
Inspecting Traffic in Residential Networks with
Opportunistically Outsourced Middleboxes

Shuwen Liu, Yu Liu and Craig A. Shue

Worcester Polytechnic Institute

{sliu9, yliu25, cshue}@wpi.edu

Abstract—Home networks lack the powerful security tools and
trained personnel available in enterprise networks. This compli-
cates efforts to address security risks in residential settings. While
prior efforts explore outsourcing network traffic to cloud or
cloudlet services, such an approach exposes that network traffic
to a third party, which introduces privacy risks, particularly
where traffic is decrypted (e.g., using Transport Layer Security
Inspection (TLSI)). To enable security screening locally, home
networks could introduce new physical hardware, but the capital
and deployment costs may impede deployment.

In this work, we explore a system to leverage existing available
devices, such as smartphones, tablets and laptops, already inside
a home network to create a platform for traffic inspection. This
software-based solution avoids new hardware deployment and
allows decryption of traffic without risk of new third parties.
Our investigation compares on-router inspection of traffic with
an approach using that same router to direct traffic through
smartphones in the local network. Our performance evaluation
shows that smartphone middleboxes can substantially increase
the throughput of communication from around 10 Mbps in the
on-router case to around 90 Mbps when smartphones are used.
This approach increases CPU usage at the router by around 15%,
with a 20% CPU usage increase on a smartphone (with single
core processing). The network packet latency increases by about
120 milliseconds.

I. INTRODUCTION

Residential networks have grown increasingly complicated.

While end-point solutions, such as anti-virus and software

firewalls, are effective for some devices, they are not available

for others. Embedded devices associated with the Internet

of Things may have varying security, but lack mechanisms

to install additional security features. Residential users have

expressed concern about the risks on their networks. In a study

of fifteen people with smart home tools, eleven participants

indicated they were worried about physical risks of these de-

vices and five participants were concerned about the associated

privacy risks [1].

In-network security controls, such as screening on routers

or middleboxes, can help protect these devices from network-

borne threats, but current consumer-grade routers do not

effectively manage network risk [2]. Such consumer-grade

routers have hardware with limited computational capabilities.

While prior work has proposed lightweight functionality on

residential routers [3], there are inherent limits on the tasks

these routers can perform. As an example, efforts to profile and

examine encrypted traffic using machine learning [4] would

exceed the resources of many such routers.

With the limitations of residential routers, prior work has

explore mechanisms to shift the computational tasks associ-

ated with network screening to remote servers. Feamster [5]

proposed using software-defined networking (SDN) techniques

to allow home networks to outsource their security and

management functionality to cloud-hosted servers. Likewise,

TLSDeputy [6] uses remote servers to validate the TLS

certificates and protocol settings associated with home network

connections to ensure the authenticity of communicating end-

points. However, both techniques allow the operators of cloud

infrastructure to have insight into the activities of a home

network, introducing new privacy risks. They also expand

the trusting computing base (TCB) to include servers and

personnel outside the home.

In contrast to prior efforts, we consider mechanisms to

deploy home network traffic inspection in an opportunistic

fashion. We explore mechanisms to leverage existing devices

in a home network when they are available to screen commu-

nication. In doing so, we ask the following research questions:

• To what extent can we utilize current resources within a

home network to build real-time packet inspection?

• To what extent would such a packet inspection system

influence the performance of the home network, in terms

of traffic latency, resource consumption, and throughput?

Our approach uses devices such as smartphones, tablets,

laptops and desktops to perform traffic analysis. These devices

can operate as security proxies when they are available,

enabling detailed analysis. In pursuing this direction, our work

makes the following contributions:

• Creation of Router and Middlebox Support: We intro-

duce a mechanism that forwards network traffic from a

router to a middlebox to leverage the spare computational

resources. We use open source firmware on a consumer-

grade residential router. We use simple IP-address based

screening as conservative example of the computational

requirements of security tools. We build tools to screen

traffic locally on a consumer-grade router to establish a

baseline. We then implement a technique to transparently

direct traffic through a smartphone middlebox using net-

work address translation (NAT) rules on the router.

