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Figure 1: (i) Contingent valuation survey to capture the preference for social goods. For example, "What is it the willingness
to pay (WTP) for forest conservation?” (ii) Features from the social good products and/or the population are input for the clas-
sification model that will then estimate the distribution of the WTP for a particular social good, such as, forest conservation.

ABSTRACT

Due to climate change and resulting natural disasters, there has
been a growing interest in measuring the value of social goods to our
society, like environmental conservation. Traditionally, the stated
preference, such as contingent valuation, captures an economics-
perspective on the value of environmental goods through the will-
ingness to pay (WTP) paradigm. Where the economics theory to
estimate the WTP using machine learning is the random utility
model. However, the estimation of WTP depends on rather simple
preference assumptions based on a linear functional form. These
models are therefore unable to capture the complex uncertainty in
the human decision-making process. Further, contingent valuation
only uses the mean or median estimation of WTP. Yet it has been
recognized that other quantiles of the WTP would be valuable to
ensure the provision of social goods. In this work, we propose to
leverage the Bayesian Deep Learning (BDL) models to capture the
uncertainty in stated preference estimation. We focus on the prob-
ability of paying for an environmental good and the conditional
distribution of WTP. The Bayesian deep learning model connects
with the economics theory of the random utility model through
the stochastic component on the individual preferences. For testing
our proposed model, we work with both synthetic and real world
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data. The results on synthetic data suggest the BDL can capture
the uncertainty consistently with different distribution of WTP.
For the real world data, a forest conservation contingent valuation
survey, we observed a high variability in the distribution of the
WTP, suggesting high uncertainty in the individual preferences for
social goods. Our research can be used to inform environmental
policy, including the preservation of natural resources and other
social good.
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1 INTRODUCTION

Background. Climate change has become a major focus for in-
ternational institutions [39], due in part to extreme weather events
that cause damage to natural resources [12, 37]. Thus, obtaining an
economics value of these social goods is relevant to policy-makers
for quantifying the damage. Contingent Valuation (CV), in econom-
ics, is a stated preference method, which allows to estimate the
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value of this non-market good in different environmental areas
[3, 11, 32].

Contingent valuation focuses on modeling willingness to pay
(WTP) of an environmental good by creating a hypothetical market
in which people can declare their preferences, as depicted in Fig. 1
(i). The Random Utility Model (RUM) is one of the economics mod-
els utilized to obtain the WTP. Hanemann [22] demonstrated the
relationship between the responses to a referendum contingent val-
uation study and the random utility model suggested by Lancaster
[28]. However, the estimation of WTP depends on the assumption
that economists make about the preferences of individuals using
RUM. Namely, a functional form for capturing the utility function
has to be chosen, in most cases assumed linear. Also, in most cases
just the mean or median of the WTP is reported. The results of CV
studies are therefore not available to capture the uncertainty of
individual preferences.

In contrast, Deep Learning (DL) models, which have become
increasingly popular and effective for modeling complex problems
in recent years are able to capture complex non-linear relationships
[19]. They promise to potentially improve the binary classification
problem. However, DL maps input and output with a determin-
istic function, without consider the natural uncertainty models
and datasets [17]. Accordingly, some authors suggest [24, 31, 43]
leveraging Bayesian analysis for social problems. Bayesian Deep
Learning (BDL) is a framework that incorporates the uncertainty
in the network structures of the deep learning model architecture
by the assumption of randomness in their parameters [20].

Motivating Example. Forest conservation is an example of an
important social good. To obtain an economic value for the conser-
vation of a particular forest, we can create an artificial market. This
then allows us to capture the preferences of people as well as their
willingness to pay for its conservation. Contingent valuation is a
methodology that aims to create this hypothetical market by means
of conducting a survey, as depicted in Fig. 1 (i). In this survey, the
interviewer starts describing in detail the benefits of forest conser-
vation. She then ends with the question "Are you willing to pay
A, where A is an amount of money for forest conservation?". The
interviewee has to answer “yes” or “no" in a closed-ended format
survey. This style of survey is the commonly accepted format used
in contingent valuation surveys [22].

After the data collection, the characteristics from interviewee
(like age, gender, income) and the forest (like type forest, reten-
tion and storage of water in aquifers) are stored to use as input
for classification model. Once the model is trained on the binary
classification task, an estimation can be obtained of the preference
of people through the distribution of willingness to pay for forest
conservation. This modeling process is depicted in Fig. 1 (ii).

