
MNRAS 519, 5271–5287 (2023) https://doi.org/10.1093/mnras/stac3801 
Advance Access publication 2022 December 27 

The ASAS-SN catalogue of variable stars X: discovery of 116 000 new 

variable stars using G -band photometry 

C. T. Christy , 1 , 2 ‹ T. Jayasinghe , 2 , 3 , 4 † K. Z. Stanek, 2 , 3 C. S. Kochanek, 2 , 3 T. A. Thompson , 2 , 3 

B. J. Shappee, 5 T. W.-S. Holoien , 6 ‡ J. L. Prieto, 7 Subo Dong 

8 and W. Giles 9 
1 Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721, USA 

2 Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA 

3 Centre for Cosmology and Astroparticle Physics, The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210, USA 

4 Department of Astronomy, University of California Berkeley, Berkeley, CA 94720, USA 

5 Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 

6 The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA 

7 N ́ucleo de Astronom ́ıa de la Facultad de Ingenier ́ıa y Ciencias, Universidad Diego Portales, Av. Ej ́ercito 441, Santiago, Chile 
8 Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Road 5, Hai Dian District, China 
9 ASC Technology Services, Mendenhall Laboratory, 433, 125 Oval Dr S, Columbus, OH 43210, USA 

Accepted 2022 December 19. Received 2022 November 18; in original form 2022 May 9 

A B S T R A C T 

The All-Sky Automated Survey for Supernovae (ASAS-SN) is the first optical survey to monitor the entire sky, currently with 

a cadence of � 24 h down to g � 18.5 mag. ASAS-SN has routinely operated since 2013, collecting ∼ 2 000 to o v er 7 500 

epochs of V - and g -band observations per field to date. This work illustrates the first analysis of ASAS-SN’s newer , deeper , 
and higher cadence g -band data. From an input source list of ∼55 million isolated sources with g < 18 mag, we identified 

1.5 × 10 

6 variable star candidates using a random forest (RF) classifier trained on features derived from Gaia , 2MASS, and 

AllWISE. Using ASAS-SN g -band light curves, and an updated RF classifier augmented with data from Citizen ASAS-SN, 
we classified the candidate variables into eight broad variability types. We present a catalogue of ∼116 000 new variable stars 
with high-classification probabilities, including ∼111 000 periodic variables and ∼5 000 irregular variables. We also recovered 

∼263 000 known variable stars. 

Key words: catalogues – surv e ys – stars: variables: general – binaries: eclipsing – stars: rotation. 

1

V  

t
m
p
r  

t
t
H
t
(  

b
a  

p
e  

a

�

†
‡

k
&

 

i
f  

A
A  

K  

T
T  

D  

2  

S  

G
Z
t  

o

©
P

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/519/4/5271/6961770 by O
hio State U

niversity user on 11 July 2023
 I N T RO D U C T I O N  

ariable stars are an important and dynamic area of modern as-
ronomical research. Variability provides extra observational infor- 

ation (periods, amplitudes, etc.), which can be used to determine 
hysical parameters such as mass, radius, luminosity, and rotation 
ates (e.g. Percy 2007 ). For example, δ Scuti variables allow us
o study the scaling relations between stellar parameters (ef fecti ve 
emperature, surface gravity, density, etc.) and astroseismology (e.g. 
asanzadeh, Safari & Ghasemi 2021 ). Eclipsing binaries allow us 

o accurately measure stellar parameters, such as mass and radius 
e.g. Torres, Andersen & Gim ́enez 2009 ). RR Lyrae variables have
een used to derive the structural parameters of the inner halo 
nd thick disc of the Milky Way (e.g. Mateu & Vi v as 2018 ). The
eriod-luminosity relationship of Cepheid variables allow distance 
stimates on cosmic scales (e.g. Leavitt 1908 ). In short, variable stars
re used to solve astrophysical problems, especially those requiring 
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nowledge of distances, stellar structure, and populations (e.g. Feast 
 Whitelock 2014 ). 
Continuity of co v erage and continuing surv e ys are particularly

