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ABSTRACT. We develop Green’s function estimates for manifolds satisfying
a weighted Poincaré inequality together with a compatible lower bound on
the Ricci curvature. This estimate is then applied to establish existence and
sharp estimates of solutions to the Poisson equation on such manifolds. As
an application, a Liouville property for finite energy holomorphic functions is
proven on a class of complete Kéhler manifolds. Consequently, such Kéahler
manifolds must be connected at infinity.

1. INTRODUCTION

Recently, in [25], we studied the existence and estimates of the solution u to the
Poisson equation

Au=—p

on a complete Riemannian manifold (M™, g), where ¢ is a given smooth function
on M. Among other things, we obtained the following result.

Theorem 1.1. Let (M",g) be a complete Riemannian manifold with bottom spec-
trum A1 (A) > 0 and Ricci curvature Ric > — (n— 1) K for some constant K > 0.
Let ¢ be a smooth function such that

ol (z) < e (L +r(2)

for some k > 1, where r(x) is the distance function from x to a fized point p € M.
Then the Poisson equation Au = —p admits a bounded solution u on M.

If, in addition, the volume of the unit ball B(x,1) satisfies V (z,1) > vg > 0 for
all x € M, then the solution u decays and

k

Jul (z) < C (14 7(z)) "

Recall that the bottom spectrum A;(A) of the Laplacian can be characterized
as the best constant of the Poincaré inequality

A1 (A) /M qs?dxg/M\v(;stx.

It is known that Ay (A) > 0 implies that M is non-parabolic, that is, there exists
a positive symmetric Green’s function G (x,y) for the Laplacian. The preceding
theorem relies on the following sharp estimate of the minimal positive Green’s
function.
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Theorem 1.2. Let (M™, g) be an n-dimensional complete manifold with Ay (A) > 0
and Ric > — (n — 1) K. Then for any p,x € M and r > 0 we have

/ G(z,y)dy<C (1+r)
B(p,r)

for some constant C' depending only on n, K and A\ (A).

In the current paper, we continue to address similar issues for complete manifolds
satisfying more generally a so-called weighted Poincaré inequality.

Definition 1.3. A complete noncompact Riemannian manifold (M, g) satisfies a
weighted Poincaré inequality if there exists a smooth function p > 0 on M such that

(1.1) /M pg® < /M Vol|®

for any compactly supported function ¢ € C§°(M).

Other than being a natural generalization of \; (A) > 0, there are various mo-
tivations for considering weighted Poincaré inequality. First, it is well-known (see
[18]) that M being nonparabolic is equivalent to the validity of a weighted Poincaré
inequality for some p > 0. Second, according to a result of Cheng [5], when the
Ricci curvature of manifold M is asymptotically nonnegative at infinity, its bottom
spectrum A; (A) = 0, and one is forced to work with weighted Poincaré inequali-
ties. Third, by considering weighted Poincaré inequalities, it enables one to study
manifolds with Ricci curvature bounded below by a function. Typically, in geo-
metric analysis, curvature is assumed to be bounded by a constant so that various
comparison theorems become available. As demonstrated in [I8] 2], the weighted
Poincaré inequality allows one to go beyond this realm. Indeed, they were able
to prove some structure theorems for manifolds with Ricci curvature satisfying the
inequality

Ric(z) > —C p(x)
for a suitable constant C for all x € M. Finally, weighted Poincaré inequalities occur
naturally under various geometric settings. Indeed, a result of Minerbe [23] (see
[13] for further development) implies that a complete manifold M with nonnegative
Ricci curvature satisfies a weighted Poincaré inequality with p(z) = c¢r~2(z), where
r(x) is the distance from x to a fixed point p in M, provided that the following
reverse volume comparison holds for some constant C' and v > 2

v

V(B@®.Y) . -~ <t>

V(B(p,s)) —  \s

for all 0 < s < t < co. Also, for a minimal submanifold M™ of the Euclidean space
RY | a weighted Poincaré inequality is valid on M with p(z) = %F‘Q(x), where
7(z) denotes the extrinsic distance function from z to a fixed point (see [3 [18]). On
the other hand, for a stable minimal hypersurface in a manifold with nonnegative
Ricci curvature, by the second variation formula, a weighted Poincaré inequality
holds with p(z) being the length square of the second fundamental form.

We remark that weighted Poincaré inequalities in various forms have appeared
in many important issues of analysis and mathematical physics. Agmon [I] has
used them in his study of eigenfunctions for Schrédinger operators. In [8, O], Fef-
ferman and Phong considered the more general weighted Sobolev type inequalities
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for pseudodifferential operators. There are many interesting results concerning the

sharp form of the weight p. The classical Hardy inequality for the Euclidean space
2

R™ implies that p(z) = % r~2(z) and it is optimal. In [2], it is shown that a

sharp p on the hyperbolic space H" is given by p(z) = ("_41)2 + 4T21(m) + (f Sjﬁéi(;’))

We also refer to [7] for a more systematic approach to finding an optimal p for more
general second order elliptic operators.
Throughout the paper, we will assume the weight p(z) additionally satisfies both

(1.2) and (1.3)), that is, the p-metric defined by

(1.2) dsf) = pds®

is complete; and for some constants A > 0 and § > 0,

(1.3) sup p<A inf
s(ogts) (o)
for all z € M.

We point out that these two conditions obviously hold true for a weight of the
form p(x) = ¢ (14 r(x))* with a > —2. The metric ds’ was first used by Agmon
[1] to obtain decay estimates for eigenfunctions. It was later employed to establish
L? decay estimates for the minimal positive Green’s function in [I8].

Our first result is an integral estimate for the minimal positive Green’s function
G (z,y) on M. In the following, we denote geodesic balls centered at point z of
radius r with respect to the background metric ds? and the metric dsf) by B (x,r)
and B, (x,r), respectively.

Theorem 1.4. Let (M™, g) be a complete manifold satisfying the weighted Poincaré

inequality with weight p having properties and . Assume that Ric >
—Kp on M for some K > 0. Then

/ p(y) G (z,y)dy < C(r+1)
BP(P-,T)

for all p and x in M, and all v > 0, where C depends only on n, K, § and A.

While it is possible to prove Theorem by following a similar strategy as in [25],
we instead adopt a complete different approach here. The important observation is
that the problem of estimating the Green’s function for A may be transformed into
one for the weighted Laplacian on a suitable smooth metric measure space with
positive bottom spectrum. Recall a smooth metric measure space (N, g, e~/ dv)
is nothing but a smooth Riemannian manifold (N, g) equipped with a weighted
measure e~/ dv, where f is a smooth function on N and dv the Riemannian measure
induced by the metric g. The weighted Laplacian Ay is defined by Aju = Au —
(Vf,Vu) . Indeed, the Laplacian A of (M, g) may be realized as A = p A, where
A is the Laplacian of (M, dsi) and A ¢ the weighted Laplacian of the smooth metric
measure space (M, dsf), et dv,) with a suitably chosen f and dv, the Riemannian

measure with respect to the metric dsf). In particular, both A and A ¢ have the same
Green’s function. Now the weighted Poincaré inequality is translated into the
fact that the bottom spectrum of the weighted Laplacian A satisfies A (Ay) > 1.
This immediately leads to an exponential decay estimate for the heat kernel of
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the weighted Laplacian for large time t. For small time ¢, an estimate of the heat
kernel follows from the Ricci curvature assumption. From these estimates and the
fact that the Green’s function is the time integral of the heat kernel, Theorem
follows. Incidentally, this new approach applies to Theorem [1.2] as well and seems
to be simpler than the original argument in [25].

