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Abstract—The security of Internet-of-Things (IoT) devices in
the residential environment is important due to their widespread
presence in homes and their sensing and actuation capabilities.
However, securing IoT devices is challenging due to their var-
ied designs, deployment longevity, multiple manufacturers, and
potentially limited availability of long-term firmware updates.
Attackers have exploited this complexity by specifically targeting
IoT devices, with some recent high-profile cases affecting millions
of devices.

In this work, we explore access control mechanisms that tightly
constrain access to devices at the residential router, with the
goal of precluding access that is inconsistent with legitimate
users’ goals. Since many residential IoT devices are controlled via
applications on smartphones, we combine application sensors on
phones with sensors at residential routers to analyze workflows.
We construct stateful filters at residential routers that can require
user actions within a registered smartphone to enable network
access to an IoT device. In doing so, we constrain network packets
only to those that are consistent with the user’s actions. In
our experiments, we successfully identified 100% of malicious
traffic while correctly allowing more than 98% of legitimate
network traffic. The approach works across device types and
manufacturers with straightforward API and state machine
construction for each new device workflow.

I. INTRODUCTION

Internet-of-Things (IoT) devices have entered the mass-

market adoption phase in the residential environment, partic-

ularly consumer electronics such as smart power outlets, light

bulbs, fans, speakers, and media-streaming devices. Unfortu-

nately, IoT devices are beset by security challenges. These

devices are often embedded into a home for years or decades

before being replaced. End users may not properly configure

them for security or maintain them. Some device manufac-

turers offer firmware updates to keep their products secure;

however, such software availability may vary by device and

manufacturer, and the updates may not be applied consistently

by end-users. As a result, IoT devices may have long-standing

vulnerabilities and pose an attractive target for malicious

actors [28], [26].

Past incidents include the 2016 Mirai botnet [4], a smart

deadbolt vulnerability to unlock doors remotely [23], and a

monitoring device that allowed malicious actors to spy on

individuals and obtain passwords for WiFi networks [23]. With

surveys indicating that 2 million IoT devices are vulnerable to

complete takeover [22], such incidents may continue in the

future.

Security concerns surrounding IoT devices have led to sig-

nificant prior work, including in the device classification [27],

[21], [20], mobile application [14], [6], and vulnerability

analysis spaces [32], [34]. These studies have the same con-

straint: they attempt to secure IoT devices by looking only

at the IoT device itself. Since end-users typically control

IoT devices remotely via smartphone apps, we believe these

application interactions may provide data for increasing IoT

device security.

When controlling IoT devices, end-users typically express

a command via a smartphone application. These commands

may result in multiple network packet transmissions to fulfill

the request. By organizing these device interactions into state

machines, we can model these high-level actions and only

allow recognized commands that are consistent with an end-

user’s actions on a phone. Such an approach would disrupt

malformed packets attempting to exploit a vulnerability, pre-

vent usage by unauthorized users with stolen account creden-

tials, and prevent malware on the phone from taking covert

IoT actions. Further, these controls would allow network

controllers to enforce higher-level policy (e.g., “allow the

power to toggle no faster than once every 3 minutes”).

In this work, we ask two research questions: To what extent

can we link end-user interactions within an IoT device’s

smartphone application with the resulting network flows to

that IoT device? To what extent can we leverage those user

interactions in filtering network traffic for IoT devices? In

exploring these questions, we add sensors to both smartphone

apps and residential routers to monitor and link behaviors.

This work makes the following contributions:

• Creation of a cross-device sensing prototype system:

We use the Android AccessibilityServices to

monitor smartphone user interface (UI) events. At the

residential router, we use software-defined networking

(SDN) to intercept and inspect IoT device traffic.

• Fusion of user actions with network traffic: At an SDN

controller, we link the sensor data from the smartphone

and SDN router. We relate UI interactions with the

following network activity to establish causal links. We

then create network protocol state machines associated

with each UI behavior to allow the ensuing traffic.

