Check for
Updates

Effective Performance Issue Diagnosis with
Value-Assisted Cost Profiling

Lingmei Weng

Columbia University

Peng Huang
University of Michigan

Abstract

Diagnosing performance issues is often difficult, especially
when they occur only during some program executions. Profil-
ers can help with performance debugging, but are ineffective
when the most costly functions are not the root causes of per-
formance issues. To address this problem, we introduce a new
profiling methodology, value-assisted cost profiling, and a tool
vProf. Our insight is that capturing the values of variables can
greatly help diagnose performance issues. vProf continuously
records values while profiling normal and buggy program
executions. It identifies anomalies in the values and the func-
tions where they occur to pinpoint the real root causes of
performance issues. Using a set of 15 real-world performance
bugs in four widely used applications, we show that vProf
is effective at diagnosing all of the issues while other state-
of-the-art tools diagnose only a few of them. We further use
vProf to diagnose longstanding performance issues in these
applications that have been unresolved for over four years.

CCS Concepts: » Software and its engineering — Soft-
ware testing and debugging.

Keywords: Debugging; profilers; program analysis

ACM Reference Format:

Lingmei Weng, Yigong Hu, Peng Huang, Jason Nieh, and Jun-
feng Yang . 2023. Effective Performance Issue Diagnosis with Value-
Assisted Cost Profiling. In Eighteenth European Conference on Com-
puter Systems (EuroSys *23), May 8-12, 2023, Rome, Italy. ACM, New
York, NYY, USA, 17 pages. https://doi.org/10.1145/3552326.3587444

1 Introduction

Performance issues are prevalent in deployed systems and are
notoriously difficult to diagnose. To help developers diagnose

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

EuroSys °23, May 8-12, 2023, Rome, Italy

© 2023 Copyright held by the owner/author(s). Publication rights licensed to
ACM.

ACMISBN 978-1-4503-9487-1/23/05...$15.00
https://doi.org/10.1145/3552326.3587444

Jason Nieh

Columbia University

Yigong Hu
Johns Hopkins University

Junfeng Yang

Columbia University

830 void recv_sys_init() {

831 PN

846 recv_n_pool_ free frames = buf pool_get n_pages() / 3;
847

3192 bool recv_scan_log_recs(ulint available _mem, ...) {
3203 bool finished = false;
3348 if (recv_parse_log_recs(checkpoint_ lsn,

3349 store_to_hash, available mem, apply)) {

3355 finished = true;

3356 goto func_exit;

3357 }

3376 }

3388 bool recv_group_scan_log_recs(lsn_t ckpt_lsn, ...) {
3417 ulint available mem = srv_page_size *

3418 (buf_pool_get n_pages() -

3419 (recv_n_pool free frames * srv_buf pool ins));
3424 do { — — function has more
3431 recv_apply_hashed_log_recs(false); than 200 LOC
3439 log.read_log_seg(&end_lsn, start_lsn + RSCAN_SIZE);
3440 } while (end_lsn != start_lsn &&

3441 !recv_scan_log_recs(available mem, ...

Figure 1. A real performance issue in MariaDB (MDEV-21826).

these issues, numerous profilers [4, 18, 20, 22, 26] have been
designed. Unfortunately, in practice, even with mature profil-
ers, it often takes a developer a long time to figure out the root
cause of a performance issue. In a real-world performance
debugging story [27], the developer “spent 5 hours debugging,
and finally moved a single line of code up 10 lines”, which re-
duced the CPU usage by 20x. Although the fix was simple, it
took the developer many hours to find the bug, because the
profiler results suggested the wrong places to investigate.
Such anecdotal examples widely exist. A key reason is that
traditional profilers focus on identifying costly functions.
They are effective when the performance bug happens to be
in the function that takes the most time. However, tricky per-
formance bugs are often caused by improper code logic. The
buggy code itself may be fast and ranked low by profilers, mis-
leading developers to waste effort trying to speed up costly
functions that are necessary and already highly optimized.
Figure 1 shows a real performance issue [9] in the widely
used MariaDB as an example. Based on user-provided logs,
developers suspected that the user’s database caused an out-
of-memory error. Existing profilers report that the function
recv_apply_hashed_log_recs consumes most of the execu-
tion time, but this is not the root cause. From its call count,
developers recognized that this function was called frequently.
This could mean that the function is too costly to be executed
frequently and needs to be further optimized. Alternatively, it
could mean that there is an issue with the calling of the func-
tion. Knowing which answer is correct is difficult when the
root cause is unknown. In this case, digging into and trying

https://doi.org/10.1145/3552326.3587444
https://doi.org/10.1145/3552326.3587444
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3552326.3587444&domain=pdf&date_stamp=2023-05-08

EuroSys "23, May 8-12, 2023, Rome, Italy

to optimize the recv_apply_hashed_log_recs function would
waste huge amounts of time since it has hundreds of lines of
code and 20 branches. The developers ended up not doing
that and instead focused on the loop that calls the function.
Nevertheless, they still ended up wasting significant time
investigating the loop conditional and the call chains from
recv_scan_log_recs to recv_parse_log_recs. Each function
was complex, leading to a wild goose chase.

The real root cause is inside functions recv_sys_init and
recv_group_scan_log_recs. recv_sys_init incorrectly sets
variable recv_n_pool_free_frames to one-third of the buffer
pool (line 846). It is used in recv_group_scan_log_recs to cal-
culate variable available_mem(line 3417),incorrectly setting it
to zero. As aresult, recv_scan_log_recs returns false, causing
wasteful computation in the loop (line 3441). The problem was
not in the loop where the developers spent significant time,
but in code before the loop. Developers missed focusing on the
crucial beginning of the function recv_group_scan_log_recs
before the loop, as profilers provided no indication that this
function was costly or important. Eventually, developers took
20 days to find the root cause, with the user being actively
involved, even when their initial suspicions of an out-of-
memory error turned out to be correct.

Our insight is that existing profilers’ gaps are often caused
by the lack of program data-flow information in the profiling
result. Information such as the length of an array, the value
of a variable, and the history of a variable’s values during the
execution is indispensable in debugging. Indeed, we observe
that, in debugging complex performance issues, developers
often have to take additional steps including adding ad-hoc
printf statements, re-compiling and re-executing the soft-
ware, and attaching a debugger like gdb, to obtain data-flow
information to guide performance debugging.

Based on this insight, we introduce a new profiling method-
ology, value-assisted cost profiling. Its basic idea is to not only
measure execution costs during profiling, but also contin-
uously record the values of program variables to provide
data-flow information. The recorded values are then used
to distinguish anomalous costly functions from necessarily
costly functions to localize the root cause in the code.

We build a tool vProf by modifying the popular gprof [20]
profiler to realize value-assisted cost profiling, addressing
three key challenges. First, vProf needs to decide which vari-
ables to record and how to locate them at runtime. Simply
recording all variables and the complete program data-flow
would incur unacceptable overhead, and invalidate the profil-
ing results. Second, vProf needs to record variables efficiently
in a manner that aligns well with other profiling information
soit can be useful. Third, vProf needs to use the recorded value
information to improve the diagnosis of performance issues.

vProf decides which variables to record by using static anal-
ysis to identify the types of program variables that commonly
influence performance. vProf uses an LLVM [29] analysis
pass to scan the source of the target program to identify these

Lingmei Weng, Yigong Hu, Peng Huang, Jason Nieh, and Junfeng Yang

variables, typically generating hundreds to thousands of can-
didate variables.

vProf not only needs to identify which variables to record,
but also reliably locate them at runtime. The runtime location
of a variable, especially a local variable, can change during
program execution, such as being stored in different registers,
pushed onto the stack, or becoming dead or out of scope. Like
gprof, vProf presumes debugging information is available in
the target program executable, which it statically analyzes to
obtain variable scope and location information. This is used
to record the variable values at runtime.

vProf records variables efficiently at runtime in a manner
aligned with other profiling information by leveraging the
same mechanism it uses for measuring execution costs. Like
existing profilers such as gprof, to minimize the overhead,
vProf uses program counter (PC) sampling to measure execu-
tion costs per function. It sets a periodic alarm such that at each
alarm signal, vProf records the current PC to identify which
function is executing. The executing cost of a function is de-
termined based on how often PC samples occur in its address
range. vProf leverages this same approach to passively record
variable values at each alarm signal, which we refer to as value
samples. vProf not only records value samples for variables ac-
cessible at the current PC, but also virtually unwinds the stack
to record additional value samples in callers of the current ex-
ecution context, as well as the PCs at which they are accessed.
vProf introduces efficient data structures so that the variables
accessible at a given PC can be quickly identified and recorded.

vProf improves the diagnosis of performance issues by in-
troducing a novel post-profiling analysis algorithm that com-
bines value samples with traditional profiling execution costs.
Using only value samples is insufficient for performance de-
bugging, as they can be noisy. The value samples themselves
also do not carry any information about costs, while costs are
central to performance reasoning. Instead, vProf uses value
samples to calibrate raw execution costs in two ways.

First, in addition to computing function execution cost
based on PC sampling, vProf uses value samples recorded
with virtual stack unwinding to calculate a variable-based
function execution cost based on how often value samples oc-
cur in functions. The idea is that a function that has variables
of interest that calls other functions should be considered
more carefully even if its own execution time may not be that
high. This is done by having the caller effectively inherit the
execution cost of its callees, thereby making it appear more
costly. A function that does not have variables of interest
will have no value samples, so its variable-based execution
cost will be zero. vProf assigns each function a raw execution
cost which is the greater of the execution cost based on PC
sampling and the variable-based execution cost.

Second, vProf computes a discount ratio for each profiled
function based on the degree to which its associated value
samples are anomalous. Anomalous values are determined by

Effective Performance Issue Diagnosis with Value-Assisted Cost Profiling

comparing value samples between normal and buggy execu-
tions of a target program. The more anomalous a function’s
variable values, the lower the function’s discount ratio will be.
vProf then weighs a function’s raw execution cost by one mi-
nus its discount ratio. Discounting demotes necessarily costly
functions and promotes suspicious, lower-ranked functions.
vProf further identifies the basic blocks in which anomalous
values occur to help developers localize the root cause of a
performance issue.

We evaluated the effectiveness of vProf against other state-
of-the-art tools, including gprof, perf [18], COZ [12], and
statistical debugging [40]. We collected and reproduced 15
real-world performance bugs in large server applications, in-
cluding Apache, MariaDB, PostgreSQL and Redis. We then
used these various tools to attempt to diagnose the bugs. vProf
ranks the root cause function first for seven of the bugs and
within the top five for all 15 bugs. It significantly outperforms
the other tools, which at best ranked the root cause function
within the top five for at most six of the bugs.

We show that vProf has low profiling overhead, does not
require explicit instrumentation or code changes to target
programs, and provides a similar usage model to gprof. These
properties make vProf a practical tool to assist developers to
debug tricky performance issues. In fact, we used vProf to
diagnose several previously unresolved performance bugs
in MariaDB and Redis, which have been confirmed by their
developers, demonstrating its usefulness in practice.