As an application of Theorem [I.4] we obtain the following solvability result for
the Poisson equation.

Theorem 1.5. Let (M™, g) be a complete manifold satisfying the weighted Poincaré

inequality with weight p having properties and . Assume that Ric >
—Kp on M for some K > 0. Then for smooth function ¢ such that

—k
ol (z) < ¢ (1 +7,(x))
for some k > 1, where r,(x) is the p-distance function from x to a fized point
p € M, the Poisson equation Au = —p e admits a bounded solution u on M.
If, in addition, there exists vy > 0 such that

Y, (@,1) =/ p(y)dy > vo
B,(z,1)

for all x € M, then the solution u decays and
Jul () < C (14 7y()) ™"

Obviously, these results are faithful generalization of the ones from A; (A) > 0.
We also point out that Theorem is sharp, see Section [3| In passing, we mention
that recently Catino, Monticelli and Punzo [4] have studied the solvability of the
Poisson equation by only assuming the essential spectrum of M is positive. In
view of this, one may speculate that some of the preceding results generalize with
the weighted Poincaré inequality holds only for smooth functions ¢ with support
avoiding a fixed geodesic ball.

As an application of the solvability of the Poisson equation, we prove the follow-
ing result concerning the connectivity at infinity.

Theorem 1.6. Let (M,g) be a complete Kihler manifold satisfying with
weight p having properties , and p < C. Assume that there exists vg > 0
so that for all x € M

V= [  pdyzuw>0
B, (x,1)

and that the Ricci curvature lower bound Ric > —(p holds for some function ¢ (x) >
0 converging to zero at infinity. Then M has only one end.

The novelty of the result is that the assumption on the Ricci curvature is es-
sentially imposed only at infinity, yet we are able to conclude that the manifold
is connected at infinity. This is of course not true in the Riemannian setting.
Indeed, the connected sum of copies of R for n > 3 has non-negative Ricci curva-
ture outside a compact set and satisfies a weighted Poincaré inequality of the form
p(z) = c¢r~2(x). Obviously, it can have as many ends as one wishes.

We remark that our assumption is vacuous when p = A; (A) is constant according
to the aforementioned result of Cheng [5]. However, in the case A (A) > 0, there
are various results concerning the number of ends for both Riemannian and Kéhler
manifolds. We refer to the papers [17], 20} (19, 24] for more information and further
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references. It should also be noted, although not explicitly stated there, that the
argument in [I8] already implies that M necessarily has finitely many ends.
To prove Theorem we first observe the assumption that

Vp(l',l):/ p(y)dy >vo >0
B, (xz,1)

ensures all ends of M must be nonparabolic. Therefore, by the result of Li and Tam
[16], M admits a nonconstant bounded harmonic function u with finite energy if
it is not connected at infinity. According to [I4], such v must be pluriharmonic as
M is Kéahler. One may view u as a holomorphic map from M into the hyperbolic
disk. The proof is then completed by establishing a Liouville type result for such
maps. It is well-known from Yau’s Schwarz lemma [30] that such map v must be
constant if the Ricci curvature of the domain manifold M is nonnegative. The
result was generalized by Li and Yau [22] to the case that the negative part of the
Ricci curvature of M is integrable. They concluded that w is necessarily a constant
map if M is in addition nonparabolic. Our next result may be viewed as further
development along this line.

Theorem 1.7. Let (M, g) be a complete Kdhler manifold satisfying the assumptions
of Theorem[1.6, Assume that F : M — N s a finite energy holomorphic map into
a complex Hermitian manifold N of non-positive bisectional curvature. Then F
must be a constant map.

The paper is organized as follows. In Section [2] we study Green’s function
estimates and the Poisson equation for the weighted Laplacian on smooth metric
measure spaces with positive bottom spectrum. In Section [3] after making some
preliminary observations relating p-balls to the background metric balls, we prove
Theorem [T.4] and Theorem [I.5 by applying the results from Section[2] In Section[4]
we discuss applications of the Poisson equation and prove Theorem [I.7] concerning
the Liouville property of finite energy holomorphic maps.

2. POISSON EQUATION FOR WEIGHTED LAPLACIAN

In this section we study the Poisson equation for the weighted Laplacian on
smooth metric measure spaces, strengthening our previous results in [25] by a new
approach involving the heat kernel.

Throughout this section, (M, g) is assumed to be a complete noncompact Rie-
mannian manifold. To a fixed smooth function f € C° (M) we associate the
weighted volume dvy = e~ fdv and call (M, g, et dv) a smooth metric measure
space. The weighted Laplacian Ay acting on functions is defined by

Aju=Au—(Vu,Vf).
It is self-adjoint with respect to the weighted volume dvy. Its bottom spectrum is
defined by

Vo|*ef
(A= g ulVOle
oeCgm (M) [ %eS
Function Gf(x,y) is called a Green’s function of Ay if

AfC.’Yf (x,y) =-9 (l',y) .
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To ease the notation, throughout this section we use G(z,y) instead of G(z,y).
Recall that A\q (Af) > 0 guarantees the existence of the minimal positive Green’s
function, obtained as the limit of the Dirichlet Green’s function G; of a compact
exhaustion €; of the manifold M.

The Bakry-Emery Ricci curvature Ricy of (M g, et dv) is given by

Ric; = Ric + Hess (f) .

In [25], by assuming a lower bound on the Bakry-Emery curvature of the form

(2.1) Ricy > —Kg

and that the weight f satisfies

(2.2) sup |f(y) = f(2)| <a
yEB(I,l)

for some fixed constants K and a > 0, we have proved a sharp integral estimate for
the Green’s function of Ay.

Theorem 2.1. Let (M,g,e_fdv) be an n-dimensional smooth metric measure
space satisfying and . If M1 (Ay) > 0, then the minimal positive Green’s
function G(z,y) of Ay satisfies

/ G(z,y)e T Wdy < C (r+1)
B(p,r)
for any p,x € M and any r > 0. The constant C > 0 depends only on n, K, a and
)\1 (Af) .
The proof of Theorem [2:1]is based on integral estimate

/ G(z,y)e ' Wdy < C <1+1n ﬂ)
La(a,B) «

for any 0 < a < 3, where

L, (a,8)={yeM:a<Gy(x,y) < B}
and C' is a constant.
Our goal in this section is to improve Theorem by relaxing the assumptions

(2.1) and (2.2) to a local Sobolev inequality.

Definition 2.2. Smooth metric measure space (M,g, e_fdv) is said to satisfy the
Sobolev inequality (S) if there exist positive constants > 1, 1o > 0 and Cs > 0
such that

1
(2.3) Cs (7[ ¢2”e_f> < 7“2][ Vo> e ! + ][ et
B(z,r) B(z,r) B(z,r)

forallz e M,0<r <rgand any ¢ € C§° (B (z,1)).

Without loss of generality we may assume that ry < 1. Here and in the following,
we use fB(x " ue™f to denote the weighted average of a function u over the ball

B (z,r), namely,
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i),
-f = —f
ue = ——— ue 7,
][B(z,r) Vf (x,r) B(z,r)

where Vs (2,7) = [, e~/ is the weighted volume of B (z,7).
According to [26], assumptions (2.1)) and (2.2]) imply a Sobolev inequality (2.3)

with g = pu(n), 7o = 1 and the constant Cg depending only on dimension n, K in

(2.1) and a in (2.2).
Let H (z,y,t) denote the minimal positive heat kernel of A ;. That is, H satisfies

oH = AyH
%I—%H(%y,t) = 5(1',?4),

where the second identity is understood in L? (e*f dv) sense, and H is obtained as
the limit of the Dirichlet heat kernel of Ay on compact exhaustion €; of M.

