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Outlier detection is critical in real world. Due to the existence of many outlier detection techniques which
often return different results for the same data set, the users have to address the problem of determining
which among these techniques is the best suited for their task and tune its parameters. This is particularly
challenging in the unsupervised setting, where no labels are available for cross-validation needed for such
method and parameter optimization. In this work, we propose AutoOD which uses the existing unsupervised
detection techniques to automatically produce high quality outliers without any human tuning. AutoOD’s
fundamentally new strategy unifies the merits of unsupervised outlier detection and supervised classification
within one integrated solution. It automatically tests a diverse set of unsupervised outlier detectors on a
target data set, extracts useful signals from their combined detection results to reliably capture key differences
between outliers and inliers. It then uses these signals to produce a “custom outlier classifier” to classify
outliers, with its accuracy comparable to supervised outlier classification models trained with ground truth
labels — without having access to the much needed labels. On a diverse set of benchmark outlier detection
datasets, AutoOD consistently outperforms the best unsupervised outlier detector selected from hundreds of
detectors. It also outperforms other tuning-free approaches from 12 to 97 points (out of 100) in the F-1 score.
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1 INTRODUCTION

As data volumes continue to grow with the rise of social networks, digital currency, smart phones,
connected vehicles, and other devices, there is an increasing need for techniques to support the
discovery of outliers in data. Outliers correspond to rare items, events or observations which
differ significantly from the majority of the data [4] and may indicate a problem, such as fraud,
malfunctioning devices, or future catastrophic failures. With financial fraud causing a multi-billion
dollar loss to global economy each year [8] and Internet of Things (IoT) applications from fleet
management, security surveillance to inventory management predicted by Forrester to become
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a many trillion dollar market in the next 15 years [1], the need for effective outlier detection
technology is abundant.

This has led to a significant surge in developing outlier detection techniques [4] over the past
decade. They include fitting data to a statistical distribution and highlighting values far from the
mean or median [11, 12], clustering data and identifying values outside common clusters [33], and
discovering objects far from their neighbors [19, 67]. While previous research has resulted in a
plethora of algorithms for detecting particular types of outliers, there are still challenging problems
that hinder these algorithms from being useful in real applications by practitioners.
State-of-the-art and Its Limitations. One critical challenge is how to choose the most effective
solution from this stew of available techniques and tune their parameters [4]. Users face several
problems: first, no single algorithm adequately captures outliers across diverse data sets and problem
domains. Thus customized algorithms have been proposed targeting different settings [4]. An outlier
detection method that works well on one data set might yield poor results on another data set.
Selecting a method appropriate to the given task is challenging for domain scientists, requiring not
only thorough domain understanding, familiarity with the data at hand and knowledge about the
most critical differences between outliers and inliers, but also a good understanding of the wealth
of available outlier detection methods and their characteristics. This complexity is compounded by
the fact that often the data characteristics for which certain algorithms work well are not known
or properly documented.

Second, choosing the best outlier detection method is further complicated by the fact that many

such methods are governed by a number of parameters. Without appropriately tuned parameter
settings, detection algorithms tend to be ineffective at identifying outliers [22]. Although automatic
parameter tuning methods have been proposed in Automated Machine Learning (AutoML) for
supervised classification [25, 32, 61], these techniques are not adequate for solving the parameter
tuning problem in the context of outlier detection. This is because outliers are rare events, making
it hard to manually acquire a sufficient number of high quality outlier examples (labels) required for
supervised learning. This is one reason why outlier detection techniques tend to be unsupervised [4].
Unfortunately, labels are required by the state-of-the-art AutoML methods [25, 32, 61] for automatic
cross validation. This renders AutoML ineffective at tuning these unsupervised outlier detection
methods.
Proposed Approach. To solve the above problems, we propose a automatic outlier detection
approach (AutoOD). AutoOD is not a new outlier detection algorithm — instead it is a tuning-free
approach that aims to best use existing outlier detection algorithms yet without requiring human
labeling input. Our key intuition is that selecting one model from many alternate unsupervised
outlier detection models may not always work well. Instead, AutoOD targets combining the best of
them.

The AutoOD Strategy. AutoOD uses a fundamentally new strategy that unifies the merits of
unsupervised outlier detection techniques and supervised classification models. Unsupervised
outlier detection does not require labeled data, but the accuracy of unsupervised techniques is often
low due to the lack of supervision with domain knowledge [17, 20]. Compared to unsupervised
techniques, supervised classification tends to achieve better accuracy, as long as a sufficient number
of high quality labels are available [4].

Instead of first carefully selecting an appropriate outlier detection method for a given task and
then tuning its parameters, AutoOD turns the unsupervised problem into a supervised problem.

Specifically, it uses the results from many unsupervised outlier detectors in combination to
automatically infer high quality labels by discovering objects from the input data that can reliably
be detected as an outlier or an inlier. Using these automatically generated labels, AutoOD then
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trains a supervised classification model that makes inference on the remaining objects to produce
the final outlier detection results. In this way, AutoOD leverages supervised classification to achieve
high accuracy in outlier detection, while no longer having to rely on domain experts to manually
supply labels.

Methods to Automatically Produce Labels. The number and quality of the automatically pro-

duced labels are critical to AutoOD’s effectiveness. To this end, we design two complementary
methods, AutoOD-Augment and AutoOD-Clean.

AutoOD-Augment starts with discovering a small but reliable set of labels based on the strong
consensus of all unsupervised outlier detectors. Next, leveraging the outlierness scores these
detectors assign to each data object, AutoOD-Augment forms a feature space where each attribute
represents one detector. It uses the set of reliable labels acquired so far and the outlierness score
features to learn a machine learning model that predicts the performance of each detector for the
data at hand. Leveraging this model, AutoOD-Augment iteratively prunes ‘bad” detectors. AutoOD-
Augment then continues to produce more labels based on the agreement among the predictions
produced by the remaining ‘good’ outlier detectors. This way, the labels set is progressively
augmented.

In contrast, AutoOD-Clean starts with a large but noisy set of labels and uses it to train a neural
network. This set of labels could be formed by, for example, ensembling the results of all detectors.
Leveraging the observation that the training loss on “mislabeled” objects tends to be larger than
that on any “correctly labeled” objects in early epochs of training a deep neural network [62],
AutoOD-Clean iteratively purifies the training data through its learning process, resulting in the
removal of the objects with large early loss from the training data. As proven in Sec. 5.2, a deep
neural network enhanced with this proposed self-cleaning strategy is guaranteed to converge.
AutoOD-Clean complements AutoOD-Augment, especially when it is hard to get initial reliable
labels.

Experimental Results. We demonstrate the effectiveness of AutoOD using a variety of benchmark
outlier detection data sets [17, 60]. In particular, as we show in Sec. 6.2, AutoOD consistently detects
outliers with an accuracy higher than the best outlier detector among hundreds. Of note, AutoOD is
able to do this without requiring any manual tuning nor human input in terms of pre-determined
labels. Further, AutoOD significantly outperforms ensemble-based methods [55, 58] and other
tuning-free approaches by 12 to 97 points (out of 100) in the F-1 score.

Contributions. In summary, key contributions of this work include:

« We propose AutoOD that uses a set of unsupervised outlier detectors to automatically produce
high quality outliers, requiring zero human input nor ground-truth labels.

« AutoOD unifies the merits of unsupervised outlier detection and supervised classification,
achieving a high accuracy in detecting outliers, while requiring zero human input nor ground-truth
labels.

« We propose two complementary solutions, AutoOD-Augment and AutoOD-Clean, to realize
the AutoOD framework, making AutoOD highly effective and robust in a variety of scenarios. Our
theoretical analysis show that AutoOD-Augment and AutoOD-Clean are guaranteed to converge
to a set of high quality labels.

« Our experiments on benchmark outlier detection datasets show that AutoOD consistently
outperforms the best outlier detector among all candidate detectors. In fact, it achieves an accuracy
comparable to supervised outlier classifiers trained with ground truth labels — without having the
access and thus benefit of such ground truth knowledge!

Proc. ACM Manag. Data, Vol. 1, No. 1, Article 20. Publication date: May 2023.



20:4 Lei Cao et al.

2 PRELIMINARIES

Below, we briefly overview popular outlier detection techniques [4] including statistical-based
outlier detection [4], distance-based outlier detection [36, 54], density-based outlier detection [16,
48], and Isolation Forest [44]. AutoOD supports these techniques as build-in libraries, although
other techniques could also simply be plugged in.