Problem Definition & Technical Challenges. Given a set of features,
our goal is to train a classifier and then infer the distribution of
willingness to pay for environmental goods. The data consist of
interviewee and social good characteristics, bid (amount of money
A), and label with yes/no answers to “Are you willing to pay A for
a social good?”

Measuring the distribution of willingness to pay for an envi-
ronmental good is challenging in the context of the contingent
valuation method. This is because it is a non-observable variable
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that depends on the individual preferences with a stochastic compo-
nent [41]. Typically, contingent valuation methods make a simple
assumption about the preferences using RUM model. Additionally,
they simply report the mean or median of the willingness to pay dis-
tribution. That is, they are not given any extra information about
the distribution of willingness to pay. We note that Carson and
Hanemann [9] argued that lower quantiles of the willingness to
pay distribution should be used by policy-makers, instead of mean
or median, because it implies higher political and social feasibility
environmental good provision [42].

Our Approach and Contributions. In this research, we explore the
distribution of willingness to pay for environmental goods in the
context of the contingent valuation method. Previous contingent
valuation studies [21] rely on the simple assumption of individual
preferences. Hence, they simply report the mean or median of the
willingness to pay distribution for an environmental good, which
does however not reveal the uncertainty on the WTP. In this work,
we thus propose a methodology that leverages the Bayesian deep
learning models for contingent evaluation. Specifically, we con-
nect the economics framework of the random utility model with
the Bayesian deep learning, keeping the randomness in modeling
individual preferences, but while not assuming any specific func-
tional form for the utility function in the RUM model. Once the
Bayesian deep learning model is trained, we can easily obtain the
distribution of willingness to pay for both synthetic data and a
forest conservation contingent valuation survey. To the best of our
knowledge, we are the first to apply Bayesian deep learning to the
contingent valuation method for assessing the socially perceived
value of environmental goods. Our contributions include:

(1) An approach to use Bayesian deep learning models with the
contingent valuation method.

(2) A measurement of the uncertainty of the probability of pay-
ing for an environmental good.

(3) An estimation of the empirical distribution of willingness to
pay (WTP) for environmental goods.

(4) Evaluation of our approach with synthetic, and real datasets
in forest conservation.

2 RELATED WORK

The contingent valuation method has been applied to different
areas of economics with the main results summarized in books
covering theoretical and empirical issues [3, 11, 32]. Applications of
contingent valuation (CV) to specific fields include healthcare [27],
education [15], traffic noise [5, 8], and ecosystem services [30].

Next, we discuss related work in the area of using machine
learning in the context of CV. Zhao et al. [44] compare different
machine learning models, such as Naive Bayes (NB), Support Vector
Machine (SVM), and Tree-based Models, with logistic regression
traditionally used in the contingent valuation to model the stated
preferences for mobility-on-demand transit. Bravo et al. [7] use a
feed forward neural network to compute the WTP to reduce road
noise annoyance. However, they do not leverage the random utility
model, instead, they use the WTP reported by people as target
variable, which is not recommend according to NOAA panel for
the contingent valuation method [2].
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A disadvantage of deep learning models is that they use a de-
terministic function to map the input to the output. Therefore,
uncertainty is often not modeled during the data representation
learning process [17]. In contrast, Lavin et al. [29] implement a
quantile regression for learning the payments for environmental
services. This paper models an approximation of the quantile of
the willingness to pay (WTP), although it used the traditional as-
sumption of the contingent valuation method, as a linear utility
function. Unlike prior work, our research leverages Bayesian deep
learning without assuming any particular distribution on the utility
function in order to apply CV to forest conservation.

3 ECONOMICS: RANDOM UTILITY MODEL

As Haab and McConnell [21] described, a contingent value model
assumes that the satisfaction that a consumer perceives can be
represented by a utility function (u;) which has a deterministic
component and a random component. That is,

uj :vj(p,I,qj)+£j, (1)
where p denotes a vector of current prices, I is the income, and g;
represents the environmental quality at time j. Also, j = 0 denotes
the initial situation, while j = 1 the new situation. A respondent
will be willing to pay the amount $A only if the utility of paying
for this project is higher than the utility of the status quo in which
he or she does not pay for the project [3] (u; > up). We denote a
positive answer of individual i as y; = 1 and a negative answer as
y; = 0. Therefore, the probability (Pr) of an answer being positive
(yes) is modeled by:

Pr(y; = 1) = Pr(Av > n) = Fy(Av), 2)
with Av = v1(p,I — A, q1) — vo(p,1,q0), n = €0 — €1 and Fy, as
the distribution function of 1. Hanemann [22] noted we need an
assumption over the 7, In the conventional RUM approach, 7 follows
either a logistic or normal distribution. There are several options
for selecting Av, but most researchers working with the contingent
valuation method use a linear utility function. Therefore, assuming
Av = a — BA, f > 0, the median of willingness to pay (WTP) is:

0.5 = Fy(Av),
0.5 = Fy(a — BA),

a—pA=F;'(0.5), 3)
_a- F,'(0.5)
—/3 )
Then, if Fy(-) is assumed logistic or normal, we have:
a
WTP=A= —. 4
B

In economics, WTP represents the compensation variation, which
is the amount of money that someone is indifferent about paying
or not paying for an environmental good [21]. The assumption of
a linear utility function restricts the possibility of finding realistic
preferences. Also, most people in contingent valuation just report
the mean or median of WTP instead of its distribution, therefore,
it is not possible to measure the uncertainty in this scenario. The
estimation of WTP will depend on the assumption about the utility
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form. For this reason, we propose a more generic approach; we do
not impose any assumption on the utility function, but continue to
model the stochastic component in the RUM. In other words, we
use the random utility model without any restrictive assumption
about the deterministic component.

4 BAYESIAN DEEP LEARNING

Our goal is to estimate the probability of paying for an environmen-
tal good, Pr(y; = 1) = F;(Av). A Bayesian deep learning model can
be considered to correspond to a neural network with a prior dis-
tribution on its weights [16, 18, 33, 35] as depicted in Fig. 2 (right).
Following Blundell et al. [6], to estimate the posterior distribution
of the weights Pr(w|D), where D represents a set of training sam-
ples (x;, y;), Variational learning is used to find the parameters 0 of
a distribution on the weights g(w|6) that minimizes the Kullback-
Leibler (KL) divergence with the distribution Pr(w|D). The cost
function, also called ELBO (Evidence Lower Bound) for Kingma
and Welling [26] is:

F(D,0) = KL[q(w|O)[|Pr(w)] = Eq(w|9)[log Pr(DIw)].  (5)

Then, a deep neural network is trained by assuming an initial
distribution of w, usually Gaussian, as in Fig. 2 (right). Our task is
to classify if someone agrees or disagrees to pay for an environ-
mental good. Therefore, we set the Bernoulli distribution, which is
a discrete probability distribution, with values 1 and 0. Once the
model is trained, we can capture the uncertainty of the preference
through sampling from the distribution of Pr(y; = 1). This would
provide us with an approximation of the distribution of willingness
to pay (WTP) using the quantile of F;(Av) conditional to A,

WTPy = F,' (1), 7 € (0,1). (6)
Therefore, if we want to get the median of WTP, we set r = 0.5.

Repeating this process for all sampled values of F;; 1(.), we can get
an approximation of the distribution of WTP as

f(WTP) = Fr;l(~5)sampling~ (7)
For the implementation, we use a fully connected layer with three
hidden layers, setting the distribution of the weights as Gaussian
with a mean of 0 and a variance of 1. Automatic differentiation
variational inference (ADVI) is used in mini-batch to improve algo-
rithm speed. Experiments were run using the Python probabilistic
programming framework (PyMC3) [38]. For both synthetic and
real data, we use 70% of data for training and the remaining 30%
for testing. During testing, we evaluate the classification problem
using accuracy, which is the ratio of correctly classified instances.
We also report on the mean WTP and the Bayesian credible interval
with a 95% credibility.

5 SYNTHETIC DATASETS

We use two synthetic datasets to explore the effectiveness and
limitations of the proposed Bayesian deep learning method. The first
experiment follows the traditional assumption of the contingent
valuation method. Thus, we expect a perfect Gaussian distribution
of the WTP. In the second experiment, we simulate a right-skewed
distribution of WTP. For this, we expect the Bayesian deep learning
will succeed to capture this distortion in the WTP.
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Figure 2: Representation of DL Network (left) and BDL Network (right), where x is an input vector. The weights w are assumed
fixed for DL and follow a prior distribution for BDL. Both networks output the conditional distribution of the label y.