2 Overview of vProf

Figure 2 shows the workflow of vProf, which can be decom-
posed into four steps. First, a developer runs vProf’s schema
generator to extract a list of variables in the target program to
monitor during profiling. This schema generator uses static
analysis on the program source code to automatically identify
variables in instructions that likely influence a program’s
performance, such as global variables, variables in condi-
tional expressions, and call parameters, as discussed in Sec-
tion 3. It records the definition locations of all identified vari-
ables. For example, in Figure 1, vProf identifies the variables
recv_n_pool_free_frames and available_memfor monitoring,
the former since it is a global variable and the latter since it
appears in a conditional expression as a call parameter of the
function recv_scan_log_recs (line 3441).

Second, the developer compiles the target program with
the -pg flag, the same as using gprof, so that the resulting ex-
ecutable contains DWARF debugging information [15]. This
is used to translate the generated schema into runtime lo-
cation information for the variables of interest. For exam-
ple, in Figure 1, the global variable recv_n_pool_free_frames
is accessed via its memory address, but the local variable
available_menm is accessed from a register determined by the
compiler. vProf uses the debugging information to determine
what register to use to access available_mem.

EuroSys "23, May 8-12, 2023, Rome, Italy

cost histogram Il

value samples

§ Profiler App §
i compile wity source i
i

buggy : |

input Schema
Generator

i buggy profile

normal normal profile

input

Discount Calculator
Cost Attributor

function adjusted cost | variable, bb, pattern ! Root Cause Classifier 3

recv_group_s available_mem, bb3, ! - I
can_log_recs o2 WrongConstraint <:IL Post-Profiling Analyzer |

Figure 2. Workflow of vProf.

Third, the developer runs and profiles the program exe-
cutable. The same - pg flag used for compilation alters linking
to link the executable with the vProf profiling library. At
the start of program execution, the library reads the gener-
ated schema into memory and sets periodic alarms, using the
profil system call. At each alarm signal, vProf collects the PC
and value samples, the latter by using the schema to determine
which variables are accessible at the current PC and where to
read their values. vProf also performs bounded virtual stack
unwinding to record value samples in the callers of the current
function. The developer is expected to profile the program at
least twice using vProf, one to produce a profile of a normal
execution and another to produce a profile of a buggy execu-
tion. Obtaining a normal execution is usually not difficult, as
it often only requires executing the program with a smaller
workload or less complex command. For example, in Figure 1,
variable recv_n_pool_free_frames will have some constant
value for each execution of the program, but the value will
be different for a normal versus buggy execution. Similarly,
variable available_mem will have some nonzero value for a
normal execution, but be zero for a buggy execution.

Finally, the developer runs the vProf post-analysis tool, us-
ing the normal execution profile of the program as a baseline
to compare against the buggy execution profile. PC samples
are used to determine the execution cost of each function. If
the alarm interval is t and the PCs that lie in the address range
of function f are sampled n times during the profiling ses-
sion, then the execution cost of f is calculated as t X n. Value
samples are grouped based on the functions where they occur
and used to calculate a variable-based execution cost and a
discount ratio to adjust the cost of each function. The discount
ratio is based on a comparison of the value samples from the
normal and buggy profiles, with larger discounts for more sim-
ilar value distributions between the profiles. vProf automat-
ically classifies bug patterns based on the value samples and
identifies where anomalous value samples occur to pinpoint
suspicious basic blocks. For example, in Figure 1, function
recv_group_scan_log_recs will be assigned a variable-based
execution cost and have no discount to its execution cost be-
cause of the presence of anomalous values for its variables
recv_n_pool_free_frames and available_mem. On the other
hand, function recv_apply_hashed_log_recs will have a sub-
stantial discount to its execution cost. The end result is that

EuroSys "23, May 8-12, 2023, Rome, Italy

vProf will rank the former ahead of the latter, alerting the
developer to the correct root cause of the performance issue.

3 Schema Generator

To enable value-assisted cost profiling, we need to decide
what variables to monitor during profiling. If a variable key
to a performance issue is not monitored, vProf’s effectiveness
will become similar to conventional profiling. To address this
challenge, we use program analysis to systematically identify
the types of variables that commonly influence performance.
Then, we make value recording efficient enough to allow
vProf to sample many variables.

3.1 Source Code Static Analysis

vProf leverages LLVM to automatically identify the variables
to monitor. For C/C++ programs, it uses the widely used Clang
compiler frontend to parse the target program source code
into LLVM’s language-independent intermediate representa-
tion (IR). For each program source file, LLVM IR provides a call
graph for all functions in the file. vProf introduces a simple
LLVM analysis pass to traverse the call graph and identify
where the variables of interest are defined. vProf identifies
variables that are important to reason about performance
bugs, specifically global variables and local variables from
loops, branches, and function calls. vProf monitors all global
variables in part because most programs contain only a rel-
atively small number of them and they are accessible from
any execution context, making them easy to monitor with
low overhead. vProf is more selective with local variables,
since monitoring all of them would be too costly. For loops,
vProf monitors the induction variables, which can indicate
not only the number of iterations but also timing information.
For example, if an induction variable’s sampled values are
3,6,6,6,6,9 in the buggy profile and 3,6,8 in the normal profile,
it could indicate a performance issue caused by a missing
skipping or breaking condition inside the loop, because the
iteration 6 lasts for a much longer time in the buggy profile.
For branches, vProf monitors all variables in a conditional
expression. For call instructions, vProf monitors all variables
used as call parameters.

vProf typically affords the ability to monitor thousands of
variables, which can include all relevant variables for small
programs. For large programs, to reduce overhead, developers
can limit the variables to monitor to specific components of
the program related to a performance issue, e.g., the buffer
pool component in MariaDB whose source code locates in
storage/innobase/buf. vProf will then only extract variables
in source files of the specific component. If the restricted value
recording does not reveal the performance bug, developers
can iteratively choose another component to monitor.

The analysis pass returns a schema showing where each
variable being monitored is defined in the source code. Each
variable is a schema entry in the following format:

Lingmei Weng, Yigong Hu, Peng Huang, Jason Nieh, and Junfeng Yang

file_path, function, line, variable, type, tags

file_path is the file path of the source code file that con-
tains the variable definition. function is the name of the func-
tion that contains the variable definition if it is a local vari-
able or the keyword #global if it is a global variable. line
is the line number of the source code file where the vari-
able definition is located. variable is the name of the vari-
able. type is the type of the variable. tags is a set of vProf-
specific tags that indicate how the variable is used, such
as loop, branch, and args. For example, vProf monitors the
variables recv_n_pool_free_frames andavailable_meminFig-
ure 1, which are represented in the schema shown in Figure 3.
recv_n_pool_free_frames has tags equal to none since it is
not used in any loop induction variables, branch conditional
expressions, or call parameters. available_memhas tags equal
to cond|args since it is used in conditional expressions and
call parameters.

3.2 Binary Static Analysis

vProf transforms the schema to automatically identify the
runtime locations of variables to monitor, which we refer to
as variable metadata. Once the developer compiles the target
program with the -pg flag, the program executable contains
DWAREF debugging information. vProf simply uses a DWARF
parsing library [8] to search the debugging information to
retrieve the scope and location information for each variable
in the schema. vProf outputs a new schema of variable meta-
data, where each entry represents a contiguous range of PCs
in which the variable can be accessed. Each entry of variable
metadata is in following format:
pc_start:pc_end:location:offset:size:basic_type_ptr

pc_start to pc_end is the range of PCs for which the entry is
valid. location indicates the location in which the variable
can be accessed, such as a register. of fset is either the offset
at which to access a variable in a register or the address at
which to access the variable in memory. size is the size of
the variable. basic_type_ptr is a flag to indicate whether the
variable is a pointer to a basic type, such as a char or int, in
which case vProf can dereference the pointer to obtain the ac-
tual value that is stored. vProf may generate multiple entries
of variable metadata for each variable.

For example, Figure 3 shows some of the metadata en-
tries generated for the variables in Figure 1. The entry for
recv_n_pool_free_frames indicates it is accessible in mem-
ory at address 21316200, 8 bytes in size, and not a basic type
pointer. The entries for available_mem indicate that it is ac-
cessible in register rbx, 8 bytes in size, and not a basic type
pointer. Its offset is zero as it uses all bits of the 64-bit register.

DWAREF debugging information may be incomplete, in that
a variable may be accessible at a given PC but the information
is not captured in the debugging information. For example,
the entries for available_memin Figure 3 cover two separate
PC ranges in the function recv_group_scan_log_recs. The

Effective Performance Issue Diagnosis with Value-Assisted Cost Profiling

source code

EuroSys "23, May 8-12, 2023, Rome, Italy

translated schema

bool recv_group_scan_log_recs(
1sn_t checkpoint lsne —£
ulint available mem = srv_page_size
* (buf_pool_get_] es()

/path/to/logOrecv.cc, recv_group_scan_log_recs, 3388, checkpoint_Isn, Isn_t, args

0x9bab33:0x9bad3b:rdi:0:8:False

- (recv_n_pool free mes

* srv_buf_pool_in nce H

/path/to/logOrecv.cc, recv_group_scan_log_recs, 3416, available_mem, ulint, cond|args

\\\\\OXQbaCOO:0x9bace0:rbx:0:8:False
O0x9bacea:0x9bacf7:rbx:0:8:False

PCToVar Table
index VariableArray index
the tail of accessible

/path/to/log0Orecv.cc, #global, 112, recv_n_pool_free_frames, ulint, None
NOx9b0e30:0x9bcbbb:addr:21316200:8:False

hash (PC) variables from the PC)
VariableArray
0x9bab33 311506 var index = 3804 3804 [checkpoint_lsn, 0x9bab33:0x9bad3b:rdi:0:8:False, link = ..
0x9bacc3 311531 var_index = 3859 3859 [available_mem, 0x9bac00:0x9bacel:rbx:0:8:False, link = 3804

3860 |[available mem, Ox9bacea:0x9bacf7:rbx:0:8:False, link = 3848

0x9bacea 311533 var_index = 3860

Figure 3. vProf generates variable metadata and initializes profiler data structures from schema for the example in Figure 1. Highlighted

entries indicate overlap in PC ranges with other variables.

first entry includes the variable definition and the second
entry includes its use in the conditional expression. However,
there is a gap between them, likely because available_mem is
pushed onto the stack due to the call to recv_parse_log_recs,
and thus no longer accessible in a register. Efficiently deter-
mining the exact address on the stack from which to read
such variables is a challenge. For simplicity, vProf assumes
that a variable is not accessible at a given PC if there is no
explicit DWARF debugging information that includes the PC
to indicate its runtime location.

3.3 Profiler Intialization

Since profiling is done using PC sampling, we want an effi-
cient mechanism to determine what value samples to record
at a given PC. vProf accomplishes this by transforming the
variable metadata into a more efficient representation used for
profiling. vProf introduces two data structures in the profiler,
a PC hash table, PCToVarTable, and an array for the variable
metadata, VariableArray, shown in the example in Figure 3.
The data structures are connected via a var_index field in
each entry of PCToVarTable and a link field in each entry
of VariableArray. By default, PCTovarTable is allocated to be
half the size of the text section of the program being profiled.

