 1)

for all t > 0. For c1 specified in (2.24), set

(2.25) α =
1

4 (c1 + 1)
.
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For x ∈ M fixed, let

(2.26) R = r (x) = r (p, x) .

We may assume R ≥ 2 as the theorem is obviously true for R ≤ 2 by adjusting the
constant C.

Similar to Theorem 2.5 we haveˆ
M\B(p,2αR)

G (x, y) |φ| (y) e−f(y)dy

=

∞∑︂
j=1

ˆ
B(p,2j+1αR)\B(p,2jαR)

G (x, y) |φ| (y) e−f(y)dy

≤
∞∑︂
j=1

(︄ˆ
B(p,2j+1αR)\B(p,2jαR)

G (x, y) e−f(y)dy

)︄
sup

B(p,2j+1αR)\B(p,2jαR)

|φ|

≤ C

∞∑︂
j=1

(︁
2j−1αR

)︁
ω
(︁
2jαR

)︁
,

where in the last line we have used the decay hypothesis on φ and Theorem 2.4.
Since ω (t) is nonincreasing, it is easy to see that

∞∑︂
j=1

(︁
2j−1αR

)︁
ω
(︁
2jαR

)︁
≤

∞∑︂
j=1

ˆ 2jαR

2j−1αR

ω (t) dt

≤
ˆ ∞

αR

ω (t) dt.

It follows that

(2.27)

ˆ
M\B(p,2αR)

G (x, y) |φ| (y) e−f(y)dy ≤ c

ˆ ∞

αR

ω (t) dt.

We now proceed to obtain an estimate on B (p, 2αR) . For y ∈ B (p, 2αR) , we
get by the triangle inequality and (2.26) that

r (x, y) ≥ r (p, x)− r (p, y)

≥ (1− 2α)R.

Hence, by Theorem 2.6,

G (x, y) ≤ ce−
√

λ1(∆f )(1−2α)R

for y ∈ B (p, 2αR) .
Furthermore, by (2.24),

Vf (p, 2αR) ≤ e2α c1
√

λ1(∆f )R Vf (p, 1) .

Combining these estimates, we getˆ
B(p,2αR)

G(x, y)e−f(y)dy ≤ c e−
√

λ1(∆f ) (1−2α(c1+1))R Vf (p, 1)(2.28)

= c e−
1
2

√
λ1(∆f )R Vf (p, 1) ,

where the second line follows from (2.25). Together with (2.27) we arrive at
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ˆ
M

G(x, y) |φ| (y) e−f(y)dy ≤ c

ˆ ∞

αR

ω (t) dt+ cVf (p, 1)ω (0) e−
1
2

√
λ1(∆f )R,

where R = r (x) . This proves the theorem. □

3. Weighted Poincaré inequality

In this section, we prove Theorem 1.4 and Theorem 1.5 by applying the results
of Section 2. In order to do so, we first relate both the geometry and the analysis
of the ρ-balls to the background metric balls.

Consider the ρ-distance function, defined to be

rρ(x, y) = inf
γ

lρ(γ),

the infimum of the length with respect to metric ds2ρ of all smooth curves joining x

and y. For a fixed point x ∈ M, one checks readily that |∇rρ|2(x, y) = ρ(y). When
there is no confusion, the ρ-distance from x to a fixed point p is simply denoted by
rρ (x) . More generally, for any function v ∈ C∞ (M) , denote by ∇ρv the gradient
of v with respect to ds2ρ. Then its length with respect to ds2ρ is given by

|∇ρv|2ρ =
1

ρ
|∇v|2 .

We denote geodesic balls with center x and radius r with respect to ds2 by
B (x, r) and those with respect to ds2ρ by Bρ (x, r) . Our first result shows that

B

(︃
x, r√

ρ(x)

)︃
and Bρ (x, r) are comparable when r ≤ 1. Without loss of generality,

we may assume the constants A and δ specified in (1.3) satisfy A > 16 and δ < 1.
Throughout this section, we use c and C to denote constants depending only

on dimension n, the constant K from the Ricci curvature lower bound, and the
constants A and δ in (1.3). Any other dependencies will be explicitly stated.

Proposition 3.1. Let M be a complete Riemannian manifold satisfying weighted
Poincaré inequality (1.1) with weight ρ having properties (1.2) and (1.3). Then
there exists C > 0 depending only on A and δ such that for any x ∈ M,

sup
Bρ(x,1)

ρ ≤ C inf
Bρ(x,1)

ρ.

Furthermore, there exist c0 > 0 and C0 > 0 depending only on A and δ such that

B

(︄
x,

c0√︁
ρ (x)

r

)︄
⊂ Bρ (x, r) ⊂ B

(︄
x,

C0√︁
ρ (x)

r

)︄
for all x ∈ M and 0 < r ≤ 1.

Proof. Let x ∈ M and 0 < r ≤ 1. Let τ (t) , 0 ≤ t ≤ T, be a minimizing ρ-geodesic
starting from x. We claim that either

(3.1) τ ([0, T ]) ⊂ B

(︄
x,

δ√︁
ρ (x)

r

)︄
or lρ (τ) >

δ

A
r.
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Indeed, if τ is not entirely contained in B

(︃
x, δ√

ρ(x)
r

)︃
, then there exists 0 < t1 <

T so that τ (t) ∈ B

(︃
x, δ√

ρ(x)
r

)︃
for all 0 ≤ t ≤ t1 and τ (t1) ∈ ∂B

(︃
x, δ√

ρ(x)
r

)︃
.