Lemma 2.3. Let (M,g,e_fdv) be a smooth metric measure space satisfying the
Sobolev inequality (S). Then there exists constant C' > 0, depending only on pu, ro
and Cg in , such that the following holds.

e Forx € M and ty = \/To, the weighted heat kernel satisfies

C
2.4 H(z,2,t) < — .
(24) (@,2,%0) € o
e Forx € M and r > rg, the weighted volume satisfies
(2.5) Vy@r) o
Vi (x,m0)

Proof. Since the results are standard and can be found in [11], 12], we only sketch
the ideas of proof. For (2.4)), it is well known that the Sobolev inequality (2.3
implies a mean value inequality for positive subsolutions of the heat equation (see

[29] or Chapter 19 of [I7]).

C to
u(z,tp) < 7/ / u(y, s) e W dyds,
Vf (Z‘,To) 0 B(z,r0)
As the heat kernel satisfies
/ H (x,y,t) e/ Wdy <1,
M

(2.4) follows immediately.
Concerning (2.5, as pointed out in Section 2 of [12], the Sobolev inequality (2.3)
implies the volume comparison property

1
Vf (y,’l’o) S CVf <ya 4T0) )

for any y € M. By a covering argument (see [12]), this implies the weighted volume
comparison estimate claimed in Theorem O

We can now extend Theorem [2.1|to the more general setting with (2.1)) and (2.2
replaced by (2.3)).
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Theorem 2.4. Let (M,g, e’fdv) be a smooth metric measure space satisfying the
Sobolev inequality (S). If M1 (Ay) > 0, then the minimal positive Green’s function
G of Ay satisfies the estimate

/ G (x,y)e " Wdy < C(r+1)

B(p,r)

for any p, x € M and r > 0 with the constant C' > 0 depending only on pu, ro, Cg
n and Ay (Ay).

Proof. We first remark that it suffices to prove the result for € B (p,r) . Indeed,
consider the function

S (z) = /B( : G(z,y) e_f(y)dy.
pr

We claim that the maximum value of ® on M\B (p,r) must occur on 0B (p,r). In
fact, for

B, (x) = /B Gy
p,'r

where G; (z,y) is the Dirichlet Green’s function of Ay on a compact exhaustion €;
of M, we have ®; (r) — ® () as ¢ — oo. This is because G (z,y) is the limit of
Gi(z,y). Since Ay®; = 0on Q;\ B (p,r) , by the maximum principle, the maximum
value of ®; (z) on ; \ B (p,r) is achieved on 0B (p,r). Therefore, the same must
be true for @ (x).

From now on, we assume that « € B (p,r). It is well known (see Chapter 10 in
[10]) that for the heat kernel H (x,y,t) of Ay,

(2.6) MABDYH (z,2,t) is nonincreasing in ¢ > 0.

In fact, by the semi-group property,

d d t\?
“H - = H Z —f(y)
1 (@2,1) i), (xy2> e 1Wdy

= / H (m,y, t) ArH (w,y, t) e fWdy
M 2 2
NIE
M 2

e TWay
t 2
< np | H(w) Wy
M 2

Therefore,
(2.7) H(z,x,t) < e MADE) H (12 t0)

for all t > to > 0.
Furthermore, by the semi-group property and the Cauchy-Schwarz inequality,
we get
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t t
H(z,y,t) = /MH <gc,z7 2) H (y,z, 2) e F@dz
1 1
2 2 2 z
/ H <x2t> e @ dz / H (yzt) e @ qy
M 2 M 2

= H(m,x,t)%H(y,y,t)%.
Together with , this proves that
(28) H (:I;7 y7t) S e_kl(Af)(t_tO)H (.’L’, z, tO)% H (y> Y, tO)%

for all x, y € M and t >ty > 0.
By Lemma [2.3] for all z € M we have

IN

(2.9) H (z,z,t0) < Y, (zir0)

and

Vf (37,7") S eCT'

Vi (z,70)
for all » > ro. Here ty = /7o and C depends only on s, and Cg in (2.3). So for
x € B(p,r) and any r > 0, the triangle inequality implies that

Vf (pv 7’) < Vf (1’,27")
Vi(z,mo) — Vy(x,m0)

g GCT

Hence, for z,y € B (p,r), we get from (2.9) and (2.10) that

(2.10)

< CeCr
=~ Vy(p,r)

[N

H (.’I}, Z, t0)§ H (y7 Y, tO)
Plugging this into (2.8)) we conclude that

O e_)\l(Af)t“!‘Cr
H xvyat <———F
v < =500

for x,y € B(p,r) and t > ty. This immediately implies there exists C; > 0 such
that

(2.11) / H (z,y,t) eff(y)dy < Cleﬂ\l(Af)tJrclr
B(p,r)

for x € B (p,r) and t > to. In particular, for ¢ > A with

2017’
(212) A—max{t(),)\l(Af)},

one has

/ H(z,y,t)e T Wdy < e 3M(A)
B(p,r)
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for € B (p,r). We integrate this inequality from ¢ = A to ¢t = oo and use Fubini’s

theorem to conclude that

(2.13) / (/ H (z,y,t) dt> e fWay < C
B(p,r) A

for x € B (p,r).

On the other hand, it is well know that the minimal heat kernel satisfies

/ H(z,y,t) e TWdy <1
M

for all x € M. Therefore,

A A
/ / H(z,y,t) e TWat | dy = / / H(x,y,t) e TWdy | dt
B(p,T) 0 0 B(p,T)

< A
In view of the choice of A from (2.12]) we conclude that
A
(2.14) / (/ H (z,y,t) dt) e TWdy <C (r+1)
B(p,r) 0

for x € B (p,r).

Combining (2.13) and (2.14)), we obtain that

/ (/ H (z,y,1) dt> e Wdy < C(r+1)
B(p,r) 0

for x € B (p,r) . Since
Gloy) = [ Hizyt)d
0
this shows that

/ G(z,y) e TWdy < C(r+1)
B(p,r)

for all € B (p,r). The theorem is proved.

(]

We now record several applications to the solvability of the Poisson equation.

The methods are similar to those in [25].

We adopt the same convention that ¢ and C' denote positive constants depending

on A (Ay), and p, 19, Cs in (2.3). Fix p € M and let

r () =r(px)

be the distance function to p.

Theorem 2.5. Let (M,g7 e_fdv) be a smooth metric measure space with positive
spectrum A1 (Ay) > 0 and the Sobolev inequality (S). Then for any smooth function

@ satisfying
ol (z) Sw (r(z)),
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where w (t) is a non-increasing function such that [J~ w (t)dt < oo, the Poisson
equation Aru = —p admits a bounded solution v on M with

sup |ul < ¢ (w (0) +/ w(t) dt) .
M 0
Proof. We first prove that
215 [ Ganldwe i< e(w+ [Twma)
M 0
for all z € M. Note that by Theorem [2.4 we have

/ G(z,y) el (y) e 'Wdy < ¢ sup |y
B(p,1) B(p,1)
< cw(0)

as w is non-increasing. Therefore,

(2.16) /M G (2.) |l (4) e Wy

/ | Gy ol () e T Wy
j=07 B(p,27*)\B(p,27)

+ / G (z.9) o] (v) e Wy
B(p,1)

< Y / G (z,y) e T Wdy sup el
= \UB@2t)\Bp.2) B(p 2+ 1)\ B(p.2))
+cw (0) .