Statistical-based Outlier Detection. Statistical-based methods detect outliers by discovering
extreme values. In particular, the Mahalanobis method [4] models the entire dataset to be normally
distributed around its mean in the form of a multivariate Gaussian distribution. Let i be the d-
dimensional mean vector of a d-dimensional dataset, and X be its d X d covariance matrix. In this
case, the (i, j)th entry of the covariance matrix is equal to the covariance between the dimensions
i and j. Then the mahalanobis distance from a d-dimensional data object X to this distribution can

be defined as:

Mahalanobis(X, 1, %) = \/()_(—ﬁ)Z‘l()_(—ﬁ)T (1)

The Mahalanobis distance is used as outlier score. Meaning, the larger the Mahalanobis distance
is, the more the object deviates from the data set distribution and thus more likely is an outlier.
Distance-based Outlier Detection. Distance-based outlier detection computes outlier scores
on the basis of nearest neighbor distances. Among many variations [10, 37, 54], the kNN outlier
[54] is very popular. Let D (p) denote the distance of object p from its k-th nearest neighbor. The
kNN outlier ranks objects based on their D (p) distance. The top n objects in this ranking are then
considered to be outliers. These objects have fewer points close to them and are thus intuitively
stronger outliers.
Density-based Outlier Detection. Density-based approaches consider ratios between the local
density around an object and the local density around its neighboring objects. These approaches
introduce the notion of local outliers as opposed to the global outliers discovered by distance-based
outlier techniques. The concept of a local outlier is important since in many applications, different
portions of a dataset can exhibit very different characteristics. It is thus meaningful to decide on
the outlying possibility of an object based on other objects in its neighborhood. The most popular
density-based outlier approach [16], called LOF, is to assign a local outlier factor (LOF) to each
object of the dataset denoting its degree of outlierness. In general, LOF corresponds to the average
of the ratio of the local density of an object p and those of p’s k-nearest-neighbors. Intuitively, p’s
local outlier factor will be very high if its local density is much lower than those of its neighbors.
Isolation Forest. An isolation forest is an ensemble of a set of isolation trees [44]. In an isolation
tree, the data is recursively partitioned with axis-parallel cuts at randomly chosen partition objects
within randomly selected attributes. The aim is to isolate the instances into nodes with fewer and
fewer instances until the objects are isolated into singleton nodes containing one instance only. In
such cases, the tree branches containing outliers are noticeably less deep, because these objects
are located in sparse regions. Here thus the distance of the leaf to the root is used as the outlier
score. The final outlier score then is computed by averaging the path lengths of the objects in the
different trees of the isolation forest.

3 OVERVIEW OF THE AUTOOD FRAMEWORK

In this section, we introduce the overall design of AutoOD.

3.1 Fundamentals Underlying AutoOD

AutoOD Strategy. AutoOD unifies the merits of unsupervised outlier detection and supervised
classification. Namely, unsupervised methods do not rely on a human expert to supply labels
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Fig. 1. AutoOD Framework

about ground truth anomalies — which often are hard to come by. However, the accuracy of
unsupervised outlier detection is often low [17] due to the lack of human supervision. On the other
hand, supervised classification techniques are able to achieve higher accuracy by training a binary
classifier that classifies the objects into outliers or inliers. However, they rely on the availability of
a sufficient number of high quality labels for training [22].

Instead of selecting an appropriate outlier detection method and then tuning its parameters

to get good results, AutoOD uses a large set of diverse unsupervised outlier detectors as labeling
sources to automatically produce high quality labels, where an outlier detector corresponds to one
specific unsupervised outlier detection method instantiated with a particular parameter setting. We
then use these automatically produced labels to train a classification model to finally classify each
object as being either an outlier or an inlier. As we will demonstrate in Sec. 6.2, this allows AutoOD
to achieve high accuracy in detecting outliers, without having to rely on human experts to supply
high-quality labels. AutoOD thus captures the benefits of both unsupervised and supervised outlier
detection.
AutoOD Intuition. Without any manually supplied labels indicating ground truth, it appears
extremely difficult to automatically discover the best unsupervised outlier detector among many
alternatives. Even if it were possible to identify the best one, it would not be guaranteed to detect
outliers with high accuracy. In fact, among all detectors there is at times no one clear winner that
dominates all the other detectors. Given a diverse set of unsupervised detectors, each detector
might discover some anomalies which other detectors would miss.

However, we observe that there typically tend to be some objects in the data that are clear outliers
and inliers. Clear outliers, for example, often correspond to the objects that are well isolated from
other objects, while clear inliers often correspond to objects residing deeply inside dense data
clusters. Our intuition is that it is to be much easier to automatically identify such clear outliers or
clear inliers compared to identifying the best overall detector method itself. Using these objects as
reliable labels that characterize key differences between outliers and inliers, AutoOD thereby can
fully explore the generalization ability of supervised machine learning [30] to learn a classification
boundary that effectively infers the status of the remaining unsure objects.

3.2 Components of the AutoOD Framework

Fig. 1 depicts the overall AutoOD Framework. AutoOD is composed of three key components,
including unsupervised outlier detection, automatic reliable object discovery, and outlier classification.
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(1) Unsupervised Outlier Detection. AutoOD features a built-in library of different classes of
unsupervised outlier detection techniques surveyed in Sec. 2. Given an input data set, AutoOD
first uses a set of unsupervised outlier detectors to detect outliers. Each detector corresponds to
one outlier detection method in the built-in AutoOD library with a particular configuration of
parameter values instantiated. For simplicity and ease of use, for each detection method, AutoOD
uniformly picks some parameter configurations from a reasonable parameter range recommended
by [17].

(2) Automatic Reliable Object Discovery. Next, based on these unsupervised detection results,
AutoOD divides the input data into two subsets, “reliable objects” and “unsure objects”. The reliable
objects are those which AutoOD is confident are clearly inliers or outliers based on the detection
results produced by the detectors.

(3) Outlier Classification. Finally, the automatically discovered reliable objects are used as training
data for a binary outlier classification model. This model then produces predictions for the “unsure”
objects whose labels remain to be unknown. This way, eventually our AutoOD assigns labels to all
objects.

AutoOD-Augment and AutoOD-Clean. Clearly, the effectiveness of AutoOD relies on the
number and quality of the reliable objects discovered in the second step and used as labeled
training data thereafter. In this work, we design two approaches to discover these reliable objects
that complement each other. First, we propose an augmentation-based method, called AutoOD-
Augment (Sec. 4). AutoOD-Augment starts by automatically discovering a small but reliable set of
objects to label and keeps augmenting this set iteratively. Second, we propose a cleaning-based
method, called AutoOD-Clean (Sec. 5). As opposed to AutoOD-Augment, AutoOD-Clean starts
with a large set of noisy labels and keeps cleaning this set into an increasingly reliable set. In the
next two sections, we introduce the two approaches in detail.

4 AUGMENTATION-BASED RELIABLE OBJECT DISCOVERY

AutoOD-Augment starts with discovering a small set of reliable objects and then iteratively augments
this set until no new reliable objects can be found.

4.1 The Overview of AutoOD-Augment

Next, we overview the AutoOD-Augment approach that includes three key components, namely
initial reliable object discovery, learning-based poor detector pruning, and reliable object set update.

(1) Initial Reliable Object Discovery. AutoOD-Augment identifies an initial label set of stable
outliers/inliers using the strategy described below. In AutoOD, an object is considered to be reliably-
decidable about its label status, if all unsupervised outlier detectors agree on its (outlier/inlier)
label status. We call these the stable objects. The stable objects typically correspond to the clear
inliers and outliers in the data. The intuition is that although different outlier detection methods
use distinct techniques to detect outliers, they are based on the same principle. That is, an object is
an outlier if it deviates significantly from the other observations [31]. Therefore, they all tend to be
good at capturing the clear inliers that are deeply resided inside of some big data clusters and the
clear outliers that are far way from any other objects.

(2) Learning-based Poor Detector Pruning. Second, treating the stable outliers/inliers as
reliable objects and hence ground truth labels, AutoOD trains a machine learning model to estimate
the performance of the unsupervised detectors. Progressively pruning the bad detectors enables
AutoOD to collect more and more stable inliers and outliers, thus gradually discovering more
reliable objects. Note although AutoOD estimates the performance of each detector, the ultimate
goal is not to find the best detector, but instead it is to automatically discover more reliable objects.
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(3) Reliable Object Set Update. AutoOD-Augment leverages the concept of multi-view analy-
sis [26] to update the reliable objects. That is, AutoOD learns multiple distinct outlier classification
models that are trained on the same set of labels but that use different sets of features. Features we
can leverage here include not only the attributes of the data itself, but also the intermediate results
produced by the outlier detectors. The intuition is that if the classification models learned from
different views of the data agree with each other on the prediction of some objects, potentially these
objects are reliable objects. On the other hand, the objects on which the classification models have
conflicting predictions will be removed from the set of reliable objects to purify the automatically
produced labels.