Before executing the program to be profiled, vProf reads
the variable metadata from a file. For each metadata entry,
vProf allocates an entry in VariableArray for the metadata
and hashes each PC in the range of the metadata to an entry
in PCToVarTable, which it fills in. For example, Figure 3 shows
that the variable checkpoint_1sn is accessible starting at PC
value 0x9bab33. vProf allocates the VariableArray entry at in-
dex 3804 to checkpoint_1sn,and fillsin multiple PCToVarTable
entries, including 311506 for PC 0x9bab33, whose var_indexis
set to 3804. Collisions from hashing different PCs to the same
element of PCToVarTable are handled using separate chaining.

Multiple variables may be accessible at a given PC. If vProf
finds an entry in PCToVarTable already filled in for a given

PC, that means that some other variable metadata entry has
an overlapping PC range with the one currently being pro-
cessed. If the entry in PCTovarTable is already filled, vProf
saves the var_index from PCToVarTable to the link field of
the current VariableArray entry for the variable metadata
currently being processed. It then updates the PCTovarTable
entry with the index of the current VariableArray entry. In
this way, multiple VariableArray entries are chained together
to arelated PCToVarTable entry.

For example, in Figure 3, the var_index of PCToVarTable
entry 311531 for PC 0x9bacc3 stores the index 3804 for the
checkpoint_lsn VariableArray entry since for PC 0x9bacc3
falls within the PC range for checkpoint_1sn. When process-
ing the variable metadata for available_mem, PC 0x9bacc3 also
falls within the PC range. The link field of the available_mem
VariableArray entry is thus set to 3804. The var_index of
PCToVarTable entry 311531 is then updated to the index 3859
for the available_mem VariableArray entry.

Note that Figure 3 shows the state of PCToVarTable and
VariableArray before processing the variable metadata for
recv_n_pool_free_frames, a global variable that is accessible
atall PCs shown in PCToVarTable. For example, after that vari-
able metadata is processed, the var_index of PCToVarTable
entry 311531 will be updated to the index for a VariableArray
entry for recv_n_pool_free_frames, which in turn will have
its link set to 3859.

After this process, the metadata of all variables is stored in
VariableArray and accessible by PC from PCToVarTable. vProf
also stores the mapping from the schema to variableArray in
alayout Log, which is used later for post-profiling analysis.

4 Value Sample Recording

vProf’s program analysis and data structure design make it
straightforward to efficiently record value samples during pro-
filing. vProf uses PCToVarTable and VariableArray together
with a SampleArray to store value samples. When the alarm

EuroSys "23, May 8-12, 2023, Rome, Italy

fires and the PC is sampled, vProf reads all accessible vari-
ables according to the metadata. It looks up the sampled PC
in PCToVarTable and follows its var_index and subsequent
link fields in the chain of VariableArray entries. For each
VariableArray entry in the chain, vProf checks that the sam-
pled PC falls within its PC range, in which case it accesses the
variable value and stores it, as well as the sampled PC, to a
new SampleArray entry.

For example, when profiling the program shown in Figure 3,
if the alarm fires and the PC sampled is 0x9bacc3, vProf will
look up the PCTovarTable and follow its var_index. We assume
for this example that the PCToVarTable and VariableArray
have been updated to include the variable metadata for the
global variable recv_n_pool_free_frames. Thus, var_index
willbe theindextoa recv_n_pool_free_framesVariableArray
entry. vProf will record the recv_n_pool_free_frames value
in a new SampleArray entry. vProf will then follow the link to
VariableArray entry 3859 and record the available_memvalue
in a new SampleArray entry. vProf will then follow the link
to VariableArray entry 3804 and record the checkpoint_1lsn
in a new SampleArray entry.

Checking that the sampled PC falls within the variable
metadata’s PC range is necessary as it is possible for this
not to be true due to the manner in which VariableArray
entries are linked together when their PC ranges overlap,
especially since the property is not transitive. Since most vari-
ables are local with limited PC ranges only accessible within
their respective functions, we do not expect to encounter
many VariableArray entries linked to a PCToVarTable entry
which are not accessible.

SampleArray entries are chained together with their corre-
sponding VariableArray entry. Each SampleArray entry has a
link field. Each VariableArray entry has a sample_tail field,
which is used to record the index of the most recently recorded
SampleArray entry for that variable. When a value is stored
to anew SampleArray entry, its link is set to the sample_tail
from the respective VariableArray entry,and the sample_tail
is updated to the index of the new SampleArray entry.

vProf’s passive value recording approach relies on having
PC samples occurring within the PC range of the variables
being monitored. For functions that do not run much, vProf
may not get enough value samples. This can be an issue espe-
cially for callers with time consuming callees. For example, in
Figure 1, the root cause function recv_group_scan_log_recs
calls the costly function recv_parse_log_recs, so vProf al-
most always only observes PCs from recv_parse_log_recs
when it samples the PC. Thus, vProf has few samples for
local variables like end_1sn and available_mem in the root
cause function, which are not accessible in the PC range of
recv_parse_log_recs based on the DWARF debugging infor-
mation available. A related shortcoming of gprof, on which
vProf'is based, is that when a target program calls into a dy-
namic library, gprof does not record PC samples since they
are outside the range of the target program.

Lingmei Weng, Yigong Hu, Peng Huang, Jason Nieh, and Junfeng Yang

To address this issue, vProf introduces virtual stack un-
winding. For each sampled PC, it unwinds the call stack by a
bounded depth (default 3) and records variables accessible at
the caller PC, which is PC before the call instruction. Specifi-
cally, we restore the registers in each step and begin the value
sampling using the caller PC. We also add a field stack_depth
in the SampleArray entry to indicate how many stack layers
are unwound before the sample is recorded. The stack frames
are restored to their normal state before virtual unwinding at
the end of the sampling. Virtual stack unwinding allows vProf
to obtain many more value samples to improve the fidelity of
profiling. For example, in Figure 1, virtual stack unwinding
results in value samples for recv_n_pool_free_frames and
available_memin recv_group_scan_log_recs even when the
PC sampled occursin recv_apply_hashed_log_recs.Note that
virtual stack unwinding will generate no additional samples
if there are no variables of interest accessible at the caller PCs.

vProf dumps the profiling data to disk at program exit. It
saves PC samples and variable samples separately. The sam-
ples are then processed as part of post-profiling analysis.

5 Post-profiling Analysis

After value sample recording, vProf analyzes the data files
from both normal and buggy executions. The data files in-
clude the PC samples, which gprof refers to as the PC cost
histogram, value samples, and layout mapping used to con-
nect value samples to variable information. vProf performs
two post-profiling analyses. Cost calibration computes raw
execution costs and then adjusts them based on anomalous
value samples to promote suspicious functions in a function
costranking. Bug pattern inference infers potential root cause
patterns to help developers narrow down the root cause.

5.1 Cost Calibration

Traditional profilers only rank functions based on their raw
cost, where a function may be ranked high due to unavoid-
ably costly operations, while the real culprit of a performance
issue is lower in the raw cost rank. vProf calibrates the cost
of functions by increasing the cost of functions that contain
many variables of interest, and decreasing the cost of func-
tions whose variables are not anomalous.

vProf increases the cost of functions with variables of inter-
est by computing an alternative execution cost based on the
frequency of value samples, which we refer to as the variable-
based execution cost. The standard approach to determine the
execution cost of a function using PC sampling is to count the
number of PC samples that lie in the PC range of the function
and multiply it by the alarm interval. Instead of counting PC
samples, vProf determines the variable-based execution cost
by counting the number of value samples with distinct PCs
that lie in the PC range of the function and multiplying it by
the alarm interval. Multiple value samples at the same PC are

Effective Performance Issue Diagnosis with Value-Assisted Cost Profiling

counted as one sample. vProf then uses the maximum of the
two costs as the raw execution cost of the function.

The variable-based execution cost will be higher than the
standard execution cost if the number of value samples with
distinct PCs in a function is higher than the number of PC sam-
ples. This can occur especially due to virtual stack unwinding
if some variables being monitored are accessible within the
function, and the function calls some other function with
higher execution cost. The idea is to use the higher variable-
based execution cost as the function has variables of interest
which could be related to a performance issue. For example,
recv_group_scan_log_recs has a higher variable-based exe-
cution cost than its standard execution cost since variables
being monitored such as available_mem are accessible within
the function and it calls recv_apply_hashed_log_recs. This
will result in it having many more value samples than its own
PC samples because the value samples will occur at the fre-
quency of the PC samples of its more time consuming callee
due to virtual stack unwinding.

vProf decreases the cost of functions whose variables are
not anomalous by introducing a variable-discounter, which
is vProf’s main cost calibration mechanism. It computes a
discount ratio for each sampled variable based on how anoma-
lous are its samples. The less anomalous the samples are, the
greater the discount ratio, meaning that the variable is un-
likely to be contributing to the performance issue. Discount
ratios for variables are aggregated to the functions in which
they are accessible to compute a discount ratio for each func-
tion. The cost of a function is calculated by multiplying its
raw execution cost and one minus the discount ratio, which is
between zero and one. As aresult, a greater discount ratio (less
anomalous samples) results in a greater decrease in the cal-
ibrated execution cost, so that the respective function will be
less likely to be considered in diagnosing a performance issue.

We first describe how vProf determines how anomalous are
a variable’s samples and computes a discount ratio. The idea
is to compare the value samples collected from the normal
execution versus those collected from the buggy execution.
vProf defines samples as anomalous based on how different
the sample distributions are between the normal and buggy
executions. The idea is to consider distributions to be different
if they have different shapes. For example, if two distributions
with the same normal distribution shape will be considered
the same even if their means are different, but a normal and
uniform distribution will be considered different.

Specifically, given the null hypothesis that the distributions
are identical, vProf applies the k-sample Anderson-Darling
test [2] to the distributions to determine if the null hypothesis
holds with some probability. By default, vProf uses a probabil-
ity 0£0.05. This means that vProf assumes the distributions are
the same by default unless it can determine with high (95%)
confidence that they are different. If the null hypothesis holds,
vProf sets a discount ratio of DefaultDiscount for the variable,
which is 0.8 by default. If the null hypothesis is rejected, vProf

EuroSys "23, May 8-12, 2023, Rome, Italy

calculates the Hellinger distance [34], a measure of how differ-
ent the distributions are. Its value is between 0 and 1, where
alarger value indicates greater difference. The discount ratio
for the variable is set to one minus the Hellinger distance,
unless it is below a ValidDiscount threshold, in which case
the ratio is zero. ValidDiscount is 0.1 by default.

Assuming the variable is a basic type, vProf considers the
degree of anomaly in a variable along three dimensions. First,
it considers values, as previously described. Second, it consid-
ers deltas of values in adjacent samples. This quantifies how
much the values change. Third, it considers processing costs of
values, specifically how many alarm intervals a variable value
stays the same. This quantifies how often the values change.
vProf determines the discount ratio for a variable in each of the
three dimensions, and uses the lowest of the discount ratios.
For pointers to non-basic types, vProf only uses the discount
ratio based on processing costs, since the differences in pointer
values, meaning differences in addresses, is not generally a
useful distinction between normal and buggy executions.

