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Abstract. Multi-agent trajectory forecasting has recently attracted a
lot of attention due to its widespread applications including autonomous
driving. Most previous methods use RNNs or Transformers to model
agent dynamics in the temporal dimension and social pooling or GNNs
to model interactions with other agents; these approaches usually fail to
learn the underlying continuous temporal dynamics and agent interac-
tions explicitly. To address these problems, we propose Social ODE which
explicitly models temporal agent dynamics and agent interactions. Our
approach leverages Neural ODEs to model continuous temporal dynam-
ics, and incorporates distance, interaction intensity, and aggressiveness
estimation into agent interaction modeling in latent space. We show in
extensive experiments that our Social ODE approach compares favor-
ably with state-of-the-art, and more importantly, can successfully avoid
sudden obstacles and effectively control the motion of the agent, while
previous methods often fail in such cases.

Keywords: Multi-agent modeling - Ordinary differential equations -
Social ODEs

1 Introduction

The goal of multi-agent trajectory forecasting is to estimate future agent trajec-
tories given historical trajectories of multiple agents. It has drawn much attention
because of its widespread applications such as autonomous driving, urban data
mining, path planning and traffic flow forecasting.

Multi-agent trajectory forecasting is a challenging problem because agent
interactions (relational dimension) and underlying agent temporal dynamics
(temporal dimension) jointly affect each agent in a nonlinear and complex way.
By modeling the relational and temporal dimensions, previous deep learning
approaches have shown to be promising. They often use graphs, social pool-
ing, or spatial Transformers to model the relational dimension, while they apply
RNNs or temporal Transformers to encode the temporal dimension. However,
these methods usually fail to learn the underlying continuous temporal dynam-
ics and the agent interactions with other agents explicitly. For example, spatial
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Transformers estimate the attention between any two agents, but the atten-
tion can not explain how one agent affects the other and does not incorporate
agent information explicitly, such as distance with other agents. Moreover, RNNs
recurrently update the hidden state discretely as shown in Fig. 1a, which is a lim-
itation, because the agent trajectory is continuous as shown in Fig. 1b. These
modeling limitations often lead to inaccurate and unsatisfactory results, such as
reduced forecasting accuracy and collisions among agents.
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(a) Discrete State Transition (b) Continuous State Transition

Fig. 1. Differences between discrete state transitions and continuous state transitions

To overcome the above limitations by previous methodologies, we propose
Social ODE to explicitly model nonlinear agent interactions and agent temporal
dynamics. In our Social ODE framework, the next position of each agent is
determined based on the previous position and velocity. The agent’s position
and velocity are affected by other agents. For example, when we drive a vehicle
(agent), if another vehicle approaches dangerously close, we tend to decrease
or increase our vehicle’s velocity and potentially change direction. Additionally,
the distance between vehicles and the driver’s driving habits determine how the
vehicle’s velocity changes. To incorporate into our Social ODE these real-world
agent behaviors, we encode in latent space the real-world trajectories and we
model them based on an Ordinary Differential Equation as follows:

dh(t)

T = (0.0 b6 = 1)+ [ ght)ar (1)

where h(t) is the state of the agent’s latent trajectory at time ¢. Therefore, g(h, t)
models the current state and the nonlinear interactions with other agents.

The proposed Social ODE is an encoder-decoder architecture based on VAEs,
where the encoder projects an agent’s historical trajectories to latent space and
the decoder recovers the historical trajectories and forecasts future agent tra-
jectories using the latent space representation. To model and learn the agent’s
continuous latent trajectory from the historical trajectories, we use a Neural
ODE that learns the underlying temporal dynamics of the agent’s continuous
trajectory. The agent’s temporal dynamics are determined by the current state
and the agent’s interactions with other agents. To model the agent interactions
explicitly (relational dimension), we decouple them into three components: dis-
tance, interaction intensity, and aggressiveness information. All three are multi-
plied to model their impact on the temporal dynamics of each agent. Because
our Social ODE models the relational and temporal dimensions explicitly, an
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agent can also avoid collisions with other agents. In addition, using repellers and
attractors, we can modify an agent’s ODE to model more effectively an agent’s
trajectory, behavior (e.g., courageous) and goals.