Algorithm 1 AutoOD-Augment

1: function AUTOODAUGMENT(DETECTORS, SCORES, X)

2 prevlds = []

3 Ids, D, = INITRELIABLEOBJ(Scores)

4: counter = 0

5: while True do

6 Scores = PRUNEDETECTOR(Detectors, Scores, Ids, D,)
7 Ids, D, = UpDATERELIABLEOBJ(Scores, Ids, D,)

8 if prevlds == Ids then

9: break

10: prevlds = Ids

11: return Ids, D,

Alg. 1 illustrate the overall process of AutoOD-Augment. First, n different outlier detectors
di, d, . .., d, generate a list of outlierness scores sy, s, . . ., s, for each object p;, respectively. Based
on these outlierness scores, AutoOD-Augment puts together its initial set of reliable objects D,
(Line 3, Alg. 1). Our learning-based detector pruning strategy then is applied to discover and prune
the poor detectors (Line 6, Alg. 1). Based on the remaining outlier detectors, AutoOD-Augment
leverages the multi-view outlier classification to update reliable objects D, (Line 7, Alg. 1). The new
D, is used in the next iteration as training data to further prune the poor detectors. In this process,
D, gets larger and more accurate. AuotoOD-Augment terminates when D, does not change any
more (Lines 8-9, Alg. 1).

Next, we introduce the three key components of AutoOD-Augment in more detail, namely initial
reliable object discovery, learning-based poor detector pruning, and reliable object set update.

4.2 Initial Reliable Object Discovery

AutoOD-Augment starts by identifying stable inliers and stable outliers as initial set of what we
call “reliable objects”. Because outliers typically correspond to only a very small fraction of the data
set, in some cases AutoOD may not be able to identify stable outliers in this initial set — especially
when handling small datasets. To solve this issue, we relax the strict requirement of stable outliers
when necessary. The first relaxation is if all detectors that use the same detection method M; but
different parameter settings pt; ... pt,, mark an object as outlier, then we will consider this object
to be a stable outlier. For example, suppose AutoOD uses two outlier detection methods LOF [16]
and Isolation Forest [44], and there is no stable outlier based on the strict stable outlier requirement.
In this case, an object will be considered as a stable outlier if all detectors using LOF believe it is an
outlier. While this or other relaxations we may explore in the future may introduce errors into the
set of reliable objects, AutoOD-Augment is designed to fix these errors using an iterative learning
process described in Sec. 4.4.
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Fig. 2. AutoOD-Augment: Prune Poor Detectors
4.3 Learning-based Poor Detector Pruning

One principle of AutoOD-Augment is to tackle the problem of pruning poor detectors using machine
learning, more specifically logistic regression. In this work, leveraging the unique properties of
the logistic regression model in conjunction of unsupervised outlier detection AutoOD-Augment
effectively discovers poor detectors with a theoretical guarantee.

Logistic regression (LR) [35] is a classical binary classification model that predicts the probabilities
of possible outputs. Consider a single input observation x, represented by a vector of features
[x1, %2, . .., x,]. The classifier consuming x then outputs outcome y, where y € {0, 1} with 1 meaning
the observation is a member of the class C and 0 the observation is not a member of the class C. We
want to know the probability P(y = 1|x) that the observation x is a member of the class C. In the
outlier detection case, P(y = 1|x) represents the probability that x is an outlier, while P(y = 0|x)
represents the probability that x is an inlier.

Given a training set of objects with class labels, logistic regression (LR) solves this classification

problem by learning a vector of weights w = [wq, Wy, ..., w,] and a bias term. Each weight w; is a
real number, and is associated with one of the input features x;. Formally, the LR model is defined
as:
P(y=1
log LW =10 @)

og—————— =

1-P(y=1l)
where w denotes the weight vector and b the bias term. Solving for P(y = 1|x), this gives:
ew~x+b 1

P(y =1|x; b, W) = T4 owxih = T+ o= (D) (3)

The weights and bias of the LR model are estimated from the training data. After we have learned
the weights through the training process, the probabilities for each class can be computed by Eq. 3.
If P(y=1|x; b,w) > 0.5, the object is classified as an outlier. Alternatively, if P(y=1|x; b,w) is close
to 0, the object is an inlier. On the other hand, if P(y=1|x; b,w) is around 0.5, the LR model is not
certain enough about the status of the given object.

Outlier Detector Pruning With Logistic Regression. The outlier detector d; produces an
outlierness score s; ; for each object p; in the dataset. As a real number, the larger the s; ;, the
more possible that d; believes p; is an outlier. This outlierness score can be treated as an additional
derived feature x; of object p produced by detector d;. Thus, in total, n outlier detectors will produce
n such derived features {x], x, ..., x,}. As depicted in Fig. 2, the outlier scores s;; produced by
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n detectors for m objects form a n X m matrix. Element s; ; represents the outlierness score that
detector d; assigns to object p;. Correspondingly, the ith row corresponds to feature x; produced
by detector d; across all objects, while the jth column corresponds to features produced for object
p; by all the detectors.

As a preprocessing step, AutoOD normalizes the outlierness scores produced by different de-
tectors into the same range to allow for ease of comparison. In the implementation, AutoOD uses
RobustScaler in scikit-learn [50] that is known to be robust to outliers. AutoOD then uses these
derived features {x{, x;, ..., x;, } produced by the n detectors and the set of stable labels produced in
the first step to train an LR model.

As discussed above, LR assigns a weight w; to each feature x; corresponding to one detector d;.
Intuitively, the weight w; represents how important that input feature x; is to the classification
decision [30]. It can be positive or negative which would mean that the feature is (or is not)
associated with the outlier class, respectively. Leveraging this insight, we define the pruning rule
in Def. 4.1 that prunes detectors based on the importance of their evidence to the LR model’s
classification decision.

DEFINITION 4.1. Pruning Rule. Given the weights WT = {wy, wy, ..., w,} corresponding to features
{x],x}, ..., x;,} produced by detectors {dy, ds, ..., d, }, AutoOD prunes detector d; if:

(1) weight w; < 0; or

(2) w; < mean(WT) — std(WT) whenV w; € WT, w; > 0.

By the pruning rule, if there are negative weights, AutoOD prunes the corresponding detectors
immediately. Otherwise, AutoOD prunes the detectors whose weights are at least one standard
deviation smaller than the average weight over all detectors. Our experiments in Sec. 6.6 confirm
that this is effective in pruning the poor detectors.

Theoretical Guarantee. Next, we formally show in Lemma 4.1 that the detectors discarded by
the pruning rule are guaranteed to not perform better than the remaining detectors under the
comparison criteria defined in Def. 4.2.

DEFINITION 4.2. Comparison Criteria. Let O and I represent an outlier set and an inlier set,
respectively. We say detector d; is better than detector d;, if and only if:

Z Sik > Z Sjk and Z Sik < Z Sjk (4)

€0 pr€0 prel prel
where s; . corresponds to the outlierness score which detector d; assigns to object py.

Intuitively, given a set of outliers and inliers, we say detector d; is better than detector dj;, if
compared to dj, d; in total assigns larger outlierness scores to outliers and smaller outlierness scores
to inliers.

Next, we prove Lemma 4.1.

LEMMA 4.1. If detector d; is better than d; by the comparison criteria in Def. 4.1, then w; > w;.

Proor. Focusing on w; and wj, we re-write the objective function of logistic regression as:

max Z (Wi - Sk +wj - Sjx) — Z(wi “Sik+WjSjk) (5)

pr€0 prel
We use C; to denote )%, o Sik — 2 pe1 Sik and C; to denote 3, o Sjk — 2ip, e1 ).k By Equation 4,

if d; is better than d;, we have C; > C;. Accordingly, we re-write the objective as:

max C;w; +Cjo, s.t.C; > Cj (6)
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If we set ||w||3 to be Const, then using the Lagrangian multiplier method, we have:

f(w) = Ciw; + Cjw; +A(w51 +w32) (7)
Then setting the derivative of f(w) w.r.t. w; and w; to zero will yield:
G o
Wi:—z—i,Wj:—i,)L<0:W,‘>Wj (8)
This concludes the proof. O

By Lemma 4.1, weight w; represents the relative performance of detector d;. This in turn justifies
AutoOD’s pruning rule.