We next describe how we aggregate discount ratios for vari-
ables to functions. For local variables, their discount ratios are
attributed to the function in which they are defined. For global
variables, their discount ratios are attributed to the functions
which contain recorded PCs at which the variable was sam-
pled. When a function has multiple associated variables with
different discount ratios, vProf uses the lowest discount ratio
among them, because the most anomalous variable often sug-
gests the function is worthy of further examination. For each
function, if its raw execution cost is x and its discount ratio is
r, its calibrated cost is (1—r) Xx. By using a DefaultDiscount
of 0.8, vProf can significantly demote costly functions with-
out anomalous value samples, but avoid eliminating them
entirely. By using a ValidDiscount of 0.1, vProf can preserve
the ordering of functions by cost for functions with similarly
low discount ratios, as value samples may be noisy. Section 6.4
evaluates how sensitive vProf is to these defaults.

For large programs, the variables being monitored may be
limited to functions located in certain program components,
resulting in no discount ratio being available for functions
outside of those program components. To derive a discount
ratio for these functions as well, vProf includes a simple hist-
discounter, which computes a discount ratio by comparing
how the function ranks in terms of raw execution cost be-
tween normal and buggy executions. Because of potential
variability in the rankings, the hist-discounter is based on pro-
filing the program multiple times. Given n buggy profile(s) and
m normal profile(s), we perform a cross-comparison among
the two groups for each function. We maintain a counter h for
each function to record in how many comparisons this func-
tion ranks higher in the normal profile(s) than in the buggy
profile(s). We also record ¢ (¢ < nxm) as the number of compar-
isons for the function. Then we set the discount ratio to r= %
The ValidDiscount threshold is also used with hist-discounter

EuroSys "23, May 8-12, 2023, Rome, Italy

void ap_mpm_pod_killpg(ap_pod_t *pod, int num) {

for (i = 0; i < num && rv == APR_SUCCESS; i++) {
+ if (ap_image->servers[i].status != SERVER READY | |
+ ap_image->servers[i].pid == 0)
+ continue;
rv = dummy_connection(pod) ;
}

}

Figure 4. Root cause for performance issue HTTPD-54852. When
using the Multi-Processing Module (MPM), the graceful restart of
Apache httpd can sometimes take a few minutes. The problem is the
dummy_connection call becomes much slower due to polling if all the
children have already exited. Developers fixed the bug by adding a
check in the loop to skip unnecessary dummy_connection calls when
there are no more children.

to avoid reordering the rankings of functions with similar low
discount ratios. The hist-discounter is only used for functions
which otherwise would have no discount ratio available.

5.2 BugPattern Inference

Since providing a high-level characterization of potential root

cause patterns can further ease performance debugging, vProf

provides a root cause classifier to infer potential root cause
patterns for top-ranked functions based on their calibrated
costs. We observe three common performance bug patterns:

1. Wrong constraint: These bugs cause the program execution
to unnecessarily fall into a costly path. They often happen
when a conditional expression or its evaluation is incorrect.
For example, Figure 1 shows the while loop condition is
evaluated with an incorrect available_mem.

2. Missing constraint: These bugs occur when the code per-
forms some operations uniformly instead of discriminating
based on some constraint, such as a conditional expression.
For example, Figure 4 shows such a bug in Apache fixed by
adding a conditional expression.

3. Scalability: These bugs usually arise when the program
processes data larger than the developers expected, such
as traversing a large list in a critical section. For example,
Figure 5 shows such a bug in MariaDB.

To infer the bug pattern for each function, the classifier
queries the variable-discounter for information about which
sampled variable was most anomalous. Specifically, for each
function, it finds the anomalous sampled variable with the
minimum discount ratio and the dimension used in calculat-
ing that ratio. Then, it obtains the the variable’s abnormal
samples from the buggy execution. The variable-discounter
provides this by computing a variable’s normal range from
the normal execution and identifying the value samples in the
buggy execution that are out of the normal range. Since each
value sample contains the PC at which it was recorded, the
classifier uses the DWARF information to map the PC back to
the text section to localize the code region for abnormal sam-
ples and get the basic block label and control flow structures.

The classifier then checks how an anomalous variable is
used in the code region based on its tags, as discussed in
Section 3. With the discount ratio, dimension, and tags, the

Lingmei Weng, Yigong Hu, Peng Huang, Jason Nieh, and Junfeng Yang

bool buf_ LRU_scan_and_free_block(bool scan_all) {
ulint scanned = 0;
for (bpage = buf_pool.lru_itr.start(); bpage && scan_all;
++scanned, bpage = buf_pool.lru_itr.get())
. = the LRU list search was slow, scanned=134468

}
buf_block t* buf_ LRU_get_free_block() {
loop:

mutex_enter (&buf_pool.mutex);

block = buf_ LRU get_ free only();

if (n_iterations || buf_pool.try LRU_scan)
freed = buf LRU scan_and_free block(n_iterations > 0);

i&éex_exit(&buf_pool.mutex);

n_iterations++;

goto loop;

}

Figure 5. Root cause for performance issue MariaDB-23399.
Under I/0O-bound TPCC workloads, MariaDB throughput grad-
ually decreases and is worse than a previous version. The
problem is when the buffer pool is full, get_free_block calls
buf_LRU_scan_and_free_blocktodoalinear scan of 1.6 million buffer
pool blocks. The thread holds the buf_pool.mutex, preventing other
threads stopping the scan by releasing pages to the buffer pool.

scan the whole LRU list
when n_iterations > 0

classifier infers the bug patterns by using the following rules

in order:

1. If some loop induction or conditional expression variable
stays the same for an abnormally long time, which is iden-
tified as a variable with a loop or cond tag and anomalous
samples based on a discount dimension of processing cost,
the function is labeled with a Missing Constraint bug.

2. If some loop induction variable has abnormal values, which
is identified as a variable with a loop tag and anomalous
samples based on a discount dimension of value or delta
of the value, the function is labeled with a Scalability bug.

3. If a conditional expression variable is abnormal, which is
identified as a variable with a cond tag and anomalous sam-
ples, the function is labeled with a Wrong Constraint bug.

4. If the most costly function is normal and has no variables
of basic types being sampled, meaning it has a Default-
Discount and discount dimension of processing cost, the
function is labeled with a Scalability bug. Without values
of basic types, vProf does not have enough information to
identify other bug patterns in this case.

6 Implementation and Evaluation

We implemented vProf for C/C++ programs, mostly by mod-
ifying gprof, though vProf is compatible with any profiler
based on PC sampling. This involved changes to glibc, mainly
in gmon. c and profil.c. We modified gmon. ¢ to set up the in-
memory profiling schema metadata on initialization, which
is called from __monstartup. We modified profil.c to collect
value samples. We extended the profiler signal handler to
read values of variables accessible from the current PC. We
implemented virtual stack unwinding using the libunwind li-
brary [31]. We fixed issues in gprof to better support multiple-
process programs, such as renaming the gmon.out file with
the process id, setting profiling timers for child processes,
and unblocking SIGPROF signals. We implemented the schema

Effective Performance Issue Diagnosis with Value-Assisted Cost Profiling

generator using an LLVM analysis pass and a Python library.
We implemented the post-profiling analysis in Python.

We evaluated vProf in diagnosing performance issues in
widely used applications. We performed a comparative study
against other state-of-the-art solutions on previously diag-
nosed performance issues to quantify effectiveness. We fur-
ther used vProf to diagnose several previously unresolved
performance issues in widely used applications. We also quan-
tify vProf’s performance overhead. All measurements were
done on a desktop computer with a 6-core (12 hyper threads)
Intel 2.60 GHz Core i5 CPU and 48 GB DRAM, running Ubuntu-
20.04 with Linux kernel 5.11.0.

To collect bugs for evaluation, we considered four large
applications: MariaDB [30], Apache HTTPD [3], Redis [37],
and PostgreSQL [36]. We queried their official issue trackers
using keywords slow and performance, randomly selected
from among the issues, read their reports, and included the
issues if they were truly performance-related and the reports
had sufficient information for bug reproduction. We then ex-
cluded bugs that developers found from just reading source
code as such bugs typically do not impact real users. In total,
we collected 26 issue tickets. Three of the issues could not
be reproduced by following the reports. Five of the issues
were database-related and could be resolved by simply com-
paring the SQL explanations in the normal and buggy cases.
Our evaluation focused on the remaining 18 out of the 26 is-
sues, including 15 resolved issues, listed in Table 1, and three
unresolved issues, discussed in Section 6.2.

6.1 Comparative Study

We used the bugs in Table 1 to evaluate the effectiveness of
vProf versus other widely used and state-of-the-art tools in
diagnosing performance issues in widely used applications.
The other tools we tried were gprof, perf, perf with an en-
hancement using Intel Processor Trace (perf-PT), COZ [12],
and statistical debugging [40] (stat-debug). Table 2 briefly
describes each tool and how it was configured; similar con-
figurations were used whenever possible.

Several of the tools, perf-PT, statistical debugging, and
vProf, required profiling normal execution in addition to
the buggy execution. Normal executions were obtained for
MariaDB-21826 and Redis-10310 by running the same com-
mand on a different version. Normal executions for all other
issues were mostly obtained by using smaller inputs on the
same software version. Specifically, we reduced the number
of tables in the database for MariaDB, the number of virtual
hostsin Apache httpd, and the number of nodes in a cluster for
Redis. For example, in MDEV-13498, we deployed a database
with the test script provided by the user in the bug report.
Deleting the first table took 20 minutes, which exposed the
symptom. Deleting a second table from the same script took 2
minutes, which we used as the normal execution. We simply
reran the same command with the same inputs multiple times
if multiple profiling runs were needed.

EuroSys "23, May 8-12, 2023, Rome, Italy

ID Description
b

Bug Pattern

—_

: MDEV-21826 Server crashrecovery loops on the same Wrong
log sequence number (LSN) forever Constraint
: MDEV-23399 Performance drops when the size of data Scalability
set is larger than the size of buffer pool
b3: MDEV-13498 Deleting a table with CASCADE con- Missing
straint is very slow Constraint
b4: MDEV-15333 Slow start-up even when . ibd file vali- Wrong

b

N

dation is off Constraint
b5: MDEV-17933 Checking the server status takes >10 sec- Scalability
onds with 3M tables

b6: HTTPD-62668 Output filter endless loop so server pro- Missing
cess never terminates Constraint
b7: HTTPD-54852 Gracefully restart service with MPM Missing
workers takes long time Constraint
b8: HTTPD-62318 Health check is executed more often Wrong
than configured interval Constraint
b9: HTTPD-64066 Slow startup/reload when many vhosts Scalability
are configured
b10: HTTPD-52914 Workers eat 60-100% CPU even though Wrong
no client sent requests Constraint

b11: Redis-8145 cluster nodes command is costly in a Scalability
large cluster

BRPOP becomes slow when a large num- Missing
ber of clients exist Constraint
b13:Redis-10310 ZREVRANGE command 50% slower after Missing

upgrade Constraint

b12: Redis-8668

b14:Postgres-17330 EXPLAIN query hangs for some query Scalability
plans

b15:Postgres-14b1 vacuum process fails to prune all heap Wrong
pages and endlessly retries Constraint

Table 1. Reproduced real-world performance issues.