• Evaluation of the prototype’s efficacy and perfor-

mance: We explore the ability of the prototype to dis-

tinguish IoT traffic related to UI activity from traffic that

is not related. After generating policy from training data,

we find our technique can correctly classify over 98%

of legitimate traffic and can identify 100% of malicious



traffic. Our performance measurements of the system’s

impact on the end-to-end IoT behaviors reveal a modest

impact on latency and computational overheads.

The paper is structured as follows. In Section II, we present

related work. We describe our approach in Section III with im-

plementation details in Section IV. We describe the results of

our empirical study in Section V and conclude in Section VI.

II. RELATED WORK

Prior work on defending IoT devices from malicious actors

has approached the problem from multiple directions, often

focusing on a single aspect of IoT activity, such as the appli-

cation user interface, the inner workings of the application, or

the network activity.

Prior work has explored applying software-defined net-

working (SDN) techniques to protect residential IoT devices.

Taylor et al. [31] considered the feasibility of using cloud-

based SDN controllers for residential networks. Liu et al. [17]

later used SDN and a cloud-based service to implement two-

factor authentication for IoT devices. Sivanathan et al. [29]

proposed a flow-based network defense of IoT devices with

SDN. Yu et al. [36] proposed using SDN and a cloud-

based service to store malicious attack signatures to protect

IoT devices. Sivaraman et al. [30] proposed using SDN to

implement dynamic security rules that vary based on context,

such as time-of-day or occupancy of the house. In contrast to

these SDN efforts, which focus solely on network traffic in the

home, our work links network behavior with the user actions

that caused the traffic.

Both static and dynamic analysis have been applied to the

inner workings of smartphone applications to detect anomalies,

with some utilizing UI analysis to drive the application.

Lindorfer et al. [16], Carter et al. [5], and Blasing et al. [3]

proposed Andrubis, CuriousDroid, and AASandbox, respec-

tively. The proposed tools are fully automated, using the

Monkey [2] tool, and use both static and dynamic analysis to

examine Android at the system level. These hybrid approaches

identified potentially malicious behavior such as dynamic code

landing, SMS-related code, and network activity indicating

potentially malicious behavior. Yang et al. [35] used static

analysis to locate conditional statements that lead to security-

sensitive behaviors, and they used Support Vector Machine to

classify applications as malicious or benign. Wong et al. [33]

developed a tool, IntelliDroid, to assist dynamic analysis by

generating configured inputs into applications. However, these

prior efforts focused only on phone UI and did not draw clear

causation between UI and IoT network traffic. Further, these

approaches considered UI as a complementary component that

enables the dynamic analysis, not as a view into the inner

workings and network activity of an application.

The body of work utilizing UI for security purposes has

focused on correlating UI with network activity to detect

malicious network behavior. SUPOR used static analysis to

identify UI elements that take sensitive user inputs as potential

privacy or security risks [13]. Homonit [37] and IoTGaze [12]

compared IoT network activity to expected behavior indicated

by their source code, UI, and application descriptions in order

to detect potential system anomalies and hidden vulnerabil-

ities. Fu et al. [10] proposed a similar approach, but only

considered foreground UI text; they used Natural Language

Processing (NLP) to determine if network activity was justi-

fied. Chen et al. [6] proposed IoTFuzzer, which detects IoT

memory corruption vulnerabilities (without requiring access

to the firmware) by hooking into, and mutating, UI input

fields. Gianazza et al. [11] used recorded UI interactions from

malicious applications to determine if similar UI sequences

yield malicious behavior in other Android applications. Other

work related to the Android UI has focused on profiling user

actions in an Android application by observing encrypted

traffic generated by the applications with the use of machine

learning [7]. Their work used a coarse-grained analysis of the

UI to correlate it with the internal workings of an application

and network activity. In contrast, our approach focuses on link-

ing interactions with specific UI widgets to specific protocol

commands and network patterns at the IoT device to enable

cross-device, fine-grained analysis.