The main contributions of our paper are the following:

Model an Agent’s Trajectory Relational and Temporal Dimensions
Explicitly: Our proposed Social ODE framework models the temporal dimen-
sion using a Neural ODE to learn an agent’s trajectory continuous temporal
dynamics in latent space, which are determined by the agent’s current state and
the interactions with other agents. We model agent interactions using the fol-
lowing three variables: distance with other agents, agent interaction intensity,
and agent aggressiveness.

Effective Agent Trajectory Control Without Retraining: We demon-
strate how to modify the ODE to effectively control the trajectory of an agent
using attractors and repellers. This allows the modification of an agent’s trajec-
tory without retraining. Using our approach we can model dynamic environments
where new obstacles and attractors can appear dynamically.

Extensive Experimental Study: We conduct extensive experiments on sev-
eral datasets by comparing our Social ODE methodology with other state-of-
the-art approaches. We demonstrate that our Social ODE achieves improved
accuracy on complex trajectory forecasting. We demonstrate its effectiveness in
reducing agent collision rates in dynamic environments without retraining.

2 Related Work

Neural Ordinary Differential Equations. In [3], Neural ODE, a new class
of deep learning model is proposed, which is a continuous-time neural network
by solving ODEs. Following their work in modeling continuous-time sequences,
Latent ODE [23] is proposed to model the irregularly-sampled time series.
ODE2VAE [29] models high-dimensional sequences by a latent second order
ODE. Dupont et al. propose Augmented neural ODE [5] to make the model
more expressive by preserving the topology of the input space. To model non-
continuous observations using Neural ODEs, Brouwer et al. propose GRU-ODE-
Bayes [4]. Moreover, [6,13,14,20,22,28] analyze and adapt Neural ODEs in other
applications such as density estimation. [19,25,27] apply Neural ODEs in trajec-
tory modeling or planning. Grunbacher et al. analyze the verification of Neural
ODEs [9,10]. Park et al. generate continuous-time video by Neural ODE [21].

Inspired by these approaches, we propose Social ODE based on Latent ODE
to model the realistic trajectory and underlying temporal dynamics of the latent
trajectory. Similar to Latent ODE, our model also implements trajectory inter-
polation and extrapolation. The difference is that our model encodes the agent
interactions in the ordinary differential equation.

Multi-agent Trajectory Forecasting. Social LSTM [1] is proposed by Alahi
et al., which applies social pooling in the hidden state of LSTM. Following



220 S. Wen et al.

Social LSTM, Gupta et al. propose Social GAN [12], which uses global social
pooling and GAN to generate a trajectory consistent with the input. Graph-
VRNN [26] proposed by Sun et al. adopt graph network and RNN to model
the relational dimension. Kipf et al. represent underlying agent interaction in
latent space by graph [15]. Based on their work, Graber develop dynamic neural
relational inferece [8], instead of static relation in [15]. Trajectron++ [24] is a
graph-structured model with LSTM and accounts for environmental informa-
tion. EvolveGraph [18] forecasts the trajectory by dynamic relational reasoning
by latent interaction graph. AgentFormer [30] proposes a novel Transformer to
joint model social and temporal dimensions. Gu et al. propose Dense TNT [11]
based on VectorNet [7] to encode all agent to vectors and graph.

Different from previous methods, our proposed Social ODE learns the under-
lying agent trajectory temporal dynamics in latent space using an ODE. The
advantage of our approach is that it explicitly models the continuous-time agent
trajectory which offers explainability. Besides, we model the relational dimen-
sion by incorporating agent distance, interaction intensity, and aggressiveness
explicitly in the ODE.