The hypothesis on ¢ implies

sip gl <w ()
B(p,29+1)\B(p,27)

and Theorem [2.4] says that
/ G (z,y)e T Wdy < 2271,
B(p,27 1)\ B(p,27)
Using these estimates in (2.16]) we obtain

/ G o) el @) e Ddy < aw0)+e 2w (2)
M §=0

IN
€
©
+
)
L[]
S—
&
=

IN

c<w(0)+/ooow(t)dt>.

This proves (2.15)). As [;° w (t)dt < oo, it follows that the function

u(x) = /MG<x,y>so<y> W) gy
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is well defined, bounded on M, and verifies
Aru=—p.

Furthermore, we have the estimate

sxdp|u|<c<w(0)+/ooow(t)dt>.

This proves the theorem. ([

Our next step is to prove that the solution w in Theorem [2.5 decays to zero at
infinity by assuming a uniform lower bound on Vy (z, 1), that is,

(2.17) Vi (x,1) = / e FWdy > vy >0
B(z,1)

for all x € M.
We first establish a pointwise decay estimate for the Green’s function. For the
rest of the section, constants ¢ and C' depend only on A; (Ay), vo in (2.17) and g,

70, Cs in (2.3).

Let us note a general fact that if w > 0 satisfies
Ayw > —Cw on B (z,ro),
then by (2.3) and the DeGiorgi-Nash-Moser iteration it follows that

C / _
2.18 wx) < —— w (y) e I Wdy
(2.18) (x) V@) Lo )
< C w (y) e Wdy.
B(z,r0)

The second line follows from (2.17)) and (2.5)), as
vo < Vi(z,1)
< COVy(z,ro).
Theorem 2.6. Let (M,g7 e’fdv) be a smooth metric measure space with positive

spectrum A1 (Ay) > 0 and the Sobolev inequality (S). Assume holds on M.
Then

G(x,2) <CeV A (Ag)r(@,z)
for z € M with r (z,2) > 1

Proof. By Corollary 2.2 in [I§] (cf. Theorem 2.5 in [25]) we have that

(2.19) / G? (z,y) e/ Wdy
B(z,r+1)\B(z,r—1)
< CeV A1<Af)r/ G? (z,y) e T Wady
B(z,3)\B(z,1)
for any r > 4.

We first estimate the right hand side of (2.19). For fixed y € B (z,3)\B (z, 1),
the function w(z) = G (z, z) satisfies Ayw = 0 on B (y,1). Since 1o < 1, (2.18)
implies that

(2.20) w(y) <C w(z) e P dz.
B(y,ro)
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Hence, using ([2.20) and Theorem we get
(2.21) G (z,y) < C’/ G(z,2)e TPdz
B(y,r0)

< C

for y € B (x,3)\B (z,1).
By (2.19) and Theorem [2.4] we conclude

(2.22) / G? (z,y) e TWdy
B(z,r+1)\B(z,r—1)
< Ce —2y/ A1 (Af)r G (z,y) e—f(y)dy
B(z,3)\B(z,1)

< Ce2vaagnr

for any r > 4.
For z € 9B (x,r) with r > 4, since

B(z,r9) C B(x,r+ 1)\B(z,r — 1),
it follows that

(2.23) / G? (x,y) e T Wdy < Ce 2V (AT,
B(z,r0)
As the function w(y) = G? (z,y) satisfies Ajw > 0 on B(z,19), by (2.1§ - we

conclude
G (.’L‘, Z) < Ce—\/kl(Af r(z,z)
for z € M with r (x, 2) > 4. Together with (2.21)), this proves the result. O
We now establish a decay estimate of the solution u to the Poisson equation.

Theorem 2.7. Let (M,g, e’fdv) be a smooth metric measure space with positive
spectrum A1 (Ay) > 0 and the Sobolev inequality (S). Assume holds on M.
Then for any smooth function ¢ satisfying

ol (z) < w (rp (2)),

where w (t) is a non-increasing function such that [J~ w (t)dt < oo, the Poisson
equation Ayu = —p admits a bounded solution w on M such that

lu| (z) < C (/OC() )w(t) dt +Vy(p,1)w(0) e%\/WT(m))

for all x € M, where 0 < a < i is a constant depending only on u, ro and Cs in

ex]

Proof. According to (2.5)), there exists a constant ¢; > 0 so that

(2.24) Vyi(p,t) <erV A(Ag)t Vs (p, 1)
for all t > 0. For ¢; specified in ([2.24]), set

1
(2.25) a=

4(Cl—|—1)



14 OVIDIU MUNTEANU, CHIUNG-JUE ANNA SUNG, AND JIAPING WANG

For x € M fixed, let
(2.26) R=r(x)=r(px).

We may assume R > 2 as the theorem is obviously true for R < 2 by adjusting the
constant C.
Similar to Theorem 2.5 we have

/ G (z,9) ¢l (v) e~/ @ dy
M\B(p,2aR)

o0

/ G (z.9) o] (v) e Dy
B(p,2it1aR)\B(p,27aR)

/ G(z,y)e ' Way sup o]
B(p, 21+ aR)\ B(p,2 aR) B(p,21+1aR)\ B(p,2 aR)

< CZ 23 1aR QJaR)
Jj=1

j=1

o0

IN

j=1

where in the last line we have used the decay hypothesis on ¢ and Theorem
Since w (t) is nonincreasing, it is easy to see that

oo o0 27aR
> (2'aR)w (2?aR) < Z/ w (t) dt
j=1 =1 27-1aR
< / w (t) dt.
aR
It follows that
(2.27) / G (w) el e MWy <c [
M\B(p:QQR) aR

We now proceed to obtain an estimate on B (p,2aR). For y € B (p,2aR), we
get by the triangle inequality and (2.26) that

r(z,y) = r(p,x)—7(pY)
> (1-2a)R.

Hence, by Theorem [2.6]
G(:L, y) < Ce* )\1(Af)(172a)R

for y € B (p,2aR).
Furthermore, by (2.24),

Vs (p,2aR) < g2acry Al(Af)RVf (p,1).

Combining these estimates, we get
(2.28) /( )G(mjy)e—f(y)dy < e VRBN 2@ Ry (1)
B(p,2aR

_1
= ce 2 VMEIEY (p 1),
where the second line follows from ([2.25). Together with (2.27) we arrive at
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/ Ga,y) lol (y) e /Wy < C/ w(t)dt+ Vg (p,1)w (0) e 2VAAD,
M

aR

where R = r (z). This proves the theorem. O

3. WEIGHTED POINCARE INEQUALITY

In this section, we prove Theorem [.4] and Theorem by applying the results
of Section 2] In order to do so, we first relate both the geometry and the analysis
of the p-balls to the background metric balls.

Consider the p-distance function, defined to be

To(z,y) = igf Lo(7)s

the infimum of the length with respect to metric ds% of all smooth curves joining x
and y. For a fixed point z € M, one checks readily that [Vr,|*(z,y) = p(y). When
there is no confusion, the p-distance from x to a fixed point p is simply denoted by
r, (z) . More generally, for any function v € C* (M), denote by V,v the gradient
of v with respect to dsf). Then its length with respect to ds?) is given by

2 1 2
Vool = 5100

We denote geodesic balls with center x and radius r with respect to ds? by
B (z,7) and those with respect to ds? by B, (z,r). Our first result shows that

B (x, \/b) and B, (x,r) are comparable when r < 1. Without loss of generality,

we may assume the constants A and § specified in satisfy A > 16 and § < 1.
Throughout this section, we use ¢ and C to denote constants depending only

on dimension n, the constant K from the Ricci curvature lower bound, and the

constants A and ¢ in . Any other dependencies will be explicitly stated.

