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We report experimental evidence of a Gardner-like crossover from variable to persistent force contacts in
a two-dimensional bidisperse granular crystal by analyzing the variability of both particle positions and force
networks formed under uniaxial compression. Starting from densities just above the freezing transition and for
variable amounts of additional compression, we compare configurations to both their own initial state and to
an ensemble of equivalent reinitialized states. This protocol shows that force contacts are largely undetermined
when the density is below a Gardner-like crossover, after which they gradually transition to being persistent,
being fully so only above the jamming point. We associate the disorder that underlies this effect with the size
of the microscopic asperities of the photoelastic disks used, by analogy to other mechanisms that have been

previously predicted theoretically.
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I. INTRODUCTION

Granular materials differ from elastic solids in their
response to external forces: Rather than homogeneously
supporting an applied load, the forces are transmitted by
a sparse percolating network of particles [1-5]. If inter-
particle contacts are allowed to break and the granular
material yields, the topology of the force network changes
even if no particle-scale rearrangement takes place [6,7].
By contrast, if contacts are preserved, cyclic (un)loading does
not affect the structure of the force network. While recent
theoretical and numerical studies suggest the preservation of
contacts might not coincide with the jamming transition [8,9],
it is yet to be experimentally verified whether such a distinc-
tion exists.

The distinction between the onset of contact memory and
jamming is reminiscent of the critical transition reported for
certain amorphous solids and crystals of slightly polydis-
perse particles [10-16]. The associated Gardner transition
is often depicted using an energy landscape roughened by
a hierarchy of metastable basins. Outside of the Gardner
regime, the energy scales are well separated from the land-
scape roughness and the system responds elastically [17].
By contrast, within the Gardner regime, the landscape rough-
ness gives rise to easier pathways to escape from marginally
stable subbasins and thus to minute structural rearrangements
(much smaller than the particle scale) that result in a different
spatial distribution of contact forces at jamming [12,18].

This landscape roughness in the Gardner phase also leaves
a dynamical signature. Outside the Gardner regime, the long-
time mean square displacement (MSD) A of the constituent
particles plateaus at a value that depends on the particle cage
size (and thus density or pressure for a hard-sphere system)
[8]. By contrast, within the Gardner regime, particles cannot
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effectively sample the landscape over accessible timescales,
which results in a MSD that does not saturate with time. Its
asymptotically long-time value can nevertheless be estimated
from the distance A p between two system copies A and B
that started from the same reference configuration at a density
below the Gardner regime and then evolved along differ-
ent stochastic trajectories. One can thus define the Gardner
regime as the density for which A < Aup at (sufficiently)
long times. This was first shown experimentally in a granular
glass former by Seguin and Dauchot [19], who captured a
signature of Gardner physics in the dynamics of a vibrated,
two-dimensional (2D), disordered packing of granular disks.
More recently, Xiao et al. [20] found signatures of Gardner
physics in quasithermal (air-fluidized) star-shaped particles.
However, the corresponding contact force network has not
been observed experimentally, nor have the factors that con-
trol the distance of the Gardner transition to jamming been
assessed [12].

In this article we investigate the crossover from variable to
persistent contacts in a granular crystal (see Fig. 1). We find
that this transition is strongly analogous to that predicted by
Gardner physics, is clearly distinct from the jamming tran-
sition, and the distance between the two appear here to be
controlled by the scale of the microscopic asperities of the
experimental disks.

II. METHODS

Despite numerical studies of ultrastable glasses [22]
and polydisperse crystals [12] which successfully suppress
particle-scale rearrangements to reveal the Gardner regime,
it remains an open challenge to translate these numerical
protocols for generating ultrastable glasses to experiments.
We study instead marginally stable states generated from a
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FIG. 1. (a) Schematic of the experimental setup (side view), with
the height of the air layer not to scale. (b) Typical image (top view)
from which the particle positions (red channel) and force transmis-
sion (cyan channel) are extracted. The hexagon marks an H1 unit cell
[21].

well-defined 2D crystalline packing to suppress rearrange-
ments via an alternative means. We selected the H; crystal
symmetry, containing a unit cell of three large and six small
disks (see Fig. 1), from among those identified in [21], for hav-
ing no basis vectors aligned with the compression axis. This
choice thereby limits the putative contribution of low-energy
local buckling excitations [15,23-25] and focuses the dynam-
ics on the quenched disorder that arises through variability
in particle size and surface roughness [12]. We found that
this crystal successfully suppresses rearrangements; when one
does occur, the system can readily be reinitialized. Although
the resulting crystalline axes create an additional coordinate
system that is neither orthogonal nor aligned with the natural
axes of the apparatus (see Fig. 1), we are able to account for
these effects during the data analysis.

