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Gardner-like crossover from variable to persistent force contacts in granular crystals
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We report experimental evidence of a Gardner-like crossover from variable to persistent force contacts in

a two-dimensional bidisperse granular crystal by analyzing the variability of both particle positions and force

networks formed under uniaxial compression. Starting from densities just above the freezing transition and for

variable amounts of additional compression, we compare configurations to both their own initial state and to

an ensemble of equivalent reinitialized states. This protocol shows that force contacts are largely undetermined

when the density is below a Gardner-like crossover, after which they gradually transition to being persistent,

being fully so only above the jamming point. We associate the disorder that underlies this effect with the size

of the microscopic asperities of the photoelastic disks used, by analogy to other mechanisms that have been

previously predicted theoretically.
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I. INTRODUCTION

Granular materials differ from elastic solids in their

response to external forces: Rather than homogeneously

supporting an applied load, the forces are transmitted by

a sparse percolating network of particles [1–5]. If inter-

particle contacts are allowed to break and the granular

material yields, the topology of the force network changes

even if no particle-scale rearrangement takes place [6,7].

By contrast, if contacts are preserved, cyclic (un)loading does

not affect the structure of the force network. While recent

theoretical and numerical studies suggest the preservation of

contacts might not coincide with the jamming transition [8,9],

it is yet to be experimentally verified whether such a distinc-

tion exists.

The distinction between the onset of contact memory and

jamming is reminiscent of the critical transition reported for

certain amorphous solids and crystals of slightly polydis-

perse particles [10–16]. The associated Gardner transition

is often depicted using an energy landscape roughened by

a hierarchy of metastable basins. Outside of the Gardner

regime, the energy scales are well separated from the land-

scape roughness and the system responds elastically [17].

By contrast, within the Gardner regime, the landscape rough-

ness gives rise to easier pathways to escape from marginally

stable subbasins and thus to minute structural rearrangements

(much smaller than the particle scale) that result in a different

spatial distribution of contact forces at jamming [12,18].

This landscape roughness in the Gardner phase also leaves

a dynamical signature. Outside the Gardner regime, the long-

time mean square displacement (MSD) � of the constituent

particles plateaus at a value that depends on the particle cage

size (and thus density or pressure for a hard-sphere system)

[8]. By contrast, within the Gardner regime, particles cannot

effectively sample the landscape over accessible timescales,

which results in a MSD that does not saturate with time. Its

asymptotically long-time value can nevertheless be estimated

from the distance �AB between two system copies A and B

that started from the same reference configuration at a density

below the Gardner regime and then evolved along differ-

ent stochastic trajectories. One can thus define the Gardner

regime as the density for which � < �AB at (sufficiently)

long times. This was first shown experimentally in a granular

glass former by Seguin and Dauchot [19], who captured a

signature of Gardner physics in the dynamics of a vibrated,

two-dimensional (2D), disordered packing of granular disks.

More recently, Xiao et al. [20] found signatures of Gardner

physics in quasithermal (air-fluidized) star-shaped particles.

However, the corresponding contact force network has not

been observed experimentally, nor have the factors that con-

trol the distance of the Gardner transition to jamming been

assessed [12].

In this article we investigate the crossover from variable to

persistent contacts in a granular crystal (see Fig. 1). We find

that this transition is strongly analogous to that predicted by

Gardner physics, is clearly distinct from the jamming tran-

sition, and the distance between the two appear here to be

controlled by the scale of the microscopic asperities of the

experimental disks.

II. METHODS

Despite numerical studies of ultrastable glasses [22]

and polydisperse crystals [12] which successfully suppress

particle-scale rearrangements to reveal the Gardner regime,

it remains an open challenge to translate these numerical

protocols for generating ultrastable glasses to experiments.

We study instead marginally stable states generated from a
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FIG. 1. (a) Schematic of the experimental setup (side view), with

the height of the air layer not to scale. (b) Typical image (top view)

from which the particle positions (red channel) and force transmis-

sion (cyan channel) are extracted. The hexagon marks an H1 unit cell

[21].

well-defined 2D crystalline packing to suppress rearrange-

ments via an alternative means. We selected the H1 crystal

symmetry, containing a unit cell of three large and six small

disks (see Fig. 1), from among those identified in [21], for hav-

ing no basis vectors aligned with the compression axis. This

choice thereby limits the putative contribution of low-energy

local buckling excitations [15,23–25] and focuses the dynam-

ics on the quenched disorder that arises through variability

in particle size and surface roughness [12]. We found that

this crystal successfully suppresses rearrangements; when one

does occur, the system can readily be reinitialized. Although

the resulting crystalline axes create an additional coordinate

system that is neither orthogonal nor aligned with the natural

axes of the apparatus (see Fig. 1), we are able to account for

these effects during the data analysis.