Proposition 3.1. Let M be a complete Riemannian manifold satisfying weighted

Poincaré inequality with weight p having properties and . Then
there exists C > 0 depending only on A and § such that for any x € M,

sup p<C inf p.
By (w,1) Bp(=,1)

Furthermore, there exist ¢y > 0 and Cy > 0 depending only on A and & such that

B x, < r B, (xz,r B x, o r
<\/p<x>>c e ( p<x>>

forallz e M and 0 < r < 1.

Proof. Let x € M and 0 < r < 1. Let 7(t), 0 <t < T, be a minimizing p-geodesic
starting from x. We claim that either

) §
. 7(]0,T Blx,—=—=r| orl,(r —r.
(3.1) (10.7)) < ( m) (") > 5
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Indeed, if 7 is not entirely contained in B (x, ‘5r> , then there exists 0 < ¢t} <

7o
T so that 7 (t) € B (w, \/l%r) forall 0 <t <t and 7(t1) € OB (:107 j(z)r> .

Let 7 be the restriction of 7 to [0,%1]. Then
Lo = [P0
— [ VeEmI @
1 —/
> Vol [P0
1 _
= ﬁ Vo (x)1(7),

where in the third line we have used 1) and that 7 (t) € B (x, for all

S R
v p(x)

t <t;. Since 7 (t1) € OB (x, 57"), we have [ (7) > —2—r. Consequently,

v p(x) p(x)
)
lp (7_') Z Z T.
This proves (3.1]).
We infer from the claim that r (z,y) < \/5(—) r when 7, (z,y) < &7 In other
p(x

words,

(32) 5, (v ) c <x j@)

for all z € M and all 0 < r < 1. By (1.3)), this implies
(3.3) sup p<A inf p.
B,(z,%) Bp(w,%)
Now for z,y € M with r, (z,y) <1, let 7 be a minimizing p-geodesic from z to

y. Applying 1) successively on each interval of p-length % along 7, we conclude
that )

cP (@) <ply) <Cpla),
where C = A%". Therefore,

3.4 sup p<C inf
( ) Bp(z,l)p Bp(zal)p

for all x € M. This proves the first part of the proposition.
Note that by (3.2)), for any 21,290 € M and 0 <7 <1,

(3.5) (21, 22) <

r whenever 7, (21, z2) < — 7.
p(21) A

So for x,y € M withr, (z,y) < r, applying (3.5]) successively on intervals of p-length
% r along a minimizing p-geodesic 7 from x to y and using 1) one concludes that

Co
p(x)

r(z,y) < r
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for some Cjy > 0 depending on A and 4. Hence,

(3.6) B, (z,7) C B (:c COT)
p ()

forallz € M and r < 1.
‘We now show that

(3.7) B (a: CO r> C B, (z,7)

forallxeMandrglwithcoz%.

Indeed, for y € B (m, \/ZO(T)T> and v (t), 0 <t < T < \/:;O(T)T’ a minimizing

geodesic joining x and y, we have

() = / ] (8) dt
- / NAIOIAOL

< VAVe@ [l
= VAVp(2)l(7)

< co\/Zr

< 1

where in the third line we have used l) together with v (t) € B (x, 0 r) for

p(x)
all 0 <t <T. This proves (3.7).
From (3.7) and (3.6) we conclude that

B | z, 0 r B, (xz,r B x,&r
(Wz))c e ( p<x>>

for all x € M and r < 1. This proves the proposition. O

The previous result enables us to translate some properties on geodesic balls of
metric ds? to those of dsi.

Denote by Cg (B, (x,r)) the optimal constant for the following Dirichlet Sobolev
inequality on B, (x,r).

(3.8) Cs (B, (z,r)) (WB:M /B ( )W"z)

1 G 1 2
- \Y
= V(BP ({E,T)) /Bp(x,r) | (b‘ - 2 V(BP (xvr)) /B,,(ac,r)<Z5

for any ¢ € Cg° (B, (z,r)), where V (B, (z,r)) is the volume of B, (z,r) with
respect to the metric ds2.

Evidently, we have implicitly assumed above that the dimension n > 3. When
n = 2, then is understood to hold with n replaced by any fixed n’ > 2.
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We refer to Cs (B, (x,7)) as the Dirichlet Sobolev constant for B, (x, 7).
Proposition 3.2. Let (M™,g) be a complete manifold satisfying , and
. Assume that Ric > —Kp on M for some K > 0. Then for some C > 0,

Cs (B, (@,1) = 570 (@)

forany x € M and 0 < r < 19 = %. Here Cy is the constant specified in
Proposition [3-1}

Proof. According to Saloff-Coste [29], the following Sobolev inequality holds on
B (z,R) if Ric > —H on B (z,2R) and the dimension n > 3.

1
< Vo4 [ &
/B(I,R) R? /g R)

for any ¢ € C5° (B (x, R)). When n = 2, the inequality (3.9)) holds with n replaced
by any fixed n’ > 2. The constant C in (3.9)) depends only on n (or n/, respectively).
For r < % we have

B <x, 2% r> CB <x,6> .
p(z) p(x)

The Ricci curvature lower bound assumption together with (1.3)) implies that

2
(3.10) Ric > —cp(z) on B | z, Co r|.
p(z)
Now for R = —£2— 1, in view of (3.10) and 1) we get
p(z)

n—2

L p(z) 2 2\ " 2, p(2) 2
PN (B (2, R))" e < v
C r2 (B (z, R)) </B(9c,R)¢ > = /B(ac,R) o+ r2 /B(x,R)(b

for any ¢ € C§° (B (z, R)).
However, according to Proposition [3.1] we have

B, (z,r) C B(z,R).
It follows for ¢ € C§° (B, (x,r)) that

n—2

1 p(.’L‘) 2 / 2n o / 2 p(a?)/ 2
PN (B, (1)) = < Vol + 2.
C r2 ( P ( )) ( B,(x,r) B,(x,r) | | r2 By(xz,r)

This completes the proof of the proposition. ([

Another important ingredient for us is the Cheng-Yau [6] gradient estimate for
positive harmonic functions. This result says that for v > 0 satisfying Au = 0 on
B(z,R),
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(3.11) IV Inu| (z) §c<\/ﬁ+]1%>

for some constant ¢ > 0 depending only on dimension n, provided that the Ricci
curvature Ric > —H on B (z, R) for some constant H > 0. We now use Proposition
to translate this estimate to p-balls.

Lemma 3.3. Let (M™,g) be a complete manifold satisfying , and .
Assume that Ric > —Kp on M for some K > 0. Then there exists ¢ > 0 such that

for w >0 a harmonic function on B, (z,r) with 0 <r <1,
c
VoInu|, (z) < e
Proof. By Proposition and (|L.3]) we have
Ric > —cp(z) on B, (z,71),

and

B :v,cior B, (z,r).
( \/p<x>>c )

Hence, applying (3.11]) for the harmonic function v on B | x, —=2—r |, where Ric >
v p(x)

—cp(z) on B (w, \/ZO(T)T)’ we obtain that
c

(3.12) [VInu| (z) < =v/p(z).

<

This can be rewritten into .
IV Inal, () < £,

which proves the lemma. O

We can now relate the geometry of (M, g) with that of a smooth metric measure
space. Consider the smooth metric measure space (M, 9p> e_fdvp) , where

(3.13) 9o = pg
and
n
(3.14) f= (5 - 1) In p.

