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ABSTRACT

The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to monitor the entire sky, currently with
a cadence of < 24h down to g < 18.5mag. ASAS-SN has routinely operated since 2013, collecting ~ 2000 to over 7 500
epochs of V- and g-band observations per field to date. This work illustrates the first analysis of ASAS-SN’s newer, deeper,
and higher cadence g-band data. From an input source list of ~55 million isolated sources with g < 18 mag, we identified
1.5 x 10° variable star candidates using a random forest (RF) classifier trained on features derived from Gaia, 2MASS, and
AINIWISE. Using ASAS-SN g-band light curves, and an updated RF classifier augmented with data from Citizen ASAS-SN,
we classified the candidate variables into eight broad variability types. We present a catalogue of ~116 000 new variable stars
with high-classification probabilities, including ~111 000 periodic variables and ~5 000 irregular variables. We also recovered

~263 000 known variable stars.

Key words: catalogues —surveys —stars: variables: general —binaries: eclipsing — stars: rotation.

1 INTRODUCTION

Variable stars are an important and dynamic area of modern as-
tronomical research. Variability provides extra observational infor-
mation (periods, amplitudes, etc.), which can be used to determine
physical parameters such as mass, radius, luminosity, and rotation
rates (e.g. Percy 2007). For example, § Scuti variables allow us
to study the scaling relations between stellar parameters (effective
temperature, surface gravity, density, etc.) and astroseismology (e.g.
Hasanzadeh, Safari & Ghasemi 2021). Eclipsing binaries allow us
to accurately measure stellar parameters, such as mass and radius
(e.g. Torres, Andersen & Giménez 2009). RR Lyrae variables have
been used to derive the structural parameters of the inner halo
and thick disc of the Milky Way (e.g. Mateu & Vivas 2018). The
period-luminosity relationship of Cepheid variables allow distance
estimates on cosmic scales (e.g. Leavitt 1908). In short, variable stars
are used to solve astrophysical problems, especially those requiring
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knowledge of distances, stellar structure, and populations (e.g. Feast
& Whitelock 2014).

Continuity of coverage and continuing surveys are particularly
important for finding rare systems that can become ‘Rosetta stones’
for stellar processes. In the modern era, large surveys such as the
All-Sky Automated Survey (ASAS; Pojmanski 2002), the All-Sky
Automated Survey for SuperNovae (ASAS-SN; Shappee et al. 2014;
Kochanek et al. 2017; Jayasinghe et al. 2018, 2021), the Asteroid
Terrestrial-impact Last Alert System (ATLAS; Heinze et al. 2018;
Tonry et al. 2018a), the Catalina Real-Time Transient Survey (CRTS;
Drake et al. 2009), EROS (Derue et al. 2002), Gaia (Prusti et al.
2016; Brown et al. 2018), MACHO Alcock et al. 2000, the Northern
Sky Variability Survey (NSVS; Wozniak et al. 2004), the Optical
Gravitational Lensing Experiment (OGLE; Udalski 2004), and the
Zwicky Transient Facility (ZTF; Bellm 2014) have rapidly advanced
the collection of known variables to over ~2.1 x 10° examples based
on the American Association of Variable Star Observers (AAVSO)
catalogue (Watson, Henden & Price 2006).

ASAS-SN was originally designed to study bright supernovae
and other transients such as tidal disruption events, cataclysmic
variables, AGN, and stellar flares (Holoien et al. 2016). ASAS-SN
data are also well-suited for the cataloguing, classification, and study
of variable stars. For the initial V-band catalogue of variables, the
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Figure 1. Confusion matrix for the VAR/CONST classifier trained on
features from Gaia EDR3, 2MASS, and AIWISE.
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Figure 2. Confusion matrix for the updated classifier from Christy et al.
(2022). In the updated version used in this work, we included the ‘JUNK’
class to identify light curves with spurious variability.

light curves for ~60 million stars were classified through machine
learning techniques, resulting in a catalogue of ~426 000 variables,
of which ~220 000 were new discoveries (Jayasinghe et al. 2021).
We are now using citizen science through the Citizen ASAS-SN
project hosted on the Zooniverse' (Christy et al. 2021) to identify
and classify variables in the g-band data. The ASAS-SN citizen
science campaign has also already begun to identify a host of new
variable stars in our data (Christy et al. 2022).