3 Methodology

In this section, we first define the problem of trajectory forecasting. Then we
present an overview of our proposed Social ODE and provide details of the
formulation of the associated encoder, decoder, and loss function. Finally, we
present agent trajectory control without retraining using Social ODEs.

3.1 Trajectory Forecasting

Multi-agent trajectory forecasting aims to estimate the future trajectories of
multiple agents X, y1.75, +7, = {X7p, 41, X7, 195 xlTh{rTf?i = 1,_ ..., N} simulta-
neously giving their historical trajectories Xo.1y, = {x§, %1, ..., Xt =1,.., N},
where N denotes the number of agents. T, and T denote the historical and
future trajectory temporal lengths, respectively. X; denotes the state of all agents
at time ¢ and x! denotes the state of agent i at time ¢, including its position and
velocity.

3.2 Social ODE: Overview

Similar to Latent ODEs, which is a continuous-time, latent-variable method to
model time series, our Social ODE is also an Encoder-Decoder architecture. As
shown in Fig. 2, it concludes two components:

Encoder. It encodes the historical trajectory for each agent Xé:Th into latent
space. The encoder generates the initial state in latent space, which is set as the
initial value for the ordinary differential equation. Different from a Latent ODE,
we use a Spatio-Temporal Transformer as the encoder for improved learning.
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Fig. 2. Overview of the proposed Social ODE, which is composed of an encoder and a
decoder. The encoder transfers the historical trajectory to latent space. The decoder
first uses the ODE solver to generate a latent trajectory and then recover it back to a
realistic trajectory. The output includes historical trajectory (interpolation) and future
trajectory (extrapolation).

Decoder. It generates latent trajectories and decodes the latent vector back
to the real-world state, i.e., the agent’s trajectory position and velocity. After
sampling the latent vector from the encoder, we design an ODE to model the
agent’s interactions in the decoder. The agent’s interactions are modeled by
incorporating distance, interaction intensity, and aggressiveness explicitly in the
ODE, while we model the temporal dimension based on the current latent state.
Using the initial state in latent space, we solve the ODE to generate latent
trajectories. At the end of our approach, the latent trajectory is converted to a
real-world trajectory.
Using our approach, an agent’s trajectory i, is modeled as:

Hhpis Opi = genC(zé:TmI%:Th)v J# (2)
héNN(Uhiaahi)» (3)

0.hi, ..., . = ODESolve(hg, go, to:z), 417 ) (4)
cach &} ~ p(&4/hy), ()

where Eq. (2) is the encoder and Egs. (3) to (5) model the decoder. ODESolver

is the numerical ODE solver given equation % = gp with initial value h(i).

3.3 Encoder: Spatio-Temporal Transformer

To encode the historical trajectory for each agent to latent vectors, we use a
Spatio-Temporal Transformer for each agent and the architecture is shown in
Fig. 3.

Spatial Transformer. It is used to encode the relational dimension. Because
the state of agent ¢ at time ¢ is only affected by states of other agents before time
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t, to reduce computation, we only take into account the states of other agents
in time t — 1 and ¢, which is shown in Fig. 3.

Temporal Transformer. After encoding the relational dimension in each time
step, the new state sequence for each agent is generated. We use a Temporal
Transformer to encode the generated state sequence for each agent and pool
them to generate a latent vector.

latent vector

i
| | /
- : 3 __, Spatial L, —, Temporal _ ] Temporal L,
N i Transformer Transformer Pooling \
i )
. i

X2 ./r ! —o—0—0—o—0—
; : ottt t,
X3 \_sliding window / feature aggressiveness
vector

Time

to 4 b t3 ty

Fig. 3. The architecture of Spatio-Temporal Transformer. The figure shows that we
apply Spatio-Temporal Transformer for trajectory X'. When the red point is modeled,
we improve the efficiency of the algorithm by using points only within the sliding
window, which are states of other agents in the previous and current time steps.

3.4 Decoder

We use the decoder to recover the real-world trajectory from the initial value hg.
There are two steps in the decoder: solving an ODE and transferring the latent
state to the real-world state.