mportant for finding rare systems that can become ‘Rosetta stones’ 
or stellar processes. In the modern era, large surv e ys such as the
ll-Sky Automated Survey (ASAS; Pojmanski 2002 ), the All-Sky 
utomated Surv e y for SuperNo vae (ASAS-SN; Shappee et al. 2014 ;
ochanek et al. 2017 ; Jayasinghe et al. 2018 , 2021 ), the Asteroid
errestrial-impact Last Alert System (ATLAS; Heinze et al. 2018 ; 
onry et al. 2018a ), the Catalina Real-T ime T ransient Surv e y (CRTS;
rake et al. 2009 ), EROS (Derue et al. 2002 ), Gaia (Prusti et al.
016 ; Brown et al. 2018 ), MACHO Alcock et al. 2000 , the Northern
ky Variability Survey (NSVS; Wozniak et al. 2004 ), the Optical
ravitational Lensing Experiment (OGLE; Udalski 2004 ), and the 
wicky Transient Facility (ZTF; Bellm 2014 ) have rapidly advanced 

he collection of known variables to o v er ∼2.1 × 10 6 examples based
n the American Association of Variable Star Observers (AAVSO) 
atalogue (Watson, Henden & Price 2006 ). 

ASAS-SN was originally designed to study bright supernovae 
nd other transients such as tidal disruption events, cataclysmic 
ariables, AGN, and stellar flares (Holoien et al. 2016 ). ASAS-SN
ata are also well-suited for the cataloguing, classification, and study 
f variable stars. For the initial V -band catalogue of variables, the
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Figure 1. Confusion matrix for the VAR/CONST classifier trained on 
features from Gaia EDR3, 2MASS, and AllWISE. 

Figure 2. Confusion matrix for the updated classifier from Christy et al. 
( 2022 ). In the updated version used in this work, we included the ‘JUNK’ 
class to identify light curves with spurious variability. 
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Figure 3. Machine learning probability distribution for the full input list of 
∼755 000 variables separated into known and new sources. 

Figure 4. Integral Yes/Maybe/No fraction of test variables in our quality 
control sample as a function of the RFC classification probability. 
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ight curves for ∼60 million stars were classified through machine
earning techniques, resulting in a catalogue of ∼426 000 variables,
f which ∼220 000 were new disco v eries (Jayasinghe et al. 2021 ).
e are now using citizen science through the Citizen ASAS-SN

roject hosted on the Zooniverse 1 (Christy et al. 2021 ) to identify
nd classify variables in the g -band data. The ASAS-SN citizen
cience campaign has also already begun to identify a host of new
ariable stars in our data (Christy et al. 2022 ). 
NRAS 519, 5271–5287 (2023) 
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In Paper I (Jayasinghe et al. 2018 ), we disco v ered ∼66 000
e w v ariables that were flagged during the search for supernovae
nd homogeneously analysed ∼412 000 known variables from the
SX catalogue in Paper II (Jayasinghe et al. 2019b ). In Paper

II (Jayasinghe et al. 2019a ), we characterized the variability of
1.3 million sources in the southern Transiting Exoplanet Surv e y
atellite (TESS; Ricker et al. 2015 ) continuous viewing zone and

dentified ∼11 700 variables, including ∼7 000 new disco v eries. In
 aper IV (P a wlak et al. 2019 ), we hav e also e xplored the synergy
etween ASAS-SN and large-scale spectroscopic surv e ys using
ata from APOGEE (Holtzman et al. 2015 ) with the disco v ery of
he first likely non-interacting binary composed of a black hole
ith a field red giant (Thompson et al. 2019 ). In Paper V, we

dentified ∼220 000 variable sources with V < 17 mag in the southern
emisphere, of which ∼88 300 were new disco v eries (Jayasinghe
t al. 2019c ). In Paper VI, we derived period–luminosity relationships
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Table 1. ML Classification breakdown of the variables from this search. 

RF Classification Description N Known N New N New / N Known 

CWA W Virginis type variables with P > 8 d 153 – –
CWB W Virginis type variables with P < 8 d 73 1 0.01 
DCEP δ Cephei-type classical Cepheid variables 432 2 < 0.01 
DCEPS First o v ertone Cepheid variables 109 3 0.03 
DSCT δ Scuti type variables 848 1 547 1.82 
EA Detached Algol-type binaries 17 447 4 480 0.26 
EB β Lyrae-type binaries 11 820 1 551 0.13 
EW W Ursae Majoris type binaries 42 737 4 833 0.11 
GCAS γ Cassiopeiae variables – – –
HADS High-amplitude δ Scuti type variables 1 725 506 0.29 
L Irregular variables 9 152 4 786 0.52 
M Mira variables 6 287 363 0.06 
R O T Spotted Variables with rotational modulation 14 755 38 414 2.60 
RRAB Fundamental mode RR Lyrae variables 18 455 580 0.03 
RRC First o v ertone RR Lyrae variables 6 518 450 0.07 
RRD Double mode RR Lyrae variables 482 30 0.06 
RVA R V T auri variables (Subtype A) 3 – –
SR Semiregular variables 131 479 57 925 0.44 
YSO Young stellar objects 209 147 0.70 
VAR Variable star of unspecified type 150 409 2.73 