1Zooniverse: https://www.zooniverse.org/
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Figure 3. Machine learning probability distribution for the full input list of
~755 000 variables separated into known and new sources.
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Figure 4. Integral Yes/Maybe/No fraction of test variables in our quality
control sample as a function of the RFC classification probability.

In Paper 1 (Jayasinghe et al. 2018), we discovered ~66 000
new variables that were flagged during the search for supernovae
and homogeneously analysed ~412 000 known variables from the
VSX catalogue in Paper II (Jayasinghe et al. 2019b). In Paper
III (Jayasinghe et al. 2019a), we characterized the variability of
~1.3 million sources in the southern Transiting Exoplanet Survey
Satellite (TESS; Ricker et al. 2015) continuous viewing zone and
identified ~11 700 variables, including ~7 000 new discoveries. In
Paper IV (Pawlak et al. 2019), we have also explored the synergy
between ASAS-SN and large-scale spectroscopic surveys using
data from APOGEE (Holtzman et al. 2015) with the discovery of
the first likely non-interacting binary composed of a black hole
with a field red giant (Thompson et al. 2019). In Paper V, we
identified ~220 000 variable sources with V < 17 mag in the southern
hemisphere, of which ~88300 were new discoveries (Jayasinghe
etal.2019c). In Paper VI, we derived period—luminosity relationships
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Table 1. ML Classification breakdown of the variables from this search.

RF Classification Description NKnown NNew NNew/NKnown
CWA W Virginis type variables with P > 8d 153 - -
CWB W Virginis type variables with P < 8d 73 1 0.01
DCEP 8 Cephei-type classical Cepheid variables 432 2 <0.01
DCEPS First overtone Cepheid variables 109 3 0.03
DSCT 8 Scuti type variables 848 1547 1.82
EA Detached Algol-type binaries 17447 4480 0.26
EB B Lyrae-type binaries 11820 1551 0.13
EwW W Ursae Majoris type binaries 42737 4833 0.11
GCAS y Cassiopeiae variables - - -
HADS High-amplitude 6 Scuti type variables 1725 506 0.29
L Irregular variables 9152 4786 0.52
M Mira variables 6287 363 0.06
ROT Spotted Variables with rotational modulation 14755 38414 2.60
RRAB Fundamental mode RR Lyrae variables 18455 580 0.03
RRC First overtone RR Lyrae variables 6518 450 0.07
RRD Double mode RR Lyrae variables 482 30 0.06
RVA RV Tauri variables (Subtype A) 3 - -
SR Semiregular variables 131479 57925 0.44
YSO Young stellar objects 209 147 0.70
VAR Variable star of unspecified type 150 409 2.73
Total 262834 116027 0.44

T e candidates. In Section 3 we discuss the results, and in Section 4 we
10°F 1 present our conclusions.
4L 4
" 2 OBSERVATIONS AND METHODS
10°F E 2.1 Data
< In 2014, ASAS-SN began surveying the entire sky in the V band with
2k ] a limiting magnitude of V < 17 mag and a ~2 — 3 d cadence using
8 telescopes on two mounts in Chile and Hawaii (Shappee et al.
2014; Kochanek et al. 2017). Since 2018, ASAS-SN has shifted
10'k E to using a g-band filter and expanded to 20 cameras on 5 mounts,
adding new units in South Africa, Texas, and Chile (Jayasinghe
et al. 2018). All of the ASAS-SN telescopes are hosted by the Las
10°E Cumbres Observatory (LCO; Brown et al. 2013). When compared
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Figure 5. Number distribution of machine learning classifications after
probability cuts.

for 6 Scuti stars (Jayasinghe et al. 2020c). We studied contact
binaries in Paper VII (Jayasinghe et al. 2020b). In Paper VIII, we
identified 11 new ‘dipper’ stars in the Lupus star-forming region
(Bredall et al. 2020). In Paper IX, we used spectroscopic infor-
mation from LAMOST, GALAH, RAVE, and APOGEE to study the
physical and chemical properties of these variables (Jayasinghe et al.
2021).