Algorithm 2 Update Reliable Object Set

1: highConfThr = t, lowConfThr = 1 - t

2: function UPDATERELIABLEOBJECT(Scores, trainlds, D,, LRModel)

3: DataFtModel = Train(X[trainlds], D,)

DataFtPredict = DataFtModel(X)

OutlierScorePredict = OutlierScoreModel(Scores)

highConfln = Intersect(DataFtPredict < lowConfThres, OutlierScorePredict < lowConfThr)
highConfOut = Intersect(DataFtPredict > highConfThres, OutlierScorePredict > highConfThr)
disagrees = (DataFtPredict > 0.5) != (OutlierScorePredict > 0.5)

stableln, stableOut = GETSTABLE(Scores)

10: inliers = Union(stableIn, highConfIn)

11: outliers = Union(stableOut, highConfOut)

12: inliers = Setdiff (inliers, disagrees)

13: outliers = Setdiff (outliers, disagrees)

14: trainlds = [inliers, outliers]
15: D, = [0 {len(inliers)}, 1 {len(outliers)}]
16: return trainlds, D,

4.4 Reliable Object Set Update

In Alg. 2, we leverage the idea of multi-view outlier classification to update the set of reliable objects.
For this, beyond training the logistic regression (LR) model on the outlierness score features (the
outlier score model), AutoOD-Augment trains an additional outlier classifier using only the raw
features (attributes) of the stable data set (Line 3), called the data feature model.

At testing phase, this classifier takes an object as input, and based on the similarity of its attributes
to objects in the stable data set, emits a confidence that the object is an outlier (or, not an outlier).
In this work, while any binary classification model could be plugged in, in our implementation we
utilize a Support Vector Machine (SVM) model as our classifier. This is because it does not require
careful hyper-parameter tuning and can handle high dimensional data.

The outlier score model and data feature model are used to infer two different sets of probabilities
of the outlier class for all objects in the entire input dataset (Lines 4,5). Thereafter, AutoOD-Augment
iterates over the process below using the prediction results of the outlier score and data feature
models as well as the remaining high-quality detectors to discover the reliable objects. The intuition
here is that the two models and the outlier detectors produce predictions for each object from
different views of the data. If they are consistent on the prediction of the outlier status for one
object, the label of this object is considered to be reliable.

In the update process, AutoOD-Augment first discovers the new stable outliers/inliers (Line 9).
After pruning some poor detectors, the numbers of stable inliers and outliers naturally increase.
Then from the prediction results of the two classification models, AutoOD-Augment identifies
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the confident inliers (Line 6) and outliers (Line 7). An object is a confident inlier or outlier if both
classification models are very confident about their prediction of its status.

DerINITION 4.3. Confident Inliers/Outliers. Given an object p and some thresholdt (0 < t < 1),
if the classification model trained on the outlierness scores and the classification model trained on the
raw features of data both predict p to be an inlier or outlier with a probability higher than t, then p is
a confident inlier or outlier.

By default, AutoOD sets the value of threshold ¢ in Def. 4.3 as 0.99. This corresponds to a very
strict criteria for finding confident outliers and inliers to ensure their reliability. Our experiments
show this value works well in all cases (suggesting this is not a parameter that needs to be tuned).

As discussed in Sec. 4.3, the logistic regression model trained on the outlierness score features
uses Equation 3 to assign each object a probability. It corresponds to the confidence of the model in
its prediction of the object’s class label. Naturally, we can use this probability to determine if the
object is likely an outlier (or inliers). That is, an object is potentially a confident inlier/outlier if and
only if P(y = 1|x;b,w) > tor P(y = 1|x;b,w) <1 —t.

However, standard SVMs trained on the raw features of the data do not produce a probability for
each object, representing how confident SVM is in its prediction of this object’s class. In this work,
we use the well-known Platt scaling [49, 53] method to calibrate the probabilities. Platt scaling
trains the parameters of an additional sigmoid function to map the SVM outputs into probabilities.

AutoOD-Augment then unions the current stable and the confident outliers/inliers sets into two
refreshed set of reliable outliers and inliers (Lines 10-11). Moreover, AutoOD-Augment removes the
objects from the reliable object set if the two classification models have conflicting predictions on
these objects (Lines 12-13). This further purifies the set of reliable objects.

Termination Condition. AutoOD-Augment proceeds until the set of reliable objects does not
change (Line 9 in Alg. 1). Next, we intuitively show that this process is guaranteed to converge. First,
the detector pruning would stop, in the worst case when only one detector were to remain. Then the
stable outliers and inliers thus would not change anymore. Now the update of the reliable object set
is only driven by the predictions of the two classification models. The diminishing update of the set
of reliable objects in turn gradually stabilizes these two models trained on it. This eventually leads
to the stabilization of the set of confident inliers/outliers and the termination of AutoOD-Augment.
Now the two models and the remaining unsupervised outlier detectors highly agree with each
other on the predictions of the current reliable objects. Therefore, they tend to be indeed reliable.

5 AUTOOD-CLEAN: CLEANING-BASED RELIABLE OBJECT DISCOVERY

AutoOD-Clean trains a neural network to combine the predictions of the unsupervised detectors
to produce a set of reliable objects. We first describe an important observation about the training
process of a deep neural network which we leverage, and then we introduce the details of the
AutoOD-Clean approach.
Key Observation. Fig. 3 shows the evolution of model accuracy for “mislabeled” and “correctly
labeled” objects as a function of training epochs when training a neural network using a noisy
training dataset [62]. We consider the common setup where training proceeds in epochs. We then
inspect the evolution of the accuracy of the model on the training objects. That is, after each epoch,
we take the model at that stage and see whether or not it makes an error for each of the training
objects. Here we assume we have access to the ground truth of this noisy training dataset. As shown
in Fig. 3, the accuracy on “correctly labeled” objects is higher than on the “mislabeled” objects,
especially in the initial epochs of training.

Leveraging the above observation, we are now ready to propose an approach to discover reliable
training data. This approach AutoOD-Clean starts with a large but noisy training dataset and
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Fig. 3. Observation: Evolution of Training Accuracy for Mislabeled and Correctly Labeled Samples.

iteratively cleans it. AutoOD-Clean is inspired by the theory of minimizing the trimmed loss [47].
Given a set of n samples, standard model-fitting involves choosing model parameters 6 to minimize
a loss function over all n samples. In contrast, the trimmed loss estimator involves jointly choosing
a subset of an samples and parameters 6 such that the loss on the subset is minimized over all
choices of subsets and parameters. While this objective is intractable in general, AutoOD-Clean
can be considered as an iterative methodology for minimizing this trimmed loss. It simultaneously
generates a reliable training dataset and an effective neural network model, as iteratively minimizing
the trimmed loss.

Trimmed Loss Let D = py,..., p, be the set of training objects, 8 be the model parameters to
be learned, and fy(.) be the loss function. With this setting, the standard approach is to minimize
the total loss of all objects, i.e., ming }; fo(p;)- In contrast, the least trimmed loss (TL) estimator is
given by:

6T = i i ; 9
argmin min ;D fo(pi) )

To find 6™, we need to minimize over both the set D of size Llan] — where a € (0, 1) is the
fraction of objects we want to fit — and the set of parameters 6. In general, solving for the least
trimmed loss estimator is hard, even in the linear regression setting [47], i.e., even when p = (x, y)

and fy(x, y) = (y - 0"x)%.

5.1 AutoOD-Clean: Iterative Trimmed Loss Minimization

As described in Alg. 3, AutoOD-Clean starts with a large but noisy training dataset and alternates
between training a neural network based on trimmed loss and updating the training data using the
early training loss as well as the prediction results of the neural network.

The AutoOD-Clean approach is composed of three steps: initial training data generation, modeling,
and training data update.
(1) Initial Training Data Generation. As shown in Alg. 3 (Line 2), AutoOD-Clean starts by using
all data objects as training data. The labels of these objects can be produced by ensembling the
results of multiple detectors or using the results of any detector.
(2) Modeling. During the modeling process, we train a neural network using the current training
data (Lines 5-7, Alg. 3). Specifically, we first train a neural network just for a few epochs and
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Algorithm 3 AutoOD-Clean

1: function AUTOODCLEAN(SCORES, X)

2 labels = ENSEMBLE(Scores)

3 cur =[0,..., len(labels)] > Keeps track of remaining data indexes
4 while true do

5: model, lossList = RUNNN(X[cur], labels[cur], numEpochs = 3)

6

7

8

9

model = RUNNN(X[cur], labels[cur], numEpochs=10, model = model)
predictions = INFER(model, X)
cur = PRUNELoOss(lossList, cur)
: cur, labels = ADDCoNFOBjs(predictions, cur, labels)
10: if numRmv > numAdd then
11: break
12: return cur, labels

keep track of the loss for each training object (Line 5, Alg. 3). Given an training object, its loss is
measured as the difference between the prediction and its label using a typical loss function such
as cross entropy [29].