Let τ̄ be the restriction of τ to [0, t1] . Then

lρ (τ̄) =

ˆ
τ̄

|τ̄ ′|ρ (t) dt

=

ˆ
τ̄

√︁
ρ (τ̄ (t)) |τ̄ ′| (t) dt

≥ 1√
A

√︁
ρ (x)

ˆ
τ̄

|τ̄ ′| (t) dt

=
1√
A

√︁
ρ (x) l (τ̄) ,

where in the third line we have used (1.3) and that τ̄ (t) ∈ B

(︃
x, δ√

ρ(x)
r

)︃
for all

t ≤ t1. Since τ (t1) ∈ ∂B

(︃
x, δ√

ρ(x)
r

)︃
, we have l (τ̄) ≥ δ√

ρ(x)
r. Consequently,

lρ (τ̄) ≥
δ

A
r.

This proves (3.1).
We infer from the claim that r (x, y) < δ√

ρ(x)
r when rρ (x, y) < δ

A r. In other

words,

(3.2) Bρ

(︃
x,

δ

A
r

)︃
⊂ B

(︄
x,

δ√︁
ρ (x)

r

)︄
for all x ∈ M and all 0 < r ≤ 1. By (1.3), this implies

(3.3) sup
Bρ(x, δ

A )
ρ ≤ A inf

Bρ(x, δ
A )

ρ.

Now for x, y ∈ M with rρ (x, y) ≤ 1, let τ be a minimizing ρ-geodesic from x to

y. Applying (3.3) successively on each interval of ρ-length δ
A along τ, we conclude

that
1

C
ρ (x) ≤ ρ (y) ≤ Cρ (x) ,

where C = A
2A
δ . Therefore,

(3.4) sup
Bρ(x,1)

ρ ≤ C inf
Bρ(x,1)

ρ

for all x ∈ M. This proves the first part of the proposition.
Note that by (3.2), for any z1, z2 ∈ M and 0 < r ≤ 1,

(3.5) r (z1, z2) <
δ√︁
ρ (z1)

r whenever rρ (z1, z2) <
δ

A
r.

So for x, y ∈ M with rρ (x, y) ≤ r, applying (3.5) successively on intervals of ρ-length
δ
A r along a minimizing ρ-geodesic τ from x to y and using (3.4), one concludes that

r (x, y) ≤ C0√︁
ρ (x)

r
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for some C0 > 0 depending on A and δ. Hence,

(3.6) Bρ (x, r) ⊂ B

(︄
x,

C0√︁
ρ (x)

r

)︄
for all x ∈ M and r ≤ 1.

We now show that

(3.7) B

(︄
x,

c0√︁
ρ (x)

r

)︄
⊂ Bρ (x, r)

for all x ∈ M and r ≤ 1 with c0 = δ
A .

Indeed, for y ∈ B

(︃
x, c0√

ρ(x)
r

)︃
and γ (t) , 0 ≤ t ≤ T < c0√

ρ(x)
r, a minimizing

geodesic joining x and y, we have

lρ (γ) =

ˆ
γ

|γ′|ρ (t) dt

=

ˆ
γ

√︁
ρ (γ (t)) |γ′| (t) dt

≤
√
A
√︁
ρ (x)

ˆ
γ

|γ′| (t) dt

=
√
A
√︁
ρ (x)l (γ)

≤ c0
√
Ar

< r,

where in the third line we have used (1.3) together with γ (t) ∈ B

(︃
x, δ√

ρ(x)
r

)︃
for

all 0 ≤ t ≤ T. This proves (3.7).
From (3.7) and (3.6) we conclude that

B

(︄
x,

c0√︁
ρ (x)

r

)︄
⊂ Bρ (x, r) ⊂ B

(︄
x,

C0√︁
ρ (x)

r

)︄
for all x ∈ M and r ≤ 1. This proves the proposition. □

The previous result enables us to translate some properties on geodesic balls of
metric ds2 to those of ds2ρ.

Denote by CS (Bρ (x, r)) the optimal constant for the following Dirichlet Sobolev
inequality on Bρ (x, r) .

CS (Bρ (x, r))

(︄
1

V (Bρ (x, r))

ˆ
Bρ(x,r)

ϕ
2n

n−2

)︄n−2
n

(3.8)

≤ 1

V (Bρ (x, r))

ˆ
Bρ(x,r)

|∇ϕ|2 + ρ(x)

r2
1

V (Bρ (x, r))

ˆ
Bρ(x,r)

ϕ2

for any ϕ ∈ C∞
0 (Bρ (x, r)) , where V (Bρ (x, r)) is the volume of Bρ (x, r) with

respect to the metric ds2.
Evidently, we have implicitly assumed above that the dimension n ≥ 3. When

n = 2, then (3.9) is understood to hold with n replaced by any fixed n′ > 2.
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We refer to CS (Bρ (x, r)) as the Dirichlet Sobolev constant for Bρ (x, r) .

Proposition 3.2. Let (Mn, g) be a complete manifold satisfying (1.1), (1.2) and
(1.3). Assume that Ric ≥ −Kρ on M for some K ≥ 0. Then for some C > 0,

CS (Bρ (x, r)) ≥
1

Cr2
ρ (x)

for any x ∈ M and 0 < r ≤ r0 = δ
2C0

. Here C0 is the constant specified in
Proposition 3.1.

Proof. According to Saloff-Coste [29], the following Sobolev inequality holds on
B (x,R) if Ric ≥ −H on B (x, 2R) and the dimension n ≥ 3.

1

R2
e−C(1+

√
HR)V (B (x,R))

2
n

(︄ˆ
B(x,R)

ϕ
2n

n−2

)︄n−2
n

(3.9)

≤
ˆ
B(x,R)

|∇ϕ|2 + 1

R2

ˆ
B(x,R)

ϕ2

for any ϕ ∈ C∞
0 (B (x,R)) . When n = 2, the inequality (3.9) holds with n replaced

by any fixed n′ > 2. The constant C in (3.9) depends only on n (or n′, respectively).
For r ≤ δ

2C0
we have

B

(︄
x,

2C0√︁
ρ (x)

r

)︄
⊂ B

(︄
x,

δ√︁
ρ (x)

)︄
.