Some work on IoT device security has focused on limiting

network activity based on device types. Ngyuan et al. [21]

built device-type-specific communication profiles for detecting

compromises in IoT devices. Similarly, Miettinen et al. [20]

proposed a system that automatically identifies the device type

of newly connecting devices as they join an IoT network,

enabling enforcement of rules for limiting the communications

of vulnerable devices. The Edgesec tool [27] categorizes

devices based on their capabilities and monitors network

activity between IoT devices and the outside network, and

offloads the security responsibilities to the edge layer. Jia et

al. [14] developed fine-grained permission enforcement based

on the context, utilizing dynamic analysis in which network

permissions are given; these permissions only allow future

network activity if initiated with a similar execution flow of

code. They represented application context as a combination

of User Identifier, Group Identifier, control flow, and data

flow values and tested their implementation on the Samsung

Smarthings platform. Loi et al. [18] focused on creating

a systematic method to identify IoT devices’ security and

privacy issues by measuring the encryption protocols that

were used and performing attacks against IoT devices. Like

previous UI-focused approaches, these methods are coarse-

grained and device-specific, and they do not differentiate

between individual UI actions in the device. Furthermore, they

mainly focus on network traffic in the residential environment

and do not take the smartphone into account.

Unlike prior work, our approach fuses data from multiple

vantage points – at the UI in the smartphone, in library/system

calls from the smartphone, and in the network – to see both

the smartphone and IoT devices’ traffic. Our implementation

supports multiple devices and is fine-grained, allowing it

to differentiate between different devices and individual UI

actions. This allows us to construct a causal chain of events

starting from the UI and followed by protocol commands

and network activity to detect anomalous traffic in real-time,



Fig. 1. Thematic comparison between our efforts and prior work

incorporating methods from past works to build a holistic

view of an event. We depict our relationship with prior work

in Figure 1. Our approach provides detailed context while

not requiring access to the IoT device or the source code of

monitored smartphone applications.

III. APPROACH: FUSING UI AND IOT TRAFFIC

Users often control an IoT device through a smartphone or

tablet. For example, end-users can set rules, turn smart appli-

ances on or off, set schedules, and choose various other control

options depending on the IoT device type and capability. Given

this common workflow, we explore methods to secure IoT

devices by correlating the mobile application’s UI events with

the IoT device’s network activity. We focus on approaches

that work across mobile applications, IoT device brands, and

device models. We only consider IoT home devices with

defined capabilities such as locks, bulbs, and switches and do

not include streaming devices such as speakers. This is to focus

on devices with discrete actuation events. We seek to construct

a clear causal chain of events starting from the UI event,

followed by the network communication from the smartphone,

and ending with the network traffic sent to the IoT device. With

this sequence, we can validate network messages and ensure

they are consistent with the activities of an authorized user.

Network allow-lists, which only permit known-good interac-

tions, can significantly limit opportunities for adversaries. We

explore how sensors at the smartphone and network router

can help construct such allow-lists and enforce them. We

further explore dynamic allow-lists, in which network traffic

must 1) match known patterns associated with a legitimate

request, and 2) be preceded by a user action that corresponds

to the network patterns. While such tight restrictions may be

infeasible in a generic computing environment (e.g., where

background or non-deterministic actions are common), the

network interactions with IoT devices are specifically user-

driven and follow a restricted protocol. We build upon prior

work that found that such protocols to be deterministic [1].

Fig. 2. IoT end-to-end activity represented as a chain of events starting from
the user input, to the protocol, to a network packet sequence.

A. Threat Model

We assume the adversary has the same capabilities as the

legitimate end-user in our threat model, capable of remotely

accessing and controlling the IoT device using the vendor-

provided smartphone application. The threat model is anal-

ogous to a situation where an adversary has acquired IoT

smart applications’ end-user credentials (such as via credential

stuffing with reused passwords) and controls IoT devices as

if they were the end-user. We assume the adversary does not

have physical access to an authorized phone and thus cannot

interact with its touchscreen to actuate the UI controls that our

system uses to enable access.