AutoOD-Clean uses the loss for each object to prune mislabeled objects. That is, it leverages
the observation that mislabeled objects tend to have higher loss than correctly labeled objects,
especially during the early epochs [62]. This stage of the process does not require for the model to
have converged; thus a handful of initial epochs is sufficient. In our experiments, we use a small
network with 3 hidden layers for all datasets; and thus set the number of epochs to be 3. If using a
larger network, we would set the number of epochs to be a bit larger, say 5 or 10.

After recording the early loss for each training data object — the average training loss it incurred
in the early epochs, AutoOD-Clean continues to train the network until it converges (Line 6 in
Alg. 3). Then AutoOD-Clean uses the converged model to make inference on the entire dataset. In
the outlier detection setting, the output is a probability that can be interpreted as the confidences of
the current model on the object being an outlier or a inlier. Both the early losses and the confidence
scores will be used in the next step to update the training data (Lines 8-9, Alg. 3).

(3) Training Data Update. First, AutoOD-Clean removes the training points with large early
losses from the training data using the cleaning rule defined below.

DEFINITION 5.1. Cleaning Rule. LetL; = {, lg, .., L} denote the early losses of the training objects
I that are classified as inliers and Lo = {l?, IZO, ..., 19} denote the early losses of the training objects O
that are classified as outliers. A training object p; with early loss I; will be removed if:

(1) I; > mean(Ly) + std(L;) when p; € I; or (2) I; > mean(LLo) + std(Lp) when p; € O

Algorithm 4 Pruning Objects with Large Early Losses

1: function PRUNELARGELOSS(LOSSLIST, CUR, LABELS)

2 outliers = labels[cur] == 1

3 lossThrOut = mean(lossList[outliers]) + std(lossList[outliers])
4: rmvldx = cur[outliers][lossList[outliers] > lossThrOut]

5: inliers = labels[cur] == 0

6: lossThrIn = mean(lossList[inliers]) + std(lossList[inliers])

7 rmvldx += cur[inliers][lossList[inliers] > lossThrIn)

8 cur = cur - rmvldx

9 return cur

Alg. 4 shows the process of applying the cleaning rule to prune objects. Suppose an object is
temporarily considered as an outlier (Line 2, Alg. 4). AutoOD-Clean will remove it if its loss is one
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standard deviation larger than the mean loss of the outier labels. On the other hand, AutoOD-Clean
will remove an inlier if its loss is one standard deviation larger than the mean loss of the inlier
labels. Note we use different criteria to prune mis-labeled inliers and outliers, because outliers and
inliers tend to show different patterns in their early losses due to their distinct data characteristics.
Our empirical study shows that the early loss of outlier labels in average is larger than inlier labels.
Fixing Erroneous Pruned Objects. AutoOD-Clean might erroneously remove some training
objects due to the prediction errors of the network. This in particular may arise during early training
stages, when the neural network model is trained on noisy training data and thus may possibly
have low accuracy. Because the training data continuously gets improved in this iterative process,
the accuracy of the neural network model is also expected to increase over time. This provides us
with opportunities to fix the earlier mistakes by adding the high confidence objects back into the
training data.

Next, we describe the process of adding objects with high prediction confidence back into the

training data set. We train the neural network until it fully converges. Then we make prediction
on all input data. That is, we apply the latest fully converged neural network to classify the data
into outliers or inliers. If an object is not in the current training data, but it is being classified as an
outlier or inlier with a confidence higher than a threshold ¢, we will add it to the training data. On
the other hand, if the label of a current training object is different from the inference output, it
will be removed from the training data even if its loss is not large. The threshold ¢ by default is set
as 0.99, corresponding to a very strict requirement on confidence level. Our experiments show it
works well in all cases.
The Termination Condition. After updating the training data, AutoOD-Clean will iteratively
repeat this process, that is, it will re-train the neural network in the next iteration using the new
training data. This process continues until the number of removed objects is smaller than the
number of added objects (Lines 10-11, Alg. 3). Next, we show that with this termination condition,
AutoOD-Clean is guaranteed to converge to a reliable training data.

5.2 Convergence Analysis

We show the convergence of AutoOD-Clean by proving that AutoOD-Clean is able to recover the
ground truth labels with a linear convergence rate. Here we use the generalized linear model to
represent the neural network model which AutoOD-Clean uses. This is a common practice [62],
because the problem of analyzing a general least trimmed loss estimator is intractable.

We analyze AutoOD-Clean with errors in the labels. We represent the training objects in the
form of (x,y) such that:

y =w(P(x)T - 0%) + e, (correctly labeled objects)

: . (10)
y=r+e (mislabeled objects)

Here x represents the features of a training objects and y denotes the output, embedding function
¢ and link function w are known, e is random subgaussian noise with parameter o* [65], and 0* is
the ground truth. Let o* be the fraction of correctly labeled objects in the training data.

For AutoOD-Clean, we use squared loss, i.e., fy(x,y) = (y — w(¢(x)T - 0))%. We assume the

feature matrices are regular, as defined below.
DEFINITION 5.2. Let ®(X) € R"™? be the features matrix for all training objects, where the ith row
isp(x;)T. Let Wi = {W € R™"|W, ; = 0,W;; € {0,1}, Tr(W) = k}. Define

Y7 (k) = min o (@(X) WE(X)),
W:we (11)
Y (k) = max omax((X)" WE(X))
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®(X) is a regular feature matrix if for k = an, a € [¢, 1], ¥~ (k) = ¢ (k) = ©(n) for n = Q(dlogd).
Regularity states that every large enough subset of training objects results in a well conditioned
D(X).

We prove the convergence claim by using an one-iteration update lemma for the linear case [62].

LEMMA 5.1. Assume w(x) = x and we are using AutoOD-Clean. The following holds per iteration:

Vay, " V2¢; + ctio
7 (an) |10: — 67|]2 + o (an) (12)

where « denotes the fraction of objects that are being removed in each iteration, ¢; =
| Zicss ()70 =i = e)d(xi)lz v = Y (IS:\S7]), and & = \/Z?:l 4 (xi)3lognll.

Note that in Lemma 5.1, « is always larger than 1, because AutoOD-Clean makes sure that the
number of removed objects is always larger than the number of added objects. By Lemma 5.1 a «
larger than 1 ensures that AutoOD-Clean bounds the error in the next step based on the error in
the current step. AutoOD-Clean thus is guaranteed to converge.

Due to space limit, please refer to extended version of this manuscript [2] for the formal proof of
Lemma 5.1. The proof is based on the objective of the trimmed loss estimator introduced in Sec. 5.

1041 = 07]2 <

5.3 The Selection Between AutoOD-Augment and AutoOD-Clean

AutoOD-Augment and AutoOD-Clean work in two different ways: AutoOD-Augment starts with
a small set of reliable labels and keeps augmenting it, while AutoOD-Clean starts with a large
but noisy set of labels, and keeps cleaning it. Although in general both methods work well, as
shown in Fig. 4 (Sec. 6.2), they complement each other in terms of applicability concerning the
availability of hardware and data set types. In particular, we prefer AutoOD-Clean when it is hard
to acquire reliable labels initially. This, for example, is the case on the Annthyroid dataset where
AutoOD-clean significantly outperforms AutoOD-Augment. If the user does not have any GPU
resources available, then we recommend the users AutoOD-Augment, because AutoOD-Clean
needs GPUs to train a neural network. In the current implementation, our AutoOD system starts
with AutoOD-Augment. If AutoOD-Augment only gets very few reliable labels at beginning, it
switches to AutoOD-Clean.

6 EXPERIMENTAL EVALUATION

In the experiments, we evaluate the effectiveness and efficiency of AutoOD. We also analyze the
quality of the automatically produced reliable labels which are critical to the performance of
AutoOD. In addition, we build a web service to demonstrate AutoOD [34].

6.1 Experimental Methodology and Setup

Datasets. We evaluate the effectiveness of AutoOD using 11 outlier detection benchmark
datasets [17, 60] with varying cardinality, numbers of dimensions, and proportions of outliers. The
main characteristics of these datasets are summarized in Table 1.

Experimental Setup. The experiments were run on a single machine with 32 Intel Xeon 2.30GHz
cores, 120GB RAM and 500GB disk on Google Cloud. We use one P100 GPU to train the neural
networks.

Outlier Detectors. We use four popular unsupervised outlier detection methods: Local Outlier
Factor (LOF) [16], K-Nearest Neighbors (KNN), Isolation Forest [44], and the Mahalanobis method
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Dataset # Instances Outlier Fract. # of Dims
PageBlock 5,473 10% 10
SpamBase 4,601 40% 57

Pima 768 35% 8

Shuttle 49,097 7% 9

Http 567,498 0.4% 3
Mulcross 262,141 10%
Annthyroid 7,129 7% 21
Musk 3,062 3% 166
Satimage-2 5,803 1.2% 36
Pendigits 6,870 2.3% 16
SMTP 95,156 0.03% 3

Table 1. Ten Benchmark Data Sets for Outlier Detection

that cover diverse categories of outlier types including local outliers, global outliers, tree-based
outliers, and statistical-based outliers.