5.1 Experiment 1: Gaussian Distribution for
Willingness to Pay

In this experiment, we create synthetic datasets following the tra-
ditional assumption of the contingent valuation method. Namely,
we set a linear utility function as Av = a — BA, which parameters o
and f values are 5 and 0.5 respectively and A a vector of different
bids (amount of money someone agrees/disagrese to pay), then Av
is defined as:

Av=5-0.5A+n. (8)

Above, we include the stochastic component 5, which is a Gauss-
ian with mean 0 and variance 1 as  ~ N(0, 1). Then, the bid A
follows a uniform distribution as A ~ Unif (1, 20), where 1 is the
minimum value and 20 the maximum value. Because Av is an un-
observed variable, we create the binary label y; with a sample size
of 1000, as follows:

— l’
Yi 0.

We expect both traditional machine learning models, like logistic
regression, and Bayesian deep learning to exhibit a good perfor-
mance in terms of accuracy in this particular data scenario. The
true value WTP is 10 as computed in Equation 4 or 6. However, we
note that logistic regression cannot output a representation of the
distribution of willingness to pay. This is an unfortunately short-
coming, because this representation could have been leveraged for
policy-makers to measure the uncertainty of WTP.

The results of the probability of paying for an environmental
good and the distribution of willingness to pay are in Fig.3. As we
expected, both plots depict the typical Gaussian property. That is,

if Av >0,

9
if Av < 0. @

Table 1: Results of applying Bayesian deep learning and lo-
gistic regression to data set from experimentl. We include
the mean accuracy, mean WTP, as well as the Bayesian cred-
ible interval with a 95% credibility.

Model  Accuracy WTP (mean) [Q025, Q975]
BDL 0.93 9.99 [9.98, 10.08]
Logistic 0.91 9.56 NA
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Figure 3: Summary of results of the probability of paying for
environmental good and distribution of WTP for the data in
experiment 1, where we simulated a Gaussian distribution
of WTP using the Bayesian deep learning model.

there is a negative relationship between the bid A and the probabil-
ity of paying, put differently, the probability of paying decreases if
the bid A increase. The distribution of willingness to pay shows a
perfect Gaussian distribution, centered around WTP = 10.

The results of the Bayesian deep learning (BDL) model and the
logistic regression are provided in Table 1. Because of the Gaussian
assumption, BDL and the logistic model have similar accuracy,
WTP, and Bayesian credible interval. This last one tells us that
there is a 95% probability that the WTP would lie withing 9.98
and 10.08 given our datasets. These results suggest there is a low
uncertainty in the individual preferences of the surveyed citizens.
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5.2 Experiment 2: Right-Skewed Distribution
for Willingness to Pay

In this experiment we study a right-skewed (positive skewness)
distribution of willingness to pay. In this, we expect the Bayesian
deep learning model will be able to capture the distortion in the
distribution of WTP, reflecting an hypothetical case with a high
uncertainty in the preferences of environmental goods. To do so, we
simulate three different utility functions, each reflecting different
levels of willingness to pay for an environmental good. They are:

Av; = 0.5-0.05A1 + 7,
Avg = 0.5 - 0.03Az + 1,
Avs = 0.5 — 0.02A3 + 1,
Av = (Avy o Avg o Aus).

(10)

As for the Gaussian distribution used in experiment 1, we include
the stochastic component 7, with mean 0 and a variance 1. However,
now we also add some variations in the bid A with a uniform
distribution of A; ~ Unif(1,20), Az ~ Unif(20,40), and A3 ~
Unif (40, 60). The f component of the utility function, Av = @ —
PA, takes on different values, namely, 0.05,0.03, and 0.02. These
generate differences on the willingness to pay values, resulting in
a high uncertainty supported in the individual preferences. The
parameter « is set to 0.5, which represent a constant component
between these three groups. We simulate Av; with a sample size of
600 and Av, and Avs with sample of 200 each, because some groups
of people will pay less than others. Further, those with the high
willingness to pay tend to be the relatively smallest group. Then,
Av is a concatenation of Avy, Avy, and Avs. Finally, we model the
binary label y; again as detailed in Equation 9.

Table 2: Results of applying Bayesian deep learning and lo-
gistic regression to experiment 2, a right-skewed distribu-
tion. We include the mean accuracy, mean WTP, as well as
the Bayesian credible interval with a 95% credibility.