In the Latent ODE model [3], after estimating the posterior p(hs,|2o.¢), the
initial value hy, is sampled. These initial values are used to solve the corre-
sponding ODE. However, the relational dimension is ignored in the standard
Latent ODE formulation. To model agent interactions and improve agent pre-
diction trajectory, we encode state sequences of each agent in the latent space
and represent agent interaction in latent space using three variables: distance,
interaction intensity and aggressiveness. We define the equation as:

Pl) — gothatt) s (0) )
1 .
= ;mk(ld)arf—fe(hi(t))v (7)

where h;(t) denotes the latent vector of agent ¢ in time ¢ and g is the derivative
of the latent vector. Besides, ||h; — h;|| denotes distance information between
agent ¢ and agent j, while k(7, j) is the interaction intensity between two agents.
a; denotes the aggressiveness of agent i.
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The agent interaction is modeled based on the following three components:

Interaction Intensity. It models how agent j affects the dynamics of agent 4,
which is denoted by k(4, j). We concatenate the latent vectors of two agents (h}

and h{ ) and the derivatives of two agents in the previous time step (dd—}? and

%), and apply a fully connected neural network to estimate k(i, 7).

Distance. It is obvious that the distance between two agents has a great influ-
ence on each other and the shorter distance between two agents means the
greater influence. We represent this relationship explicitly in latent space, which
is ﬁ, where 7 denotes the agent that is modeled and j denotes other agents.

In latent space, the L2 distant ||h; — ;|| of two agent contains realistic distance

information. When agent j come to ¢, the dynamics of agent ¢ are affected, so

dh (t)
dt

becomes larger.

Aggressiveness. In real-world situations, some agents tend to refuse to avoid
other agents and others do not. Therefore, besides the distant information, the
aggressiveness of an agent should also be incorporated. The aggressiveness can
also be learned from the historical trajectory of the agent. As shown in Fig. 3
we use other fully connected networks before generating a latent vector in the
encoder to estimate the aggressiveness vector.

In the equation, interaction intensity, distance and aggressiveness are
element-wise multiplied together as an agent interaction term. Besides agent
interaction, the previous state is also essential to learning temporal dynamics.
Similar to standard latent ODE, we use fully connected networks in the temporal
modeling, which is denoted by fg(h;(t)) in Eq. (7). We add the agent interaction
and feature of the current state together as the derivative of latent vector h(t).
By an ODE Solver, hy,, hy,, .., ht, are estimated. Then we use fully connected
neural networks to decode latent vectors to realistic states x4, , Ty,, .., ¥+, for each
agent.

3.5 Loss Function

Because our method is based on the VAE model, we use the negative evidence
lower bound (ELBO) in our loss function:

lpo(hey)),  (8)

where ¢¢(ht,| X) is the posterior distribution and pg(Xo.7, |he,) denotes the inter-
polation period that recovers the historical trajectory.

Because ELBO only takes into account historical trajectories, the MSE loss
is used to supervise prediction accuracy, which is the extrapolation period:

Lipse = Z(gz - yi)Q' (9)

g

Leipo = _EQ¢(ht0|X0:Th)[10gp9(X02Th |hto)} + KL(q¢(hto |X03Th)

In training, the whole trajectory Xo.1, 4+, is input to the Social ODE. The
output trajectory of input Xo.7, Ty and input Xg.7, should be the same because
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they recover the same trajectory. Therefore, their latent vectors have the same
distribution. Then we use another KL divergence as a loss function:

Lt = KL(qg(2t, | Xom, )96 (2t [ Xo:m, +1)))- (10)
Consequently, the overall loss function is
L= Lelbo + Lmse + Lk:l (11)

3.6 Agent Controlling with Social ODE

Apart from forecasting future trajectories, our proposed Social ODE can also
control a given agent’s trajectory, by adding a term to the ODE based on repellers
and attractors without the need for retraining. This control approach enables
us to model real-world situations where obstacles (other agents) and agent goals
can change in real-time and require the modification of the agent’s trajectory.