In this paper, we present the first all-sky catalogue of variables
detected in the newer, deeper, higher cadence g-band ASAS-SN data.
The complete list of the crossmatched variables and the ASAS-SN
discoveries along with their g-band light curves are provided online
at the ASAS-SN Variable Stars Database (https://asas-sn.osu.edu/
variables) and have been reported to the AAVSO. Section 2 details
the data and methods used to identify and classify the variable star

to the V-band data, the g-band data have an improved depth (g <
18.5 mag), cadence (< 24 h in the g band versus ~2 — 3d in the V
band), and reduced diurnal aliasing due to the longitudinal spread
of the ASAS-SN units. The ASAS-SN V-band observations were
made by the ‘Brutus’ (Haleakala, Hawaii) and ‘Cassius’ (CTIO,
Chile) quadruple telescopes between 2013 and 2018. Our g-band
observations added data from the ‘Payne’ (Sutherland, South Africa),
‘Bohdan’ (CTIO, Chile), and ‘Leavitt’ (McDonald, Texas) quadruple
telescopes starting in 2018. Each ASAS-SN camera takes 3 images
with 90 s exposures for each epoch. The field of view of an ASAS-SN
camera is 4.5 deg?, the pixel scale is 870, and the FWHM is typically
~72 pixels. ASAS-SN saturates at g ~ 11 — 12 mag, but we attempt
to correct the light curves of saturated sources for the bleed trails
(see Kochanek et al. 2017). The g-band light curves were extracted
using image subtraction (Alard & Lupton 1998; Alard 2000) and
aperture photometry on the subtracted images with a 2-pixel radius
aperture. We rejected images taken during poor weather conditions,
images that were out of focus with FWHM >2 pixels, images that had
poor astrometric solutions, and images where the variable source is
within 0.2° of a detector edge (Jayasinghe et al. 2018). We corrected
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Figure 6. Equatorial distribution of the ~263 000 known variables we recovered in equatorial coordinates.

the zero point offsets between the different cameras as described in
Jayasinghe et al. (2018). The photometric errors were recalculated
as described in Jayasinghe et al. (2019a).

2.2 Identifying variable star candidates

We started with the ATLAS All-Sky Stellar Reference Catalogue
refcat2 (Tonry et al. 2018b) as our input source catalogue. The
refcat2 catalogue includes g, r, i, and z photometry for sources
from PanSTARRS DR1, the ATLAS Pathfinder photometry project,
the ATLAS reflattened APASS data, SkyMapper DR1, APASS DRO,
Tycho-2, and the Yale Bright Star Catalogue (Tonry et al. 2018b).
We selected ~54.8 million refcat?2 sources with g < 18 mag and
r1>30", where r1 is the radius at which the cumulative G flux in
the aperture exceeds the flux of the source being considered and is

MNRAS 519, 5271-5287 (2023)

a measure of the crowding around a star. We use the limit on r1 to
reduce the number of heavily blended sources.

The production of 55 million of light curves is computationally
expensive, so we used external photometry from Gaia EDR3,
2MASS, and AIIWISE to identify likely variable sources rather than
simply generating light curves for every source. In particular, the
photometric uncertainties in Gaia EDR3 encodes information about
the photometric variability of sources (see for e.g. Andrew, Swihart
& Strader 2021). At a fixed G magnitude, variable stars in Gaia have
larger photometric uncertainties than constant stars and therefore, we
can use the photometric uncertainties available in Gaia EDR3 as a
feature to identify stellar variability.