B. Endpoint Sensors and SDN

Our approach requires sensors in both the smartphone

device and in the network to observe traffic. We describe both

types of sensors and the data they provide. Given Android’s

roughly 72% smartphone market share [15], we focus on the

Android smartphone operating system.

In the endpoint, we need a sensor to monitor user interface

activity. Our UI Monitor observes the information displayed

to the end-users, as well as the actions that the end user takes.

Since application developers must already design their UIs to

be easily understood by end users, we can leverage this context

to help achieve access control goals.

Android provides an AccessibilityServices API

that allows developers to create tools that support end users

with varying needs, such as screen readers for those with

vision impairments. The library has been previously used by

developers to help with automating UI testing and similar

tools. The library is powerful because it allows applications

to register callback functions for UI transitions and actions in



other applications. Further, the library provides a mechanism

to allow traversal of the UI tree and to acquire the details of

individual UI widget properties, such as names, class types,

and displayed text. We leverage these capabilities to monitor

events across devices to provide context to network requests.

Importantly, this approach allows monitoring of applications

on the device without requiring access to the source code of

those applications.

To see the resulting network activity, we use tools from

the software-defined networking (SDN) paradigm. We install

Open vSwitch [24] (OVS) on the device to serve as the

wireless router for the IoT device. The OVS SDN agent

elevates packets in new flows to an SDN controller using the

OpenFlow protocol [19]. While SDN controllers often provide

SDN agents with rules to cache locally to boost performance,

the traffic associated with the IoT devices we monitor tends

to be both low-volume and short-lived. Accordingly, the OVS

agent elevates every packet sent to or from the IoT device to

the SDN controller.

The SDN controller can see network traffic associated with

both the smartphone and the IoT device. Often, smartphone

IoT device applications contact a third-party (associated with

the IoT device manufacturer) to issue commands to the IoT

device. That third-party server then relays the commands to the

IoT device through a separate connection. With our network

instrumentation, we can see both sides of this communication.

With information from the UI Monitor as well, we can

associate a UI activity with the network request sent from

the smartphone and infer that subsequent packets from the

third-party server to the IoT device are associated with that

request. As a result, we can observe these interactions over

a training period to observe all the UI activities and their

resulting network behavior. Once a sufficient profile of activity

is built, we can transition to an enforcement period in which

the SDN controller can block packets associated with the IoT

device that do not match known legitimate patterns or that

lack the requisite UI activity at an associated smartphone.

C. Establishing Ground Truth

A practical deployment of the approach only requires the

endpoint and network sensors described thus far. This is

beneficial, since the smartphone sensors can be installed in

a straightforward manner (e.g., without requiring root access

to the phone or rebuilding the OS). However, to evaluate the

effectiveness of the tools in this work, we require a source

of ground truth data. This ground truth instrumentation would

not be required in a deployed scenario.

Deployers could use the Frida [25] tool to instrument

Android library and system calls. To gain this capability, Frida

requires root access to the device. In our tests, we use Frida to

intercept messages from the IoT device applications to deter-

mine whether messages are being sent from the application to

remote servers and devices before the messages are encrypted.

This allows us to confirm the inferences that we make from the

network traffic and allow us to move from a “correlation” link

to an actual “causal” one in our analysis. Device manufacturers

or security service providers could do similar analysis to

create the dynamic allow-lists proposed in this work, since this

analysis can be easily performed in an Android smartphone

emulator. We perform this analysis without requiring access

to the source code of the IoT device applications; others can

do likewise. In our actual experiments, we do not use Frida.

Instead, we create policies on the assumption that highly

correlated events are causal, without obtaining ground truth

confirmation of that relationship. A practical deployment could

do likewise. Device manufacturers or security experts could

manually verify these causal relationships, if needed.

D. Privacy Implications

In creating our proof-of-concept implementation and per-

forming our evaluation, we use devices in our own lab setting.