Attractor and Repeller. Because our proposed Social ODE explicitly models
the relational dimension, it is not hard to control an agent by modifying the
relational dimension dynamically due to real-time changes in the other agents,
obstacles and goals. We do this by adding terms modeling these changes as
attractors and repellers. If we want to set one attractor (e.g., a location where
the agent wants to reach) the ODE Eq. (7) can be modified as follows:

dh Z H _ h H k(i, j)ai + fo(hi(t),t) — A(hi(t) — hg), (12)

where hg denotes the latent vector of the attractor and A is a positive coefficient.

We show below that this modeling of an attractor dynamically reduces the
distance between the agent and the goal (attractor). The distance information
in latent space between the agent and the attractor is modeled as (h;(t) — hgy)?.
We can prove that this distance keeps getting smaller over time by examining

its time derivative as follows:

d(ha(t) = hg)® _ ) dhi(t)
G = 20h(t) —hg) x = (13)
= 2(ha(t §||h —h|| kG, )ai + fo(hi(t), )] = 22(hi(t) = hy)*.

Since A is positive then the term is negative: —2A(h;(t) —hy)? < 0. Therefore, if

A is large enough, W < 0, which means the distance between the agent
and the attractor decreases as time goes by.

Similarly, to add many attractors and repellers the ODE Eq. (12) is further
modiﬁed as follows:

e Zuﬁhn (6t Joh00+ SMal) =H5) (19

J#i

+ Z — R,




Social ODE 225

where (h"™), denotes the latent vector of a repeller and \,, is a positive coeffi-
cient.

Adjusting Agent Interactions. To adjust the strength of agent interactions,
we further modify the first two terms in Eq. (14) by introducing two new param-
eters 1 and (2 to adjust the dynamics of agent interactions as shown in the
following equation. For example, if 3; is small and (3, is large, the agent will be
more aggressive and take less into account the other close-by agents.

&Z —h|| k(i j)a; + Ba fo(ha(t)). (15)
J#Z

Agent Return to Desired Trajectory. We modeled obstacle avoidance (dif-
ferent from agent interactions) as repellers. However, the influence of repellers
can make the agent deviate from the desired trajectory. In order to ensure the
agent returns to the desired trajectory after obstacle avoidance, we add one more
term to Eq. (14) as follows:

—Aminj (hi(t) — h), (16)

where h; (t) is the original trajectory prior to obstacle avoidance and the term
min; (h;(t) — h) is an attractor and ensures that the agent always returns to the
closest point of the original trajectory.

After adding bother terms to Eq. (14) the final equation is:

Z _h ki d)as + folh +Z —hY)  (17)

J#Z

+ Z — hi™) — Aming, (h;(t) — h),

4 Experiments

In this section, we present experimental results to evaluate the performance of
our novel Social ODE framework. In Sects. 4.1 and 4.2, we present the training
and test datasets and implementation details, respectively. Then we show com-
parison results with the state-of-the-art methods in Sect. 4.3. We present the
agent control without the need for retraining in Sect. 4.4. Finally in Sect. 4.5,
we conduct the ablation study.

4.1 Datasets

Our model is evaluated on the inD [2], rounD [17], and highD [16] traffic datasets.
Those are datasets of naturalistic road user trajectories collected by a drone. For
each dataset, 80% of the data are used for training and validation, and 20% are
used for testing. We sample every 8s as one instance and delete the case where
some agents leave the area in the middle. In each trajectory, we sample one point
every 0.4s, so there are 20 points for agents which are present all the time. The
trajectories in the first 4 s are used as input and those in the next 4 s are ground
truth.
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4.2 Implementation and Training Details