• Performance Evaluation of Deployment Options: We

compare the baseline on-router inspection with diverting

traffic through a smartphone that performs inspection.

Our evaluation shows that on-router inspection has a

throughput of around 10 Mbps whereas outsourcing the

inspection to a smartphone achieves roughly 90 Mbps

throughput. The smartphone middlebox approach adds

around 15% CPU usage to the router and 20% CPU

usage to a smartphone (with single core processing). It

introduces 120 milliseconds of round trip time (RTT)

delay to network traffic.

II. BACKGROUND AND RELATED WORK

In this section we provide a background and describe prior

work on residential network computation and security.

A. Computation in Residential Networks

A 2015 survey found that 77% of US households subscribed

to broadband Internet service and 78% of homes have a desk-

top or laptop computer [7]. However, modern home networks

face many security challenges. Attackers can gain sensitive

information or directly control the devices and launch attack

on other devices, such eavesdropping, replay attack, network

scanning, and data theft [8], [9].

There are effective ways to detect these attacks, but they

require sufficient computational resources. Hafeez et al. [8]

find that machine learning methods can detect a series of

attacks with accuracy as high as 99%. Jan et al. [10] propose a

method to detect a compromised device that joins a botnet with

very limited data through a deep learning algorithm. In this

work, we create a platform using existing devices to enable

such traffic inspection in home networks.

B. Perimeter Defense for Home Networks

Perimeter defenses can be useful for residential networks.

While the basic NAT functionality on residential routers typ-

ically prevents unsolicited inbound communication, it is inef-

fective at detecting or stopping existing compromises within a

network or attacks that are launched via a connection initiated

from inside the network.

Li et al. propose applying deep learning anomaly detection

techniques for securing home networks; however, their method

runs on equipment with computational resources that may

not be available in many home networks [11]. ParaDrop [12]

proposes allowing third-party application providers to install

lightweight containers to provide a gateway for simple tasks.

However, ParaDrop does not have sufficient resources to run

resource-consuming tasks like intrusion detection. Another

work [13] adds plug-and-play devices to a consumer-grade

router, which enables the router to work as an intelligent IoT

gateway that can inspect traffic; however, it incurs capital costs

and requires hardware modifications inside consumer routers

that are likely beyond the technical abilities of many home

users.

Shirali-Shahreza et al. [14] summarized commercial home

network firewall products. Each requires the installation of

additional devices in the network with an initial cost of at least

$200 and with ongoing monthly service costs. These devices

may augment or replace existing home routers. Some use

virtual private network (VPN) techniques to tunnel traffic to a

remote VPN server that inspects and analyzes home network

traffic en route to the destination. These methods introduce

additional costs and equipment for users.

To simplify home network management while retaining

security capabilities, Feamster proposed to outsource security

needs to a remote cloud server using an SDN architecture [5].

This approach allows experts and security professionals to

manage the network remotely. Since cloud servers have greater

computational resources, they can run controller modules that

improve analysis while gaining a cross-network perspective.

Other efforts explore firewall modules for such SDN con-

trollers [8], [14]–[18]. Most of these efforts use the router as

an OpenFlow switch in the home network. Others propose

to use a locally-available device, such as a Raspberry Pi,

instead. However, these outsourcing methods require users to

trust a third-party provider. This may raise significant privacy

concerns, particularly when network traffic must be decrypted

to provide security services.

C. Edge Computing in Local Networks

The edge computing paradigm builds decentralized com-

puting pools for processing jobs from clients, bringing the

computation closer to the source of data [19]. Cloudlet [20]

is a popular edge computing prototype that offloads tasks to

nodes that can scale. These nodes can be hosted by ISPs or

other providers. Drop computing [21] builds a collaborative

computing cloud using mobile devices in which one device

can offload tasks to other devices. When there is no available

device, the system seeks help from cloud servers. This method

is designed for ad hoc networks, which lack reliability since

devices may enter and leave the network frequently. Similarly,

Verbelen et al. [22] split tasks and offload them to a virtualized

environment, either on mobile devices or on cloud servers.