For all four methods, we configure them with a variety of different parameter settings. First,
because in the real applications users are typically not aware of the exact fraction of outliers in
their datasets, all methods have a parameter N that controls the number of outliers it returns. We
pick 6 N values so that the fraction of the outliers each method returns fluctuates around the actual
fraction.

Next, we vary the parameters specific to each method. Both LOF and KNN have the number
of neighbors k as parameter. We work with 10 different k values, with the actual values of k
randomly picked in a range from 1 to 100. For the Isolation Forest, we vary the number of features
num_features to train the base estimator of the forest. For all datasets, we vary num_features
from 20% to 100% of the available features with a 20% interval. The Mahalanobis method does not
have any specific parameter.

In summary, we use 156 instantiated outlier detectors including 60 (6 X 10) LOF detectors, 60
(6 X 10) KNN detectors, 30 (6 x 5) Isolation Forest detectors, and 6 Mahalanobis method detectors.
Algorithms. We compare the following algorithms:

« AutoOD-Augment (Sec. 4) and AutoOD-Clean (Sec. 5): our two AutoOD methods.

« LODA [52] and LSCP [71]: state-of-the-art outlier ensemble methods. Like AutoOD, outlier
ensemble uses many detectors to detect outliers. So they are a natural point of comparison. However,
LSCP only uses the detectors from the same detection method, e.g., LOF [16], while LODA uses a
set of weak detectors that use one dimensional histogram to detect outliers.

« Snorkel [55-57]: given a set of noisy labeling sources, aims to assign label to each object
with high accuracy. We use its most recent variant [57] to integrate results from different outlier
detectors, treating these detectors as noisy labeling sources. This can be seen as an advanced
ensemble method.

« PyODDs [43]: leverages AutoML to select outlier detector, with strong assumption that ground

truth labels are available.

« MetaOD [72]: uses a pre-trained meta learning model to select a good detector from many
detectors, in which these detectors are pre-encoded during the training phase. We use the pre-
trained model that the authors have published as core ingredient of their approach (https://github.
com/yzhao062/MetaOD).

« Isolation Forest [44]: we compare against Isolation Forest with a random configuration. Same
as [46], we report its accuracy as the average accuracy of 30 Isolation Forest models we use in our
experiment, which can be considered to be equivalent to an Isolation Forest with randomly chosen
hyper-parameters.
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Fig. 4. Effectiveness Evaluation of All Methods on Ten Benchmark Data Sets using F-1 Metric

+ Best_Unsupervised: the best unsupervised outlier detector among all detectors discovered by

an oracle, where we use ground truth labels to compute F-1 score of each detector.

« Ground-Truth(GT): supervised classifier that is trained using the ground truth as labels. This
corresponds to a best case scenario, as it knows upfront what are the outliers and inliers in the data
set. As in AutoOD-Augment, we use SVM as supervised classification technique. We train SVM
model by randomly sampling 50% of dataset as training data.

Metrics. We first evaluate effectiveness at detecting outliers by measuring the F-1 score for the
outlier class, given F-1 is known to be robust to class imbalance. F-1 score considers both precision
and recall, where precision is the number of correctly detected outliers divided by the number of
all outliers returned by the detector, and recall is the number of correctly detected outliers divided

by the number of all ground truth outliers. F-1 is computed as F-1 = 2x %. We also
report the precision and recall separately. Next, we evaluate the efficiency of AutoOD including the
running/training time, its scalability in the number of detectors, and the memory consumption. In
addition, we report the statistics of the reliable labels that AutoOD produces and the number and
the types of detectors that AutoOD-Augment preserves. Finally, we evaluate if AutoOD-Augment
is effective at identifying the bad detectors.

Parameters. For the methods that fall into the category of automatic detector selection including
MetaOD and PyODDs, we use the configuration suggested by their original authors in the literature.
For example, in the AutoML-based PyODDs, there is no parameter to tune other than ensuring it
uses the same set of detectors that AutoOD uses. Per the suggestion of the MetaOD [72] authors,
we use the model they published, which in the training phase uses more types of outlier detectors
than AutoOD. For the Isolation Forest, per the suggestion of [46], we report its accuracy as the
average accuracy of 30 Isolation Forest detectors we use. For the ensemble-based methods including
Snorkel, LODA, and LSCP, we tune the parameters per the instruction of the authors and report
the best results on each dataset. Snorkel uses the same set of detectors that AutoOD uses. We set
its learning rate as 0.001 and the number of epochs as 1000. LODA requires the users to determine
the outlier rate which in our experiments is set as the true outlier rate of each dataset. LSCP uses
the same set of LOF detectors that AutoOD uses. Per the authors’ recommendation, we set its local
region factor k as 10% of the training samples, bounded in the range of [30, 100].

6.2 Effectiveness Evaluation

6.2.1 Summary of Effectiveness Results. In this experiment we measure the effectiveness of AutoOD
using a variety of benchmark outlier detection data sets. We find that AutoOD is consistently able to
detect outliers with an accuracy higher than the best outlier detector among hundreds of configured
detectors, while all other approaches we evaluated perform significantly worse. In fact, AutoOD
succeeds to achieve an accuracy comparable to supervised outlier classifiers trained with ground
truth labels — yet without having any access to such ground truth knowledge. AutoOD significantly
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outperforms the two SOTA outlier ensemble methods (LODA and LSCP), Snorkel, PyODDs, MetaOD,
and Isolation Forest by 12 to 97 points (out of 100) in the F-1 score.

6.2.2  Detailed Analysis of Effectiveness. Fig. 4 shows the results on ten benchmark datasets. At the
x axis, the datasets are ordered by their sizes. Http is the largest dataset. AutoOD applies the same
configuration to all data sets. On all datasets, AutoOD outperforms all other methods except GT -
with the later the unfair advantage of full access to the ground truth to train its outlier classifier
and hence it is expected to perform very well.

Comparison to Best Unsupervised. Compared to the best unsupervised detector (discovered
by an oracle using the ground truth), AutoOD-Augment achieves higher F-1 scores on 9 out of 10
datasets by up to 38 points and AutoOD-Clean gets better F-1 scores on 8 out of 10 datasets by up
to 39 points, without relying on human tuning. This is because AutoOD intelligently combines
the contributions of all unsupervised detectors in the process of automatically discovering reliable
labels, instead of relying on one single detector to produce the final results.

Comparison to Ensemble. The two outlier ensemble methods (LODA, LSCP) and Snorkel
perform consistently worse than the best outlier detector, often with a large margin. The reason
may be that the detectors often produce diverse results on many objects. It is thus challenging to
make consensus-based inference on these objects — yet this is indeed the nature of these outlier
ensemble methods.

Comparison to PyODDs. Although PyODDs uses domain knowledge in the form of ground
truth labels (to which our methods do not have access), it cannot find the best detector in all
cases and often ends up with a poor detector. Therefore, in many cases it performs even worse
than LODA, LSCP, and Snorkel, especially on large datasets. Because our AutoOD consistently
outperforms the best detector, it thus significantly outperforms all these methods from 12 to 97
points in F-1 score.

Comparison to MetaOD. We use the model published by the authors. During training MetaOD
has already seen 8 out of the 10 testing datasets used in our experiments, which should bias
performance in its favor. Overall, MetaOD slightly outperforms Snorkel and PyODD, showing that
this interesting meta-learning based method works to some extent.

However, even on the 8 datasets seen before, MetaOD cannot find the best detector from the
candidates, while it completely fails on the two previously unseen datasets (Mulcross and HTTP),
ending up with choosing a detector that performs poorly. This indicates MetaOD has poor general-
ization ability, probably because the characteristics of outliers in different datasets can be rather
distinct.

Comparison to Isolation Forest. For the Isolation Forest with a random configuration, we
get a similar conclusion to the empirical study paper [46], namely, that it is comparable to the
methods that select one method from a number of outlier detectors and to ensemble-based methods.
However, this method still performs significantly worse than the best unsupervised detector and
than our two AutoOD-based approaches, because Isolation Forests do not always perform the best
among all detectors, as shown in Table 4.