We normalize all the coordinates to range from 0 to 1. In the encoder module,
the dimension of key, query and value is set to 128 and the number of heads is
set to 8. Because there is no sequence information in the Spacial Transformer,
positional encoding is only used in the Temporal Transformer. In the decoder
module, the dimension of the latent vector is also 128. To model interaction
intensity, a 512 x 128 fully connected network is used. We also use a 128 x 128
fully connected network to replace the last layer of the encoder to generate the
aggressiveness vector. In the decoder process, there are two parts: interpolation
and extrapolatlon While inputting a historical trajectory Xo.7,, our model will
generate Xo. .1, +T; - The process of generating Xo. .1, 1s the interpolation, which is

recovering the input like a VAE model, and that of XTh+1:Tf is the extrapolation,
which estimates the prediction.

In the training phase, the Adam optimizer is used and the learning rate is set
initially to 10™%, which is then decayed by a factor of 0.5 when the loss comes
to a plateau. We train the model on A100 GPUs using PyTorch.

4.3 Comparison Results

Evaluation Metric. We evaluated our model by ADE (Average Displacement
Error), which is defined as

1 .
ADE = =3 |lai - ], (18)

where z! is the ground truth and 2! is the prediction in extrapolation. ADE
is used to evaluate the mean square error between the ground truth and the
prediction.

Baseline. We compare our Social ODE with several state-of-the-art methods:
(1) Social LSTM [1]: Social pooling of hidden states in LSTM is used to model
agent interactions. (2) Social GAN [12]: GAN is combined with LSTM encoder-
decoder to judge whether the generated trajectory is similar to the realistic
generated trajectory. (3) Dense TNT [11]: The graph is used to extract the rela-
tionship among different agents and each node in the graph is an agent’s trajec-
tory. (4) AgentFormer [30]: It is a Socio-Temporal Transformer encoder-decoder
model to jointly extract the time dimension and social dimension. The codes of
all the above methods have been published, so we directly train and evaluate
these models on inD, rounD and highD traffic datasets.

As shown in Table 1, Social ODE achieves better performance than Social
LSTM, Social GAN, and DenseTNT. We classify the trajectory into the ‘curve’
and ‘straight’ classes. From Table 1, if forecasting is for a long period of time,
Social ODE always performs best in curved trajectories, which means Social
ODE can deal better with complicated trajectories.

New Agents and Obstacles Dynamically Appearing. Most previous meth-
ods assume that the number of agents/obstacles does not change over time.
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Table 1. Evaluation on inD, rounD and highD traffic datasets. The bold means best
performance.

Method Length | inD highD rounD

Straight | Curve | Straight | Curve | Straight | Curve
Social LSTM | 2s 0.2474 |0.8537 |0.2846 | 0.8347 |0.2367 | 0.8986
Social GAN 0.2537 |0.8236 |0.2564 |0.8977 |0.2679 |0.8876
DenseTNT 0.2367 |0.8046 | 0.2465 |0.8546 |0.2268 |0.8464
AgentFomer 0.2346 |0.8124 |0.2368 |0.8263 | 0.2140 |0.8259
Social ODE 0.2408 |0.8147 |0.2406 |0.8135 0.2254 |0.8357
Social LSTM |4s 0.7973 |3.1463 |0.9525 |3.5364 |0.7268 |2.6473
Social GAN 0.7861 |3.1583 |0.8367 |3.4637 |0.7483 |2.6940
DenseTNT 0.7794 |3.1578 |0.7431 |3.1778 | 0.6543 |2.4764
AgentFomer 0.7604 |3.1483 |0.6814 | 3.1527 |0.5924 | 2.4748
Social ODE 0.7728 |3.1417/0.6873 |3.1509 0.6005 |2.4738
Social LSTM | 8s 2.7536 | 8.3456 |2.4570 |9.3365 |2.5583 |9.1346
Social GAN 2.6573 |8.2478 |2.3279 | 9.6437 |2.9546 |8.9446
DenseTNT 2.6644 |8.1475 |2.1345 |9.3464 |2.7854 |8.4677
AgentFomer 2.3474 | 8.1457 |2.1167 |9.3258 |2.5337 | 8.3464
Social ODE 2.6064 |8.1208|2.1384 |9.3203|2.6447 | 8.3384