Total 262 834 116 027 0.44 

Figure 5. Number distribution of machine learning classifications after 
probability cuts. 
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or δ Scuti stars (Jayasinghe et al. 2020c ). We studied contact 
inaries in Paper VII (Jayasinghe et al. 2020b ). In Paper VIII, we
dentified 11 new ‘dipper’ stars in the Lupus star-forming region 
Bredall et al. 2020 ). In Paper IX, we used spectroscopic infor-
ation from LAMOST , GALAH, RAVE, and APOGEE to study the 

hysical and chemical properties of these variables (Jayasinghe et al. 
021 ). 
In this paper, we present the first all-sky catalogue of variables 

etected in the newer , deeper , higher cadence g -band ASAS-SN data.
he complete list of the crossmatched variables and the ASAS-SN 

isco v eries along with their g -band light curves are provided online
t the ASAS-SN Variable Stars Database ( https://asas-sn.osu.edu/ 
ariables ) and have been reported to the AAVSO. Section 2 details
he data and methods used to identify and classify the variable star
andidates. In Section 3 we discuss the results, and in Section 4 we
resent our conclusions. 

 OBSERVATI ONS  A N D  M E T H O D S  

.1 Data 

n 2014, ASAS-SN began surveying the entire sky in the V band with
 limiting magnitude of V � 17 mag and a ∼2 − 3 d cadence using
 telescopes on two mounts in Chile and Hawaii (Shappee et al.
014 ; Kochanek et al. 2017 ). Since 2018, ASAS-SN has shifted
o using a g -band filter and expanded to 20 cameras on 5 mounts,
dding new units in South Africa, Texas, and Chile (Jayasinghe 
t al. 2018 ). All of the ASAS-SN telescopes are hosted by the Las
umbres Observatory (LCO; Brown et al. 2013 ). When compared 

o the V -band data, the g -band data have an improved depth ( g �
8.5 mag), cadence ( � 24 h in the g band versus ∼2 – 3 d in the V
and), and reduced diurnal aliasing due to the longitudinal spread 
f the ASAS-SN units. The ASAS-SN V -band observations were 
ade by the ‘Brutus’ (Haleakala, Hawaii) and ‘Cassius’ (CTIO, 
hile) quadruple telescopes between 2013 and 2018. Our g -band 
bservations added data from the ‘Payne’ (Sutherland, South Africa), 
Bohdan’ (CTIO, Chile), and ‘Leavitt’ (McDonald, Texas) quadruple 
elescopes starting in 2018. Each ASAS-SN camera takes 3 images 
ith 90 s exposures for each epoch. The field of view of an ASAS-SN

amera is 4.5 deg 2 , the pixel scale is 8 . ′′ 0, and the FWHM is typically
2 pixels. ASAS-SN saturates at g ∼ 11 − 12 mag, but we attempt

o correct the light curves of saturated sources for the bleed trails
see Kochanek et al. 2017 ). The g -band light curves were extracted
sing image subtraction (Alard & Lupton 1998 ; Alard 2000 ) and
perture photometry on the subtracted images with a 2-pixel radius 
perture. We rejected images taken during poor weather conditions, 
mages that were out of focus with FWHM > 2 pixels, images that had
oor astrometric solutions, and images where the variable source is 
ithin 0.2 ◦ of a detector edge (Jayasinghe et al. 2018 ). We corrected
MNRAS 519, 5271–5287 (2023) 
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Figure 6. Equatorial distribution of the ∼263 000 known variables we reco v ered in equatorial coordinates. 
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he zero point offsets between the different cameras as described in
ayasinghe et al. ( 2018 ). The photometric errors were recalculated
s described in Jayasinghe et al. ( 2019a ). 