Since our measurements are solely of software and device

behavior, rather than considering human behavior, we do not

involve human subjects in this study. If we did, deploying

these sensors would raise privacy concerns.

While the AccessibilityServices API gives us the

ability to monitor any application on the device, we can limit

this ability only to known applications by discarding events for

other applications. The UI activity can be masked so that user-

entered information is not transmitted across the network. If

masked, the only information that would be transmitted would

be control-flow interactions in IoT smartphone applications.

Such context could expose potentially private information;

however, prior work has shown that such control flows can

already be inferred from the network traffic [1]. We merely

collect the information in advance so it can be used for access

control, which necessarily must happen before the interaction

completes, rather than for ex post facto inference analysis.

With these safeguards, the privacy risks may be similar to

those of a network observer, which is a concern that most

security tools face.

IV. IMPLEMENTATION: ANDROID AND OPENFLOW

For our implementation, we use the OpenFlow protocol [19]

to monitor the network communication. On a laptop with

six 2.6 GHz cores and 16 GBytes of memory, we host two

virtual machines (VMs). The first VM is an Ubuntu 20.04

LTS VM that runs the Pox [9] controller and manages a

Panda Wireless PAU09 wireless adapter that the IoT devices

use for their wireless connection. The Ubuntu VM uses Open

vSwitch [24] on a bridge for the wireless adapter that acts as

the OpenFlow agent. The second VM is an Android emulator

that runs the smartphone applications as if they were on a Pixel

2 smartphone. The laptop uses an Ethernet cable to connect to

a router that provides Internet access. We provide an overview

of this architecture in Figure 3. While the controller is hosted

locally in this scenario, we note prior work found that the

controller could be hosted remotely, such as at a nearby cloud

data center, without a significant impact on latency [31].

Our approach allows us to explore multiple IoT devices

and smartphone applications, since multiple IoT devices can

be connected via the access point and the controller can have



Fig. 3. System overview showing smartphone, network, IoT device, and
controller components.

a different policy for each IoT device. The module we create

for the Pox controller also accepts communication from the UI

Monitor running on the Android VM over UDP connections.

This grants the Pox module visibility into both the smartphone

application and the IoT device.

On the Android VM, we install our own application to be

the UI Monitor that directly communicates with the controller.

Since the UI Monitor uses the AccessibilityServices

library, the end user must specifically enable the UI Monitor as

an accessibility services provider in the Android OS settings;

this step is designed to prevent malicious software from

covertly monitoring user behaviors.

The UI Monitor registers callbacks with the Android OS

so it can receive an AccessibilityEvent object when-

ever a UI event occurs. The AccessibilityEvent object

contains information about the widget that is associated with

the event. This information can further be used to traverse

the UI hierarchy associated with that application to acquire

parent AccessibilityEvent objects, allowing the UI

Monitor to obtain information about parents and other widget

ancestors. Further, we register an event handler for click

events (such as a finger press). That event handler records

the ID, class, text, and ancestor information associated with

the actuated UI element. We leverage this data to create

unique identifiers for UI widgets and to acquire descriptive

contextual details (e.g., the text label associated with a button).

In cases where a UI widget lacks descriptive text properties

(e.g., image_button widgets), we acquire the text from

the nearest TextView widget in the UI hierarchy. The UI

monitor then continuously sends this UI information to the

POX controller.

Figure 4 shows how we fuse the data from our sensors

at the Pox controller. The policy first determines the recent

UI data associated with the smartphone application. In our

analysis phase, we link the UI data with the subsequent

Fig. 4. An example dynamic access control policy that fuses UI activity with
network packets, resulting in potential policy

network traffic. In this example, we see two valid sequences

of network packets that are permissible on the network; the

differences are caused by segmentation of the network packets.

In constructing the policy, we use the synchronized clock from

the physical machine and then order the events based on their

timestamps.