We performed our experiments on a single-layer packing
of bidisperse photoelastic disks (Ngs = 507 small disks with
Rsg = 5.5 mm and Ny = 273 large disks with R, = 7.7 mm,
Vishay PhotoStress PSM-4) with a reflective back layer levi-
tated on a gentle layer of air forced through a porous grid; this
setup was previously described in [26,27]. By reducing basal
friction, such that interparticle forces dominate, particles are
free to explore their cages and sample available configurations
under gentle perturbations. We randomized particle positions
within their cage by sweeping a turbulent airflow across the
upper surface of the packing [see Fig. 1(a)]; time was mea-
sured in units of these 7, = 20 s randomization sweeps. We
explored cage sizes and separations as a function of density ¢
by uniaxially compressing the system in discrete increments
of 8¢/¢ =6 x 10~*, moving one boundary with a stepper
motor. Each of the four boundaries was laser cut from acrylic
sheets. The particles along both the moving boundary and the
static boundary opposite were pinned to suppress large-scale
crystal rearrangements.

Particle positions and the network of interparticle forces
were imaged using a single camera and two light sources: an
unpolarized red LED light for the positions and a circularly
polarized green LED light for the photoelastic visualization
of stresses [see Fig. 1(b)]. We located the centroid of each
particle using the convolution of the red channel of the image
with a predefined mask matching the particle size [28,29];
this allowed us to determine locations within approximately
0.1 pixel (approximately equal to 5:-R;) precision. Because

250
we are studying well-defined crystal configurations, for which

all particle displacements are at least an order of magnitude
smaller than the particle size, we were able to bypass tra-
ditional particle-tracking algorithms and their caveats. Each
particle position was instead determined from the first image,
hand checked for completeness, and then used as a reference
position for subsequent images. Within these images, the sole
particle located within R; of the reference particles was at-
tached to its trajectory. To minimize edge effects, particles
within 4R; of the walls were discarded from the data set,
leaving N, = 628 particles for our analysis.

III. RESULTS

A. Gardner crossover

We have adapted the protocol of [19] to identify transitions
in the cage dynamics as a function of ¢, using overhead air
jets to randomly promote cage exploration rather than sup-
plying a global vibration of the bottom plate. We determine
the cage dynamics at 20 different ¢, equally spaced between
Pmin = 0.8006 £ 0.0002 (the limit of mechanical stability of
the crystal) and ¢pax = 0.8162 £ 0.0002 (slightly larger than
¢;, guaranteeing that the Gardner regime is traversed but with-
out activating the out-of-plane buckling mode that develops
deeper into the jammed phase). From an initial state at ¢y,
the system is compressed to ¢nax and then decompressed
stepwise and allowed to equilibrate for r = 100¢, at each in-
termediate density. Upon reaching ¢y, the system is deemed
reinitialized. We performed a total of ten initializations, shown
schematically in Fig. 2(a).

For each ¢, the cage separation distance A,p is obtained
by comparing particle positions between two different initial-
izations A and B, taken at the same ¢,

N
1 <
As(t; ) = = > Inf () = O, e

Poi=1

where r{ () is the position of particle i at time ¢ in initializa-
tion «. The cage size A (within a single initialization A) at a
given ¢ is obtained from particle displacements after a long
experimental time of 100¢,, according to

D
A 9) = 3= D IO = P O)F. @)
P =1

In both cases, the average at each ¢ over all runs is then
calculated, denoted by (-). The corrections D and r’ in Eq. (2)
ensure that (A) = (Aup) in the vicinity of ¢pni,; they are
experimentally motivated as follows. First, even at ¢, the
MSD of a caged particle plateaus at longer times than are
experimentally accessible; we measured this time to be ap-
proximately equal to 1000¢,, while our experiments can only
reach 100z.. Because we expect the relative ratio of these
length scales to be constant at low ¢, we have rescaled our
measurement of A by the ratio D = 1.2, our estimate of this
ratio [30]. Second, we observed that for ¢ > ¢, histograms
of the (x, y) displacements displayed multiple distinct peaks,
each aligned with the direction of one of the lattice vectors of
the unit cell, rather than being azimuthally symmetric around
zero, as observed for ¢ < ¢¢. To correct for the biased mo-
tions introduced by the crystalline axes that give rise to these
peaks, we applied a linear transformation to orthogonalize the
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FIG. 2. (a) Schematic representation of the protocol used to determine the cage size A and the mean cage separation Aup via the MSD.
(b) Schematic representation of the protocol used to determine the persistence of interparticle contacts via the force-similarity analysis.

system. Equation (2) therefore defines A as the MSD of the
Gaussian part of the displacement (along the y’ axis) in the
orthogonalized system ry and ignores the displacements along
the more-complicated (x') axis [30].