Gedeon et al.propose to use a more reliable device, such as

a home network gateway, run a broker to coordinate tasks.

The gateway seeks available cloudlet nodes to help with its

tasks [23]. This method outsources computation to third-party

platforms, which can raise privacy concerns. Their use of a

broker on a residential router, and their finding that it does

not introduce significant overhead, is inspiration for our own

approach.

III. APPROACH

Recognizing the computational constraints in residential

routers, our approach compares on-router inspection with tech-

niques that offload this work to other devices in the local net-

work. In doing so, our hypothesis is that redirecting network

traffic to a locally-available device with greater computational

resources while limiting the router’s work to traffic forwarding

may yield better performance than attempting to perform the

inspection on the router itself. This led us to develop the

approach of on-phone inspection via NAT redirection.

Our research compares two approaches: on-router inspection

via NFQUEUE and on-phone inspection via NAT redirection.

We start by introducing the threat model and scope we assume

in this work. Then, we illustrate the process of on-router

inspection. Finally, we describe the functionalities of each

component of the phone-based inspection platform and how

they work together.

A. Threat Model and Scope

When exploring technologies related to security, a model

of the assumed threats can determine the applicability of the

work and its scope. In this work, we construct a platform

that is designed to enable inspection of traffic that crosses

the boundary of a home network. Our platform’s goal is to

provide computational resources for inspection tools while

achieving reasonable performance. We do not seek to develop

a new detection algorithm or technique. Instead, we use a

particularly lightweight filter, one based on packet addresses,

to demonstrate the minimal overhead costs associated with

each.

A trusted computing base (TCB) is the set of devices that

must operate correctly to achieve the desired security goals.

Our TCB includes the residential router and any smartphones

hosting middleboxes that proxy traffic. We do not need to trust

the communicating endpoint device, the remote machine it is

communicating with, or other infrastructure associated with

the Internet. Unlike approaches that outsource communication,

our TCB does not include third-party cloud servers or the

personnel associated with cloud data centers.

B. On-Router Inspection via NFQUEUE

We create an approach that is designed to provide efficient

on-router traffic inspection. We implement a basic C++ pro-

gram that we compile to natively run on the router to inspect IP

addresses. The program uses the iptables packet inspection

tool and the netfilter_queue library (often referred to

as NFQUEUE) to inspect traffic. Essentially, the iptables

tool operates on each packet processed by the Linux stack

on the router. This action occurs when packets cross from

the LAN interfaces to the WAN interface associated with the

Internet. The iptables program sets an NFQUEUE judgment

for all packets, causing them to enter a kernel queue data

structure. The C++ program extracts the packets from that

queue, inspects the destination network address, and returns

the packets to the kernel queue for transmission. This program

represents the minimum inspection required for a general-

purpose user-space inspection program on the router.

C. On-Phone Inspection via NAT Redirection

There are two components that support our traffic inspection

on a separate smartphone. The first is a set of NAT rules

on the router that will appropriately forward the traffic. For

this, we use the iptables program, which can manage IP

packet rules in the Linux kernel. We use the iptables NAT

table to implement translation rules that transform the original

destination IP address of the packets from the server to the IP

address of the smartphone. This causes the traffic sent from

the client to be redirected to the smartphone. In the example

shown in Figure 1, we first apply a DNAT rule as iptables

-t nat -A PREROUTING -p tcp -s 192.168.1.2

-d 172.16.1.2 --dport 6666 -j

DNAT --to-destination 192.168.1.3:6666 and

an SNAT rule as iptables -t nat -A POSTROUTING

-p tcp -s 192.168.1.2 -d 192.168.1.193

--dport 6666 -j

SNAT --to-source 192.168.1.1 to forward traffic to

the smartphone. The smartphone can then work as a proxy

that receives packets and sends them back to the router

after inspection. When these packets return to the router, the

router transforms their destination IP address to the original

server destination IP address based on another DNAT rule,

such as iptables -t nat -A PREROUTING -p tcp

-s 192.168.1.3 -d 192.168.1.1 --sport 7777

-j DNAT --to-destination

172.16.57.216:6666. Since these NAT rules function

bidirectionally, the packets sent from the server will traverse

the reverse path through the smartphone. Rather than process-

ing traffic as an arbitrary user space program in the router’s

Linux stack, our method forwards them using kernel data

structures. This feature avoids potentially costly transitions to

user space on the router.