The Ricci curvature lower bound assumption together with (1.3) implies that

(3.10) Ric ≥ −cρ (x) on B

(︄
x,

2C0√︁
ρ (x)

r

)︄
.

Now for R = C0√
ρ(x)

r, in view of (3.10) and (3.9), we get

1

C

ρ (x)

r2
V (B (x,R))

2
n

(︄ˆ
B(x,R)

ϕ
2n

n−2

)︄n−2
n

≤
ˆ
B(x,R)

|∇ϕ|2 + ρ (x)

r2

ˆ
B(x,R)

ϕ2

for any ϕ ∈ C∞
0 (B (x,R)) .

However, according to Proposition 3.1 we have

Bρ (x, r) ⊂ B (x,R) .

It follows for ϕ ∈ C∞
0 (Bρ (x, r)) that

1

C

ρ (x)

r2
V (Bρ (x, r))

2
n

(︄ˆ
Bρ(x,r)

ϕ
2n

n−2

)︄n−2
n

≤
ˆ
Bρ(x,r)

|∇ϕ|2 + ρ (x)

r2

ˆ
Bρ(x,r)

ϕ2.

This completes the proof of the proposition. □

Another important ingredient for us is the Cheng-Yau [6] gradient estimate for
positive harmonic functions. This result says that for u > 0 satisfying ∆u = 0 on
B (x,R) ,
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(3.11) |∇ lnu| (x) ≤ c

(︃√
H +

1

R

)︃
for some constant c > 0 depending only on dimension n, provided that the Ricci
curvature Ric ≥ −H on B (x,R) for some constant H ≥ 0. We now use Proposition
3.1 to translate this estimate to ρ-balls.

Lemma 3.3. Let (Mn, g) be a complete manifold satisfying (1.1), (1.2) and (1.3).
Assume that Ric ≥ −Kρ on M for some K ≥ 0. Then there exists c > 0 such that
for u > 0 a harmonic function on Bρ (x, r) with 0 < r ≤ 1,

|∇ρ lnu|ρ (x) ≤
c

r
.

Proof. By Proposition 3.1 and (1.3) we have

Ric ≥ −cρ (x) on Bρ (x, r) ,

and

B

(︄
x,

c0√︁
ρ (x)

r

)︄
⊂ Bρ (x, r) .

Hence, applying (3.11) for the harmonic function u on B

(︃
x, c0√

ρ(x)
r

)︃
, where Ric ≥

−cρ (x) on B

(︃
x, c0√

ρ(x)
r

)︃
, we obtain that

(3.12) |∇ lnu| (x) ≤ c

r

√︁
ρ (x).

This can be rewritten into
|∇ρ lnu|ρ (x) ≤

c

r
,

which proves the lemma. □

We can now relate the geometry of (M, g) with that of a smooth metric measure
space. Consider the smooth metric measure space

(︁
M, gρ, e

−fdvρ
)︁
, where

(3.13) gρ = ρg

and

(3.14) f =
(︂n
2
− 1
)︂
ln ρ.

By a well known formula, the Laplacian ∆̃ with respect to the conformal metric
gρ = ρg and ∆, the Laplacian with respect to g, are related by

∆̃u =
1

ρ
∆u+

(︂n
2
− 1
)︂ 1

ρ2
⟨∇u,∇ρ⟩

=
1

ρ
∆u+

(︂n
2
− 1
)︂
⟨∇ρu,∇ρ ln ρ⟩ρ .

We have denoted with ∇ρ the Levi-Civita connection of gρ. Hence, we see from

above that the weighted Laplacian ∆̃f associated to
(︁
M, gρ, e

−fdvρ
)︁
satisfies

∆̃f u = ∆̃u− ⟨∇ρu,∇ρf⟩ρ(3.15)

=
1

ρ
∆u,
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where the last line follows from (3.14).
Note moreover that

(3.16) e−f dvρ = ρ dv.

Hence, using |∇ϕ|2 = ρ |∇ρϕ|2ρ , we see that the weighted Poincaré inequality (1.1)

is equivalent to

ˆ
M

ϕ2e−fdvρ ≤
ˆ
M

|∇ρϕ|2ρ e
−fdvρ

for any ϕ ∈ C∞
0 (M) . In conclusion,

(3.17) λ1

(︂
∆̃f

)︂
≥ 1.

Furthermore, by Proposition 3.2 there exists C > 0, depending only on n,K,A and
δ, such that for any x ∈ M and 0 < r ≤ r0,

C

(︄
1

V (Bρ (x, r))

ˆ
Bρ(x,r)

ϕ
2n

n−2

)︄n−2
n

(3.18)

≤ r2

ρ (x)

1

V (Bρ (x, r))

ˆ
Bρ(x,r)

|∇ϕ|2 + 1

V (Bρ (x, r))

ˆ
Bρ(x,r)

ϕ2

for all ϕ ∈ C∞
0 (Bρ (x, r)) , where r0 = δ

2C0
< 1 depends only on A and δ. In

dimension n = 2, we replace n in (3.19) by any fixed n′ > 2.
By Proposition 3.1, for any function u > 0 we have

(3.19)
1

C

 
Bρ(x,r)

ue−fdvρ ≤ 1

V (Bρ (x, r))

ˆ
Bρ(x,r)

u ≤ C

 
Bρ(x,r)

ue−fdvρ,

where  
Bρ(x,r)

ue−fdvρ =
1´

Bρ(x,r)
e−fdvρ

ˆ
Bρ(x,r)

ue−fdvρ

is the average weighted integral of u over Bρ (x, r) .
Therefore, by (3.19) and (3.19) we obtain that

C

(︄ 
Bρ(x,r)

ϕ2µe−fdvρ

)︄ 1
µ

≤ r2
 
Bρ(x,r)

|∇ρϕ|2ρ e
−fdvρ

+

 
Bρ(x,r)

ϕ2e−fdvρ

for any 0 < r ≤ r0, where µ = n
n−2 if n ≥ 3 and µ > 1 is any fixed number if n = 2.