We built a variability classifier based on a random forest (RF)
model with scikit-learn (Pedregosa et al. 2012). The goal was
to first divide the stars into two groups: CONST (constant stars) and
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Figure 7. Equatorial distribution of the ~116 000 new variables we recovered in equatorial coordinates.

VAR (potential variables). The variable star candidates will then be
analysed in detail, so it is more important not to lose real variables
than to accidentally include non-variables. For the training set, we
used the ~204 000 known variables used to train the RFC variability
classifier in Christy et al. (2022) and the variables identified in Citizen
ASAS-SN DRI1. For the constant sources, we used a set of ~250 000
non-variable sources identified in Citizen ASAS-SN DR1. We used
16 features from Gaia EDR3, 2MASS, and AIIWISE. These include
the EDR3 G, BP, RP magnitudes and the associated uncertainties,
the BP — RP colour, the BP — RP excess factor, the signal-to-noise
ratios in G and BP, the renormalized unit weight error (RUWE),
the / — K, colour, the absolute Wgp magnitude and the absolute
W,k magnitude. The EDR3 signal-to-noise ratios are essentially the
ratio of the observed flux divided by the error in the flux. As noted
earlier, the EDR3 photometric uncertainties and flux errors encode

information about the photometric variability of stars. We also used
the absolute, ‘reddening-free” Wesenheit magnitudes (Madore 1982;
Lebzelter et al. 2018)

Wgrp = Mgp — 1.3(BP — RP), (1)
and
W,k = Mg, — 0.686(J — K;) 2)

and the probabilistic EDR3 distances from Bailer-Jones et al. (2021).

The parameters of the RF model were optimized using cross-
validation to maximize the overall F; score of the classifier.
The number of decision trees in the forest was initialized to
n_estimators=1200. We also limited the maximum depth
of the decision trees to max._depth=16 in order to miti-

MNRAS 519, 5271-5287 (2023)

€20z AInr L1 uo Jesn Aysisaiun 81e1S oIyO Aq 0221969/L22S/P/61S/e101e/seluw/wod dno-olwspeoe//:sdiy woly pepeojumoq


art/stac3801_f7.eps

5276  C.T. Christy et al.

0.6
SR/L ROT
0af 1
0.2F b
0.0=— ' : ' ; '
RR Lyrae EA/EB/EW
o4} ]
7, 02 1
=i
2 00—t : ; 7 :
= [ pscT VAR
2. .
=]
Z
02f 1
0.0f—— : ; :
Mira YSO
0.4f 1
02} ]
0.0 it T4 16 [CREY) 16 i3

14
Mean g-band Magnitude

Figure 8. Distribution of the mean g-band magnitudes by variable class.

Known

20000f 1 New
%

g

o 15000F
7s]

[

o

=

3 10000
£

=

< 5000

log,,(P/days)

Figure 9. Number distribution of the variability periods for the known and
new sources.

gate over-fitting, set the number of samples needed to split
a node as min_samples_split=10 and set the number of
samples at a leaf node as min_samples_leaf=5. To fur-
ther minimize over-fitting, we also assigned weights to each
class with class_weight='balanced_subsample’. For any
given source, the RF classifier assigns classification probabilities
Prob(Const) and Prob(Var) = 1 — Prob(Const). The output classi-
fication of the RF classifier is the class with the highest proba-
bility. We split the training sample, using 90 per cent for training
and 10 per cent for testing, in order to evaluate the performance
of the RF classifier. The confusion matrix for the trained RF
model is shown in Fig. 1. The greatest confusion (4 per cent)
arises from input variable sources that are subsequently classified
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Figure 10. Distribution of variability amplitude with mean g-band magni-
tude. This includes both the new and known variables.

as CONST. The overall precision, recall and F; parameters for
the classifier are 97.3 per cent, 97.1 per cent, and 97.2 per cent,
respectively.