.2 Identifying variable star candidates 

e started with the ATLAS All-Sky Stellar Reference Catalogue
efcat2 (Tonry et al. 2018b ) as our input source catalogue. The
efcat2 catalogue includes g , r , i , and z photometry for sources

rom PanSTARRS DR1, the ATLAS Pathfinder photometry project,
he ATLAS reflattened APASS data, SkyMapper DR1, APASS DR9,
ycho-2, and the Yale Bright Star Catalogue (Tonry et al. 2018b ).
e selected ∼54.8 million refcat2 sources with g < 18 mag and
1 > 30 

′′ 
, where r1 is the radius at which the cumulative G flux in

he aperture exceeds the flux of the source being considered and is
NRAS 519, 5271–5287 (2023) 
 measure of the crowding around a star. We use the limit on r1 to
educe the number of heavily blended sources. 

The production of 55 million of light curves is computationally
 xpensiv e, so we used external photometry from Gaia EDR3,
MASS, and AllWISE to identify likely variable sources rather than
imply generating light curves for every source. In particular, the
hotometric uncertainties in Gaia EDR3 encodes information about
he photometric variability of sources (see for e.g. Andrew, Swihart
 Strader 2021 ). At a fixed G magnitude, variable stars in Gaia have

arger photometric uncertainties than constant stars and therefore, we
an use the photometric uncertainties available in Gaia EDR3 as a
eature to identify stellar variability. 

We built a variability classifier based on a random forest (RF)
odel with scikit-learn (Pedregosa et al. 2012 ). The goal was

o first divide the stars into two groups: CONST (constant stars) and

art/stac3801_f6.eps
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Figure 7. Equatorial distribution of the ∼116 000 new variables we reco v ered in equatorial coordinates. 
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AR (potential variables). The variable star candidates will then be 
nalysed in detail, so it is more important not to lose real variables
han to accidentally include non-variables. For the training set, we 
sed the ∼204 000 known variables used to train the RFC variability
lassifier in Christy et al. ( 2022 ) and the variables identified in Citizen
SAS-SN DR1. For the constant sources, we used a set of ∼250 000
on-variable sources identified in Citizen ASAS-SN DR1. We used 
6 features from Gaia EDR3, 2MASS, and AllWISE. These include 
he EDR3 G , BP , RP magnitudes and the associated uncertainties,
he BP − RP colour, the BP − RP excess factor, the signal-to-noise
atios in G and BP , the renormalized unit weight error (RUWE),
he J − K s colour, the absolute W RP magnitude and the absolute 
 JK magnitude. The EDR3 signal-to-noise ratios are essentially the 

atio of the observed flux divided by the error in the flux. As noted
arlier, the EDR3 photometric uncertainties and flux errors encode 
nformation about the photometric variability of stars. We also used 
he absolute, ‘reddening-free’ Wesenheit magnitudes (Madore 1982 ; 
ebzelter et al. 2018 ) 

 RP = M RP − 1 . 3( BP − RP ) , (1) 

nd 

 JK 

= M K s − 0 . 686( J − K s ) (2) 

nd the probabilistic EDR3 distances from Bailer-Jones et al. ( 2021 ).
The parameters of the RF model were optimized using cross- 

alidation to maximize the o v erall F 1 score of the classifier.
he number of decision trees in the forest was initialized to
 estimators = 1200. We also limited the maximum depth 
f the decision trees to max depth = 16 in order to miti-
MNRAS 519, 5271–5287 (2023) 
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Figure 8. Distribution of the mean g -band magnitudes by variable class. 

Figure 9. Number distribution of the variability periods for the known and 
new sources. 
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Figure 10. Distribution of variability amplitude with mean g -band magni- 
tude. This includes both the new and known variables. 
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ate o v er-fitting, set the number of samples needed to split
 node as min samples split = 10 and set the number of
amples at a leaf node as min samples leaf = 5 . To fur-
her minimize o v er-fitting, we also assigned weights to each
lass with class weight = ‘balanced subsample’ . F or an y
iven source, the RF classifier assigns classification probabilities
rob(Const) and Prob(Var) = 1 − Prob(Const). The output classi-
cation of the RF classifier is the class with the highest proba-
ility. We split the training sample, using 90 per cent for training
nd 10 per cent for testing, in order to e v aluate the performance
f the RF classifier. The confusion matrix for the trained RF
odel is shown in Fig. 1 . The greatest confusion (4 per cent)

rises from input variable sources that are subsequently classified
NRAS 519, 5271–5287 (2023) 
s CONST. The o v erall precision, recall and F 1 parameters for
he classifier are 97.3 per cent , 97.1 per cent , and 97.2 per cent , 
espectively. 