We performed our experiments on a single-layer packing

of bidisperse photoelastic disks (NS = 507 small disks with

RS = 5.5 mm and NL = 273 large disks with RL = 7.7 mm,

Vishay PhotoStress PSM-4) with a reflective back layer levi-

tated on a gentle layer of air forced through a porous grid; this

setup was previously described in [26,27]. By reducing basal

friction, such that interparticle forces dominate, particles are

free to explore their cages and sample available configurations

under gentle perturbations. We randomized particle positions

within their cage by sweeping a turbulent airflow across the

upper surface of the packing [see Fig. 1(a)]; time was mea-

sured in units of these tr = 20 s randomization sweeps. We

explored cage sizes and separations as a function of density φ

by uniaxially compressing the system in discrete increments

of δφ/φ = 6 × 10−4, moving one boundary with a stepper

motor. Each of the four boundaries was laser cut from acrylic

sheets. The particles along both the moving boundary and the

static boundary opposite were pinned to suppress large-scale

crystal rearrangements.

Particle positions and the network of interparticle forces

were imaged using a single camera and two light sources: an

unpolarized red LED light for the positions and a circularly

polarized green LED light for the photoelastic visualization

of stresses [see Fig. 1(b)]. We located the centroid of each

particle using the convolution of the red channel of the image

with a predefined mask matching the particle size [28,29];

this allowed us to determine locations within approximately

0.1 pixel (approximately equal to 1
250

RL) precision. Because

we are studying well-defined crystal configurations, for which

all particle displacements are at least an order of magnitude

smaller than the particle size, we were able to bypass tra-

ditional particle-tracking algorithms and their caveats. Each

particle position was instead determined from the first image,

hand checked for completeness, and then used as a reference

position for subsequent images. Within these images, the sole

particle located within RL of the reference particles was at-

tached to its trajectory. To minimize edge effects, particles

within 4RL of the walls were discarded from the data set,

leaving Np = 628 particles for our analysis.

III. RESULTS

A. Gardner crossover

We have adapted the protocol of [19] to identify transitions

in the cage dynamics as a function of φ, using overhead air

jets to randomly promote cage exploration rather than sup-

plying a global vibration of the bottom plate. We determine

the cage dynamics at 20 different φ, equally spaced between

φmin = 0.8006 ± 0.0002 (the limit of mechanical stability of

the crystal) and φmax = 0.8162 ± 0.0002 (slightly larger than

φJ , guaranteeing that the Gardner regime is traversed but with-

out activating the out-of-plane buckling mode that develops

deeper into the jammed phase). From an initial state at φmin,

the system is compressed to φmax and then decompressed

stepwise and allowed to equilibrate for t = 100tr at each in-

termediate density. Upon reaching φmin, the system is deemed

reinitialized. We performed a total of ten initializations, shown

schematically in Fig. 2(a).

For each φ, the cage separation distance �AB is obtained

by comparing particle positions between two different initial-

izations A and B, taken at the same φ,

�AB(t ; φ) =
1

N p

N p
∑

i=1

|ri
B(t ) − ri

A(t )|2, (1)

where rα
i (t ) is the position of particle i at time t in initializa-

tion α. The cage size � (within a single initialization A) at a

given φ is obtained from particle displacements after a long

experimental time of 100tr , according to

�(t ; φ) =
D

Np

∑

i=1

N
p |r′A

i,y(t ) − r′A
i,y(0)|2.. (2)

In both cases, the average at each φ over all runs is then

calculated, denoted by 〈·〉. The corrections D and r′ in Eq. (2)

ensure that 〈�〉 = 〈�AB〉 in the vicinity of φmin; they are

experimentally motivated as follows. First, even at φmin the

MSD of a caged particle plateaus at longer times than are

experimentally accessible; we measured this time to be ap-

proximately equal to 1000tr , while our experiments can only

reach 100tr . Because we expect the relative ratio of these

length scales to be constant at low φ, we have rescaled our

measurement of � by the ratio D = 1.2, our estimate of this

ratio [30]. Second, we observed that for φ > φG, histograms

of the (x, y) displacements displayed multiple distinct peaks,

each aligned with the direction of one of the lattice vectors of

the unit cell, rather than being azimuthally symmetric around

zero, as observed for φ < φG. To correct for the biased mo-

tions introduced by the crystalline axes that give rise to these

peaks, we applied a linear transformation to orthogonalize the
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FIG. 2. (a) Schematic representation of the protocol used to determine the cage size � and the mean cage separation �AB via the MSD.