We then classified the ~54.8 million refcat2 sources using
the trained RF classifier, and we identified ~1.48 million variable
star candidates (~2.7 per cent). We extracted ASAS-SN g-band
light curves of these candidates and determined periods using the
ASTROPY implementation of the generalized Lomb—Scargle (GLS,
Scargle 1982; Zechmeister & Kiirster 2009) periodogram over the
range 0.025 < P < 1000d. To minimize computational costs, we
chose to use only the GLS periodogram. The GLS periodogram can
sometimes fail for more complex light curves, including detached
eclipsing binaries, and therefore, such sources may not be selected as
periodic variables. For the eclipsing binaries, GLS tends to measure
a period that is half of the true period (see Jayasinghe et al. 2018,
2019b). To correct for this, we have adapted the automated period
doubling routine from Jayasinghe et al. (2019b) for the eclipsing
binaries, which significantly reduces the number of binaries with
periods corresponding to half the true period. Future work will
also use the Box Least Squares (BLS; Kovdcs, Zucker & Mazeh
2002) periodogram to improve the detection of detached eclipsing
binaries.

2.3 Classifying variable stars

We retrained the g-band RF classifier described in Christy et al.
(2022) to include a new category for spurious ‘JUNK’ variables.
This classifier uses features derived from both the light curves and
Gaia EDR3,2MASS, and AIIWISE photometry. The features derived
from the light curves include log(P), Rai, R31, Ro1, A, IQR, Anp,
Skew, rms, o, and MAD from Table 2 in (Jayasinghe et al. 2019b),
and the updated features (7, P), 6(P, 2P) from Christy et al. (2022).
We also use the BP — RP, J — K, J — H colours, and the Mg,
absolute magnitude derived from photometry. The training set for
the JUNK class was the ~12000 ‘JUNK’ variables identified by
citizen scientists in the first data release from Citizen ASAS-SN
(Christy et al. 2022). These ‘JUNK’ variables include light curves
dominated by systematics (e.g. saturation artifacts from nearby
bright stars), and those that have poor signal-to-noise (see Christy
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et al. 2022). Training sets for variable star classification tend to be
imbalanced due to the different occurrence rates of various variable
types. To reduce over-fitting, weights were assigned to each class by
using class_weight='balanced_subsample’. We set the
number of decision trees in the forest as n_.estimators=1000,
pruned the trees at a maximum depth of max_depth=16,
set the number of samples needed to split a node as
min_samples_split=10 and set the number of samples at a
leaf node as min_samples_leaf=5. The updated RF classifier
classifies sources into eight broad classes (CEPH, DSCT, ECL,
LPV, RRAB, RRc/RRd, ROT, and JUNK) which are subsequently
refined into sub-classes (see Jayasinghe et al. 2019b). The overall
precision, recall and F; parameters for the updated RF classi-
fier are 91.6 per cent, 94.2 per cent, and 92.8 per cent, respectively.
The confusion matrix for the trained RF model is shown in
Fig. 2.

We applied the updated variability classifier to the ~1.48 million
variable star candidates. To reduce the number of false positives,
we imposed a probability cut of Prob > 0.95 for variables with
periods close to diurnal and lunar aliases (e.g. 1, 2, 29, and
60d). Additionally, to eliminate false positives caused by spurious
variability, we used a probability cut of Prob > 0.8 for short period
DSCT variables. Following this step, we are left with ~755 000
variables.

We cross-matched the list of ~755 000 variables with the AAVSO
VSX (Watson et al. 2006), OGLE III (Poleski et al. 2012), and OGLE
IV (Kozlowski et al. 2013; Soszyniski et al. 2014; Udalski, Szymanski
& Szymanski 2015; Soszynski et al. 2015, 2016; Udalski et al.
2018; Pietrukowicz et al. 2020; Soszynski et al. 2021) catalogues
using a matching radius of 16 arcsec and found 359 265 previously
known variables. The VSX catalogue contains all the variables
previously identified by many wide field surveys, including ASAS-
SN (Jayasinghe et al. 2021), ATLAS (Heinze et al. 2018), WISE
(Chen et al. 2018), and ZTF (Chen et al. 2020). After excluding the
known variables, there are 395 494 new variables in our list.