We then classified the ∼54.8 million refcat2 sources using
he trained RF classifier, and we identified ∼1.48 million variable
tar candidates ( ∼2 . 7 per cent ). We extracted ASAS-SN g -band
ight curves of these candidates and determined periods using the
STROPY implementation of the generalized Lomb–Scargle (GLS,
cargle 1982 ; Zechmeister & K ̈urster 2009 ) periodogram o v er the
ange 0.025 ≤ P ≤ 1 000 d. To minimize computational costs, we
hose to use only the GLS periodogram. The GLS periodogram can
ometimes fail for more complex light curves, including detached
clipsing binaries, and therefore, such sources may not be selected as
eriodic variables. For the eclipsing binaries, GLS tends to measure
 period that is half of the true period (see Jayasinghe et al. 2018 ,
019b ). To correct for this, we have adapted the automated period
oubling routine from Jayasinghe et al. ( 2019b ) for the eclipsing
inaries, which significantly reduces the number of binaries with
eriods corresponding to half the true period. Future work will
lso use the Box Least Squares (BLS; Kov ́acs, Zucker & Mazeh
002 ) periodogram to impro v e the detection of detached eclipsing 
inaries. 

.3 Classifying variable stars 

e retrained the g -band RF classifier described in Christy et al.
 2022 ) to include a new category for spurious ‘JUNK’ variables.
his classifier uses features derived from both the light curves and
aia EDR3, 2MASS, and AllWISE photometry. The features derived

rom the light curves include log (P), R 41 , R 31 , R 21 , A , IQR, A HL ,
kew, rms, σ , and MAD from Table 2 in (Jayasinghe et al. 2019b ),
nd the updated features δ( t , P ), δ( P , 2 P ) from Christy et al. ( 2022 ).
e also use the BP − RP , J − K s , J − H colours, and the M Ks 

bsolute magnitude derived from photometry. The training set for
he JUNK class was the ∼12 000 ‘JUNK’ variables identified by
itizen scientists in the first data release from Citizen ASAS-SN
Christy et al. 2022 ). These ‘JUNK’ variables include light curves
ominated by systematics (e.g. saturation artifacts from nearby
right stars), and those that have poor signal-to-noise (see Christy

art/stac3801_f8.eps
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Figure 11. The g -band variability amplitude versus log 10 (P / days) relationship for the known variables (Left) and new variables (Right) in our catalogue using 
labels given by the g -band machine learning classifier. 

Figure 12. The Gaia EDR3 M G versus G BP − G RP colour-magnitude diagram for the known variables (Left) and new variables (Right) in our catalogue using 
labels given by the g -band machine learning classifier, including 1 Gyr and 10 Gyr [Fe/H] = 0 MIST isochrones. 
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Figure 13. The M K versus log 10 (P / days) period-luminosity diagram for the known variables (Left) and new variables (Right) in our catalogue using labels 
given by the g -band machine learning classifier. 
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t al. 2022 ). Training sets for variable star classification tend to be
mbalanced due to the different occurrence rates of various variable
ypes. To reduce o v er-fitting, weights were assigned to each class by
sing class weight = ‘balanced subsample’ . We set the
umber of decision trees in the forest as n estimators = 1000 ,
runed the trees at a maximum depth of max depth = 16 ,
et the number of samples needed to split a node as
in samples split = 10 and set the number of samples at a

eaf node as min samples leaf = 5 . The updated RF classifier
lassifies sources into eight broad classes (CEPH, DSCT, ECL,
PV, RRAB, RRc/RRd, R O T, and JUNK) which are subsequently

efined into sub-classes (see Jayasinghe et al. 2019b ). The o v erall
recision, recall and F 1 parameters for the updated RF classi-
er are 91.6 per cent , 94.2 per cent , and 92.8 per cent , respectively.
he confusion matrix for the trained RF model is shown in 
ig. 2 . 
We applied the updated variability classifier to the ∼1.48 million

ariable star candidates. To reduce the number of false positives,
e imposed a probability cut of Prob > 0 . 95 for variables with
eriods close to diurnal and lunar aliases (e.g. 1, 2, 29, and
0 d). Additionally, to eliminate false positives caused by spurious
ariability, we used a probability cut of Prob > 0 . 8 for short period
SCT v ariables. Follo wing this step, we are left with ∼755 000 
ariables. 