With these policies, we create allow-lists associated with

each UI action. We implement the policies as state machines

where the UI action is the initial state followed by a sequence

of network packets as allowed states with differing packet size

and server addresses based on the interactions. Some events

include a delay in the network activity (e.g., activities like

“turn lights on after 1 minute”), and these require special

handling. In our testing, we create special time-based policies

that allow network activity with delays or at specific times. We

create state machines for each UI event that causes network

traffic at the IoT access point. If the controller receives an

elevated packet that is inconsistent with the current status of

the state machine, the controller orders the OVS agent to drop

the packet and all subsequent traffic in the flow. The controller

also records the event as potentially malicious. This allows us

to detect network activity that is unrelated to user interactions.

V. EMPIRICAL STUDY ON POPULAR IOT DEVICES

We use experiments to explore our two research questions:

To what extent can we link end-user interactions within an

IoT device’s smartphone application with the resulting network

flows to that IoT device? To what extent can we leverage those

user interactions in filtering network traffic for IoT devices?



These experiments examine the generalizability, effectiveness,

and performance of the approach.

We conduct our experiments using consumer-grade IoT de-

vices from three popular brands. We use common device types,

such as light bulbs and power outlets, from these brands to

allow cross-manufacturer comparisons. Some devices directly

use WiFi for communication, while others use the Zigbee

protocol to communicate with a multi-device hub that then

uses WiFi to connect to the Internet. Our set of devices and

manufacturers allows us to analyze both deployment models

and the extent to which our techniques can generalize across

manufacturers, device type, and communication protocols. We

show the residential network configuration in Figure 3.

For each IoT device, we obtain the appropriate smartphone

application to control the device and install it in our emulated

Android device. We then manually identify a set of UI activi-

ties in that phone application that triggers network activity to

the IoT device. For each such activity, we create an Appium [8]

Python script that automates the associated UI activity.

While the architecture of IoT devices can vary, each tested

device and brand relies upon an externally hosted server to

control the IoT device. The IoT device establishes a long-

lived connection with that hosting server. When we actuate

UI events in the IoT devices’ applications, manually or with

Appium, the application contacts the manufacturers’ server to

send a command. That server then relays the commands to the

IoT device. In the case of directly-connected WiFi devices, we

observe packets sent specifically to the IoT device. For devices

connected using a Zigbee hub, we observe packets en route to

the Zigbee hub.

For each UI activity, we construct a policy that specifies the

sequence of UI events and resulting network traffic. We use

Appium to automate the actuation of these sequences to collect

training data to refine our set of allow-list policies. Afterward,

we again actuate these events with Appium while our Pox

controller enforces these allow-lists. During the enforcement

stage, we additionally test malicious traffic (which is mal-

formed or is from a device without our application sensor).

This approach allows us to gather data on generalizability,

effectiveness, and performance of the approach.

The same SDN controller can manage multiple types of IoT

devices simultaneously. To do so, it must have a unique state

machine for each and keep track of the current state of those

interactions.

A. Policy Construction and Generalizability

During our initial exploration and training phase, we use

a Python script to create policies at the controller for each

UI event. We represent and enforce the policies as a state

machine for each device. Each state machine has a root node

and events that can lead to transitions from states. For example,

if the UI sensor indicates a button press, the state machine may

advance to enable a new branch of network packets. Likewise,

a new packet from the manufacturer’s server to the IoT device

may result in another transition. Each event type has its own

associated data. For UI events, this includes the UI element

being actuated and that element’s type and identifiers. For

network events, this includes the source and destination IP

addresses, transport layer ports, sequence numbers, and packet

size. Due to encryption, we ignore the contents of the payload

and focus only on its size.

During the enforcement stage, the controller allows any

network packets that can be reached from the current position

in the IoT device’s state machine. The controller denies any

other traffic. Since the channel with the manufacturer server is

multiplexed, the controller tracks and allows parallel execution

of state machine branches. These actions allow background

traffic, such as keep-alives, to be processed at the same time

as a UI-driven event.