However, in reality, some agents/obstacles may enter or leave during the course
of a trajectory, which has a social influence on other agents. For example, in the
autonomous driving scenario, the appearance of a pedestrian(s) close to or in
front of the vehicle/agent can happen suddenly and the agent needs to change its
trajectory. We conduct a set of experiments to show how the agent’s trajectory
is modified when a sudden obstacle appears. To model the sudden obstacle, we
place a static and a moving obstacle in the predicted agent trajectory from the
test dataset. Using our Social ODE approach we observe that the agent modifies
the original trajectory to avoid the obstacle collision. In this experiment we test
how one agent adapts its trajectory to sudden appearing obstacles, while the
trajectories of the other agents are not modified and are kept constant. In our
experiments we consider that a collision occurs when the distance between the
agent and the obstacle is less than 0.5 m. Table 2 shows the collision rate of all
methods. Social ODE achieves the lowest collision rate while avoiding the static
or moving agent. Figure 4 shows some examples of the agent avoiding an obsta-
cle using our approach. It demonstrates that our model can correctly extract
the social relationship among agents and make agents realize that they should
avoid other agents or obstacles although there are no similar cases in the training
dataset.
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4.4 Agent Controlling with Social ODE

In Sect. 3.6 we showed how our proposed Social ODE can control the agent’s
trajectory through Eq. (17). We conduct experiments to show how the use of
the attractor (target) and the repeller (obstacles) affect the agent. All the exper-
iments in this section are conducted during testing, without the need for retrain-
ing.

Fig. 4. Sudden obstacle visualization. In each image, the green trajectory is the ground
truth and the white one is the predicted result. The black point is the sudden obstacle.
The obstacle is placed in the ground truth trajectory. The white trajectory demon-
strates that the agent successfully avoids the obstacle.

Table 2. Collision rate of different methods when introducing a sudden obstacle in the
trajectory. Numbers in bold show the best performance.

Method Social LSTM | Social GAN | DenseTNT | AgentFormer | Social ODE
Static obstacle |28.6% 29.6% 22.8% 28.4% 8.8%
Moving obstacle | 32.4% 35.2% 32.6% 33.0% 12.8%

Target. In the test dataset, one point near the last trajectory point is set as the
target. We represent the target in latent space using the encoder and use Eq.
(17) to model the agent. A is set from 0 to 10 and the reaching rate is computed
within 8s from the beginning of the trajectory. When A = 0 then there is no
target modeling within our Social ODE model. In this case reaching the target
is defined when the distance between the agent and the target is less than 0.5 m.
All other methods except dense TNT cannot use the target to control the agent.
DenseTNT directly plans the path between the start point and the target and
therefore can’t be used for dynamic target or obstacle introduction like our
approach. We therefore present results of target reaching using our method in
Table 3, when X changes. The results show that the larger the value of A results
in stronger attraction by the target.

Obstacle Avoidance and Return to the Agent Trajectory. In 4.3, showed
how in our approach an agent can avoid an obstacle. However, after the target
avoids a sudden obstacle, it should come back to the original trajectory assuming
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Table 3. Reaching rate with different values of A, if we dynamically set the target
to be the last trajectory point, during agent movement. Bold numbers mean the best
performance.

A 0 2 4 6 8 10
Reaching rate | 4.8% | 8.6% | 25.4% | 43.6% | 71.4% | 87.8%

the target is not changed. We do some experiments to verify whether Eq. (17) can
control an agent to avoid a sudden obstacle and return to the original trajectory.
Similar to 4.4, we place a static obstacle in the predicted trajectory. Figure5
shows that the agent can bypass the obstacle, similarly to how drivers react when
encountering while driving a sudden obstacle. This is done without retraining
and there is no similar case in the training dataset.