We cross-matched the list of ∼755 000 variables with the AAVSO
SX (Watson et al. 2006 ), OGLE III (Poleski et al. 2012 ), and OGLE

V (Kozlowski et al. 2013 ; Soszy ́nski et al. 2014 ; Udalski, Szyma ́nski
 Szyma ́nski 2015 ; Soszy ́nski et al. 2015 , 2016 ; Udalski et al.

018 ; Pietrukowicz et al. 2020 ; Soszy ́nski et al. 2021 ) catalogues
sing a matching radius of 16 arcsec and found 359 265 previously
no wn v ariables. The VSX catalogue contains all the v ariables
reviously identified by many wide field surv e ys, including ASAS-
N (Jayasinghe et al. 2021 ), ATLAS (Heinze et al. 2018 ), WISE
Chen et al. 2018 ), and ZTF (Chen et al. 2020 ). After excluding the
no wn v ariables, there are 395 494 ne w v ariables in our list. 
NRAS 519, 5271–5287 (2023) 
.4 Quality control 

n Fig. 3 , we show the distribution of the highest probability
ssigned to each variable candidate’s classification for the known
ariables and the new candidates. The probability distribution for the
no wn v ariables is more concentrated to wards unity than the ne w
andidates. The differences indicated a need for additional sample 
estrictions. 

We addressed this by building a pri v ate test workflo w on the
ooniverse platform. We randomly selected 2 000 light curves from

he new candidates. The light curves were presented in the same
ashion as in ASAS-SN’s citizen science project Citizen ASAS-
N (see Christy et al. 2022 ) which include the light curves phased
sing the best period, phased using twice the best period, and the
bserved light curve. The user was asked ‘Is this a variable?’ with a
ultiple choice response of Yes, No, and Maybe. After the test set
as fully classified we found that ∼80 per cent received a ‘Yes’

ndicating that variability was clear while ∼5 per cent received
 ‘No’ and ∼15 per cent received a ‘Maybe’. Fig. 4 shows how
heir Yes/Maybe/No classification scaled with the RFC classification
robability. We decided to set the lower limit cutoff at P ≥ 0.89, and
or this limit the relative numbers are 98 per cent Yes, 1 per cent
o, and 1 per cent Maybe. Spot checks of some of the high
robability light curves voted as No and Maybe showed that these
ere likely user classification mistakes. Applying this cut to our full
ariable sample reduced the number of known and new candidates
y 27 per cent and 71 per cent, respectively to leave in ∼263 000
no wn v ariables and ∼116 000 ne w v ariables. 

 DI SCUSSI ON  

he complete catalogue of 378 861 variables has been added to the
SAS-SN Variable Stars Database ( https:// asas-sn.osu.edu/ variab

es ) along with their g -band light-curve data and will be publicly
atalogued in the AAVSO VSX catalogue. The ASAS-SN catalogue
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Figure 14. Phased light curves for examples of the newly disco v ered RR Lyrae variables. The light curves are scaled by their minimum and maximum g- band 
magnitudes. Different coloured points correspond to data from the different ASAS-SN cameras. The different variability types are defined in Table 1 . 
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an be downloaded in its entirety at the ASAS-SN Variable Stars
atabase. 
In Table 1 and Fig. 5 we show the number of sources for each