In conclusion, we have established the following result.

Proposition 3.4. Let (Mn, g) be a complete manifold satisfying the weighted Poincaré
inequality (1.1) with weight ρ having properties (1.2) and (1.3). Assume that
Ric ≥ −Kρ on M for some K ≥ 0. Then for f =

(︁
n
2 − 1

)︁
ln ρ, the smooth metric

measure space
(︁
M, gρ, e

−fdvρ
)︁
has positive bottom spectrum λ1

(︂
∆̃f

)︂
≥ 1 and sat-

isfies the Sobolev inequality (S) with µ = µ (n) , r0 = r0 (δ, A) and Sobolev constant
CS = CS (n,K, δ,A) .
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Proposition 3.4 enables us to apply the results of Section 2 to our context of
weighted Poincaré inequality (1.1). First, let us note that the minimal positive

Green’s function G of ∆ is the same as that of the weighted Laplacian ∆̃f as

∆ = ρ ∆̃f . By Theorem 2.4 we obtain the following.

Theorem 3.5. Let (Mn, g) be a complete manifold satisfying the weighted Poincaré
inequality (1.1) with weight ρ having properties (1.2) and (1.3). Assume that Ric ≥
−K ρ on M for some K ≥ 0. Then

ˆ
Bρ(p,r)

ρ (y)G (x, y) dy ≤ C (r + 1)

for all p and x in M, and all r > 0, where C depends only on n, K, δ and A.

Let us point out that Theorem 3.5 is sharp. Indeed, for any ε > 0 small enough
so that B (x, ε) ⊂ Bρ (x, t) , we have

0 =

ˆ
Bρ(x,t)\B(x,ε)

∆yG (x, y) dy

=

ˆ
∂Bρ(x,t)

∂G

∂ν
(x, ξ) dA (ξ)

−
ˆ
∂B(x,ε)

∂G

∂r
(x, ξ) dA (ξ) ,

where ν is the outward unit normal vector of ∂Bρ (x, t) with respect to ds2. Using
the asymptotics of G near its pole, we obtain

ˆ
∂B(x,ε)

∂G

∂r
(x, ξ) dA (ξ) = −1

for any ε > 0. So

1 = −
ˆ
∂Bρ(x,t)

∂G

∂ν
(x, ξ) dA (ξ)(3.20)

≤
ˆ
∂Bρ(x,t)

|∇G| (x, ξ) dA (ξ)

for any t > 0. Combining with the gradient estimate in Lemma 3.3 that

|∇G| (x, y) ≤ C
√︁
ρ (y)G (x, y)

for y ∈ M\Bρ (x, 1) , where the gradient is taken in variable y, we conclude

ˆ
∂Bρ(x,t)

√︁
ρ (ξ)G (x, ξ) dA (ξ) ≥ 1

C

for all t ≥ 1. Now the co-area formula yields
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ˆ
Bρ(x,r)\Bρ(x,1)

ρ (y)G (x, y) dy(3.21)

=

ˆ r

1

ˆ
∂Bρ(x,t)

1

|∇rρ| (x, ξ)
ρ (ξ)G (x, ξ) dA (ξ) dt

=

ˆ r

1

ˆ
∂Bρ(x,t)

√︁
ρ (ξ)G (x, ξ) dA (ξ) dt

≥ 1

C
(r − 1) .

This shows that ˆ
Bρ(x,r)

ρ (y)G (x, y) dy ≥ 1

C
(r − 1)

for all r > 1, confirming the sharpness of Theorem 3.5.
Combining Theorem 2.5 and Theorem 2.7 we have the following result. Define

Vρ (x, r) =

ˆ
Bρ(x,r)

ρ (y) dy,

which corresponds to the weighted volume in
(︁
M, gρ, e

−fdvρ
)︁
.

Theorem 3.6. Let (Mn, g) be a complete manifold satisfying the weighted Poincaré
inequality (1.1) with weight ρ having properties (1.2) and (1.3). Assume that Ric ≥
−Kρ on M for some K ≥ 0. Then for any smooth function φ satisfying

|φ| (x) ≤ ω (rρ (x)) ,

where ω (t) is a non-increasing function such that
´∞
0

ω (t) dt < ∞, the Poisson
equation ∆u = −ρφ admits a bounded solution u on M with

sup
M

|u| ≤ c

(︃
ω (0) +

ˆ ∞

0

ω (t) dt

)︃
,

for a constant c depending only on n,K A and δ.
If, in addition, there exists v0 > 0 such that for all x ∈ M ,

Vρ (x, 1) =

ˆ
Bρ(x,1)

ρ (y) dy ≥ v0,

then u decays to zero at infinity. Moreover

(3.22) |u| (x) ≤ C

(︄ˆ ∞

αrρ(x)

ω (t) dt + Vρ (p, 1)ω (0) e−
1
2 rρ(x)

)︄
for all x ∈ M, where 0 < α < 1

5 is a constant depending only on n, K, δ, A, and
C > 0 may additionally depend on v0.