(b) Schematic representation of the protocol used to determine the persistence of interparticle contacts via the force-similarity analysis.

system. Equation (2) therefore defines � as the MSD of the

Gaussian part of the displacement (along the y′ axis) in the

orthogonalized system r′
y and ignores the displacements along

the more-complicated (x′) axis [30].

Figure 3 presents the histograms of � and �AB measured

at various φ. At low φ, the statistical distributions of � and

�AB are nearly identical, which is characteristic of a nor-

mal solid. In contrast, for φ � 0.807 we observe that 〈�〉 <

〈�AB〉, indicating the onset of a Gardner-like regime at φG =
0.807 ± 0.0005. As φ further increases, force chains emerge,

thus identifying the jamming point φJ = 0.8100 ± 0.0005

[Fig. 4(c)]; this value is determined by measuring the average

proportional change of the pixel intensity Ig of the photoelastic

(green) channel above the minimum observed value [30]. Note

that, although we expect � = 0 in the jammed phase, a finite

value is measured; this captures the noise floor of our system

and analysis.

B. Interparticle forces

Having identified a Gardner-like crossover using the par-

ticle displacement data, we now separately consider the

evolution of interparticle forces within each (marginally sta-

ble) state at different φ. We observe changes in the persistence

of the photoelastic fringes [as proxy for interparticle forces;

see Figs. 4(a) and 4(b)], of a given state by compressing

the system to a jammed reference density φref = 0.8147 ±
0.0002, which is slightly above φmax = 0.8127 ± 0.0002, at

which a better imaging is obtained. All values of φ were

measured during a posteriori image analysis and thus do not

necessarily match between the two types of experiments. The

lowest densities for MSD measurements, φmin = 0.8006 and

for force-similarity measurements φmin = 0.8002, are never-

theless identical within measurement error, but the densest

system for MSD measurements, φmax = 0.8162, was signifi-

cantly denser than for force-similarity measurements, φmax =
0.8127. This difference arises from the observation that deep

in the jammed phase, forces become more homogeneous,

thus making it harder to detect changes. Choosing φmax for

force-similarity measurements closer to φJ therefore makes

changes in the fringes more apparent. In both experiments,

φmax is nevertheless above the determined jamming density

φJ = 0.8100. In this context, because the system is arrested

above φJ and the contact network is fully formed, the differ-

ence in φmax is not deemed significant. For systems with few

interparticle contacts, the correlation between fringes is dom-

inated by noise, whereas in well-jammed systems the force

network is completely percolated (due to the crystalline nature

of the system), thus making changes to the force network

insignificant compared to the average interparticle force.

FIG. 3. Side-by-side histograms of the probability density functions of � (magenta, left) and �AB (green, right) measured at each density

φ. Both � and �AB are nondimensionalized using the radius of the large particle RL . At φ < φG (crossover denoted by a gray rectangle),

the histograms of � and �AB agree (in both the mean and width of the distribution), whereas for φ > φG, we see that � < �AB. Above the

jamming point φJ (transition denoted by a gray rectangle), the histograms of � and �AB differ markedly. Histograms 3A and 3B correspond

to the two snapshots presented in Fig. 4.

054901-3



KOOL, CHARBONNEAU, AND DANIELS PHYSICAL REVIEW E 106, 054901 (2022)

(a)

(c)

(b)

FIG. 4. Overlay of two marginally stable states (red and blue)

and their overlap (white) for (a) φ < φG (φ = 0.8068) and (b) φ >

φG (φ = 0.8089). The two states have little overlap for φ < φG,

whereas for φ > φG the two states have a large overlap between their

force network. A movie of overlays with increasing density makes

this point even more saliently [30]. (c) Overlay of 〈�〉 (magenta �)

and 〈�AB〉 (green •) as a function of φ on the top axis and force cor-

relation C (black �) and fringe intensity I (purple �) on the bottom

axis, both as functions of φ. Both � and �AB are nondimensionalized

using the radius of the large particle RL .

Changes in the photoelastic fringes at φref are determined

as follows. We first image the photoelastic fringes of the

initial state I. The system is then decompressed to φmin <

φ < φmax and evolved for 10tr (sufficient for the force network

to randomize) before recompressing to φref and to image the

photoelastic fringes of this final state F . We repeat this proto-

col for 30 equidistant densities within the interval [φmin, φmax].

In all cases, the system is decompressed to φmin before moving

to the next φ to erase any memory of the previous experiment.