Because the applications are large, several of the tools re-
quire some identification of the component in which the per-
formance issue occurs, to limit overhead. For perf-PT, we
only performed its control-flow profiling on the top ten most
costly functions by using the Intel Processor Trace address fil-
ter feature to limit the size and decoding time of the resulting
branch traces. For COZ, we identified the top-level function
in the source code file that contains the performance issue to
limit runtime since it can otherwise take many hours to run
as it randomly picks source code lines to virtually speedup to
measure potential performance improvement. For statistical
debugging and vProf, we identified the source code file that
contains the performance issue to limit the predicates and
variables sampled, respectively.

For each issue, we ran each tool on a buggy execution that
reproduced the issue based on descriptions in the bug reports.
We then measured how the tool ranked the root cause func-
tion in its output; lower number rank is better. The best result
is for a tool to rank the root cause function first, meaning the
tool pinpoints the function that causes the performance issue.
Table 3 lists the results. vProf outperforms all other tools,
ranking the root cause function within the top five (2nd on
average) in all 15 cases. In comparison, gprof, perf, perf-PT,
COZ, and statistical debugging ranked the root cause function

https://jira.mariadb.org/browse/MDEV-21826
https://jira.mariadb.org/browse/MDEV-23399
https://jira.mariadb.org/browse/MDEV-13498
https://jira.mariadb.org/browse/MDEV-15333
https://jira.mariadb.org/browse/MDEV-17933
https://bz.apache.org/bugzilla/show_bug.cgi?id=62668
https://bz.apache.org/bugzilla/show_bug.cgi?id=54852
https://bz.apache.org/bugzilla/show_bug.cgi?id=62318
https://bz.apache.org/bugzilla/show_bug.cgi?id=64066
https://bz.apache.org/bugzilla/show_bug.cgi?id=52914
https://github.com/redis/redis/issues/8145
https://github.com/redis/redis/issues/8668
https://github.com/redis/redis/issues/10310
https://granicus.if.org/pgbugs/17330
https://postgrespro.com/list/thread-id/2554376

EuroSys "23, May 8-12, 2023, Rome, Italy

Lingmei Weng, Yigong Hu, Peng Huang, Jason Nieh, and Junfeng Yang

Name Description and Configuration

gprof Version 2.34 with glibc-2.31, default options used.

Version 5.11.22, default options used.

perf with top-10 functions re-ranked using control-flow profiling:
profile normal and buggy executions, Intel Processor Trace counts
branches taken, calculate difference in branches taken per function
for normal versus buggy executions, and use ratio of difference over
total branches to scale top-10 function cost.

Determines which basic block if optimized further will improve over-
all performance the most; user identifies which functions to consider
by identifying file that contains root cause function and top-level
function in that file that will eventually call root cause function.
Records values of predicates, namely conditional statements and
return values of functions, then ranks functions based only on how
different the predicate distributions are between normal and buggy
executions; user identifies file that contains root cause function and
predicates only considered for functions in that file, 5 normal and 5
buggy executions used.

User identifies file that contains root cause function to limit number
of variables sampled to that file, 5 normal and 5 buggy executions
used for hist-discounter, but only one of each was used for variable-
discounter.

perf
perf-
PT

coz

stat-
debug

vProf

vProf Other Tools

D v B gprof perf perf- COZ stat- hist-

El 'CT’ 2 PT debug disc

1 =) o

=}

b1 1st 5,0 454th 32nd 32nd NR 4th 447th
b2 1st 7,0 5th 2nd 2nd NR 12th 1st
b3 1st n/a v 2nd 3rd 6th 1st 30th 177th
b4 3rd 9,0 V 21st 9th 5th NR 18th 31st
b5 4th 0,0 V 13th 4th 9th NR 566th 22nd
b6 5th 19,0 v 36th 13th 13th NR NR 15th
b7 3rd 0,0 182nd 1024th 1024th crash 7th 181st
b8 1st 0,0 vV 1st 6th 7th child 3rd 6th
b9 2nd 21,0 V 11th 28th 28th NR 9th 11th
b10 1st 0,0 V 4th 16th 16th child 161st 4th
bil1 1st 0,0 v 1st 10th 10th 2nd NR 59th
b12 1st 7,5 V 5th 19th 19th 1st 8th 2nd
b13 2nd 0,0 NC 16th 13th 13th 9th NR 33rd
b14 4th 17,0 v NR 163rd 163rd child 13th NR
b15 3rd 2,0 NC 14th 56th 56th child 18th 8th

Table 2. Configurations of tools to diagnose performance issues.

within the top five in only six, three, two, three, and two cases,
respectively. In fact, vProf ranked the root cause function
first in seven cases, more cases than the less precise top-five
results for all of the other tools. In comparison, none of the
other tools ranked the root cause function first in any of the
cases, with the exception of gprof which did so for only two
cases. Of all the tools, COZ performed the worst, failing to
rank the root cause function in 11 cases, of which one was
due to the tool crashing and four were due to its inability to
support multiprocess applications.

For comparison purposes, Table 3 also shows the result
when using vProf with zero variables monitored and only
its hist-discounter (hist-disc), discussed in Section 5.1. hist-
discounter alone reports the root cause function within top
five for only three cases. This demonstrates the key vProf
mechanism is not just comparing normal and buggy profiles,
but doing so using variable value information, in conjunction
with cost discounting using variable value information. Note
that the hist-discounter is still useful for large applications in
which variables are only monitored in some components. For
example, without hist-discounter, vProf has worse results for
four cases, causing the ranking of the root cause function to
drop from first to third in one case and dropping it out of the
top five in two cases. Even without using hist-discounter for
components without any monitored variables, vProf still far
outperforms all other tools.

This observation that values are important for profiling is
reinforced in comparing the results with vProf versus other
tools such as statistical debugging or perf-PT. Statistical de-
bugging also compares normal and buggy profiles, but uses
only predicates, which may be noisy, without accounting for
the actual function execution costs. Furthermore, statistical
debugging requires the monitored predicates to be observed
many times in both normal and buggy executions. In contrast,

10

Table 3. Diagnosis effectiveness of tools. NR denotes the root cause
function was not ranked, crash denotes the tool crashed, and child
denotes the tool failed diagnosis because the root cause function was
run in a child process. For vProf, bb-dist shows the (mean, minimum)
distance between the basic block vProf identified and the root cause,
and class shows whether the bug pattern reported matched the root
cause; NC denotes the root cause could not be classified.

vProf uses variable value samples and conventional function
execution costs, correlating them together with its analy-
sis. Similarly, perf-PT compares normal and buggy profiles,
but by monitoring control flow based on branch information
as an alternative idea. Modern applications have abundant
branches and many sources of non-determinism, so their con-
trol flow traces are noisy. In general, a performance issue may
not be visible in control flow. For example, a performance bug
that causes a loop to iterate many more times likely shows
the same control flow as a normal execution. In fact, perf-PT,
which enhances perf with control flow profiling, shows no
overall improvement over just perf.

Table 3 also shows how effective vProf is in identifying
the specific root cause basic block. Since vProf may report
multiple basic blocks, we calculate the mean and minimum dis-
tance between the basic block reported by vProf and the one
in which the developers fixed the bug. Shorter distances gen-
erally make diagnosis easier. Table 3 shows that in six cases,
the basic block vProf reports in the root cause function is ex-
actly where developers fixed the bug. For MDEV-13498, vProf
did not report a basic block because DWARF did not provide
sufficient information to map a PC sample of an anomalous
value sample to basic blocks.

Furthermore, Table 3 shows how effective vProfis in clas-
sifying bugs using its bug patterns. vProf infers correct bug
patterns for 13 out of 15 cases. It misses the bug pattern in
Redis-10310 because the identified variable invokes a function
pointer and has no labels. Similarly, it misses the bug pattern

Effective Performance Issue Diagnosis with Value-Assisted Cost Profiling

W

o 10000 wr 2 800 A buggy run
T:ﬂ 7500 1 § 600 ¥ normal run
>

A buggy run °
hel
£ 25001 E 200
& [

0

0 30000 60000 90000 120000 150000
Time (ms)

(b) samples of numclients

50000 100000

10'?ime (ms)
(a) samples of available_mem

Figure 6. Value samples for a variable for two performance issues.

inPostgres-14b1 because of missing information on a variable
that is stored inside a class pointer.
Case Studies. We describe two cases in further detail, focus-
ing on how vProf compares to gprof, the tool on which it is
based. Other case details are omitted due to space constraints.
MDEV-21826: This is the example in Figure 1. gprof ranks
recv_apply_hashed_log_recs first, while the actual root cause
function recv_group_scan_log_recs ranks 454th. vProf ranks
the root cause function first, promoting it based on its mon-
itored variables available_mem and pool_free_frames using
the variable-based execution cost, and demoting 44 other
functions based on its variable-discounter. vProf assigns a
zero discount ratio to recv_group_scan_log_recs as its value
samples are quite different between the normal and buggy
executions, as shown in Figure 6a. vProf calculates high dis-
count ratios for many other functions. For example, variables
such as end_1sn have no significant differences in their distri-
butions between normal and buggy executions, discounting
the cost of recv_apply_hashed_log_recs. Furthermore, vProf
translates the PC of the anomalous variable sample into lines
and corresponding basic blocks. One of the line numbers is
right before the while loop in recv_group_scan_log_recs. The
basic block distance is zero.
Redis-8668: gprof ranks functions from the zmalloc_x fam-
ily and dictEncObjKeyCompare above the root cause function
serveClientsBlockedOnKey which is ranked fifth. vProf ranks
the root cause function first, demoting other functions based
on its hist-discounter and keeping the root cause function
highly ranked based on its variable-discounter. vProf finds
the zmalloc_x are inherently costly in both normal and buggy
executions, have no variables being monitored, so its hist-
discounter assigns a discount ratio of 1.0 to them. For similar
reasons, dictEncObjKeyCompare is assigned a discount ratio
of 0.76. vProf assigns a zero discount ratio to the root cause
function as its variable samples for numclients are quite dif-
ferent between the normal and buggy executions, especially
in terms of processing costs. Specifically, Figure 6b shows that
the distribution of the value samples in normal versus buggy
executions are different, but this results in a discount ratio of
0.12. Instead, the distributions based on processing costs are
even more different, resulting in a discount ratio of zero, which
vProfuses since it is the smaller of the two. Furthermore, vProf
translates the PC of the anomalous variable sample into lines
and corresponding basic blocks. One of the line numbers falls
in the invocation of listRotateHeadToTail, which makes up
the costly part of a while loop in serveClientsBlockedOnKey.
The basic block distance to the while loop is five.

11

EuroSys "23, May 8-12, 2023, Rome, Italy

False Positives. Like all profilers, vProf cannot guarantee
that the root cause function is always ranked first. Fortu-
nately, a performance issue often involves multiple func-
tions, which are also helpful for performance diagnosis. For
example, in HTTPD-54852, vProf ranks dummy_connection
above the root cause function ap_mpm_mod_killpg. However,
dummy_connection is called by the root cause function, so re-
vealing that function in addition to the root cause function
can help with performance diagnosis since the root cause
function is still highly ranked. This connection is less clear
with gprof, which ranks the root cause function well outside
its top 100 ranked functions.