Finally, let us note that Theorem 1.5 follows from Theorem 3.6. Indeed, in the
case that the function φ decays as

|φ| (x) ≤ c (1 + rρ (x))
−k

for some k > 1 and

Vρ (x, 1) ≥ v0 > 0

holds for all x ∈ M, Theorem 3.6 readily implies that the solution u satisfies
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|u| (x) ≤ C (k) (1 + r (x))
−k+1

as claimed in Theorem 1.5.
We also note the following property. Assume that η ≥ 0 is a C1 function satis-

fying

(3.23) ∆η ≥ −c ρ η on Bρ (x, r0) .

Then we have

(3.24) η (x) ≤ C

Vρ (x, r0)

ˆ
Bρ(x,r0)

ρ (y) η (y) dy.

Here c, C are constants depending only on n, K, A and δ.
Indeed, by (3.15) and (3.23) we have ∆̃fη ≥ −c η on Bρ (x, r0) . Then (3.24)

follows from (2.18) and (3.16).
We now present a two-sided volume estimate for geodesic ρ-balls. Let 0 < r0 < 1

be the constant specified in Proposition 3.2. We have the following result.

Theorem 3.7. Let (Mn, g) be a complete manifold satisfying the weighted Poincaré
inequality (1.1) with weight ρ having properties (1.2) and (1.3). Assume that Ric ≥
−Kρ on M for some K ≥ 0. Then for all x ∈ M,

1

C
e2RVρ (x, r0) ≤ Vρ (x,R) ≤ eCRVρ (x, r0)

for all R ≥ r0.

Proof. We apply the volume growth estimate of (2.5) and note that e−fdvρ = ρdv
by (3.16). It follows that

(3.25) Vρ (x,R) ≤ eCRVρ (x, r0) ,

for all R > 0, which proves the upper bound estimate.
We now turn to the lower bound. The same argument as in (3.21) implies that

1

C
≤
ˆ
Bρ(x,R)\Bρ(x,R−1)

ρ (y)G (x, y) dy

for R > 2. By the Cauchy-Schwarz inequality it follows that

(3.26)
1

C
≤ Vρ (x,R)

ˆ
Bρ(x,R)\Bρ(x,R−1)

ρ (y)G2 (x, y) dy.

By Corollary 2.2 in [18] (cf. Theorem 2.5 in [25]) we have thatˆ
Bρ(x,R)\Bρ(x,R−1)

ρ (y)G2 (x, y) dy

≤ Ce−2R

ˆ
Bρ(x,2)\Bρ(x,1)

ρ (y)G2 (x, y) dy.

Therefore, combining with (3.26), we obtain

(3.27)
1

C
e2R ≤ Vρ (x,R)

ˆ
Bρ(x,2)\Bρ(x,1)

ρ (y)G2 (x, y) dy.

Let us set

(3.28) σ (x) = sup
y∈Bρ(x,2)\Bρ(x,1)

G (x, y) .
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Then by Theorem 3.5 we haveˆ
Bρ(x,2)\Bρ(x,1)

ρ (y)G2 (x, y) dy ≤ σ (x)

ˆ
Bρ(x,2)\Bρ(x,1)

ρ (y)G (x, y) dy

≤ Cσ (x) .

Hence, (3.27) implies that

(3.29)
1

C
e2R ≤ Vρ (x,R)σ (x) .

Now let z ∈ Bρ (x, 2) \Bρ (x, 1) such that σ (x) = G (x, z). Since the function
w (y) = G (x, y) satisfies ∆w = 0 on Bρ (z, r0), (3.24) implies that

σ (x) = G (x, z)(3.30)

≤ C

Vρ (z, r0)

ˆ
Bρ(z,r0)

ρ (y)G (x, y) dy

≤ C

Vρ (z, r0)
,

where the last line follows from Theorem 3.5. As z ∈ Bρ (x, 2) \Bρ (x, 1), using
(3.25), we have that

Vρ (x, 1)

Vρ (z, r0)
≤ Vρ (z, 3)

Vρ (z, r0)

≤ C.

Hence, (3.30) implies

σ (x) ≤ C

Vρ (x, 1)
.

In conclusion, by (3.29) we get that

1

C
e2R ≤ Vρ (x,R)

Vρ (x, 1)
,

which proves the lower bound. □

We end this section with a remark concerning the regularity of ρ. The smoothness
assumption on ρ is mostly for convenience. It suffices to assume ρ is continuous for
our purposes.

4. Applications

In this section, we discuss some applications of the Poisson equation and prove
Theorem 1.6. We continue to assume that (M, g) is a complete manifold satisfying
the weighted Poincaré inequality (1.1), together with (1.2) and (1.3). Furthermore,
we assume that there exists v0 > 0 such that the weighted volume

(4.1) Vρ (x, 1) =

ˆ
Bρ(x,1)

ρ (y) dy ≥ v0 > 0

for all x ∈ M. In the following, unless otherwise specified, the constants c and C
depend only on n,K, δ,A and v0.

We begin with a Liouville type result.
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Theorem 4.1. Let (Mn, g) be a complete manifold satisfying the weighted Poincaré
inequality (1.1) with weight ρ having properties (1.2), (1.3), and (4.1), and Ric ≥
−Kρ for some constant K ≥ 0. Let η ≥ 0 be a C1 function satisfying

(4.2) η∆η ≥ −ζρη2 + |∇η|2

for some positive continuous function ζ (x) which converges to zero at infinity. If
there exist ε > 0 and Λ > 0 such that

(4.3) η (x) ≤ Λe−εrρ(x)

on M, then η = 0 on M.

Proof. We assume by contradiction that η is not identically zero. We first normalize
η by defining

(4.4) h =
1

Λe
η.

Then

h ≤ e−εrρ−1 on M.