Comparison to GT. Compared to GT, our two AutoOD methods achieve comparable or even
slightly higher F-1 scores on 6 out of the 10 datasets, even though AutoOD does not have access to
any ground truth training data. However, on the Pendigits and Annthyroid datasets, AutoOD does
not perform as well as GT. This is because for these datasets, all unsupervised outlier detectors
have very low F-1 scores. Therefore, AutoOD cannot identify many high quality labels from the
output of these unsupervised detectors.

Scalability to Large Data & Robustness to Dimensionality. As shown in Fig. 4, the larger the
datasets are, the better AutoOD performs, indicating its scalability to large data. This is because it is
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easier to produce a sufficient number of quality labels from large datasets. The dimensionality of the
datasets used in our experiments falls in a large range from 10 to 166. AutoOD works well on the
high dimensional Musk data. This shows AutoOD is robust to dimensionality. Because any outlier
detection method can be plugged into AutoOD, base detectors less sensitive to data dimensionality
thus can be used. For example, in our experiments we use Isolation Forest known to work well on
high dimensional data.

The Convergence. In Sec. 4.4 (Termination Condition) and Sec. 5.2 we have shown that AutoOD-
Augment and AutoOD-Clean are guaranteed to converge. In our experiments, we observe that
on average AutoOD-Augment converges in 21 iterations, while AutoOD-Clean converges in 12
iterations.

The Performance Variance of AutoOD on Different Datasets. For some datasets, AutoOD
is close to GT, while for others the difference is big. This is because of the quality of the labels that
AutoOD automatically produces. When AutoOD is able to produce high quality labels, AutoOD
tends to work as well as GT (Ground Truth) which uses ground truth labels to train an outlier
classification model. As shown in Fig. 4, the performance of AutoOD is comparable to GT on the
large datasets, because AutoOD has a larger chance to produce labels that are indeed reliable. Our
analysis on the automatically produced labels (Table 2) confirms this. On the Musk, Stimage-2,
Mulcross, Shuttle, and Http datasets, the labels produced by AutoOD have an accuracy close to 1.

Accuracy Number of Points

Datasets AutoOD-Augment AutoOD-Clean AutoOD-Augment AutoOD-Clean
F-1 Oztjler Izléir F-1 Oztclier In:Cncer Outlier | Inliner | Outlier Inlier

PageBlock 0.657 0.670 0.976 0.743 0.721 0.973 282 4413 258 2076
SpamBase 0.597 0.431 0.840 0.547 0.425 0.760 3761 275 2001 1063
Pima 0.691 0.531 0.980 0.756 0.791 0.874 196 50 43 103
Pendigits 0.421 0.400 0.989 0.362 0.350 0.972 140 6528 75 3105
Annthyroid | 0.046 0.063 0.942 0.890 0.802 1.000 206 6101 247 1068
Musk 1.000 1.000 1.000 1.000 1.000 1.000 34 2658 22 1514
Satimage-2 0.984 1.000 1.000 0.943 0.926 1.000 60 5642 27 2488
mulcross 0.981 0.963 1.000 1.000 1.000 1.000 27229 231736 26213 34621
Shuttle 0.998 0.996 1.000 0.968 0.976 1.000 2058 44740 482 6791
Http 0.946 0.898 1.000 0.949 0.924 1.000 118 535406 189 43251
SMTP 0.690 0.714 1.000 0.644 0.633 1.000 28 94979 30 91856

Table 2. Reliable Label Analysis

AutoOD-Augment VS AutoOD-Clean. As we have discussed in Sec. 5.3, AutoOD-Augment
and AutoOD-Clean work in two different ways and complement each other. However, we observe
that AutoOD-Augment and AutoOD-Clean achieve similar accuracy results on many datasets. Our
analysis on the reliable labels confirms that this is because the reliable labels that the two methods
produce tend to have a similar quality (Table 2) and in most cases, heavily overlap with each other.
We observe that these common reliable labels typically correspond to the same set of “clear” outliers
and inliers which are relatively easy for the unsupervised outlier detection detectors and hence
AutoOD-Augment/AutoOD-Clean to capture.

6.2.3  Precision and Recall. Due to space limit, we put the precision and recall results (Fig. 5 and 6)
in the extended version of this manuscript [2]. We study the precision and recall of the methods
that perform best on F-1 including our two AutoOD methods, Isolation Forests, MetaOD, and the
best unsupervised detector. We omit other methods as including them makes the graph hard to
read. AutoOD significantly outperforms all other methods. Moreover, AutoOD performs even better
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Method Precision| Recall F-1
IForest 0 0 0

Best Unsupervised 0.667 0.667 0.667

MetaOD 0.536 0.44 0.481

AutoOD_Augment 0.714 0.667 0.690

AutoOD_Clean 0.76 0.633 0.691

Table 3. Evaluation on SMTP (Low Outlier Rate)

on recall than on F-1. This is important to outlier detection, as missing outliers (false negatives)
often causes bigger problems than false alarms (false positives).

6.3 Reliable Label Analysis

In Table 2, we show the statistics (the quality and the number) of reliable labels that AutoOD
produces separately for inlier and outlier labels. We make the following observations:

+ On large datasets, the reliable labels that AutoOD produces are near perfect. Therefore, AutoOD
achieves an accuracy close to that of the supervised method GT. This is because the larger the
dataset is, the better the chance that AutoOD is able to produce labels that are indeed reliable.

« The accuracy of reliable inlier labels that AutoOD finds is consistently high, indicating it is
easier to find reliable inliers from the datasets than outliers. This may explain why AutoOD is able
to consistently outperform Best_Unsupervised.

+ The performance of AutoOD relies on the quality, but not the number of reliable outliers. Both
AutoOD-Augment and AutoOD-Clean do not need a large number of reliable outliers to achieve
good performance; as long as a sufficient number of reliable inliers can be identified that the system
can rely on, i.e., that are high quality, a small but clean set of reliable outliers typically is able to get
AutoOD-Augment and AutoOD-Clean high accuracy in outlier detection.

6.4 Effectiveness of AutoOD on Dataset with Low Outlier Rate

We experiment on the SMTP dataset [17, 60] with an extremely low outlier rate at 0.03%. Note this
is the only outlier detection benchmark dataset we can find that is publicly available and has a
very low outlier rate. As shown in Table 3, both AutoOD-Augment and AutoOD-Clean achieve
an accuracy higher than the best unsupervised detector. They also significantly outperform other
methods. This is similar to the results on other datasets with higher outlier rates. Note in the
effective experiments we discussed in Sec. 6.2, we evaluated AutoOD on datasets with outlier rates
varying from 0.4% to 40%, confirming that our AutoOD works well across a rich variety of outlier
rates.

As we have analyzed in Sec. 6.3, this is because AutoOD does not need a large number of high
quality outlier labels to achieve good performance. As long as AutoOD obtains a sufficient number
of accurate inlier labels, a small set of accurate outlier labels will make it work well. In outlier
detection, getting reliable inlier labels tends to be much easier than getting reliable outlier labels.
Therefore, AutoOD does not suffer as much from the rarity of outliers.

6.5 Efficiency Evaluation
We evaluate the running/training time of AutoOD, its scalability in the number of outlier detectors,
and the memory requirement.

6.5.1 Comparison of Running time to Other Methods. We compared our AutoOD-Augment and
AutoOD-Clean against MetaOD [72], PyODDs [43] and Snorkel [57], all of which, like AutoOD, use
many different types of outlier detectors to produce the final detection results. As shown in Fig. 5,
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except on the Pendigit dataset, PyODDs is always the slowest because of the complex AutoML
technique they use.

The total running time of AutoOD is composed of the time of first running the unsupervised
outlier detectors and then second learning the reliable labels from the detection results, while the
former typically dominates the latter, as shown in Fig. 5. Because both AutoOD-Augment and
AutoOD-Clean run the same set of unsupervised detectors, they thus typically have a similar total
running time. This is why, compared to manual tuning, which first runs all detectors and then picks
a good one, AutoOD does not have much overhead. This also explains why AutoOD tends to be
better than or comparable to Snorkel in running time which runs the same set of outlier detectors
as AutoOD.

For our comparison to MetaOD, we use the pre-trained model that the authors have published.
Hence, we cannot measure the MetaOD training time. Thus, we only report the running time that it
takes to process the targeted dataset in which outliers are to be identified. Clearly the complexity of
MetaOD depends on the inference time of the meta learning model plus the final detector it selects.
We note that MetaOD tends to be slow at inference phase and often ends up with an expensive
outlier detector, in particular, ABOD [39]. Therefore, in many cases, it is slower than AutoOD.
However, among all methods, this second phase of MetaOD (given we skip phase 1 of training)
tends to be the fastest on large datasets.

Note all above methods we compare against have much lower accuracy than AutoOD as shown
in Fig. 4, while our AutoOD achieves this gain without paying any significant cost in running time.
We thus consider AutoODsuperior overall.