MNRAS 519, 5271-5287 (2023)

2.4 Quality control

In Fig. 3, we show the distribution of the highest probability
assigned to each variable candidate’s classification for the known
variables and the new candidates. The probability distribution for the
known variables is more concentrated towards unity than the new
candidates. The differences indicated a need for additional sample
restrictions.

We addressed this by building a private test workflow on the
Zooniverse platform. We randomly selected 2 000 light curves from
the new candidates. The light curves were presented in the same
fashion as in ASAS-SN’s citizen science project Citizen ASAS-
SN (see Christy et al. 2022) which include the light curves phased
using the best period, phased using twice the best period, and the
observed light curve. The user was asked ‘Is this a variable?’ with a
multiple choice response of Yes, No, and Maybe. After the test set
was fully classified we found that ~80 per cent received a ‘Yes’
indicating that variability was clear while ~5 per cent received
a ‘No’ and ~15 per cent received a ‘Maybe’. Fig. 4 shows how
their Yes/Maybe/No classification scaled with the RFC classification
probability. We decided to set the lower limit cutoff at P > 0.89, and
for this limit the relative numbers are 98 per cent Yes, 1 per cent
No, and 1 per cent Maybe. Spot checks of some of the high
probability light curves voted as No and Maybe showed that these
were likely user classification mistakes. Applying this cut to our full
variable sample reduced the number of known and new candidates
by 27 per cent and 71 per cent, respectively to leave in ~263 000
known variables and ~116 000 new variables.

3 DISCUSSION

The complete catalogue of 378 861 variables has been added to the
ASAS-SN Variable Stars Database (https://asas-sn.osu.edu/variab
les) along with their g-band light-curve data and will be publicly
catalogued in the AAVSO VSX catalogue. The ASAS-SN catalogue
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Figure 14. Phased light curves for examples of the newly discovered RR Lyrae variables. The light curves are scaled by their minimum and maximum g-band
magnitudes. Different coloured points correspond to data from the different ASAS-SN cameras. The different variability types are defined in Table 1.

can be downloaded in its entirety at the ASAS-SN Variable Stars
Database.

In Table 1 and Fig. 5 we show the number of sources for each
variability type from this search. The two most common known vari-
ables found are Semiregular (SR) and W Ursae Majoris type binaries
(EW). Of the new discoveries, the most common are Semiregular
(SR) and spotted rotational variables (ROT). The number of known
variable candidates was greater than the number of new candidates
for all except for the ROT, DSCT, and generic VAR classes. The VAR
class describes systems that display clear variability, but could not
be categorized by the machine learning classifier. The large number

of rotating spotted stars (ROT) among our new discoveries seems to
be a property of using the g band instead of the V band. The larger
rotational variability signal in the g band is likely a combination
of it being a bluer band and that it contains the strong Ca, H,
and K absorption feature, whose strength varies significantly with
activity. We found no new W Virginis type variables (CWA), RV
Tauri variables (RVA), or y Cassiopeiae (GCAS) type variables.
There were candidates classified as GCAS variables, but they all
systematically had low classification probabilities and were dropped
after the cuts. The full sky distribution for several common classes
of the known and new variables are shown in Figs 6 and 7. The
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Figure 15. Light curves for the newly discovered Cepheid variables. The format is the same as for Fig. 14.

differences illustrate the large number of new ROT compared to the
known ones. The different sky distributions are simply the differences
between dwarfs and giants. The ROT variables are predominantly
dwarfs and so have a relatively isotropic distribution. The SR/L
variables are giants, so they trace the large-scale structure of the
Galaxy.