As h satisfies

∆h ≥ −ζρh+
|∇h|2

h
at all points where h > 0, it is easy to see that

(4.5) ∆ lnh ≥ −ζρ.

In addition, we have

(4.6) − lnh ≥ 1 + εrρ on M.

Denote by

(4.7) v =
1

(− lnh)
,

where we set v = 0 whenever h = 0. Hence, v ∈ C0 (M) .
Computing directly, we have

∆v = (∆ lnh) v2 + 2 |∇ lnh|2 v3.
Hence, by (4.5) v satisfies

∆v ≥ −ζρv2 +
|∇v|2

v
(4.8)

≥ −ζρv2

whenever v > 0. Also, by (4.6),

(4.9) 0 ≤ v ≤ 1

1 + εrρ
on M.

Define the continuous function

(4.10) φ = ζv2 on M

and let

(4.11) ω (t) =
1

(1 + εt)
2 sup

M\Bρ(p,t)

ζ.
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Clearly, ω is non-increasing and
´∞
0

ω (t) dt < ∞. Furthermore, (4.9) implies that

|φ| (x) ≤ ω (rρ (x)) on M.

By Theorem 3.6, the Poisson equation

(4.12) ∆u = −ρφ

admits a bounded positive solution u > 0 such that

0 < u (x) ≤ C

(︄ˆ ∞

αrρ(x)

ω (t) dt + Vρ (p, 1)ω (0) e−
1
2 rρ(x)

)︄
on M

for some 0 < α < 1
4 . Since ρφ is continuous, we have u ∈ W 2,p

loc (M) for any p.
By (4.11) we have that

0 < u (x) ≤ C

1 + αεrρ (x)
sup

M\Bρ(p,αrρ(x))

ζ

+CVρ (p, 1) e
− 1

2 rρ(x) sup
M

ζ.

As ζ → 0 at infinity we conclude that for any σ > 0 there exists R0 > 0 such that

(4.13) u (x) ≤ 1

σrρ (x)

for all x ∈ M\Bρ (p,R0) .
We claim that

(4.14) v ≤ u on M.

Suppose by contradiction that (4.14) is not true. Since by (4.9) and (4.13) both u
and v approach 0 at infinity, the function v−u must achieve its maximum at some
point x0 ∈ M, where in particular v (x0) > 0. Observe that by (4.10) and (4.12)
we have ∆u = −ζρv2, whereas by (4.8) we have ∆v ≥ −ζρv2 at any point where

v > 0. Then v − u ∈ W 1,2
loc ({v > 0}) is subharmonic in a neighborhood of x0 and

achieves its maximum at x0. The strong maximum principle implies that v − u is
in fact constant on M. Obviously, the constant must be 0, which contradicts (4.8).
This contradiction implies that (4.14) is true.

In view of (4.13) and (4.14) we have proved that for any large σ > 0, there exists
R0 > 0 sufficiently large such that

(4.15) v (x) ≤ 1

σrρ (x)
for all x ∈ M\Bρ (p,R0) .

We now follow the proof of Theorem 4.4 in [25] and show that v decays faster
than any polynomial order in the ρ-distance. This will be done by iterating the
previous argument.

First, let us note the following fact. Define

|ζ|∞ := sup
M

ζ.

Then (4.8) implies that

(4.16) ∆v ≥ − |ζ|∞ ρv2

whenever v > 0. Assume that

v (x) ≤ θ (rρ (x))
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for some decreasing function θ (t) such that
´∞
0

θ2 (t) dt < ∞. Then there exists

0 < α < 1
4 and Υ > 0, independent of v or θ, such that

(4.17) v (x) ≤ Υ

(︄ˆ ∞

αrρ(x)

θ2 (t) dt+ e−
1
2 rρ(x)θ2 (0)

)︄
for all x ∈ M.

Indeed, (4.17) follows in the same manner as (4.15). Define the continuous
function

φ (x) = |ζ|∞ v2

and note that

0 ≤ φ (x) ≤ ω (rρ (x)) ,

where

ω (t) = |ζ|∞ θ2 (t) .

By Theorem 3.6, there exists a bounded solution u ∈ W 2,p
loc (M) of

∆u = −ρφ(4.18)

= − |ζ|∞ ρv2

such that

0 < u (x) ≤ C

(︄ˆ ∞

αrρ(x)

ω (t) dt + Vρ (p, 1)ω (0) e−
1
2 rρ(x)

)︄
on M

for some 0 < α < 1
4 . Using that ω (t) = |ζ|∞ θ2 (t) and taking

Υ := C |ζ|∞ max {1,Vρ (p, 1)} ,

we have

0 < u (x) ≤ Υ

(︄ˆ ∞

αrρ(x)

θ2 (t) dt+ e−
1
2 rρ(x)θ2 (0)

)︄
on M.

By (4.16) and (4.18) the function v − u ∈ W 1,2
loc ({v > 0}) is subharmonic and

converges to zero at infinity. Using the maximum principle we obtain v ≤ u on M ,
thus proving (4.17).

Fix b > 0 small enough, depending only on α and Υ in (4.17), to be specified
later. Note that by (4.15), there exists B0 > 0 so that

(4.19) v (x) ≤ b6

α2rρ (x) + 1
+B2

0e
−α2rρ(x) on M.

We prove by induction on m ≥ 2 that

(4.20) v (x) ≤ b2
m+m

αmrρ (x) + 1
+B2m−me−αmrρ(x) on M,

where B is a large enough constant depending only on α, Υ and B0.
Clearly, (4.20) holds for m = 2 from (4.19). We now assume (4.20) holds for

m ≥ 2 and prove

(4.21) v (x) ≤ b2
m+1+(m+1)

αm+1rρ (x) + 1
+B2m+1−(m+1)e−αm+1rρ(x) on M.
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By the induction hypothesis we have v (x) ≤ θ (rρ (x)) , where

θ (t) :=
b2

m+m

αmt+ 1
+B2m−me−αmt.