6.5.2  Scalability in the Number of Outlier Detectors. Because AutoOD-Augment and AutoOD-Clean
perform similarly in the running time (for the reasons we discussed above), here we only report on
the results of AutoOD-Augment. We run this experiment on the MulCross dataset and vary the
number of detectors from 50 to 250 by gradually increasing the number of detectors per detection
method.
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As we can see from Fig. 6, the running time of AutoOD-Augment increases, as expected. However,
the slope becomes flatter as the number of detectors gets larger. This is because AutoOD improves
on the running time of the unsupervised outlier detectors by sharing the common computation
across different outlier detectors. In particular, for the slower ones among the detectors, namely, the
kNN-based [54] and LOF [16] detectors that utilize expensive kNN search, our detectors share kNN
search as much as possible. Therefore, the running time increases sub-linearly with the number of
detectors.

6.5.3 Memory. In AutoOD, the memory consumption comes primarily from the data structure
that keeps the anomaly scores that the outlier detectors produce per data object. This space
complexity is n X d, where n represents the number of data objects and d is the number of the
unsupervised detectors. On the HTTP dataset, which is the largest dataset we tested, the peak
memory consumption is 708M. Therefore, memory is not a performance bottle in AutoOD.

Dataset Rank of Detector Final Detector
PageBlock 2nd KNN
SpamBase 1st LOF

Pima 1st IForest
Shuttle 1st [Forest
Http 3rd KNN

Mulcross 1st Mahalanobis

Annthyroid 2nd LOF
Musk 1st IForest

Satimage-2 1st LOF
Pendigits 1st IForest

SMTP 1st LOF

Table 4. AutoOD-Augment: the Remaining Detector

6.6 Evaluation of Detector Pruning of AutoOD-Augment

As shown in Sec. 4, AutoOD-Augment iteratively prunes outlier detectors. In this experiment
we evaluate the number and the types of detectors preserved by AutoOD-Augment. On average
AutoOD-Augment preserves 1.4 detectors and in most cases preserves 1 detector, while their types
vary across different datasets, as shown in Table 4. The detection methods that AutoOD most
frequently preserves are the Isolation Forest and LOF. This is aligned with empirical studies that
evaluate different unsupervised outlier detection methods [17], which find: (1) no method routinely
outperforms others; (2) Isolation Forest and LOF tend to work better in general.

We further evaluate the quality of the outlier detector that AutoOD-Augment preserves. For this,
we add an additional constraint into its termination condition to ensure that only one detector will
survive. Tab. 4 shows the rank of this remaining outlier detector among all outlier detectors based
on their F-1 scores. AutoOD-Augment selects the best outlier detector on 7 out of 10 datasets. On
the remaining 3 datasets, AutoOD-Augment picks the second or third best detector.

7 RELATED WORK

Automated Machine Learning (AutoML). AutoOD targets a similar problem as AutoML in
that it aims to learn which of many models is the best. However, in contrast to our work, existing
AutoML systems [14, 15, 25, 28, 38, 41, 42, 45, 63, 64, 74] all focus on (1) supervised machine learning
and (2) require labeled training data for automatic cross validation. PyODDS [43] leverages AutoML
techniques to select one outlier detection method and their corresponding input parameter setting,
but assuming the existence of labeled data. Further, our experiments show that PyODDS is not very
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effective in finding good outlier detectors among candidate detectors, although it uses ground truth
labels. AutoOD significantly outperforms PyODDS even in this setting.

Outlier Ensemble. Ensemble has been studied in the context of outlier detection [5, 6, 40, 52, 71].
In [5, 6], the authors investigated the theoretical underpinnings of outlier ensemble. In [40], the
authors use feature bagging for outlier ensemble. However, it relies on the strong assumption that
they “have information about normal behavior (class) in the data set”, which often does not hold.

LSCP [71] and LODA [52] are the recent outlier ensemble works. LSCP defines a local region
around an instance using the consensus of its nearest neighbors in randomly selected feature
sub-spaces. It then combines the detection results produced by multiple base detectors in this local
region as the model’s final output using traditional ensemble tricks [6]. In its evaluation LSCP
outperforms feature bagging [40].

LODA [52] first uses many one-dimensional histograms to produce outlier candidates. An object
is considered as an outlie candidate if its value on one dimension is out of distribution. LODA then
aggregates the sets of outlier candidates to produce the final results, again based on consensus. LSCP
and LODA perform much worse than our AutoOD, because based on our empirical study the base
detectors often produce very diverse results on many of the objects and thus make consensus-based
inference challenging. AutoOD does not rely on the ensemble to discover all outliers. Instead it
focuses on discovering the reliable outliers/inliers and then uses those as pseudo-labels to train a
classifier, hence much more effective.

Weak Supervision. Given a set of noisy labeling functions that cover different overlapping subsets
of a given data set, Snorkel [55, 57] assigns a label to each object in the dataset by weighting and
then ensembling the results produced by these labeling functions. More specifically, using a matrix
completion technique, Snorkel learns a weight for each function based on their agreement rates. If
a function agrees with a lot of other functions, Snorkel tends to assign a large weight to it. So it can
be considered as an advanced ensemble method. As confirmed in our experiments (Sec. 6), Snorkel
typically performs much worse than the best individual detector for the reason we discussed above
on outlier ensembles.

Parameter Tuning in Outlier Detection. ONION [18] is an online system that, given a data set,
allows the users to interactively tune the parameters of distance-based outlier detection. The key
idea is to pre-compute and index results of parameterized distance-based outlier detectors into
a compact index. Using index-lookup, ONION is able to answer outlier detection requests with
different parameter settings in near real-time. Unlike our AutoOD, it still relies on the humans to
manually decide which parameter setting to request and thus to tune the parameters. Further, it
only supports one specific outlier technique, that is, distance-based outliers [36].

MetaOD [72] is a meta-learning based method. Its key idea is to run a large number of outlier

detectors on historical outlier detection benchmark datasets with ground truth labels and use
this prior experience to automatically select an effective model to be employed on a new dataset.
To capture task similarity, it introduces specialized meta-features to model the characteristics of
the outliers in a dataset. However, as confirmed in our experiments (Sec. 6.2.2), even on the 8
testing datasets already seen in the training process, MetaOD cannot find the best detector from
the candidates, while on the 2 unseen datasets, it ends up with choosing a detector that performs
poorly, indicating its poor generalization ability.
Human-in-the-Loop Outlier Detection. HOD [20], a crowd-based method, relies on humans
to find outliers. HOD first uses ensemble to select candidate outliers and then leverages humans
to discover true outliers, thus achieving high accuracy with low human costs. However, HOD
does not address the algorithm selection nor parameter tuning problems that AutoOD tackles. In
contrast, AutoOD does not make use of any human supervision, yet succeeds to achieve accuracy
comparable to supervised outlier classification.
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Deep Anomaly Detection. Deep learning has been used to detect outliers from data in complex
format such as image or timeseries, typically by learning a representation that better distinguishes
outliers from inliers. Some of these techniques [9, 23, 59, 69] use the reconstruction errors of
Auto-Encoder as the anomalous score to detect outliers, assuming that Auto-Encoders incur larger
reconstruction errors on outliers than inliers. Some other techniques use the same principle, but
apply different deep learning techniques to learn the data representation, such as Generative
Adversarial Networks [7, 51, 68], self-learning models [27] and Auto-regressive models [3]. AutoOD
is compatible with these methods.

To learn a representation effective in separating outliers, most of these methods require a clean
training data set — a data set not containing any outliers. However, such clean training data rarely
exist in real applications. Robust deep anomaly detection [13, 21, 24, 66, 73] targets this problem
by finding data with potentially corrupted features in the training process, while AutoOD-Clean
finds mislabeled objects from automatically produced outlier/inlier labels. Elite [70] instead uses a
small number of ground truth labels to mitigate the impact of outliers on representation learning.
However, ground truth labels are not available in the unsupervised setting which AutoOD targets.

8 CONCLUSION

In this work, we propose AutoOD that elegantly unifies the merits of both unsupervised outlier
detection and supervised classification into one solution for tackling outlier detection. AutoOD
leverages a diverse set of unsupervised outlier detectors to iteratively generates high quality labels
for the data. Using these automatically generated labels, it then trains a classification model to
reliably discover outliers. We design two strategies for realizing the AutoOD methodology, namely
AutoOD-Augment and AutoOD-Clean, which differ in the way they generate the training set for the
classifier. Our experiments show the effectiveness of the two AutoOD-based methods — achieving
consistently 12 to 97 points gain in the F-1 score compared to a wide range of alternate solutions
on 11 benchmark outlier data sets.
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