ariability type from this search. The two most common known vari- 
bles found are Semiregular (SR) and W Ursae Majoris type binaries 
EW). Of the new disco v eries, the most common are Semiregular
SR) and spotted rotational variables (R O T). The number of known
ariable candidates was greater than the number of new candidates 
or all except for the R O T , DSCT , and generic V AR classes. The V AR
lass describes systems that display clear variability, but could not 
e categorized by the machine learning classifier. The large number 
f rotating spotted stars (R O T) among our new disco v eries seems to
e a property of using the g band instead of the V band. The larger
otational variability signal in the g band is likely a combination
f it being a bluer band and that it contains the strong Ca, H,
nd K absorption feature, whose strength varies significantly with 
ctivity. We found no new W Virginis type variables (CWA), RV
auri variables (RVA), or γ Cassiopeiae (GCAS) type variables. 
here were candidates classified as GCAS variables, but they all 
ystematically had low classification probabilities and were dropped 
fter the cuts. The full sky distribution for several common classes
f the known and new variables are shown in Figs 6 and 7 . The
MNRAS 519, 5271–5287 (2023) 
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Figure 15. Light curves for the newly discovered Cepheid variables. The format is the same as for Fig. 14 . 
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ifferences illustrate the large number of new R O T compared to the
no wn ones. The dif ferent sky distributions are simply the dif ferences
etween dwarfs and giants. The R O T variables are predominantly
warfs and so have a relatively isotropic distribution. The SR/L
ariables are giants, so they trace the large-scale structure of the
alaxy. 
Fig. 8 shows the distribution of the most common ne w v ariables in
agnitude. Not surprisingly, most are concentrated tow ards f ainter
agnitudes since the g -band data are deeper than the V band,
ith higher amplitude variables (e.g. RR Lyrae and Mira variables)
eing found at fainter magnitudes than lower amplitude variables
e.g. spotted stars and the generic VAR class). The two classes
hich do not conform to this pattern are the DSCT and SR/L
 ariables. The DSCT v ariables hav e v ery short periods (hours) and
heir identification benefits greatly from the significantly cleaner
indow function for identifying short period variables in the g -
and data. Since the ASAS-SN g -band light curves are the first
v er to pro vide this lev el of time sampling, it is not surprising
hat we would identify large number of DSCT v ariables e ven at
right magnitudes. The identification of larger numbers of inter-
ediate magnitude SR/L variables is likely a consequence of the

teadily increasing total time span of the ASAS-SN light curves.
e probably do not see the same thing for the Miras because their

ariability amplitudes are so large that they are very difficult to 
NRAS 519, 5271–5287 (2023) 

iss. 1  
In Fig. 9 , we show the period distributions for the variables. The
tructures at long periods are fairly similar, and are simply due to
nding dif ferent relati v e numbers of Mira, semire gular, and irre gular
ariables. The lack of the large peak for periods shorter than a day
s due to the low yield of RR Lyrae and EW type binaries among
he ne w v ariables. These v ariables are comparati vely easy to detect
ith relatively large amplitudes and easily sampled periods, so it is
ot surprising that the completeness of existing samples is high. The
omparable numbers at very short periods comes from the many new
SCT variables. The larger numbers near 10 d come from the large
umber of R O T. 
We examined the discrete period spikes close to the expected

liased periods of ∼1 d (diurnal alias), ∼14.8 d (half lunar alias),
nd ∼29.5 d (lunar alias). We spot checked a random sample of
ariables located near each spike and found that those with the lunar
nd half lunar aliased periods showed poorer signs of variability and
ere systematically dimmer than the sources with periods at ∼1 d.
e suspect the dimmer sources are more prone to suffer from a

ow signal to noise causing the GLS periodogram to find the wrong
eriod. To combat this, we imposed a magnitude cutoff of g < 16
or variables with potentially aliased periods which remo v ed the
pikes at ∼14.8 and ∼29.5 d. This cut did not remo v e the discrete
pike near P ∼ 1 d as most of these variables were brighter and
howed clear signs of variability. We suspect that the excess of P ∼
 d period variables comes from relaxing the discrimination against
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Figure 16. Light curves for examples of the newly discovered δ Scuti variables. The format is the same as for Fig. 14 . 
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iurnal aliases because of the better sampling of the g -band data.
itizen ASAS-SN also provided us with many examples of false 
ositives at the diurnal aliases which went into training for the JUNK
lassification. 

Fig. 10 shows the distribution of variability amplitude as a function 
f the mean g -band magnitude. The amplitude A 2.5 − 97.5 is the 
.5 per cent to the 97.5 per cent percentile range of the data. For bright
tars, we identify variables down to amplitudes of order ∼0.05 mag, 
nd then require progressively higher amplitudes beyond g ∼ 16 mag. 
e show the period-amplitude distribution for the known and new 

ources in Fig. 11 . We find relatively few bright, high-amplitude 
ulsators, which is another indicator that searches for such variables 
re relatively complete. 