The second component in our approach is the proxy soft-

ware and service that runs on the smartphone. We implement

a Java program that uses TCP to accept traffic for inspection

on a pre-defined port. Figure 1 shows how the phone accepts

traffic from the router using a new TCP connection. Since the

smartphone is on the network path between the communicating

endpoints, it receives the raw payload of every network packet.

While we only apply IP list filtering in our tests, more

advanced inspection can be deployed in our method, such as

TLS inspection. The following performance evaluations show

even this common lightweight operation saturates the router

with on-device inspection whereas our NAT approach provides

headroom. This approach can support more computationally

demanding use cases without requiring new physical hardware

deployments.

IV. IMPLEMENTATION

We implement our method in a lab environment. We run the

OpenWrt 21.02.2 operating system (OS) on a consumer-grade

TP-LINK AC1750 Wireless Dual Band Gigabit Router. We

simulate a home network user with a client on a laptop with

four cores and 16 GBytes of memory, running the Windows

OS. We simulate a server outside of the home network on a

laptop with four cores and 16 GBytes of memory, running the

Ubuntu 20.04 OS. We use a smartphone with eight 2.0 GHz

cores and 4 GBytes of memory, running the Android 11 OS

as the proxy device.

For the network configuration, as shown in Figure 2, we

create two VLANs: one is on interface eth0 and the other

is on interface eth1. We assign the LAN ports and wireless

radio to the eth0 VLAN and assign the WAN port to the

eth1 VLAN. The client connects to a LAN port via a

category 6 Ethernet cable that supports full-duplex gigabit

throughput. The server also connects to the WAN port using

a category 6 cable. For the radio, we build an access point on

Fig. 1. An example of packet forwarding via NAT rules. As the client sends
the original packet to the server, the router modifies the packet and forwards it
to the smartphone. After the smartphone performs packet inspection, it sends
the packet back to the router. Then the router forwards it to the server. Since
all of the NAT rules work bidirectionally, the packets sent from the server
will follow the reverse path.

5.785 GHz using a Qualcomm Atheros QCA 9880 802.11ac

adapter. We connect the smartphone to this access point at a

distance of 3 feet with an unobstructed, line-of-sight path.

After configuring the home network, we add three NAT

rules to iptables in the router, as described in Section III.

These rules include SNAT and DNAT rules and have the

capability of redirecting traffic between the client and the

server to traverse the smartphone. On the smartphone side, we

use Android Studio to build a Java application that performs

packet inspection based on a malicious IP block list and hosts

a proxy service.

Fig. 2. The network configuration for our experiments

V. PERFORMANCE EVALUATION AND RESULTS

An on-router inspection module is straightforward since

it uses a device that is already physically on the network

path between communicating endpoints. To justify the added

complexity of opportunistic middleboxes, we explore the

performance implications of using such commodity devices.

We first establish a baseline for the performance of the

home network. We use a typical network setting, without the

use of inspection functionality, to establish the baseline. We

then explore on-router inspection using a simple block-listing

application on a router. Finally, we examine an inspection

method in which NAT rules are used to reroute traffic to a

middlebox, using both a smartphone emulator and a physical

commodity smartphone for analysis.

In examining these scenarios, we evaluate the performance

of each using four metrics: flow throughput, end-to-end round

trip time (RTT), the CPU usage at the router, and the CPU

usage of the smartphone when it is in use. We note that there is

performance improvement in using on-phone inspection after

comparing the three scenarios with these four metrics.