However, if the top ranked functions are unrelated to a per-
formance issue, they can waste developers’ investigation time
and are considered false positives. For vProf, we computed the
false positive ratio for each issue by counting the number of
functions unrelated to the performance issue before the devel-
oper reaches the root cause function and dividing that by five.
The false positive ratio would be 100% if all top five ranked
functions are unrelated to the performance issue. Across all
15 cases, the average false positive ratio was only 10.6%. Given
that vProf ranked the root cause function first in almost half
the cases and in the top five in all cases, this means that when
vProf does not rank the root cause function first, on average
atmost one other function was ranked ahead of the root cause
function that was unrelated to the performance issue.

The false positive ratio does not imply that the developers
would necessarily waste time investigating unrelated func-
tions, which depends on the sources of false positives. First,
an inherent costly function can be top-ranked even though
it has a high discount ratio. For example, in MDEV-17933,
vProf ranks the function ut_delay first but with a high dis-
count ratio. In such cases, the discount ratio indicates the
function is inherently costly in normal and buggy cases, so
the developer can consider it lower priority to investigate.
Second, some functions are costly as a side effect of a buggy
execution. For example, in HTTPD-62668, vProf ranks the
function listener_thread first because it takes a long time in
the buggy case waiting for a request timeout, but it returns im-
mediately in the normal case. Such false positives are hard to
eliminate but usually help confirm the causes of performance
issues. Third, false positives can also be due to the limitations
of statistical methods. Developers can exclude such functions
by verifying the annotated bug pattern or increasing the ac-
curacy with repeated experiments.

6.2 Diagnosing Unresolved Issues

We further used vProf on three real unresolved performance
issues to demonstrate its effectiveness at diagnosing unknown
root causes in practice. These issues are listed in Table 4.

Redis-10981: Developers investigated the issue by bisecting
their commits but could not draw a definitive conclusion for
the performance degradation in version 7.0.3.In both 7.0.3 and

https://github.com/redis/redis/issues/10981

EuroSys "23, May 8-12, 2023, Rome, Italy

ID Description Date
Redis-10981 1lrange command takes longer to finish when 07-14-2022
redis is upgrade from version 6.2.7 to 7.0.3
MDEV-16289 Query runs unexpectedly slow; the query selects 05-25-2018
records created within a given time period in one
table, and excludes records whose certain fields
are after a given time by checking another table.
MDEV-17878 Searching for the query execution plan for a SE- 11-30-2018

LECT query involving many joins takes forever
for larger datasets, using 100% CPU

Table 4. Unresolved performance issues diagnosed using vProf.

the earlier version, traditional profilers attribute the highest
costs to functions _addReplyToBuffer and addReply. Compar-
ing the ranking of functions in profiling reports from the two
versions does not provide useful information either.

We used vProf to diagnose the performance issue, which
had remained unresolved for more than six months. We first
investigated the component db.c. vProf ranks its function
lookupKey first. It shows that the variable key has different
processing costs and sampled values in the buggy version.
Looking into the code, we found that function expireIfNeeded
was moved into lookupKey. The code refactoring caused a
longer execution time and different values samples, leading
to a false positive.

We next investigated the component networking.c. Al-
though vProf ranks its function _addReplyToBufferOrList
first, it is new in 7.0.3 due to code refactoring, so we ex-
cluded it from further consideration. vProf ranks the function
clientHasPendingReplies second as the processing cost for
its variable client differs in the two versions. vProf reports
the anomalous variable samples are accessed in a conditional
expression. The condition was introduced in 7.0.3. We veri-
fied our findings by reverting this condition, which caused
the performance degradation to disappear. vProf successfully
identified the unresolved issue that was unable to be clarified
previously using the commit-bisecting method or traditional
profilers. We reported our findings to the developers, who
quickly confirmed the diagnosis.

It took about four-person hours per component to generate
schemas for a specified program component, run test cases
with vProf, and investigate the source code based on the vProf
reports. Since we investigated two components, the total time
to diagnose the performance issue was eight person-hours.

MDEV-16289: A developer reproduced the issue and reported
that different timezone settings caused different processing
costs, identifying it as a performance bug because he believed
the query results should be independent of the timezone. In
trying to diagnose the issue, the developer traced the query
execution plans for two different timezone settings, but the
results were similar and provided limited hints for further
debugging.

We used vProf to diagnose the performance issue, which
had remained unresolved for more than four years. We in-
vestigated the component rowdsel.cc, which implements

12

Lingmei Weng, Yigong Hu, Peng Huang, Jason Nieh, and Junfeng Yang

row selection in MariaDB. The function row_search_mvcc was
ranked first. Although this function is costly whether or not
the query runs slow, its discount ratio is zero because the sam-
ple distributions for local variable clust_index differ between
fastand slow queries. No value samples are captured when the
query is fast, but over 30 are captured when the query is slow.
We also noticed a similar issue for the variable result_rec.
Both variables appear to be pointers to temporary storage of
intermediate query results.

Because references to additional temporary storage only
appear when the query runs slow, we suspected the queries
might return different numbers of records for different time-
zone settings. We verified our hypothesis by changing the
query’s timestamp to refer to the same absolute time in differ-
ent timezones. For example, instead of querying with 8pm in
all timezones, we queried with 8pm EST and 5pm PST. By do-
ing the latter, the difference in query performance disappeared.
We further confirmed our hypothesis by checking the number
of records returned; many more records were returned for the
slow query case. Contrary to the developer’s belief, this issue
turned out not to be a performance bug, but correct opera-
tion with different query times for what are actually different
queries. Diagnosing the issue using vProf took roughly five
person-hours. We reported the findings to the developer.

MDEV-17878: The user who reported the issue also profiled
theissue using perf, which ranks function prev_record_reads
first. Intrying to diagnose the issue, developers obtained query
execution plans from both MariaDB and a different version
of MySQL that finishes the query quickly. The information
obtained did not provide enough hints for the developers to
diagnose the performance issue.

We used vProf to diagnose the performance issue, which
had remained unresolved for more than four years. We identi-
fied the program component involved in optimizing the query
execution plan and monitored its variables using vProf. We
then needed to profile a useful normal execution, which took
us three tries. First, because the report indicates that the per-
formance issue does not occur for small datasets, we created
a small dataset to profile a normal execution. However, the
query finished too fast and resulted in no value samples being
collected. Second, we took the original dataset causing the bug
and reduced the number of joins so that the performance issue
disappeared. vProf ranked the functions best_access_path
and best_extension_by_limited_search first and second, re-
spectively; the latter calls the former. However, vProf set both
their discount ratios to DefaultDiscount, indicating a lack of
anomalous value samples.

Finally, because the report was specific to a version of the ap-
plication, we tried a different version with the original dataset
that caused the bug and found that the performance issue
disappeared. We used this different version with the original
dataset as the normal execution. In this case, vProf ranked the

https://github.com/redis/redis/issues/10981
https://jira.mariadb.org/browse/MDEV-16289
https://jira.mariadb.org/browse/MDEV-17878
https://jira.mariadb.org/browse/MDEV-16289
https://jira.mariadb.org/browse/MDEV-17878

Effective Performance Issue Diagnosis with Value-Assisted Cost Profiling

ID Variables Init PCToVar Variable Value Run
Time Table Array Samples Time
b1 233 7.4ms 3862 KB 430KB 21133KB 105s
b2 65 09ms 4143KB 29 KB 153KB 1903 s
b3 399 0.4ms 4005 KB 26KB 38563KB 1140s
b4 852 159ms 3987KB 67 KB 58 KB 338s
b5 577 18.2ms 3575KB 22KB 8KB 1635s
b6 501 31.1ms 673 KB 287 KB 2KB 1448s
b7 113 0.3ms 162 KB 6 KB 16 KB 147 s
b8 169 4.5ms 260 KB 127 KB 43 KB 553s
b9 374 6.2ms 194KB 16 KB 25 KB 36s
b10 164 1.4ms 642 KB 186 KB 13KB 139s
b11 531 3.4ms 612KB 382KB 1216KB 885s
b12 623 5.5ms 591 KB 44KB 1755KB 112s
b13 564 7.1ms 641 KB 754 KB 132KB 10s
b14 479 5.2ms 2037KB 1031KB 79 KB 68s
b15 805 6.4ms 2297KB 927KB 3269KB 29s

Table 5. Memory overhead and execution time for profiling perfor-
mance issues.

function best_extension_by_limited_search first. vProf la-
belsitaMissing Constraint bug because of anomalous value
samples for use_condition_selectivity, which is used in
a conditional expression. This variable value comes from
the system variable optimizer_use_condition_selectivity
in sys_vars. cc, which has different default values for differ-
ent versions of MariaDB. use_condition_selectivity decides
the heuristics used to estimate the cost of the current partial
query plan. The query plan search algorithm stops if the cost
is greater than the current best heuristic. However, if the de-
fault value of optimizer_use_condition_selectivity is one,
the search algorithm fails to stop searching through more
costly heuristics to find a better plan.

Diagnosing the issue using vProf took roughly 12 person-
hours, eight of which were for going through the three ap-
proaches to profile a normal execution, and four of which to
investigate the source code. In this and the other cases, the
process could be faster for actual developers who are famil-
iar with the program source code. This case also shows how
using a different program version can be useful to profile a
normal execution. We reported the root cause to developers,
who confirmed our diagnosis and updated the issue ticket to
include our reported root cause.

6.3 Performance Overhead

We measured the memory and runtime overhead when using
vProf'to profile buggy executions of the performance issues in
Table 1. For each case, Table 5 shows how many variables were
monitored, the time for initializing the vProf-specific profiler
data structures, how much memory was consumed by vProf
during profiling to store metadata and value samples, and the
time to profile the buggy execution. In almost all cases, vProf
monitored hundreds of variables for a program component. In
all cases, vProf-specific profiler initialization was fast enough
to appear instantaneous to a user, and memory overhead was

13

EuroSys "23, May 8-12, 2023, Rome, Italy

BR w/ vProf

= wfo profiling

™| w/ gprof

Normalized tim
o
o

bl b2 b3 b4 b5 b6 b7 b8 b9 blObllb12b13bl4bl5
Figure 7. Profiling overhead for performance issues.

small for vProf’s core data structures except in some cases for
storing variable samples, which scales based on the number of
samples recorded. We further measured the application mem-
ory footprint under profiling with vProf and gprof. The maxi-
mum memory footprint with vProf scales as expected based on
the measurements in Table 5, but the difference versus gprof
is modest overall. For example, MDEV-13498 has the largest
memory footprint, but vProf’s maximum memory footprint is
only 8% larger than gprof. On average, the maximum memory
footprint with vProf is 7% (8 MB) larger than with gprof.

Figure 7 shows the runtime overhead of vProf when pro-
filing each performance issue, with performance normalized
to execution without using the profiler. For comparison, we
also measured the runtime overhead of gprof on these issues.
vProf runtime overhead is modest in all cases except for when
gprof overhead is higher, in which case vProf overhead tracks
that of gprof, on which it is built. We also used sysbench
to measure the latency and throughput of MariaDB under a
TPCC workload, with and without profiling. Both vProf and
gprof incurred the same latency and throughput overheads,
32% and 20%, respectively; vProf shows no increased over-
head for the features it adds. Overall, these results show that
vProfis lightweight and practical for diagnosing performance
issues in large applications.

vProf also incurs some cost for its schema generator and
post-profiling analysis, which we quantified for the 15 issues
inTable 1. vProf s LLVM pass increases compilation time by an
average of 5 s. Using DWARF debugging information to obtain
variable metadata takes an average of 142 s. Post-profiling
analysis takes an average of 117 s. If we monitor variables
across the entire program instead of per program component,
analysis can take much longer. For example, doing so for Redis-
8145 resulted in 17,930 variables being monitored and 7 GB
of value samples being recorded, which took post-profiling
analysis roughly six hours to process.