The protocol is schematically represented in Fig. 2(b). We

quantify the degree of similarity between the I and F states

for a given φ using a normalized cross correlation of the

photoelastic fringes, taken 10tr apart,

C(φ) =

〈
∑

x,y[Ii(x, y) − I i][Fi(x, y) − F i]
√

∑

x,y[Ii(x, y) − I i]2
∑

x,y[Fi(x, y) − F i]2

〉

,

(3)

with Ii(x, y) the pixel intensity of pixel (x, y) of particle i,

Ii the average pixel intensity of particle i in state I, and the

average 〈·〉 running over all particles in all pairs I and F of

states at a given φ.

Figure 4 shows two superimposed images of force chains:

I (blue) obtained before the air-jet sweeps and F (red) after,

such that white denotes regions where force chains did not

change, while red and blue denote force chains present in

only one of the two images. For φ < φG [Fig. 4(a)] the rare

force chain overlaps (white) indicate that interparticle contacts

remain variable at low φ. In contrast, for φ > φG [Fig. 4(b)]

white regions dominate, indicating that interparticle contacts

persist. Similar images obtained over the full density range

further reveal that force-chain rearrangements are long range,

even though the particle rearrangements are not [30].

Figure 4(c) compares these perspectives, showing 〈�〉 and

〈�AB〉, the measure for interparticle forces 〈Ig〉, and the nor-

malized cross correlation C, all as a function of φ. Note

that we chose the average green channel intensity 〈Ig〉 as a

measure for the interparticle forces because standard force

detection algorithms do not work well on the minute contact

forces present at the onset of jamming. This choice is further

motivated by noting that 〈Ig〉 scales linearly with the applied

load at low loads [30,31]. This plot therefore shows that the

onset of the Gardner-like regime (for which 〈�〉 < 〈�AB〉)
coincides with the onset of the conservation of interparticle

contacts (given by the sharp rise in C) and is distinct from

φJ (defined in the onset of the rise of 〈Ig〉), suggesting that

the force network gets increasingly determined as soon as

φ > φG.

By analogy to what has been reported for numerical sim-

ulations of size-polydisperse particles in otherwise crystalline

systems [12], we expect the distance to jamming to be con-

trolled by particle disorder. Given that all particles were cut

from flat sheets with the same fixed-radius metal cutter [29],

disorder is here expected to be dominated by irregularities

along the disk edges (see Fig. 5). Generalizing the polydis-

persity argument of [12] to this case, we expect the onset of

the Gardner regime to be set by the particles’ dimensionless

deviation from a constant radius

√

φJ − φG ∝ 1 −
r

R
. (4)

Two key features emerge from the image analysis: asphericity

of approximately 1%, superimposed with a surface roughness

of approximately 0.3%. Both quantities are of the same order

of magnitude as the relative distance between the Gardner-

like crossover in and the jamming point for our system,

s =
√

0.810 − 0.807 ≈ 1%. Because our particles were all

cut using the same fixed-radius metal cutter, they have similar

irregularities along the disk edges. A systematic investigation

of particle roughness is therefore not possible for this system

and is left for future consideration.

IV. CONCLUSION

We have shown that small particle irregularities, al-

ways present in experiments but often neglected, in an

otherwise crystalline system exhibit Gardner-physics-like fea-

tures near jamming. Although 2D systems are expected not

to exhibit proper Gardner criticality [13], the finite size

of our system suppresses the long-wavelength fluctuations

that would normally occlude this effect in the thermody-

namic limit, thus preserving some of its physical features.

This choice of system further allowed us to study changes

in the force network of one specific configuration, where

we found experimental evidence correlating the onset of that

regime to the determination of force contacts near jamming.

For the particles we used, the distance from jamming of the

Gardner crossover was similar to the inherent roughness of
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FIG. 5. (a) Micrograph of a single photoelastic particle that is (b) enlarged so as to illustrate the edge detection (blue); the green circle

traces a perfect circle for reference. (c) Fractional deviation of the particle edge r from the average radius R along the circumference.

the particles, a finding consistent with the study of size poly-

dispersity by Charbonneau et al. [12].

Future work should measure the role of irregularities

directly, perhaps through the printing of particles with system-

atically controlled roughness. This work motivates delving

further into the influence of particle roughness on a mi-

cromechanical level. Whereas surface roughness has been

investigated on a macroscopic level, such as for relating sur-

face roughness and friction in glass spheres (e.g., [32]), we

showed that roughness could also influence interactions on a

microscopic level. This finding raises questions about what

signatures of frictional jamming found for smooth particles

[33] match those needed to describe, more realistic, rough

particles [34]. In this context, including geometrical asperi-

ties [35] in numerical simulations could provide particularly

invaluable insight.

Data associated with this work are available from Dryad

[36].
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