A. The Baseline: LAN to WAN traffic

Our baseline scenario connects a client to a server though a

residential router. Often, the WAN port is used on the router

to connect to upstream networks, such as the Internet, and

the servers available through those networks. Therefore, we

connect an Ubuntu server to the WAN port of the router using a

full-duplex category 6 Ethernet cable. The server uses a gigabit

Ethernet card. We statically configure the IP addresses of the

server and the router’s WAN port within a subnet that is only

used by those two devices.

We begin by exploring the case in which the client is

connected to a LAN port on the router via a category 6

Ethernet cable. We use the router’s built-in DHCP server,

which assigns an address to the client in a subnet that the

router and client share, yet is disjoint from the subnet used

by the server. We use the router’s default NAT capabilities

to translate across the subnets, which is a common deploy-

ment scenario in homes. Using the iperf3 benchmarking

tool [24], we test a TCP connection between the client and

the server. We configure iperf3 to attempt to maximize

throughput in the channel and observe it for 1,100 seconds.

We conducted 3 trials and measured the throughput for 1,000

seconds after an initial delay of 100 seconds to accommodate

TCP’s slow-start behavior. As we see in the right-most two

lines in Figure 3, the median download throughput is around

440 Mbps and the median upload throughput is around 254

Mbps, with tight distributions (the standard deviation is 4.90

Mbps for download throughput and 3.27 Mbps for upload

throughput).

Since the communication throughput via Ethernet appears

to be less than the medium’s theoretical maximum, we explore

whether the router could be causing a bottleneck. In particular,

we examine the CPU of the router. While we test the maximum

throughput, we use the top tool to record the CPU usage of

the router for 1000 seconds. As shown in Table I, the CPU

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 50 100 150 200 250 300 350 400 450 500

P
e

rc
e

n
ta

g
e

 o
f

T
ri
a

ls

Throughput (Mbps) of connection via Ethernet

NAT down

NAT up

NFQUEUE down

NFQUEUE up

Baseline down

Baseline up

Fig. 3. Results from throughput tests when the client connects to the router
via a category 6 Ethernet cable. The green lines show upload and download
throughput under a baseline setting. The red lines show the throughput after
applying on-router inspection via NFQUEUE library. The blue lines show the
throughput after applying on-phone inspection using NAT redirection rules.

usage of the router is at its limit more than 90% of the time

when testing maximum throughput. These results suggest that

the CPU of our router acts as a performance bottleneck when

throughput is high.

TABLE I
CPU USAGE OF THE ROUTER WHILE TESTING THE MAXIMUM

THROUGHPUT IN SIX SCENARIOS.

Percentile of Trials 10th 50th 90th

CPU Usage in Baseline Upload 100% 100% 100%
CPU Usage in Baseline Download 100% 100% 100%
CPU Usage in NAT Upload 98% 100% 100%
CPU Usage in NAT Download 97% 100% 100%
CPU Usage in NFQUEUE Upload 100% 100% 100%
CPU Usage in NFQUEUE Download 100% 100% 100%

To determine the added CPU usage from different traffic

inspection methods, we need to measure the router’s CPU

usage in a moderate throughput scenario, rather than when

throughput is maximized. We thus evaluate the scenario in

which the TCP connection throughput is reduced to 10 Mbps

of randomized payload to the server. We also record the CPU

usage of the router for 1,000 seconds. The green line in

Figure 4 shows that the median CPU usage of the router is

9.00% with standard deviation of 1.58%.