Fig.5. Avoid the obstacle and return to the agent Trajectory. In each image, the
green trajectory is the ground truth and the white is the predicted result. The black
point is the sudden obstacle. The agent avoids the obstacle and returns to the original
trajectory.

Obstacles and Targets. We also conducted experiments where we introduced
obstacles and targets dynamically during an agent’s trajectory and we showed
modifications to the agent trajectory and the successful reaching of the target.
Figure 6 demonstrates that the agent can avoid the obstacle and reach the target.

Adjusting the Relational Dimension. In Eq. (15), the 8; and 5 are param-
eters that can modify the effect of the relational dimension. Larger 3; means the
agent’s trajectory tends to be affected more by other agents and larger f> means
the agent’s trajectory tends to keep its previous moving pattern. The results in
Fig. 6b show the effect of those parameters on agent trajectories.
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(a) Avoid obstacle and reach target (b) Adjust the relational dimension

Fig. 6. (a) Avoid the obstacle and reach the target. The white trajectory is the output
result of social ODE. The green one is the ground truth. The cyan point is the target
and the black point is the obstacle. (b) Adjusting the relational dimension. White
trajectory: 51 = 1. Pink trajectory: 81 = 2.

4.5 Ablation Study

In this section, we verify the design of the proposed Social ODE model. We do
this by replacing components with similar components as follows.

Latent ODE Encoder + Our Decoder. We replace the decoder of the Latent
ODE with our decoder, which enables the Latent ODE to model the relational
dimension.

Social LSTM + Our Decoder. We use social LSTM to encode the relational
dimension and temporal dimension for each agent to the latent vector. Then our
decoder recovers the latent trajectory back to a realistic trajectory.

Our Encoder + Neural ODE. Our Spatio-temporal Transformer is used as
the encoder, which generates the latent vector. The neural ODE decodes the
latent vector to position and velocity.

Our Encoder + Social Pooling ODE. Our Spatio-temporal Transformer is
used as the encoder to generate a latent vector. Instead of modeling the relational
dimension by distance, interaction dynamics and aggressiveness, we use the social
pooling from the Social LSTM model for latent vector in each time step.

The results are shown in Table4. From the table, we can see that all the
changes in our components result in a performance decrease, which means the
design of our Social ODE is effective.
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Table 4. Ablation Study: evaluation of changing some components on inD, rounD and
highD traffic datasets. The forecasting length is 4s. Bold depicts the best performance.

Method inD highD rounD

Straight | Curve | Straight | Curve | Straight | Curve
Latent ODE + Our decoder 0.7732 |3.2147 |0.7886 |3.3394 |0.6373 |2.5367
Social LSTM + Our decoder 0.7864 |3.1584 |0.7630 |3.3256 |0.6357 |2.5774
Our encoder + Neural ODE 0.7925 |3.1647 |0.7974 |3.2754 |0.6438 |2.6227
Our encoder + Social pooling ODE | 0.7857 | 3.1594 |0.7533 |3.2740 |0.6363 |2.5830
Social ODE 0.7728 |3.1417 | 0.6873 | 3.1509 | 0.6005 | 2.4738

5 Conclusion

In this paper, we present a Social ODE, which models and learns agent interac-
tion and underlying temporal dynamics explicitly. To model the agent interac-
tion, our Social ODE decouples it into three components: distance, interaction
intensity and aggressiveness, all of which are multiplied to estimate the rela-
tional dimension. Meanwhile, the underlying temporal dynamics are learned by
a Neural ODE in latent space, which includes agent interaction and the cur-
rent state. We have validated the performance of Social ODE through extensive
experiments using traffic datasets. Compared with previous schemes, our Social
ODE is shown to achieve favorable performance in terms of forecasting accu-
racy. Social ODE can also allow the dynamic insertion of obstacles, targets and
agents during the course of an agent’s trajectory without retraining. As a result,
our model achieves a lower collision rate when sudden obstacles occur in the
trajectory and can control the agent motion by dynamically inserting attractors
or repellers.
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