By (4.17) we obtain that

(4.22) v (x) ≤ Υ

(︄ˆ ∞

αrρ(x)

θ2 (t) dt+ e−
1
2 rρ(x)θ2 (0)

)︄
.

Obviously,

(4.23) θ2 (t) ≤ 2b2
m+1+2m

(αmt+ 1)
2 + 2B2m+1−2me−2αmt.

It follows that ˆ ∞

αrρ(x)

θ2 (t) dt ≤ 2

αm

b2
m+1+2m

αm+1rρ (x) + 1
(4.24)

+
1

αm
B2m+1−2me−αm+1rρ(x).

Furthermore, since b < 1 < B, we have by (4.23) that

e−
1
2 rρ(x)θ2 (0) ≤ 2

(︂
b2

m+1+2m +B2m+1−2m
)︂
e−

1
2 rρ(x)(4.25)

≤ 4B2m+1−2me−
1
2 rρ(x)

≤ 1

αm
B2m+1−2me−αm+1rρ(x).

The last line follows from

4e−
1
2 rρ(x) ≤ 1

αm
e−αm+1rρ(x),

using that 0 < α < 1
4 .

Plugging (4.24) and (4.25) into (4.22) yields

v (x) ≤ 2Υ

αm

b2
m+1+2m

αm+1rρ (x) + 1
+

2Υ

αm
B2m+1−2me−αm+1rρ(x)(4.26)

=

(︃
2Υ

α2
b

)︃(︃
b

α

)︃m−2
b2

m+1+(m+1)

αm+1rρ (x) + 1

+

(︃
2Υ

α2B

)︃(︃
1

αB

)︃m−2

B2m+1−(m+1)e−αm+1rρ(x).

Now take b sufficiently small so that b
α ≤ 1 and 2Υ

α2 b ≤ 1, and B sufficiently large

so that 1
αB ≤ 1 and 2Υ

α2B ≤ 1. Since m ≥ 2, it follows by (4.26) that

v (x) ≤ b2
m+1+(m+1)

αm+1rρ (x) + 1
+B2m+1−(m+1)e−αm+1rρ(x).

This proves (4.21). Hence,

(4.27) v (x) ≤ b2
m+m

αmrρ (x) + 1
+B2m−me−αmrρ(x) on M,

for all m ≥ 2.
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For x ∈ M with rρ (x) large, apply (4.27) by setting

m :=

[︃
ln rρ (x)

4 ln (α−1)

]︃
,

where [·] denotes the greatest integer function. Let us note that

raρ (x) ≤ 2m ≤ r2aρ (x) ,

where

a =
1

8 ln (α−1)
∈
(︃
0,

1

8

)︃
.

Hence, as in particular b < 1
e , we obtain

b2
m+m

αmrρ (x) + 1
≤ b2

m

≤ e−raρ (x).

Moreover, from αm ≥ r
− 1

4
ρ (x) we have

B2m−me−αmrρ(x) ≤ e
−
(︂√

rρ(x)−(lnB)r2aρ (x)
)︂

≤ e−raρ (x).

In conclusion, there exists constant a > 0 such that

(4.28) v (x) ≤ Ce−raρ (x) on M.

We now complete the proof of the theorem. By (4.7) we have that

(4.29) − lnh ≥ 1

C
er

a
ρ on M

and satisfies
∆ (− lnh) ≤ ζρ.

Consider the function
f = ln (− lnh) .

Note that f satisfies

∆f ≤ ζρ

(− lnh)
− |∇h|2

h2 (lnh)
2(4.30)

≤ ζρ

(− lnh)

whenever h > 0. Moreover, from (4.29), f is bounded below by

(4.31) f (x) ≥ raρ (x)− C on M.

Define

φ =
ζ

(− lnh)
,

where φ is continuously extended as φ = 0 at points where h = 0. By Theorem 3.6
and (4.29) we can solve the Poisson equation

∆u = −ρφ(4.32)

= − ζρ

(− lnh)

and obtain a solution u ∈ W 2,p
loc (M) that decays to zero at infinity.
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According to (4.31), the function f + u achieves its minimum at some point

x0 ∈ M. Then h (x0) > 0. So by (4.30) and (4.32), f + u ∈ W 1,2
loc ({h > 0}) satisfies

∆ (f + u) ≤ 0

in a neighborhood of x0. By the maximum principle, this implies that f + u is
constant, which is a contradiction to (4.30).

Hence h, as well as η, must be identically zero on M. □

Let us point out that the hypothesis (4.3) on η is necessary and optimal. Indeed,
consider

η (x) = e− lna(|x|2+e) on Rn,

where 0 < a < 1 is fixed. It can be checked directly that

∆η − |∇η|2

η
=

(︂
−∆ lna

(︂
|x|2 + e

)︂)︂
η

≥ −a
∆ |x|2(︂

|x|2 + e
)︂
ln1−a

(︂
|x|2 + e

)︂η
= − 2na(︂

|x|2 + e
)︂
ln1−a

(︂
|x|2 + e

)︂η.
Now Rn satisfies weighted Poincaré inequality with weight (n−2)2

4
1

|x|2 , so we may

take ρ(x) = (n−2)2

4
1

|x|2+1
, which is continuous. Moreover, there exists C (n) > 0 so

that
1

C
ln (|x|+ 1) ≤ rρ (x) ≤ C ln (|x|+ 1)

for all |x| ≥ 1. Hence, η satisfies

∆η ≥ −ζρη +
|∇η|2

η

with

ζ (x) =
c (n, a)

(rρ (x) + 1)
1−a .