By a well known formula, the Laplacian A with respect to the conformal metric
gp = pg and A, the Laplacian with respect to g, are related by

- 1 n 1

1 n
= At (- 1) (Vu,V, np),.

We have denoted with V, the Levi-Civita connection of g,. Hence, we see from
above that the weighted Laplacian A associated to (M7 9o e_fdvp) satisfies

(3.15) Aju = Au7<Vpu,fo>p

1
= —Au,
p
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where the last line follows from ((3.14]).
Note moreover that

(3.16) el dv, = pdv.

Hence, using \V¢|2 =p |Vp¢>|i, we see that the weighted Poincaré inequality 1}
is equivalent to

/¢26_-fdvp§/ V8|2 e du,
M M

for any ¢ € C§° (M) . In conclusion,

(3.17) M (Af) =1

Furthermore, by Proposition [3.2] there exists C' > 0, depending only on n, K, A and
6§, such that for any z € M and 0 < r < 1o,

n—2

1 s ’
(3.18) C<V(Bp(a:,r))/39(m>¢n )

7"2 1 2 1 2
v -
(@) V (B, (&,7) /B,,<z,r>' B, @) /Bm,ﬁ

for all ¢ € C§° (B, (z,r)), where ry = % < 1 depends only on A and 4. In
dimension n = 2, we replace n in (3.19)) by any fixed n’ > 2.
By Proposition for any function u > 0 we have
1 1
(3.19) — we Tdv, < 7/ u<C ue T dv,,
C B,(z,r) g N (BP (213, 7’)) B,(z,r) B, (x,r) P

<

where
1

-f — -f
ue ' dv, = —7/ ue ' dv,
]ipw) s,y €00 I8, )

is the average weighted integral of u over B, (z,r).

Therefore, by (3.19) and (3.19) we obtain that

1
C <][ ¢2“e_fdvp> < 7? ][ \Vp¢|i e fdv,
BP(Iv’r) Bﬂ(xv'r‘)

+ ][ ¢p?e 7 dv,
Bp(fvr)

for any 0 <7 < 7o, where p = 5 if n > 3 and p > 1 is any fixed number if n = 2.
In conclusion, we have established the following result.

Proposition 3.4. Let (M", g) be a complete manifold satisfying the weighted Poincaré

inequality with weight p having properties and . Assume that
Ric > —Kp on M for some K > 0. Then for f = (5 — 1) In p, the smooth metric

measure space (M, 9p> e*fdvp) has positive bottom spectrum Ay Af > 1 and sat-

isfies the Sobolev inequality (S) with = u(n), ro = ro (9, A) and Sobolev constant
CS = CS (n,K, 5,A) .
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Proposition [3:4] enables us to apply the results of Section [2| to our context of
weighted Poincaré inequality . First, let us note that the minimal positive
Green’s function G of A is the same as that of the weighted Laplacian Af as
A= pA ¢. By Theorem we obtain the following.

Theorem 3.5. Let (M™, g) be a complete manifold satisfying the weighted Poincaré

inequality with weight p having properties and . Assume that Ric >
—Kp on M for some K > 0. Then

/ p(y) G (z,y)dy < C(r+1)
By (p,r)

for all p and x in M, and all v > 0, where C' depends only on n, K, § and A.

Let us point out that Theorem [3.5]is sharp. Indeed, for any € > 0 small enough
so that B (z,e) C B, (x,t), we have

0 = / AyG (z,y) dy
B, (z,t)\B(x,e)

- /8 0C (1.6)dA(6)

B, (z,t) E

oG
- /8 o B @44,

where v is the outward unit normal vector of 0B, (x,t) with respect to ds?. Using
the asymptotics of G near its pole, we obtain

oG
g dA(€) = —
/6 o By 04 = 1

for any € > 0. So

(3.20) 1 = —/6 8—G(x,f)dfl(é)

Bﬂ(zwt) 81/

| vGl@gda
OB, (z,t)

IN

for any ¢ > 0. Combining with the gradient estimate in Lemma [3.3] that

VG| (z,y) < CVp(y)G (2, y)

for y € M\B, (z,1), where the gradient is taken in variable y, we conclude

VoEG (5,6 dA(©) 2

OB, (x,t)

for all ¢ > 1. Now the co-area formula yields
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(3.21) / p(4) G (2y) dy
BP(ZE7T)\BP(z71)

B /1T/aB(.t)Wﬂ(ﬁ)G(m,ﬁ)dA(g)dt
- / T VP (©)G (z,€) dA () dt
1 JOB,(z,t)

1
6(7"—1).

Y

This shows that )
[ swGEndyz 5o
B,(z,r)

for all 7 > 1, confirming the sharpness of Theorem
Combining Theorem [2.5] and Theorem [2.7] we have the following result. Define

Van=[ iy
B,(z,r)
which corresponds to the weighted volume in (M 2 9ps et dvp).

Theorem 3.6. Let (M™, g) be a complete manifold satisfying the weighted Poincaré

inequality with weight p having properties and . Assume that Ric >
—Kp on M for some K > 0. Then for any smooth function ¢ satisfying

ol (z) < w (ry (2)),

where w (t) is a non-increasing function such that fooow(t) dt < oo, the Poisson
equation Au = —pp admits a bounded solution u on M with

S}\l/[p|u|<c<w(0)+/ooow(t)dt>,

for a constant ¢ depending only on n, K A and ¢.
If, in addition, there exists vg > 0 such that for all x € M,

V, (2,1) =/ p(y)dy > v,
B,(z,1)

then u decays to zero at infinity. Moreover

(3.22) |ul (z) <C (/Oo w(t)dt + V, (p,1)w (0) e—érv@))

rp(w)
for all x € M, where 0 < a < % s a constant depending only on n, K, §, A, and
C > 0 may additionally depend on vy.

Finally, let us note that Theorem [L.5] follows from Theorem Indeed, in the
case that the function ¢ decays as

ol (@) < (147, (@) ™"

for some k£ > 1 and
YV, (z,1) > v9 >0
holds for all x € M, Theorem readily implies that the solution u satisfies
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Jul (2) < C (k) (147 (2)) "
as claimed in Theorem
We also note the following property. Assume that n > 0 is a C'! function satis-
fying
(3.23) An> —cpnon B, (z,10).

Then we have

C
(3.24) n(z) < M/BP(ND)P(Z/)W(ZI) dy.

Here ¢, C are constants depending only on n, K, A and .

Indeed, by m and m we have Afn > —cn on B, (x,19). Then
follows from (2.18)) and (3.16).

We now present a two-sided volume estimate for geodesic p-balls. Let 0 < rg < 1
be the constant specified in Proposition [3.:2l We have the following result.

Theorem 3.7. Let (M™, g) be a complete manifold satisfying the weighted Poincaré

inequality with weight p having properties and . Assume that Ric >
—Kp on M for some K > 0. Then for all x € M,

1
geQRVp (,10) <V, (2, R) < eCRVp (x,r0)

for all R > ry.