While throughput is an important metric, the end-to-end

round trip time (RTT) is also important for understanding

the delay introduced by the network paths and the router. To

test this, we construct an echo program on the server and a

recording device on the client to measure the time difference

between the client sending a specific payload and receiving

a reply. Across 1,000 trials, we see that the left-most line

in Figure 5 has a median RTT of 1.12 ms with a standard

deviation of 0.12 ms.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
ta

g
e

 o
f

T
ri
a

ls

CPU Usage (%) of Router

NAT

NFQUEUE

Baseline (no inspection)

Fig. 4. CPU usage of the router when applying on-phone inspection using
NAT redirection rules, applying on-router inspection via NFQUEUE library,
and a baseline without inspection when throughput is limited to 10 Mbps.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 1 100

P
e

rc
e

n
ta

g
e

 o
f

T
ri
a

ls

RTT (milliseconds) in connection via Ethernet

NAT − Moto G power

NAT − Pixel 2

NFQUEUE

Baseline (no inspection)

Fig. 5. RTT with a log scale in milliseconds between the client and the server
when the client connects to the router via Ethernet. The leftmost green line
shows baseline result. The middle red line shows the result after applying
on-router inspection via the NFQUEUE library. The two rightmost blue lines
show the results with two separate phones after applying on-phone inspection
using NAT redirection rules.

B. On-Router Inspection via NFQUEUE

To explore whether the router itself can feasibly inspect

traffic, we implement a basic C++ program, that is compiled

to run natively on the router, to inspect IP addresses. The

program’s details are described in Section III-B.

We explore the throughput, RTT, and router CPU metrics

of the on-device inspection program using the same tools and

settings used in Section V-A. In the two left-most lines of

Figure 3, we see the upload and download throughput after

applying this inspection approach. We conducted 3 trials and

measured the throughput for 1,000 seconds after an initial de-

lay of 100 seconds to accommodate TCP’s slow-start behavior.

As we seen in the right-most two lines in Figure 3, the median

download throughput is 9.62 Mbps, and the median upload

throughput is 8.40 Mbps (standard deviation of 3.91 Mbps for

download and 3.93 Mbps for upload). Given this substantially

decreased throughput from the baseline, we hypothesize that

the change introduces a bottleneck on the router.

When we examine the CPU usage of the router, we confirm

that this resource is exhausted. In Figure 4, we see that the

baseline CPU usage is around 9% when throughput is limited

to 10 Mbps, but is 100% when the router performs packet

inspection. The process elevates all traffic to the router’s

Linux user space environment, which requires significant

computational resources on the router. Such routers tend to be

manufactured with lower-end CPUs for economic reasons [25]

and there appears to be little headroom for this additional

operation. However, when the router is not overwhelmed, as

in the simple echo server RTT tests, we see that the on-device

router introduces minimal RTT increases over the baseline.

These results are shown by the red line in Figure 5, which is

close to the baseline results.

C. On-Phone Inspection via NAT Redirection

With the CPU limitations of residential routers, we explore

the potential of re-routing packets via a smartphone to inspect

traffic. As described in Section III, we add three different NAT

rules via iptables on the router to cause traffic to be sent

via the phone. An example of traffic forwarding, after applying

NAT rules, is shown in Figure 1.

Using the same settings as in the two prior sections, we ex-

plore the throughput when traffic is directed through the Moto

G Power smartphone. In the middle two lines of Figure 3,

we see that the median download throughput is 94.80 Mbps

and the median upload throughput is 70.10 Mbps, with tight

distributions (standard deviation of 4.32 Mbps for download

and 2.87 Mbps for upload). The throughput is substantially

higher than the on-router inspection approach in Figure 3. In

effect, the processing of the NAT rules on the router may incur

less computational overhead than the full process of inspecting

the traffic. Since the router’s CPU was the bottleneck in the on-

router inspection scenario, this adjustment increases the rate

traffic can flow.

In Figure 4, we can confirm that the NAT-based approach

yields significantly lower CPU utilization than on-device in-

spection when throughput is limited to 10 Mbps. The middle

line in that graph shows that the NAT approach has a median

of 24.0% CPU utilization with a standard deviation of 2.61%.