During our training phase, we repeatedly execute UI ac-

tivity workflows until subsequent trials stop producing new

traffic variants that necessitate additions to the device’s state

machine. In Table I, we show the UI actions and the number

of different states associated with the corresponding network

traffic. Each UI action can be linked to a series of network

packets. While the number of states varies by device and

manufacturer, we note that the technique generalizes across

each device and results in a manageable size for the controller.

TABLE I
NUMBER OF STATES REQUIRED TO SUPPORT DIFFERENT DEVICE

WORKFLOWS. SOME ACTIVITIES MAY HAVE STATE SEQUENCES IN

COMMON.

Vendor Device UI Action Number of States

Wemo Plug

Turn On/Off 11
Timer On/Off 16
Vacation Mode 12
Background 44

Samsung Plug
Turn On/Off 6
Background 46

Samsung Bulb
Turn On/Off 46
Change Brightness 102
Background 18

Wyze Plug

Turn On/Off 5
Timer On/Off 4
Vacation Mode 24
Background 51

Wyze Bulb

Turn On/Off 3
Change Brightness 3
Change Warmness 3
Timer On/Off 9
Background 29

B. Effectiveness Evaluation

We explore the effectiveness of our approach in terms of

packet classification accuracy. We explore whether the system

can allow legitimate behavior while preventing unauthorized

packets from reaching the IoT device.

In our enforcement phase experiments, we use Appium [8]

to randomly select and perform the UI actions from the

training phase on our smartphone application. The controller

receives the UI and network sensor events to determine

whether to allow or deny the network packets. This process

allows us to determine the approach’s robustness, regardless

of UI workflow order or repetition. We also insert malicious

traffic by triggering network traffic on the same emulated



smartphone without our sensor reporting UI events to see if

it is prevented. As described earlier, the controller examines

state machines in parallel, allowing background traffic to occur

at the same time as UI-driven activity. The controller could

misclassify the simulated malicious traffic if it happened to

be allowed by the background policy or an actuated UI-driven

activity.

For each UI action associated with the five IoT devices, we

collect the enforcement phase data across 1,000 trials of each

action. We evaluate policy for every UI action on several IoT

devices and combine them into an overall confusion matrix

in Table II. The number of packets that have been correctly

identified as legitimate greatly exceed those incorrectly iden-

tified as malicious with over 98% of packets being correctly

classified. The system had perfect accuracy at classifying and

denying malicious traffic. The approach prevents unauthorized

use with minor disruption. When the controller denies packets,

it can transform the denied packet into a TCP RST packet sent

to the IoT device to cause it to disconnect and reconnect to the

server. As our experiments in the next section show, this occurs

quickly and restores proper operation while still filtering the

undesired interaction.

TABLE II
CLASSIFICATION ACCURACY FOR TESTED SMART DEVICES.

Workflow Correct Incorrect
Vendor Device Action Deny Allow Deny Allow

Wyze Bulb

Turn On/Off 3,596 3,612 5 0
Change Brightness 3,674 3,665 5 0
Change Warmness 3,625 3,588 13 0
Timer On/Off 7,247 7,317 68 0

Wyze Plug
Turn On/Off 3,001 3,162 14 0
Timer On/Off 4,054 3,977 28 0
Vacatio n Mode 3,002 3,000 2 0

Samsung Bulb
Turn On/Off 4,344 4,254 28 0
Change Brightness 5,873 5,715 105 0

Samsung Plug Turn On/Off 2,918 3,086 5 0

Wemo Plug
Turn On/Off 5,032 5,006 24 0
Timer On/Off 5,667 5,958 25 0
Vacation Mode 5,812 5,974 18 0

We note differences between the WiFi and Zigbee devices.

The Zigbee bridge establishes a connection between itself and

the manufacturer’s server with a separate connection for each

controlled device. The packets to the Samsung bulb have a

significant variation in packet segmentation with small byte

discrepancies. We use a cumulative sum and binning technique

to account for these segmentation effects. This approach lead

to high classification accuracy.