Proof. We apply the volume growth estimate of (2.5 and note that e~ dv, = pdv
by (3.16)). It follows that

(3.25) V, (7, R) < eV, (2,19),

for all R > 0, which proves the upper bound estimate.
We now turn to the lower bound. The same argument as in (3.21)) implies that

1

G s p(y) G (z,y)dy

B,(xz,R)\B,(z,R—1)
for R > 2. By the Cauchy-Schwarz inequality it follows that
1
(3.26) S<Ve@n) [ o (y) G2 () dy.
B,(z,R)\B,(z,R—1)

By Corollary 2.2 in [1I8] (cf. Theorem 2.5 in [25]) we have that

/ p(y) G2 (2,y) dy
B,(z,R)\B,(z,R—1)

< Ce‘QR/ p(y) G (z,y) dy.
Bﬂ(x72)\BP(x71)
Therefore, combining with (3.26)), we obtain

1

(3.27) 6623 <V, (z,R) / p(y) G? (x,y) dy.
Bp(x72)\Bp(x71)

Let us set

(3.28) o(x) = sup G(z,y).
YEB,(2,2)\B,(x,1)
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Then by Theorem [3.5 we have

/ PG )y < ola) [ p (1) G (2.) dy
By (%,2)\By(x,1) By (x,2)\ By (x,1)
< Co(z).
Hence, (3.27) implies that
1
(3.29) 562R <V,(xz,R)o (z).

Now let z € B, (x,2)\B, (z,1) such that o (z) = G (z,%). Since the function
w (y) = G (z,y) satisfies Aw =0 on B, (z,70), (3.24]) implies that

(3.30) o(x) = G(x,z)
C

S S fy o PO
< C

VP (Z’TO)7

where the last line follows from Theorem As z € B, (2,2)\B, (z,1), using
(3.25]), we have that

VP (x71) VP (2,3)
Vo (z,m0) = Vp(2,70)
< C.
Hence, (3.30) implies
o (:z:) < L
e (z,1)
In conclusion, by (3.29) we get that
lBQR < Ve (va)’
C ~ V(1)
which proves the lower bound. (I

We end this section with a remark concerning the regularity of p. The smoothness
assumption on p is mostly for convenience. It suffices to assume p is continuous for
our purposes.

4. APPLICATIONS

In this section, we discuss some applications of the Poisson equation and prove
Theorem We continue to assume that (M, g) is a complete manifold satisfying
the weighted Poincaré inequality , together with and . Furthermore,
we assume that there exists vy > 0 such that the weighted volume

(4.1) Vo= [ pwdyz >0
Bp(mvl)

for all x € M. In the following, unless otherwise specified, the constants ¢ and C'
depend only on n, K, 9, A and vyg.
We begin with a Liouville type result.
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Theorem 4.1. Let (M™, g) be a complete manifold satisfying the weighted Poincaré

inequality with weight p having properties , , and , and Ric >
—Kp for some constant K > 0. Let n > 0 be a C' function satisfying
2

(4.2) 1Ay = —Cpi? + |V
for some positive continuous function ¢ (z) which converges to zero at infinity. If
there exist € > 0 and A > 0 such that
(4.3) n(z) < Ae™o@
on M, thenn =0 on M.
Proof. We assume by contradiction that 7 is not identically zero. We first normalize
7 by defining

1

(4.4) h= G

Then
h<e ™! on M.
As h satisfies

Ahz—@h+V?2
at all points where h > 0, it is easy to see that
(4.5) Alnh > —(p.
In addition, we have
(4.6) —Inh>14er, on M.
Denote by

1

(4.7) v= m,

where we set v = 0 whenever h = 0. Hence, v € C° (M).
Computing directly, we have

Av = (Alnh)v® +2|VInh[* o>,
Hence, by (4.5)) v satisfies

2
(4.8) Av > —(pv? + [Vel®
> —(p”
whenever v > 0. Also, by (4.6]),
1
(4.9) 0<v< on M.
1+er,
Define the continuous function
(4.10) ¢ =Cv?on M
and let
1
(4.11) w(t)=———= sup (.

(1+ st)2 M\B,(pt)
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Clearly, w is non-increasing and [;* w (t) dt < co. Furthermore, (4.9) implies that
¢l (2) < w(ry (@) on M.
By Theorem the Poisson equation
(4.12) Au = —pyp
admits a bounded positive solution u > 0 such that
0<u(z)<C (/ w(t)dt +V,(p,1)w(0) eéw@)) on M
ar,(z)
for some 0 < a < i. Since py is continuous, we have u € WP (M) for any p.

loc
By (4.11)) we have that

c
0 < u(e) < —— sup ¢
L+ aer, () an\B, (p,ar, (=)

+CV, (p,1) e~ 37 () sup C.
M

As ¢ — 0 at infinity we conclude that for any ¢ > 0 there exists Ry > 0 such that
1

(4.13) u(z) < o7y (@)

for all z € M\B, (p, Ro) .
We claim that

(4.14) v<u on M.
Suppose by contradiction that (4.14) is not true. Since by (4.9) and (4.13]) both u

and v approach 0 at infinity, the function v — u must achieve its maximum at some
point g € M, where in particular v (z¢) > 0. Observe that by and
we have Au = —(pv?, whereas by we have Av > —(pv? at any point where
v > 0. Then v — u € W, ({v > 0}) is subharmonic in a neighborhood of z and
achieves its maximum at xy. The strong maximum principle implies that v — u is
in fact constant on M. Obviously, the constant must be 0, which contradicts .
This contradiction implies that (4.14)) is true.

In view of (4.13) and (4.14) we have proved that for any large o > 0, there exists

Ry > 0 sufficiently large such that

(4.15) v(z) <

for all x € M\B, (p, Ro) -
O'T'p(IE) or all x \ P(p 0)
We now follow the proof of Theorem 4.4 in [25] and show that v decays faster
than any polynomial order in the p-distance. This will be done by iterating the
previous argument.
First, let us note the following fact. Define

‘C'oo = Sup C'
M
Then (4.8)) implies that
(4.16) Av > —[C| pv?

whenever v > 0. Assume that

v(x) <6 (r, (z))
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for some decreasing function 6 (t) such that [ 62 (t)dt < co. Then there exists
0 <a<§and YT >0, independent of v or 6, such that

(4.17) v(z) <Y (/OO( )92 (t)dt + e~ 370 (2) 2 (O))

for all z € M.
Indeed, (4.17) follows in the same manner as (4.15). Define the continuous
function

¢ (2) = [¢|o v
and note that
0<p (@) <w(r(z)),

where

w(t) = 1¢] 07 (2).
By Theorem there exists a bounded solution u € I/Vlif (M) of
(4.18) Au = —pp

i

such that

O<u(z)<C (/ w(t)dt +V,(p,1)w(0) e‘érﬂ(w)> on M
arp(x)

for some 0 < a < 1. Using that w () = |¢| 6* (¢) and taking
T := C[(|, max{L,V, (p, 1)},

we have

O<u(z)<T (/ 0% (t) dt + e~ 270 (%) g2 (0)) on M.
arp(z)

By and the function v — u € VVlif ({v > 0}) is subharmonic and
converges to zero at infinity. Using the maximum principle we obtain v < u on M,
thus proving .

Fix b > 0 small enough, depending only on o and T in , to be specified
later. Note that by , there exists By > 0 so that

(4.19) v(z) < v

— Bge*a%"(“’) on M.
~a’r,(x)+1

We prove by induction on m > 2 that

by m m m
4.20 <— 4 BY e (@) on M
(4.20) v(z) < o, (@) + 1 + e on M,

where B is a large enough constant depending only on «, T and By.

Clearly, (4.20) holds for m = 2 from (4.19). We now assume (4.20) holds for

m > 2 and prove

2 4 (m+1
421 L BT et —am @) o
(4.21) U(z)_aer (x)+1+ e on M.
p
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By the induction hypothesis we have v (z) < 6 (r, (z)), where

By (4.17) we obtain that
(4.22) v(z) <Y ( / 0% (t) dt + e~ 270 (¥) g2 (0)> .

rp(x)

Obviously,

2p2" " +2m " "
(4.23) 62 (t) < ——— 2B “2mem 2

(amt +1)?
It follows that

oo 2 b2""+1+2m

4.24 etydt < ———
(4.24) /m«,,(z) (®) — amamtlr, (x)+1

1 m—+1__ _am+1
+ mBQ Zme « rp(;c).