The insertion of another device on the network path through

a loop will necessarily increase the packet’s propagation delay

and may be observable in the overall end-to-end RTT. This

is apparent in Figure 5, with the RTT of the NAT approach

represented by the two right-most lines. We see patterns where

20% of traffic has an RTT less than 30.44 ms while 75% of

traffic has an RTT over 120.17 ms. This is significantly higher

than either the baseline scenario or when on-router inspection

occurs. Importantly, this experiment uses a simple echo server

approach and does not tax the CPU of the router. The on-router

scenario would incur greater RTT delays when the CPU is a

bottleneck due to processing delay.

Our last metric explores the energy usage of the proxy appli-

cation on the phone. We run the application while maximizing

throughput transmission from the client to the server, with a

music-playing application in the background for comparison.

We then record the CPU usage of the proxy application and

the music application for 1,000 seconds using the top tool in

the phone. We monitor the idle percentage of the 8 cores in the

proxy device. In Table II, we show the CPU usage of the proxy

application and the music application, along with the time for

which the CPU core is idle. In this table, 100% represents

the full utilization of a single core on the device and 800%

represents the full utilization of all eight device cores. The

first row in Table II represents the proxy application, which

uses only about 21% of a single core verses the roughly 107%

CPU usage of the music application in the median case. We

see that the majority of the device’s computational resources

are unused. Even in lower-end smartphones, the CPU impact

of the proxy was about 20% of a single core. As a result,

we anticipate that the CPU-based energy consumption of the

device would be a small fraction of a music application. Since

phones are regularly used for music playing without signifi-

cant power-related disruptions to end-users, it is likely that

the proxy application would likewise represent a reasonable

workload on phones.

TABLE II
CPU USAGE OF THE SMARTPHONE FOR DIFFERENT APPLICATIONS WHEN

MAXIMIZING THROUGHPUT WHILE APPLYING ON-PHONE INSPECTION.

Percentile of Trials 10th 50th 90th
CPU Usage of Proxy App 18% 21% 24%
CPU Usage of Music App 98% 107% 114%
CPU Idle 535% 560% 584%

VI. CONCLUSION

While residential networks need traffic inspection and anal-

ysis tools to protect their traffic, existing residential routers

lack the computational resources for on-router inspection.

Even a straightforward, IP address-based inspection tool on

such a router can greatly limit the throughput the router can

support. However, with carefully-crafted NAT rules, a router

can redirect communication through another device, such as a

smartphone, to inspect traffic. This opportunistic outsourcing

of inspection to in-network devices avoids the privacy concerns

associated with outsourcing such services to cloud providers.

In our experiments, we find that NAT-based diversion

through a smartphone can substantially raise the commu-

nication throughput from around 10 Mbps in an on-router

implementation to around 90 Mbps through a smartphone.

The router can periodically examine its ARP and DHCP

data structures to detect the availability of a phone in the

LAN, contact an application on the phone to configure proxy

services, and then divert traffic through the phone to enable

outsourced inspection. With such an approach, residential

networks can opportunistically use available smartphones as

middleboxes to enable higher-throughput traffic inspection.

REFERENCES

[1] E. Zeng, S. Mare, and F. Roesner, “End user security and privacy
concerns with smart homes,” in Symposium on Usable Privacy and

Security (SOUPS 2017), 2017, pp. 65–80.

[2] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, “Internet of things
(IoT) security: Current status, challenges and prospective measures,” in
International Conference for Internet Technology and Secured Transac-

tions (ICITST). IEEE, 2015, pp. 336–341.

[3] B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
rapid prototyping for software-defined networks,” in ACM SIGCOMM

Workshop on Hot Topics in Networks, 2010, pp. 1–6.

[4] B. Anderson and D. McGrew, “Identifying encrypted malware traffic
with contextual flow data,” in ACM Workshop on Artificial Intelligence

and Security, 2016, pp. 35–46.

[5] N. Feamster, “Outsourcing home network security,” in ACM SIGCOMM

Workshop on Home Networks. ACM, 2010, pp. 37–42.

[6] C. R. Taylor and C. A. Shue, “Validating security protocols with
cloud-based middleboxes,” in IEEE Conference on Communications and

Network Security (CNS). IEEE, 2016, pp. 261–269.