Fig. 8 shows the distribution of the most common new variables in
magnitude. Not surprisingly, most are concentrated towards fainter
magnitudes since the g-band data are deeper than the V band,
with higher amplitude variables (e.g. RR Lyrae and Mira variables)
being found at fainter magnitudes than lower amplitude variables
(e.g. spotted stars and the generic VAR class). The two classes
which do not conform to this pattern are the DSCT and SR/L
variables. The DSCT variables have very short periods (hours) and
their identification benefits greatly from the significantly cleaner
window function for identifying short period variables in the g-
band data. Since the ASAS-SN g-band light curves are the first
ever to provide this level of time sampling, it is not surprising
that we would identify large number of DSCT variables even at
bright magnitudes. The identification of larger numbers of inter-
mediate magnitude SR/L variables is likely a consequence of the
steadily increasing total time span of the ASAS-SN light curves.
We probably do not see the same thing for the Miras because their
variability amplitudes are so large that they are very difficult to
miss.

MNRAS 519, 5271-5287 (2023)

In Fig. 9, we show the period distributions for the variables. The
structures at long periods are fairly similar, and are simply due to
finding different relative numbers of Mira, semiregular, and irregular
variables. The lack of the large peak for periods shorter than a day
is due to the low yield of RR Lyrae and EW type binaries among
the new variables. These variables are comparatively easy to detect
with relatively large amplitudes and easily sampled periods, so it is
not surprising that the completeness of existing samples is high. The
comparable numbers at very short periods comes from the many new
DSCT variables. The larger numbers near 10 d come from the large
number of ROT.

We examined the discrete period spikes close to the expected
aliased periods of ~1d (diurnal alias), ~14.8d (half lunar alias),
and ~29.5d (lunar alias). We spot checked a random sample of
variables located near each spike and found that those with the lunar
and half lunar aliased periods showed poorer signs of variability and
were systematically dimmer than the sources with periods at ~1d.
We suspect the dimmer sources are more prone to suffer from a
low signal to noise causing the GLS periodogram to find the wrong
period. To combat this, we imposed a magnitude cutoff of g < 16
for variables with potentially aliased periods which removed the
spikes at ~14.8 and ~29.5d. This cut did not remove the discrete
spike near P ~ 1d as most of these variables were brighter and
showed clear signs of variability. We suspect that the excess of P ~
1d period variables comes from relaxing the discrimination against
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Figure 16. Light curves for examples of the newly discovered § Scuti variables. The format is the same as for Fig. 14.

diurnal aliases because of the better sampling of the g-band data.
Citizen ASAS-SN also provided us with many examples of false
positives at the diurnal aliases which went into training for the JUNK
classification.

Fig. 10 shows the distribution of variability amplitude as a function
of the mean g-band magnitude. The amplitude A,s5_g75 is the
2.5 per cent to the 97.5 per cent percentile range of the data. For bright
stars, we identify variables down to amplitudes of order ~0.05 mag,
and then require progressively higher amplitudes beyond g ~ 16 mag.
We show the period-amplitude distribution for the known and new
sources in Fig. 11. We find relatively few bright, high-amplitude
pulsators, which is another indicator that searches for such variables
are relatively complete.

Fig. 12 shows the Gaia EDR3 Mg and Ggp — Ggp colour-
magnitude diagram for the known and new sources. We also overlay
1 Gyr and 10 Gyr MIST isochrones for [Fe/H]=0 to point out various
evolutionary stages (Paxton et al. 2018). These tracks illustrate
a lack of instability strip variables among the new variables and
the abundance of spotted giants, spotted main-sequence stars, and
semiregular AGB stars. We found that a higher percentage of the
new ROT were located on the main sequence compared to the known
rotators. Fig. 13 shows their distribution in Mk and log,,(P/days).
The two populations of semiregular/irregular variables are clearly
seen for the new variables and have been extensively observed by the
OGLE survey (see Soszynski et al. 2007). As outlined in Paper VI,

the period-luminosity diagram displays two distinct populations of
DSCT stars: the fundamental mode pulsators and the more luminous
overtone pulsators. We found that our new g-band observations were
able to more efficiently identify overtone DSCTs. We also found
that with our larger sample of ROT, certain regions of the period-
luminosity diagram were preferentially occupied. A more thorough
analysis of the rotators will be left for a future work. The behaviour of
the different broad variable types and where they occupy agrees with
the distribution found in the ASAS-SN V-band catalogue (Jayasinghe
et al. 2019b).