Furthermore, since b < 1 < B, we have by (4.23) that

(4.25) e br@g2(0) < g (pTEm 4 T o hree)
< 4BZm+1—2m6—%7‘p(J;)
< Lpriemme—antin)
am

The last line follows from

fgebro@ < L —am i@

am ’

using that 0 < a < i.
Plugging (4.24) and (4.25)) into (4.22)) yields

o7 B2 AEm 27
- ozimam“rp(x)—l—l am

27 P\ "2 2T 4 (m1)
) (2 -
(&) () e
27 1\"? _—
il - —(m+1) ,—a™ " r,(z)
+ <a23) <aB> B e .

Now take b sufficiently small so that g <1 and i—gb < 1, and B sufficiently large
so that 1B <1 and 2L < 1. Since m > 2, it follows by lj that

«a a?B —

(4.26) v (x) By m2m—a ey (2)

b2m+1+(m+1)
v(iz) L ——m8 ——
(@) < am™tlr, (x)+1

This proves (4.21]). Hence,

b2'rn +m

2m+1—(m+1)e—am+lrp(z) )

(4.27) v(z) < + B2 mmema (@) o M,

~amr,(x)+1
for all m > 2.
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For x € M with r, (z) large, apply (4.27) by setting

where [-] denotes the greatest integer function. Let us note that

Ty (z) <2M < ri“ (z),

_ 1 c (o 1
~ 8In(a™?) 8)
1

Hence, as in particular b < ¢, we obtain

where

a

b2m+m

L p2"
amr, (x)+1

@),

IN

_1
Moreover, from o™ > r, * (z) we have

o~ (Vr@-n By @)

e (@),

BZT"’fmefamrp(x)

VANVAN

In conclusion, there exists constant a > 0 such that
(4.28) v(x) < Ce @) on M.
We now complete the proof of the theorem. By (4.7) we have that

1 .
(4.29) —Inh > aerﬁ on M
and satisfies
A(=1Inh) < {p.
Consider the function
f=In(=Inh).
Note that f satisfies
¢p |VA|®
4.30 A —
(430 Fs Cuw e (Inh)?
¢p
(—Inh)
whenever h > 0. Moreover, from (4.29)), f is bounded below by
(4.31) f(x)>r;(z)—C on M.
Define
b
(—Inh)’

where ¢ is continuously extended as ¢ = 0 at points where h = 0. By Theorem
and ([4.29) we can solve the Poisson equation

(4.32) Au = —pp

Cp
(—Inh)

and obtain a solution u € WIQO’CP (M) that decays to zero at infinity.
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According to ([4.31), the functlon f + u achieves its mmlmum at some point
xo € M. Then h (xo) > 0. So by (4.30) and (4.32) - ), f+ue W2 ({h>0}) satisfies

(f—l—u)SO

in a neighborhood of zy. By the maximum principle, this implies that f 4+ u is
constant, which is a contradiction to (4.30).
Hence h, as well as 7, must be identically zero on M. O

Let us point out that the hypothesis on 7 is necessary and optimal. Indeed,
consider
n(z) = e~ 10" (l2*+e) o R"™,
where 0 < a < 1 is fixed. It can be checked directly that

An — |v7;7|2 = (-aw (o +))n
. Alz|” .
> <|x|2 +e) Inl-e (|x|2 +€)
B 2na
(of + )= ()

n—2)2 1
W, SO we may

take p(z) = & 42) ‘$‘21+1, which is continuous. Moreover, there exists C' (n) > 0 so
that

Now R" satisfies weighted Poincaré inequality with weight (

1
51n(\x| +1)<r,(z) <Cln(|z|+1)
for all |z| > 1. Hence, n satisfies

Vi
An = —Cpn + val”
with (n,a)
c(n,a
¢ ('T) = 1—a-
(rp () +1)
However, n violates the hypothesis (4.3)) as

=2 @D < () < oM@+,

We also point out that various vanishing results for differential inequalities of the
form have appeared in the literature due to its connection with the Bochner
technique. Comparing to the existing results, we note that Theorem does not
require integrability of (p on M as in [22], nor the smallness of sup,, ¢ as in [I7]
18, 19, 20] and [28].

Theorem [£.1] leads to the following vanishing result for holomorphic maps.

Theorem 4.2. Let (M™,g) be a complete Kihler manifold satisfying the weighted
Poincaré inequality (-) with wetght p having properties (ﬂ) (-) (-) and p <
C. Assume that the Ricci curvature has lower bound Ric > —Cp for some function
¢ (x) > 0 that converges to zero at infinity. Then any finite energy holomorphic map
F: M — N, where N is a complex Hermitian manifold of non-positive bisectional
curvature, is identically constant.
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Proof. Tt is well known (see e.g. Theorem 1.24 in [27]) that the differential n = |dF|
satisfies

(4.33) nAn > —Con® + |Vl

To be in the context of Theorem [£.I] we first show that 1 decays exponentially fast
in the p-distance based on the assumption that | . n? < oo. Since ¢ converges to
zero at infinity, by (4.33) there exists Ry > 0 so that

1
An 2 —5pn on M\B, (p, Ro) -

Note that since p < C, we have

(4.34) / pn? < oo.
M

Hence, applying Theorem 2.1 in [I8] we conclude that

/ pn? < Ce™” / o’
M\Bp(p"") BP(pvRU)
for r > 2Ry.

Consequently, there exists A > 0 so that
(4.35) / om? < Ae 7o @)
B,(z,1)

for all € M. In fact, we may take A = C [, pn*.
Since An? > —Cn? on M, by (3.24) and (4.35) we obtain

C
4.36 ()< — / 2,
(4.36) (z) Vo @ro) BPWO)pn

According to Theorem and (4.1) we have
1
YV, (z,10) > 6U0 >0

for all z € M. Then (4.36)) and (4.35)) imply that
(4.37) n(z) < Aem 270

for all z € M, where A is a constant depending on the total energy of n on M.
Applying Theorem [£.1] we conclude n = 0 and F is a constant map. O

We point out that in [22] Li and Yau proved a vanishing theorem for holomorphic
maps F': M — N, where M is assumed to be non-parabolic and its Ricci curvature
is bounded from below by Ric > —p with p being an integrable function. An
alternative proof of this result using the Poisson equation is given as Theorem 8.6
in [27].

As a consequence of Theorem we obtain the following structural result.

Corollary 4.3. Let (M™, g) be a complete manifold satisfying the weighted Poincaré
inequality with weight p having properties , , and p < C. As-
sume that the Ricci curvature is bounded by Ric > —(p for some function ¢ (x) > 0
that converges to zero at infinity. Then M has only one end.
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Proof. Let us assume by contradiction that M has at least two ends. We denote
by E a nonparabolic end and let ' = M\E. Note that E exists because M is
nonparabolic. We claim that F' is nonparabolic as well. Indeed, if F' were parabolic,
then by [I8],

/ p(y)dy < Ce?"
(M\B, (p,R)NF

for all R. This obviously contradicts with (4.1). Hence, both E and F are non-
parabolic ends. By Li-Tam [I6], there exists a harmonic function w on M with the
following properties.

(4.38) /|Vw|2 < o0
M

limsupw = 1
F

liminfw = 0.
E

Such w is necessarily pluriharmonic according to [14]. Therefore, Theorem is
applicable to w and w must be constant. This shows that M must be connected at
infinity. (]
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