Figure 3 presents the histograms of A and A4p measured
at various ¢. At low ¢, the statistical distributions of A and
Aup are nearly identical, which is characteristic of a nor-
mal solid. In contrast, for ¢ = 0.807 we observe that (A) <
(Aap), indicating the onset of a Gardner-like regime at ¢ =
0.807 = 0.0005. As ¢ further increases, force chains emerge,
thus identifying the jamming point ¢; = 0.8100 £ 0.0005
[Fig. 4(c)]; this value is determined by measuring the average
proportional change of the pixel intensity I, of the photoelastic
(green) channel above the minimum observed value [30]. Note
that, although we expect A = 0 in the jammed phase, a finite
value is measured; this captures the noise floor of our system
and analysis.

B. Interparticle forces

Having identified a Gardner-like crossover using the par-
ticle displacement data, we now separately consider the
evolution of interparticle forces within each (marginally sta-
ble) state at different ¢p. We observe changes in the persistence
of the photoelastic fringes [as proxy for interparticle forces;
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see Figs. 4(a) and 4(b)], of a given state by compressing
the system to a jammed reference density ¢rs = 0.8147 £
0.0002, which is slightly above ¢, = 0.8127 = 0.0002, at
which a better imaging is obtained. All values of ¢ were
measured during a posteriori image analysis and thus do not
necessarily match between the two types of experiments. The
lowest densities for MSD measurements, ¢, = 0.8006 and
for force-similarity measurements ¢y, = 0.8002, are never-
theless identical within measurement error, but the densest
system for MSD measurements, ¢n.x = 0.8162, was signifi-
cantly denser than for force-similarity measurements, @p.x =
0.8127. This difference arises from the observation that deep
in the jammed phase, forces become more homogeneous,
thus making it harder to detect changes. Choosing ¢max for
force-similarity measurements closer to ¢, therefore makes
changes in the fringes more apparent. In both experiments,
®max 1 nevertheless above the determined jamming density
¢y = 0.8100. In this context, because the system is arrested
above ¢; and the contact network is fully formed, the differ-
ence in ¢m,x is not deemed significant. For systems with few
interparticle contacts, the correlation between fringes is dom-
inated by noise, whereas in well-jammed systems the force
network is completely percolated (due to the crystalline nature
of the system), thus making changes to the force network
insignificant compared to the average interparticle force.

0.81
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¢

FIG. 3. Side-by-side histograms of the probability density functions of A (magenta, left) and A4 (green, right) measured at each density
¢. Both A and A,p are nondimensionalized using the radius of the large particle R;. At ¢ < ¢ (crossover denoted by a gray rectangle),
the histograms of A and A,p agree (in both the mean and width of the distribution), whereas for ¢ > ¢g, we see that A < A,p. Above the
jamming point ¢, (transition denoted by a gray rectangle), the histograms of A and A, differ markedly. Histograms 3A and 3B correspond

to the two snapshots presented in Fig. 4.
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FIG. 4. Overlay of two marginally stable states (red and blue)
and their overlap (white) for (a) ¢ < ¢g (¢ = 0.8068) and (b) ¢ >
¢ (¢ = 0.8089). The two states have little overlap for ¢ < ¢g,
whereas for ¢ > ¢ the two states have a large overlap between their
force network. A movie of overlays with increasing density makes
this point even more saliently [30]. (c) Overlay of (A) (magenta H)
and (A,p) (green o) as a function of ¢ on the top axis and force cor-
relation C (black A) and fringe intensity / (purple V) on the bottom
axis, both as functions of ¢. Both A and A 3 are nondimensionalized
using the radius of the large particle R, .

Changes in the photoelastic fringes at ¢r.; are determined
as follows. We first image the photoelastic fringes of the
initial state Z. The system is then decompressed t0 @min <
¢ < ¢Pmax and evolved for 10z, (sufficient for the force network
to randomize) before recompressing to ¢.s and to image the
photoelastic fringes of this final state 7. We repeat this proto-
col for 30 equidistant densities within the interval [@min, @max]-
In all cases, the system is decompressed to ¢y, before moving
to the next ¢ to erase any memory of the previous experiment.
The protocol is schematically represented in Fig. 2(b). We
quantify the degree of similarity between the 7 and F states
for a given ¢ using a normalized cross correlation of the
photoelastic fringes, taken 10z, apart,

T y) = Tl Fitx, y) — Fil >
T ) — TR Y, [ Fry) — Fl?