6.4 Sensitivity

We evaluated how vProf’s effectiveness is affected for the
15 issues in Table 1 for different values of DefaultDiscount
and ValidDiscount. We measured effectiveness by how many
issues had their root cause function ranked in the top five. We
first used the default ValidDiscount of 0.1 and set the Default-
Discount to different values between 0.1 and 1.0. We then used
the default DefaultDiscount of 0.8 and set the ValidDiscount
to different values between 0.1 and 1.0. Figure 8 shows that
vProf is most effective with a DefaultDiscount of at least 0.8
and a ValidDiscount of less than 0.3.

EuroSys "23, May 8-12, 2023, Rome, Italy

=@= DefaultDiscount == ValidDiscount

161
144
124
104
84
6 1
4 T

0.2

Diagnosed issues

T

0.6 0.8 1.0

Setting
Figure 8. Sensitivity of settings for discount parameters.

0.4

7 Limitations

vProf limits the value sampling to variables of primitive types,
structure members, and pointers. We plan to extend it to sup-
port value sampling for more complex types. The schema
generator in vProf runs a call graph analysis. The call graphs
can be incomplete due to missing analysis of function pointers.

vProf currently only supports the diagnosis of on-CPU
performance issues. Other off-CPU profilers can analyze per-
formance issues to due I/O blocking, paging, locks, etc. Our
future work will explore applying the idea of value-flow profil-
ing in these off-CPU profilers to support diagnosis of blocking
events related performance issues.

vProf’s support for multi-threaded applications relies on
gprof, which counts the CPU time spent by the whole process
and delivers SIGPROF when the timer expires. The method is
feasible for multi-threading because the SIGPROF is delivered
randomly to one of the running threads. However, vProf could
be subject to potential sampling bias. Empirically, since most
of our evaluated issues are from multi-threaded applications,
vProf is effective despite the potential bias.

8 Related Work

Performance Optimization. Various tools [6, 10-12, 14,
16, 17, 24, 25, 28, 33, 38, 39, 42, 44, 45] help developers find
optimization opportunities, including COZ [12], which tells
developers the potential speed-up if a certain function is op-
timized. While useful, none of these solutions help diagnose
specific performance issues and pinpoint their root cause.
Profilers. Many profilers help with performance diagnosis,
including Valgrind [32], Oprofile [26], and Gperftools [19].
However, these profilers focus on recording costs and cannot
distinguish whether the costs are necessary and why an op-
eration is costly. vProf additionally collects program variable
value information along with costs to enable performance
reasoning and improve diagnosis effectiveness.

Algorithmic profiling [45] attempts to discover the relation-
ship between an input and the amount of work in a function.
Freud [38] extends algorithmic profiling to discover the rela-
tionship between input and real performance metrics using
regression analyses. These goals are complementary to vProf.
Performance Debugging. Several approaches target debug-
ging performance issues that occur across multiple software
components. Stitch [46] reconstructs the execution flow of dis-
tributed software using logs. Magpie [7] uses an event schema

14

Lingmei Weng, Yigong Hu, Peng Huang, Jason Nieh, and Junfeng Yang

to correlate events across kernel, middleware and applications
for constructing performance models. Argus [43] applies an-
notated causal tracing on desktop applications to localize
the abnormal event sequence. These solutions focus on infer-
ring high-level causality, which is important in distributed
systems, but cannot pinpoint the root cause of performance
issues in single-component software at precise code locations.
Statistical performance debugging [40] compares predi-
cates in normal and buggy executions to diagnose perfor-
mance bugs. vProf samples values of program variables while
collecting cost information in parallel to provide more effec-
tive performance diagnosis, as demonstrated in Section 6.
Some approaches focus on debugging special types of per-
formance issues. X-Ray [5] and GLIMPS [41] diagnose per-
formance issues caused by bad configurations. SyncPerf [1]
diagnoses performance problems related to synchronization
primitives. vProf is complementary to these solutions.
Performance Bug Detection. Some solutions aim to find
performance bugs using static efficiency rules checking [23],
static analysis [35], symbolic execution [21], or a combination
of static rule checking and dynamic system call analysis [13].
Their effectiveness is limited by the rules, and complex per-
formance bugs are often hard to capture with static rules.

9 Conclusions

Value-assisted cost profiling is a new profiling methodology
that provides effective diagnosis of performance issues in
real-world applications. It measures execution costs together
with program data-flow information to more accurately rea-
son about whether a costly function is necessary and why a
function is slow. vProf is a practical tool that implements this
methodology. It leverages static analysis to identify variables
that commonly influence performance and determine their
runtime locations. It builds efficient data structures for pro-
filing to quickly index accessible variables and continuously
records value samples with PC sampling. It provides post-
profiling analysis to compare value samples across normal
and buggy program executions to identify anomalous samples,
use them to calibrate function costs, and pinpoint root causes.
vProf significantly outperforms other state-of-the-art tools in
diagnosing real-world performance bugs in large applications,
yet incurs only modest performance overhead. We used vProf
to diagnose longstanding unresolved performance issues in
real applications, which have been confirmed by developers.

10 Acknowledgments

Michael Stumm provided helpful comments on earlier paper
drafts. This work was supported in part by an Amazon Re-
search Award, a Meta Research Award, a Guggenheim Fellow-
ship, a GE/DARPA grant, a CAIT grant, gifts from JP Morgan,
DiDi, and Accenture, DARPA contract N66001-21-C-4018,
and NSF grants CCF-1918400, CNS-2052947, CCF-2124080,
CNS-1942794, and CNS-1910133.

Effective Performance Issue Diagnosis with Value-Assisted Cost Profiling

References

(1]

(14]

(15

[

(16

=

(17]

(18]
(19]

[20]

Mohammad Mejbah ul Alam, Tongping Liu, Guangming Zeng, and
Abdullah Muzahid. SyncPerf: Categorizing, Detecting, and Diagnosing
Synchronization Performance Bugs. In Proceedings of the 12th European
Conference on Computer Systems, page 298-313, April 2017.

T. W. Anderson and D. A. Darling. Asymptotic Theory of Certain
"Goodness of Fit" Criteria Based on Stochastic Processes. The Annals
of Mathematical Statistics, 23(2):193 - 212, 1952.

Apache. httpd: Apache Hypertext Transfer Protocol Server.
https://httpd.apache.org/.

Apple. macOS Instruments Overview.
instruments/mac/current/#/dev7b09c84f5.
Mona Attariyan, Michael Chow, and Jason Flinn. X-Ray: Automating
Root-Cause Diagnosis of Performance Anomalies in Production
Software. In Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation, page 307-320, October 2012.
Reza Azimi, Michael Stumm, and Robert W. Wisniewski. Online
Performance Analysis by Statistical Sampling of Microprocessor
Performance Counters. In Proceedings of the 19th Annual International
Conference on Supercomputing, page 101-110, June 2005.

Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier.
Using Magpie for Request Extraction and Workload Modelling. In
Proceedings of the 6th USENIX Symposium on Operating Systems Design
and Implementation, pages 259-272, December 2004.

https://help.apple.com/

Eli Bendersky. Parsing ELF and DWARF in Python. https:
//github.com/eliben/pyelftools.

Damien BRS and Thirunarayanan Balathandayuthapani. Re-
covery Failure: Loop of Read Redo Log up to LSN. https:

//jira.mariadb.org/browse/ MDEV-21826.

Marc Briinink and David S. Rosenblum. Mining Performance Specifica-
tions. In Proceedings of the 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, page 39-49, November 2016.
Milind Chabbi and John Mellor-Crummey. DeadSpy: A Tool to Pinpoint
Program Inefficiencies. In Proceedings of the 10th International Sympo-
sium on Code Generation and Optimization, page 124-134, March 2012.
Charlie Curtsinger and Emery D. Berger. COZ: Finding Code that
Counts with Causal Profiling. In Proceedings of the 25th ACM Symposium
on Operating Systems Principles, pages 184-197, October 2015.

Ting Dai, Daniel Dean, Peipei Wang, Xiaohui Gu, and Shan Lu. Hytrace:
A Hybrid Approach to Performance Bug Diagnosis in Production
Cloud Infrastructures. In Proceedings of the 2017 Symposium on Cloud
Computing, pages 641 — 652, September 2017.

Luca Della Toffola, Michael Pradel, and Thomas R. Gross. Perfor-
mance Problems You Can Fix: A Dynamic Analysis of Memoization
Opportunities. In Proceedings of the 2015 ACM SIGPLAN International
Conference on Object Oriented Programming Systems Languages and
Applications, page 607-622, October 2015.

Michael J. Eager. Introduction to the DWARF Debugging Format.
pages 1-11, 2012.

Michael D Ernst, Jeff H Perkins, Philip J Guo, Stephen McCamant,
Carlos Pacheco, Matthew S Tschantz, and Chen Xiao. The Daikon
System for Dynamic Detection of Likely Invariants. Science of Computer
Programming, 69(1-3):35-45, December 2007.

Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith.
A Performance Counter Architecture for Computing Accurate CPI
Components. In Proceedings of the 12th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, page 175-184, October 2006.

Thomas Gleixner, Ingo Molnar, et al. perf: Linux Profiling with Perfor-
mance Counters. https://perf.wiki.kernel.org/index.php/Main_Page.
Google. Gperftools: Google Performance Tools. https:
//github.com/gperftools/gperftools.

Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. Gprof:
A Call Graph Execution Profiler. In Proceedings of the 1982 SIGPLAN

15

[21]

[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]
[35]

[36]

[37]
[38]

[39]

[40]

EuroSys "23, May 8-12, 2023, Rome, Italy

Symposium on Compiler Construction, page 120—126, June 1982.
Yigong Hu, Gongqi Huang, and Peng Huang. Automated Reasoning and
Detection of Specious Configuration in Large Systems with Symbolic
Execution. In Proceedings of the 14th USENIX Symposium on Operating
Systems Design and Implementation, pages 719-734, November 2020.
Intel. Intel VTune Profiler. https://www.intel.com/content/www/us/
en/developer/tools/oneapi/vtune-profiler.html.

Guoliang Jin, Linhai Song, Xiaoming Shi, Joel Scherpelz, and Shan
Lu. Understanding and Detecting Real-World Performance Bugs. In
Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, page 77-88, June 2012.

Tanvir Ahmed Khan, Ian Neal, Gilles Pokam, Barzan Mozafari, and
Baris Kasikci. DMon: Efficient Detection and Correction of Data
Locality Problems Using Selective Profiling. In Proceedings of the 15th
USENIX Symposium on Operating Systems Design and Implementation,
pages 163-181, July 2021.

Chung Hwan Kim, Junghwan Rhee, Kyu Hyung Lee, Xiangyu Zhang,
and Dongyan Xu. PerfGuard: Binary-Centric Application Performance
Monitoring in Production Environments. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, page 595-606, November 2016.

John Levon. OProfile: A System Profiler for Linux.
//oprofile.sourceforge.io/about.