In Fig. 14, we show a selection of light curves for new RR Lyrae
variables. In Fig. 15, we show light curves for the new Cepheid
variables. This variable class made up the smallest fraction of the
new discoveries, with only six new sources. Our observations did
not yield any new RV Tauri variables (subtype A) or W Virginis
variables with periods greater than 8 d. In Fig. 16, we show a selection
of the new § Scuti type variables. We show light curves for the new
eclipsing binaries in Fig. 17, which were collectively the third most
common new variables. In Fig. 18, we show the phased and observed
light curves for the ROT class. These stars were the second most
common type we found and many of their observed light-curves
display amplitude modulation due to changes of the stars’ spots with
time. In Figs 19 and 20, we show the light curves for the new long
period and irregular variables. Lastly, we show light curves for new
variables that were given the generic VAR class label in Fig. 21.
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Figure 17. Light curves for examples of the newly discovered eclipsing binary variables. The format is the same as for Fig. 14.

These variables often display a clear signature of variability but the
classifier was not able to assign a more specific classification.

4 CONCLUSION

In this paper, we provide an initial catalogue of variable stars
using the ASAS-SN g-band light curves. The complete list of the
crossmatched variables and the ASAS-SN discoveries along with
their g-band light curves are provided online at the ASAS-SN
Variable Stars Database (https://asas-sn.osu.edu/variables). From an
input catalogue of ~54.8 million stars, we identified ~1.48 million
variable candidates based on information from Gaia EDR3, 2MASS,
and AIIWISE. We then analysed the light curves of these sources and

MNRAS 519, 5271-5287 (2023)

found 378 861 variables, of which 262 834 are known variables and
116027 are new discoveries. We generally recovered more known
variables of each type, with the exception of the ROT, DSCT, and
generic VAR classes. The most common new variables were the
semiregular and ROT. We found an excess of new ~1d period
variables because the higher cadence and longitude spread of the
g-band ASAS-SN configuration gives better control of the diurnal
aliasing and so allows searches at these periods with fewer false
positives. We also find that rotational modulations are stronger in the
g band, leading to many new ROT.

We plan to incorporate these variables, including the lower prob-
ability candidates, into our Citizen Science initiative to help refine
our classifications and improve our machine learning techniques.
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Figure 18. Light curves for examples of the newly discovered highly spotted ROT. The format is the same as for Fig. 14.

The citizen scientists outperformed our present machine learning
classifier in identifying spurious variables (Christy et al. 2022).
Further building the JUNK training set should lead to steady im-
provements in the machine learning classifier. The citizen scientists
also excelled at identifying unusual or extreme variable candidates.
Looking forward to the Gaia DR3 catalogue, many of the variables

in this catalogue will be bright enough to have radial velocity
measurements. Gaia’s on-board radial velocity spectrometer (RVS)
can collect radial velocities for stars brighter than Grys = 14 mag
(Seabroke et al. 2021). With this limiting magnitude, we expect
many of the new discoveries in our catalogue to eventually have RV
measurements from Gaia.
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Figure 19. Light curves for examples of the newly discovered long-period variables. The format is the same as for Fig. 14.
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Figure 20. Light curves for examples of the newly discovered irregular variables. The format is the same as for Fig. 14.
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DATA AVAILABILITY

The variables are publicly catalogued with the AAVSO and the
ASAS-SN light curves can be obtained using the ASAS-SN Sky
Patrol (https://asas-sn.osu.edu). The catalogue of variables and the
associated light curves are available on the ASAS-SN variable stars
database (https://asas-sn.osu.edu/variables). The external photomet-
ric data underlying this article were accessed from sources in the pub-
lic domain: Gaia (https://www.cosmos.esa.int/gaia), 2MASS (https:
//old.ipac.caltech.edu/2mass/overview/access.html), AIWISE (http:
/Iwise2.ipac.caltech.edu/docs/release/allwise/), and GALEX (https:
/larchive.stsci.edu/missions-and-data/galex-1/).
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