C(¢)=<

3)
with Z;(x, y) the pixel intensity of pixel (x,y) of particle i,
T, the average pixel intensity of particle i in state Z, and the
average (-) running over all particles in all pairs Z and F of
states at a given ¢.
Figure 4 shows two superimposed images of force chains:
T (blue) obtained before the air-jet sweeps and F (red) after,
such that white denotes regions where force chains did not
change, while red and blue denote force chains present in
only one of the two images. For ¢ < ¢¢ [Fig. 4(a)] the rare
force chain overlaps (white) indicate that interparticle contacts

remain variable at low ¢. In contrast, for ¢ > ¢¢ [Fig. 4(b)]
white regions dominate, indicating that interparticle contacts
persist. Similar images obtained over the full density range
further reveal that force-chain rearrangements are long range,
even though the particle rearrangements are not [30].

Figure 4(c) compares these perspectives, showing (A) and
(Aap), the measure for interparticle forces (/,), and the nor-
malized cross correlation C, all as a function of ¢. Note
that we chose the average green channel intensity (f,) as a
measure for the interparticle forces because standard force
detection algorithms do not work well on the minute contact
forces present at the onset of jamming. This choice is further
motivated by noting that (/) scales linearly with the applied
load at low loads [30,31]. This plot therefore shows that the
onset of the Gardner-like regime (for which (A) < (Ayp))
coincides with the onset of the conservation of interparticle
contacts (given by the sharp rise in C) and is distinct from
¢, (defined in the onset of the rise of (/;)), suggesting that
the force network gets increasingly determined as soon as
¢ > ¢g.

By analogy to what has been reported for numerical sim-
ulations of size-polydisperse particles in otherwise crystalline
systems [12], we expect the distance to jamming to be con-
trolled by particle disorder. Given that all particles were cut
from flat sheets with the same fixed-radius metal cutter [29],
disorder is here expected to be dominated by irregularities
along the disk edges (see Fig. 5). Generalizing the polydis-
persity argument of [12] to this case, we expect the onset of
the Gardner regime to be set by the particles’ dimensionless
deviation from a constant radius

Jr — g o1 — . )
R

Two key features emerge from the image analysis: asphericity
of approximately 1%, superimposed with a surface roughness
of approximately 0.3%. Both quantities are of the same order
of magnitude as the relative distance between the Gardner-
like crossover in and the jamming point for our system,
s = 4/0.810 — 0.807 ~ 1%. Because our particles were all
cut using the same fixed-radius metal cutter, they have similar
irregularities along the disk edges. A systematic investigation
of particle roughness is therefore not possible for this system
and is left for future consideration.

IV. CONCLUSION

We have shown that small particle irregularities, al-
ways present in experiments but often neglected, in an
otherwise crystalline system exhibit Gardner-physics-like fea-
tures near jamming. Although 2D systems are expected not
to exhibit proper Gardner criticality [13], the finite size
of our system suppresses the long-wavelength fluctuations
that would normally occlude this effect in the thermody-
namic limit, thus preserving some of its physical features.
This choice of system further allowed us to study changes
in the force network of one specific configuration, where
we found experimental evidence correlating the onset of that
regime to the determination of force contacts near jamming.
For the particles we used, the distance from jamming of the
Gardner crossover was similar to the inherent roughness of
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FIG. 5. (a) Micrograph of a single photoelastic particle that is (b) enlarged so as to illustrate the edge detection (blue); the green circle
traces a perfect circle for reference. (c) Fractional deviation of the particle edge r from the average radius R along the circumference.

the particles, a finding consistent with the study of size poly-
dispersity by Charbonneau er al. [12].

Future work should measure the role of irregularities
directly, perhaps through the printing of particles with system-
atically controlled roughness. This work motivates delving
further into the influence of particle roughness on a mi-
cromechanical level. Whereas surface roughness has been
investigated on a macroscopic level, such as for relating sur-
face roughness and friction in glass spheres (e.g., [32]), we
showed that roughness could also influence interactions on a
microscopic level. This finding raises questions about what
signatures of frictional jamming found for smooth particles
[33] match those needed to describe, more realistic, rough
particles [34]. In this context, including geometrical asperi-
ties [35] in numerical simulations could provide particularly
invaluable insight.

Data associated with this work are available from Dryad
[36].
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