Fig. 12 shows the Gaia EDR3 M G and G BP − G RP colour- 
agnitude diagram for the known and new sources. We also o v erlay
 Gyr and 10 Gyr MIST isochrones for [Fe/H] = 0 to point out various
volutionary stages (Paxton et al. 2018 ). These tracks illustrate 
 lack of instability strip variables among the new variables and 
he abundance of spotted giants, spotted main-sequence stars, and 
emiregular AGB stars. We found that a higher percentage of the 
ew R O T were located on the main sequence compared to the known
otators. Fig. 13 shows their distribution in M K and log 10 (P / days).
he two populations of semire gular/irre gular variables are clearly 
een for the ne w v ariables and have been e xtensiv ely observ ed by the
GLE surv e y (see Soszy ́nski et al. 2007 ). As outlined in Paper VI,
he period-luminosity diagram displays two distinct populations of 
SCT stars: the fundamental mode pulsators and the more luminous 
 v ertone pulsators. We found that our new g -band observations were
ble to more efficiently identify o v ertone DSCTs. We also found
hat with our larger sample of R O T, certain regions of the period-
uminosity diagram were preferentially occupied. A more thorough 
nalysis of the rotators will be left for a future work. The behaviour of
he different broad variable types and where they occupy agrees with
he distribution found in the ASAS-SN V -band catalogue (Jayasinghe 
t al. 2019b ). 

In Fig. 14 , we show a selection of light curves for new RR Lyrae
ariables. In Fig. 15 , we show light curves for the new Cepheid
 ariables. This v ariable class made up the smallest fraction of the
ew disco v eries, with only six new sources. Our observations did
ot yield any new R V T auri variables (subtype A) or W Virginis
ariables with periods greater than 8 d. In Fig. 16 , we show a selection
f the new δ Scuti type variables. We show light curves for the new
clipsing binaries in Fig. 17 , which were collectively the third most
ommon new variables. In Fig. 18 , we show the phased and observed
ight curves for the R O T class. These stars were the second most
ommon type we found and many of their observed light-curves 
isplay amplitude modulation due to changes of the stars’ spots with
ime. In Figs 19 and 20 , we show the light curves for the new long
eriod and irregular variables. Lastly, we show light curves for new
ariables that were given the generic VAR class label in Fig. 21 .
MNRAS 519, 5271–5287 (2023) 
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Figure 17. Light curves for examples of the newly discovered eclipsing binary variables. The format is the same as for Fig. 14 . 
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hese variables often display a clear signature of variability but the
lassifier was not able to assign a more specific classification. 

 C O N C L U S I O N  

n this paper, we provide an initial catalogue of variable stars
sing the ASAS-SN g -band light curves. The complete list of the
rossmatched variables and the ASAS-SN disco v eries along with
heir g -band light curves are provided online at the ASAS-SN
ariable Stars Database ( https:// asas-sn.osu.edu/ variables ). From an

nput catalogue of ∼54.8 million stars, we identified ∼1.48 million
ariable candidates based on information from Gaia EDR3, 2MASS,
nd AllWISE. We then analysed the light curves of these sources and
NRAS 519, 5271–5287 (2023) 
ound 378 861 variables, of which 262 834 are known variables and
16 027 are new disco v eries. We generally reco v ered more known
ariables of each type, with the exception of the R O T , DSCT , and
eneric VAR classes. The most common new variables were the
emiregular and R O T. We found an excess of new ∼1 d period
ariables because the higher cadence and longitude spread of the
 -band ASAS-SN configuration gives better control of the diurnal
liasing and so allows searches at these periods with fewer false
ositives. We also find that rotational modulations are stronger in the
 band, leading to many new R O T. 
We plan to incorporate these variables, including the lower prob-

bility candidates, into our Citizen Science initiative to help refine
ur classifications and impro v e our machine learning techniques.
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Figure 18. Light curves for examples of the newly discovered highly spotted R O T. The format is the same as for Fig. 14 . 
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he citizen scientists outperformed our present machine learning 
lassifier in identifying spurious variables (Christy et al. 2022 ). 
urther building the JUNK training set should lead to steady im-
ro v ements in the machine learning classifier. The citizen scientists
lso excelled at identifying unusual or extreme variable candidates. 
ooking forward to the Gaia DR3 catalogue, many of the variables 
n this catalogue will be bright enough to have radial velocity
easurements. Gaia ’s on-board radial velocity spectrometer (RVS) 

an collect radial velocities for stars brighter than G RVS = 14 mag
Seabroke et al. 2021 ). With this limiting magnitude, we expect
any of the new discoveries in our catalogue to eventually have RV
easurements from Gaia . 
MNRAS 519, 5271–5287 (2023) 
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Figure 19. Light curves for examples of the newly discovered long-period variables. The format is the same as for Fig. 14 . 
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Figure 20. Light curves for examples of the newly discovered irregular variables. The format is the same as for Fig. 14 . 
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Figure 21. Light curves for examples of the newly discovered generic VAR class variables. The format is the same as for Fig. 14 . 
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