Sarah Jamie Lewis. A Performance Debugging Story.
https://twitter.com/Sarah)amieLewis/status/1397313537538592769.
Xu Liu, Kamal Sharma, and John Mellor-Crummey. ArrayTool: A
Lightweight Profiler to Guide Array Regrouping. In Proceedings of the
23rd International Conference on Parallel Architectures and Compilation,
page 405-416, August 2014.

LLVM. Writing an LLVM Pass.
WritingAnLLVMPass.html.

MariaDB. The Open Source Relational Database. https://mariadb.org.
David Mosberger-Tang, Arun Sharma, Dave Watson, et al. The
libunwind Project. https://savannah.nongnu.org/projects/libunwind/.
Nicholas Nethercote and Julian Seward. Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 89-100, June 2007.

Khanh Nguyen and Guoging Xu. Cachetor: Detecting Cacheable Data
to Remove Bloat. In Proceedings of the 21st ACM SIGSOFT International
Symposium on Foundations of Software Engineering, page 268—278,
August 2013.

M.S. Nikulin. Hellinger Distance. Encyclopedia of Mathematics, 2001.
Oswaldo Olivo, Isil Dillig, and Calvin Lin. Static Detection of
Asymptotic Performance Bugs in Collection Traversals. In Proceedings
of the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, page 369-378, June 2015.

PostgreSQL. The World’s Most Advanced Open Source Relational
Database. https://www.postgresql.org.

Redis. A Vibrant, Open Source Database. https://redis.io.

Daniele Rogora, Antonio Carzaniga, Amer Diwan, Matthias Hauswirth,
and Robert Soulé. Analyzing System Performance with Probabilistic
Performance Annotations. In Proceedings of the 15th European
Conference on Computer Systems, pages 1-14, April 2020.

Stelios Sidiroglou-Douskos, Sasa Misailovic, Henry Hoffmann, and
Martin Rinard. Managing Performance vs. Accuracy Trade-Offs with
Loop Perforation. In Proceedings of the 19th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, page 124-134,
September 2011.

Linhai Song and Shan Lu. Statistical Debugging for Real-World
Performance Problems. In Proceedings of the 2014 ACM SIGPLAN
International Conference on Object Oriented Programming Systems
Languages and Applications, page 561-578, October 2014.

https:

https://llvm.org/docs/

https://httpd.apache.org/
https://help.apple.com/instruments/mac/current/#/dev7b09c84f5
https://help.apple.com/instruments/mac/current/#/dev7b09c84f5
https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools
https://jira.mariadb.org/browse/MDEV-21826
https://jira.mariadb.org/browse/MDEV-21826
https://perf.wiki.kernel.org/index.php/Main_Page
https://github.com/gperftools/gperftools
https://github.com/gperftools/gperftools
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://oprofile.sourceforge.io/about
https://oprofile.sourceforge.io/about
https://twitter.com/SarahJamieLewis/status/1397313537538592769
https://llvm.org/docs/WritingAnLLVMPass.html
https://llvm.org/docs/WritingAnLLVMPass.html
https://mariadb.org
https://savannah.nongnu.org/projects/libunwind/
https://www.postgresql.org
https://redis.io

EuroSys "23, May 8-12, 2023, Rome, Italy

[41] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and
Christian Késtner. On Debugging the Performance of Configurable
Software Systems: Developer Needs and Tailored Tool Support. In
Proceedings of the 44th International Conference on Software Engineering,
page 1571-1583, July 2022.

Shasha Wen, Milind Chabbi, and Xu Liu. REDSPY: Exploring Value
Locality in Software. In Proceedings of the 22nd ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, page 47-61, March 2017.

Lingmei Weng, Peng Huang, Jason Nieh, and Junfeng Yang. Argus:
Debugging Performance Issues in Modern Desktop Applications
with Annotated Causal Tracing. In 2021 USENIX Annual Technical
Conference, pages 193-207, July 2021.

Xin You, Hailong Yang, Zhongzhi Luan, Depei Qian, and Xu Liu.
ZeroSpy: Exploring Software Inefficiency with Redundant Zeros. In Pro-
ceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, pages 1-14, November 2020.
Dmitrijs Zaparanuks and Matthias Hauswirth. Algorithmic Profiling.
In Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, page 67-76, June 2012.

Xu Zhao, Kirk Rodrigues, Yu Luo, Ding Yuan, and Michael Stumm.
Non-Intrusive Performance Profiling for Entire Software Stacks Based
on the Flow Reconstruction Principle. In Proceedings of the 12th USENLX
Symposium on Operating Systems Design and Implementation, page
603-618, November 2016.

[42]

[43]

[45

—

[46]

A Artifact Appendix

This appendix describes the workflow of vProf. The main
steps are to build vProf with the clean glibc and a provided
patch, prepare workloads to run target applications, collect
profiling data, and analyze the data with post-profiling scripts.
The source code of vProf is available at: https://github.com/
wenglingmei/vprofAE.

A.1 Abstract

Configuring vProf takes four steps:

1. patch glibc to support collected variable values from
metadata;

2. run an LLVM pass to generate a schema file and trans-
late the schema into a metadata file;

3. compile a target application with -pg -02 to support
profiling like gprof;

4. run a target application with LD_PRELOAD to link the
patched libc-2.31.s0 for vProf.

Reproducing the diagnosis results in our paper requires
profiling both the normal and buggy runs of the application.
With the profiling data, our post-profiling analysis generates
annotated profiling reports similar to traditional profilers.

All applications evaluated in the paper are publicly avail-
able from their official websites, but users need to prepare
workloads for reproducing the performance bugs and con-
structing a normal baseline. We provide scripts for reproduc-
ing one of the evaluated issues as an example.

A.2 Description & Requirements

A.2.1 How to access.

16

Lingmei Weng, Yigong Hu, Peng Huang, Jason Nieh, and Junfeng Yang

e Download the vProf source code from https://github.
com/wenglingmei/vprofAE.

A.2.2 Hardware dependencies.

e Architecture: x86-64
e Memory: >=32 GB

A.2.3 Software dependencies.

e System: Ubuntu 20.04.3 LTS (GNU/Linux 5.11.0-27-
generic x86_64).

¢ Development Tools: Install tools with the command

sudo apt install build-essential.

Python: Python 3.

llvm-project: Clang 14.0.0 downloaded from LLVM of-

ficial repository https://github.com/llvm/llvm-project.

The specific commit ID used in vProf is 3782624.

Compiling LLVM requires that you have several soft-

ware packages installed: CMake >=3.13.4; GCC >=7.1.0;

Python >=3.6; zlib >= 1.2.3.4; GNU Make >= 3.79.

Compilation options: -DCMAKE_BUILD_TYPE=Release.and

-DLLVM_ENABLE_PROJECTS="clang;11d"

glibc: glibc 2.31 is the default version shipped with

Ubuntu 20.04.3.

libunwind: download and install the newest version

from https://github.com/libunwind/libunwind.

pyelftools: install the pyelftools library from https:

//github.com/eliben/pyelftools.

A.3 Set-up

We provide a one-click script prepare. sh under the directory
vprofAE. It is composed of the following steps:

e Download vprofAE and software dependencies in Sec-
tion A.2.3.

e Install the development tools and software dependen-
cies.

e Prepare glibc with glibcForPRELOAD/build_glibc.sh.
To include libunwind in glibc:
build - build a clean glibc first
patch — patch the glibc with glibc-2.31.patch
rebuild - rebuild the patched glibc without clearing

the built object files
softlinks — creates soft links to correct the version
issues of libraries referenced by libc

e Install LLVM following the official instructions with
the options mentioned in Section A.2.3.

e Build the LLVM pass libProfileVarPass.so in direc-
tory LLVMPassSchemaGen for generating schema, and
make sure to run the small code example with the LLVM
pass before moving to Section A.4.

A.4 Evaluation Workflow

A.4.1 Major Claims. The paper has the following major
claims in the evaluation part.

https://github.com/wenglingmei/vprofAE
https://github.com/wenglingmei/vprofAE
https://github.com/wenglingmei/vprofAE
https://github.com/wenglingmei/vprofAE
https://github.com/llvm/llvm-project
https://github.com/libunwind/libunwind
https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools

Effective Performance Issue Diagnosis with Value-Assisted Cost Profiling EuroSys "23, May 8-12, 2023, Rome, Italy

1. Diagnosis Effectiveness. The function rankings from
vProf are annotated with variables, locations where
anomalous values are accessed, and bug patterns. All
the annotations allow developers to debug performance
issue more effectively.

2. Sensitivity to Parameters. During post-profiling anal-
ysis, varying the DefaultDiscount and ValidDiscount
parameters is done to assess their impact on the profil-
ing report.

3. Overhead. To determine profiling overhead, the test
case can be executed with gprof, vProf, or without pro-
filing. We measured CPU usage, execution time, and
maximum memory usage at the end of profiling.

A.4.2 Experiments.

Experiment 1: Diagnosis Effectiveness.

e Set the environment variable SchemaComponent with the
source code path.

e Create a schema file by compiling the source code with
the LLVM pass libProfileVarPass. so.

o Build the application with -pg -02 to enable profiling.

e Translate the schema into variable metadata using the
script translate_schema_multiprocessing.py.

e Linkthe metadata file to/tmp/vprof/info.txt, from which
glibc loads the variable metadata.

e Run both normal and buggy executions repeatedly and
collect data into directory norms and bugs. For each run,
vProf will produce three files:

/tmp/vprof/gmon/gmon. [pid].out
/tmp/vprof/gmon_var/gmon_var. [pid].out
/tmp/vprof/layoutl/layout. [pid].out.

Note: The script redis-8145/test.shis provided to re-
produce the results for Redis-8145 in the paper. If the
test case fails due to limited hardware resources, re-
duce the cluster nodes in the Redis test script, repeat
this step, and collect the profiling data.

e Run the post profiling Python script vprof_profile.py
to produce the result.

Experiment 2: Sensitivity to Parameters.

e DefaultDiscount and ValidDiscount can be directly set
via the Python script vprof_profile.py.
e Check the result in the vProf profiles.

Experiment 3: Overhead.

e Run the test case with gprof, vProf, or without profiling,
and measure the CPU usage and memory usage of the
process using the ps command.

e The runtime overhead can be measured with the time
command.

e The memory overhead for storing data structures and
value samples is printed by running the python script
var_sample_multiprocessing.py, which takes the file
/tmp/vprof/gmon_var/gmon_var. [pid].out as input.

17

	Abstract
	1 Introduction
	2 Overview of vProf
	3 Schema Generator
	3.1 Source Code Static Analysis
	3.2 Binary Static Analysis
	3.3 Profiler Intialization

	4 Value Sample Recording
	5 Post-profiling Analysis
	5.1 Cost Calibration
	5.2 Bug Pattern Inference

	6 Implementation and Evaluation
	6.1 Comparative Study
	6.2 Diagnosing Unresolved Issues
	6.3 Performance Overhead
	6.4 Sensitivity

	7 Limitations
	8 Related Work
	9 Conclusions
	10 Acknowledgments
	References
	A Artifact Appendix
	A.1 Abstract
	A.2 Description & Requirements
	A.3 Set-up
	A.4 Evaluation Workflow