However, η violates the hypothesis (4.3) as

e−2c(n)(rρ(x)+1)a ≤ η (x) ≤ e−c(n)((rρ(x))+1)a .

We also point out that various vanishing results for differential inequalities of the
form (4.2) have appeared in the literature due to its connection with the Bochner
technique. Comparing to the existing results, we note that Theorem 4.1 does not
require integrability of ζρ on M as in [22], nor the smallness of supM ζ as in [17,
18, 19, 20] and [28].

Theorem 4.1 leads to the following vanishing result for holomorphic maps.

Theorem 4.2. Let (Mn, g) be a complete Kähler manifold satisfying the weighted
Poincaré inequality (1.1) with weight ρ having properties (1.2), (1.3), (4.1) and ρ ≤
C. Assume that the Ricci curvature has lower bound Ric ≥ −ζρ for some function
ζ (x) > 0 that converges to zero at infinity. Then any finite energy holomorphic map
F : M → N, where N is a complex Hermitian manifold of non-positive bisectional
curvature, is identically constant.
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Proof. It is well known (see e.g. Theorem 1.24 in [27]) that the differential η = |dF |
satisfies

(4.33) η∆η ≥ −ζρη2 + |∇η|2 .

To be in the context of Theorem 4.1, we first show that η decays exponentially fast
in the ρ-distance based on the assumption that

´
M

η2 < ∞. Since ζ converges to
zero at infinity, by (4.33) there exists R0 > 0 so that

∆η ≥ −1

2
ρη on M\Bρ (p,R0) .

Note that since ρ ≤ C, we have

(4.34)

ˆ
M

ρη2 < ∞.

Hence, applying Theorem 2.1 in [18] we conclude thatˆ
M\Bρ(p,r)

ρη2 ≤ Ce−r

ˆ
Bρ(p,R0)

ρη2

for r ≥ 2R0.
Consequently, there exists Λ > 0 so that

(4.35)

ˆ
Bρ(x,1)

ρη2 ≤ Λe−rρ(x)

for all x ∈ M. In fact, we may take Λ = C
´
M

ρη2.

Since ∆η2 ≥ −Cη2 on M , by (3.24) and (4.35) we obtain

(4.36) η2 (x) ≤ C

Vρ (x, r0)

ˆ
Bρ(x,r0)

ρη2.

According to Theorem 3.7 and (4.1) we have

Vρ (x, r0) ≥
1

C
v0 > 0

for all x ∈ M. Then (4.36) and (4.35) imply that

(4.37) η (x) ≤ Λe−
1
2 rρ(x)

for all x ∈ M, where Λ is a constant depending on the total energy of η on M.
Applying Theorem 4.1, we conclude η = 0 and F is a constant map. □

We point out that in [22] Li and Yau proved a vanishing theorem for holomorphic
maps F : M → N, where M is assumed to be non-parabolic and its Ricci curvature
is bounded from below by Ric ≥ −ρ̄ with ρ̄ being an integrable function. An
alternative proof of this result using the Poisson equation is given as Theorem 8.6
in [27].

As a consequence of Theorem 4.2 we obtain the following structural result.

Corollary 4.3. Let (Mn, g) be a complete manifold satisfying the weighted Poincaré
inequality (1.1) with weight ρ having properties (1.2), (1.3), (4.1) and ρ ≤ C. As-
sume that the Ricci curvature is bounded by Ric ≥ −ζρ for some function ζ (x) > 0
that converges to zero at infinity. Then M has only one end.
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Proof. Let us assume by contradiction that M has at least two ends. We denote
by E a nonparabolic end and let F = M\E. Note that E exists because M is
nonparabolic. We claim that F is nonparabolic as well. Indeed, if F were parabolic,
then by [18], ˆ

(M\Bρ(p,R))∩F

ρ (y) dy ≤ C e−2R

for all R. This obviously contradicts with (4.1). Hence, both E and F are non-
parabolic ends. By Li-Tam [16], there exists a harmonic function w on M with the
following properties. ˆ

M

|∇w|2 < ∞(4.38)

lim sup
F

w = 1

lim inf
E

w = 0.

Such w is necessarily pluriharmonic according to [14]. Therefore, Theorem 4.2 is
applicable to w and w must be constant. This shows that M must be connected at
infinity. □

Acknowledgment. We wish to thank the referees for their valuable comments
and for suggesting a simplified approach to Theorem 1.4. The first author was
partially supported by NSF grant DMS-1506220. The second author was partially
supported by MOST. The third author was partially supported by NSF grant DMS-
1606820.

References

[1] S. Agmon, Lectures on exponential decay of solutions of second-order elliptic equations:

bounds on eigenfunctions of N-Body Schrödinger operators, Mathematical Notes, vol. 29,
Princeton University Press, Princeton, NJ, 1982.

[2] E. Berchio, D. Ganguly and G. Grillo, Sharp Poincaré-Hardy and Poincaré-Rellich inequalities
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WEIGHTED POINCARÉ INEQUALITY AND THE POISSON EQUATION 33

[13] H. Hein, Weighted Sobolev inequalities under lower Ricci curvature bounds, Proc. AMS 139

(2011), 2943-2955.

[14] P. Li, On the structure of complete Kähler manifolds with nonnegative curvature near infinity,
Invent. Math. 99 (1990), 579-600.

[15] P. Li, Geometric Analysis, Cambridge University Press 2012.

[16] P. Li and L. F. Tam, Harmonic functions and the structure of complete manifolds, J. Differ-
ential Geom. 35 (1992), 359-383.

[17] P. Li and J. Wang, Complete manifolds with positive spectrum, J. Differential Geom. 58

(2001), 501–534.
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