The allow-list approach ensures that unanticipated traffic

is automatically dropped. This approach prevents malformed

packets of unexpected sizes from being delivered to the IoT

device.

C. Performance Evaluation

Our performance evaluation explores the impact of our

technique on the endpoint devices and on latency in the

residential network. We use the Android Profiler developer tool

to analyze the resource usage of our tool on the smartphone.

It reports that the CPU utilization during our experiments

averaged around 1%, that energy usage is “light,” and that the

memory consumption of the tool is constant at 56 MBytes.

With this light resource usage, our approach is unlikely to

overly tax smartphones.

Next, we explore the extent to which our tool affects IoT

network communication. To characterize our system’s overall

impact on latency, we measure the end-to-end delay introduced

by our approach by comparing baseline IoT responsiveness

against IoT responsiveness with our system running. We use a

physical Nexus 5 phone connected to the IoT access point for

this experiment. We measure the end-to-end delay using two

time stamps: one taken at the initiation of the UI event, and one

taken when the first packet associated with the UI event arrives

at the IoT access point. The difference between these times

includes the consultation with the OpenFlow controller when

our approach is employed. We show the results in Figure 5.

Our approach adds 20 milliseconds of delay, at most, for

around 90% of traffic. Relative to the baseline, this constitutes

an overhead of less than 8%. Accordingly, we believe that the

delay would not be a significant concern related to usability.
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Fig. 5. Comparison between end-to-end delay of baseline and our system

We evaluate the impact of filtering malicious traffic on the

device’s operation. When the controller identifies a malicious

packet, it transforms that packet into a TCP packet with RST

flag and no payload. When the IoT device receives this packet,

it disconnects from the server and tries to reconnect. We

measure the time required for this reconnection by measuring

the time from when the controller sends the RST packet and

when it receives the SYN packet from the IoT device during

its reconnection attempt. In Figure 6, we show the elapsed

time for IoT devices from each of the three manufacturers

over 1,000 trials. All three IoT devices attempt to reestablish

the connection within 4,000 milliseconds. Importantly, the

connection drop approach results in the unwanted action being

filtered: none of the manufacturer servers retransmit the fil-

tered action once the connection is reestablished. Accordingly,

traffic can be filtered with only short disconnection periods,

minimizing the impact on users’ experiences on IoT devices.
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Fig. 6. Elapsed time for IoT devices reconnecting with server

In summary, these experiments show that our method is

applicable to a real-world residential network. Our approach

not only works well with IoT devices from different vendors

and with different communication protocols; it also achieves

98% to 100% accuracy on identifying legitimate and malicious

traffic, with a degree of precision that makes it difficult for an

adversary to control an IoT device without being detected.

Moreover, the overheads associated with the approach are

low, adding less than 20 milliseconds of end-to-end delay for

around 90% of traffic. Finally, even in the rare case in which

traffic is incorrectly filtered, control of the device is quickly

restored, allowing the user to retry the action.

VI. CONCLUDING REMARKS

We find that we can model actions of IoT devices with

finite network behavior as state machines and effectively

enforce dynamic allow-list policies to control access to those

IoT devices. Since our system only allows known-legitimate

traffic, it naturally stops anomalous traffic. This increases

the challenge associated with an effective attack, since an

adversary can only communicate with an IoT device after

a legitimate user interaction. Further, the traffic to that IoT

device must match known legitimate interactions, constraining

the packet sizes and timing an adversary may use. When both

legitimate and adversary traffic are sent to an IoT device, the

extra traffic would not match a legitimate pattern, causing the

system to filter the traffic and generate an alert.

Our experiments show that this approach works across

manufacturers, device types and communication protocols.

Each new device requires its own training phase; however, the

resulting policy can be used across instances of the device. As

a result, a manufacturer or security service provider can create

policies and distribute them across SDN controllers to protect

a large number of IoT devices.

Future work could extend this exploration by including ad-

ditional types of IoT devices, such as media streamers or smart

speakers, and different types of longer-range connectivity.
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