[7] C. Ryan and J. M. Lewis, “Computer and internet use in the united states:
2015,” https://www.census.gov/content/dam/Census/library/publications/
2017/acs/acs-37.pdf.

[8] I. Hafeez, M. Antikainen, A. Y. Ding, and S. Tarkoma, “Iot-
keeper: Securing iot communications in edge networks,” arXiv preprint

arXiv:1810.08415, 2018.

[9] Z. A. Almusaylim and N. Zaman, “A review on smart home present
state and challenges: linked to context-awareness internet of things (iot),”
Wireless networks, vol. 25, no. 6, pp. 3193–3204, 2019.

[10] S. T. Jan, Q. Hao, T. Hu, J. Pu, S. Oswal, G. Wang, and B. Viswanath,
“Throwing darts in the dark? detecting bots with limited data using
neural data augmentation,” in IEEE Symposium on Security and Privacy

(IEEE SP), 2020.

[11] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE network, vol. 32,
no. 1, pp. 96–101, 2018.

[12] D. Willis, A. Dasgupta, and S. Banerjee, “Paradrop: a multi-tenant plat-
form to dynamically install third party services on wireless gateways,” in
ACM workshop on Mobility in the evolving internet architecture, 2014,
pp. 43–48.

[13] A. Wieczorek and B. Markowski, “Intelligent iot gateway on
openwrt,” https://elinux.org/images/4/41/Intelligent IoT Gateway on
OpenWrt.pdf, 2015.

[14] S. Shirali-Shahreza and Y. Ganjali, “Protecting home user devices with
an sdn-based firewall,” IEEE Transactions on Consumer Electronics,
vol. 64, no. 1, pp. 92–100, 2018.

[15] M. Nobakht, V. Sivaraman, and R. Boreli, “A host-based intrusion de-
tection and mitigation framework for smart home iot using openflow,” in
International conference on availability, reliability and security (ARES).
IEEE, 2016, pp. 147–156.

[16] R. F. Moyano, D. F. Cambronero, and L. B. Triana, “A user-centric sdn
management architecture for nfv-based residential networks,” Computer

Standards & Interfaces, vol. 54, pp. 279–292, 2017.

[17] K. Xu, F. Wang, and X. Jia, “Secure the internet, one home at a time,”
Security and Communication Networks, vol. 9, no. 16, pp. 3821–3832,
2016.

[18] M. Boussard, D. Thai Bui, R. Douville, P. Justen, N. Le Sauze, P. Peloso,
F. Vandeputte, and V. Verdot, “Future spaces: Reinventing the home
network for better security and automation in the iot era,” Sensors,
vol. 18, no. 9, p. 2986, 2018.

[19] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things, vol. 3, no. 5, pp. 637–646,
2016.

[20] M. Satyanarayanan, “Cloudlet-based edge computing,” http://elijah.cs.
cmu.edu.

[21] R.-I. Ciobanu, C. Negru, F. Pop, C. Dobre, C. X. Mavromoustakis,
and G. Mastorakis, “Drop computing: Ad-hoc dynamic collaborative
computing,” Future Generation Computer Systems, vol. 92, pp. 889–
899, 2019.

[22] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Cloudlets:
Bringing the cloud to the mobile user,” in ACM Workshop on Mobile

Cloud Computing and Services, 2012, pp. 29–36.

[23] J. Gedeon, C. Meurisch, D. Bhat, M. Stein, L. Wang, and
M. Mühlhäuser, “Router-based brokering for surrogate discovery in
edge computing,” in International Conference on Distributed Computing

Systems Workshops (ICDCSW). IEEE, 2017, pp. 145–150.
[24] J. Dugan, S. Elliott, B. A. Mah, J. Poskanzer, and K. Prabhu, “iperf -

the ultimate speed test tool for tcp, udp and sctp,” https://iperf.fr/, 2020.
[25] Hall, Michael, and R. Jain, “Performance analysis of openvpn on a

consumer grade router,” cse. wustl. edu, 2008.