Model  Accuracy WTP (mean) [Q025, Q975]
BDL 0.58 17.38 [5.59, 21.86]
Logistic 0.54 14.23 NA

The results of the synthetic datasets with right-skewed distribu-
tion for WTP are displayed in Fig.4. As we expected, the probability
of paying for environmental good and the distribution of WTP have
high variances. Notably, the Bayesian deep learning captures the
right-skewed distribution of the willingness to pay. These results are
common in contingent valuations surveys, where most people’ will-
ingness to pay corresponds only to a rather small amount of money
for environmental conservation goods [42], in contrast, a rather
small percentage of people will pay a high value. The accuracy from
Table 2 is low for BDL and logistic model, and the Bayesian credible
interval is between 5.59 and 21.86. These numbers demonstrate
the high uncertainty in this experiment. The mean WTP is 17.38
for BDL and 14.23 for Logistic regression. The higher WTP for the
BDL may be because this model can incorporate the right-skewed
distribution of WTP, while the logistic function cannot.
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Figure 4: Summary results of the probability of paying for
environmental good and the distribution of WTP for the
right-skewed (positive skewness) distribution experiment
using the Bayesian deep learning model.

6 REAL DATA: FOREST CONSERVATION

The real data set we use in our experiments corresponds to a con-
tingent valuation survey conducted in Bolivia [29]. The goal of this
study was to measure the conservation of the forest in the upper
and middle basin of the Pirai River, Santa Cruz, Bolivia [29]. The
sample size of the survey was 501 observations with an error of 4.4
percent. The target population was concentrated in the middle and
lower income levels due to difficulties associated with interviewing
people in the high-level income bracket. The main question for
obtaining the willingness to pay asked was “Given this information,
are you willing to pay monthly $A Bolivians to support this project
and in this way to preserve the forest in the upper and middle basin
of the Pirai River and assure the provision of the environmental
services including water provision, avoiding floods and droughts,
and maintaining favorable weather?”

The descriptive statistics are given in Table 3. From the 501
observations, 236 were negative answers (y = 0). The majority of
negative answers claimed economic reasons for not paying. Some
example are: “I cannot afford additional costs” (23.7 percent); “T'd
rather spend that money on other goods” or “The suggested cost
is too high for my budget” (30.2 percent). Lastly, 11 participants
expressed that they did not believe that the program would have
any benefit. The mean bid (A) was 19.40 in Bolivian currency.

In Fig. 5 and Table 4, we summarize the results of applying the
Bayesian deep learning model to real data for forest conservation



GoodIT 22, Sept. 07-09, 2022, Limassol, Cyprus

Table 3: Descriptive statistics of the contingent valuation
survey for forest conservation.

Variable Mean p50 Min Max  SD
A 19.40 17 1 55 15.23
0.51 1 0 1 0.50
Household size  5.03 5 1 18 2.30
NSE 1.73 2 1 5 0.79
AGE 42.75 45 25 70 13.94
EDUC 1.65 1 0 4 1.16
Water bill 136.53 110 20 800 99.09
Electricity bill 184.44 160 25 810 111.78

Probability of Paying for
Forest Conservation

0 10 20 30 40 50
A
Distribution of Willingness to Pay

0.06
=
£0.04
C
[
a

0.02

0.00

o] 10 20 30 40 50
WTP

Figure 5: Summary results of the probability of paying for
forest conservation and the distribution of WTP using the
Bayesian deep learning model.

in Bolivia. Notably, in Fig. 5, the probability of paying for forest
conservation, as well as, the distribution of the willingness shows
a high variance, instead of a Gaussian distribution. This suggests a
high uncertainty in the preferences for forest conservation. From
Table 4, we observe the accuracy for different models, where BDL
and Logistic have a low performance around 62%. The mean values
of WTP are 18.04 and 17.00 Bolivian currency for the Bayesian
deep learning model and logistic regression models, respectively.
The difference between the two might be explained because of
the right-skewed distribution of WTP estimated by the BDL model,
reflected in Fig. 5. The logistic regression method does not allow to
estimate the distribution of WTP. Furthermore, the 95% Bayesian
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Table 4: Results of applying Bayesian DL and logistic regres-
sion (LR) to the real data. The mean WTP in Bolivian cur-
rency is 18.04 for BDL and 17 for LR. The Bayesian credible
interval, [Q0.025, Q0.975], reveals a 95% probability the WTP
lies within the interval.

Model Accuracy WTP (mean) [Q0.025, Q0.975]
BDL 0.633 18.04 [0.91, 45.08]
LR 0.613 17.00 NA

credible interval for the WTP in Table 4 suggests that there is a 95%
probability that the WTP would lie within 0.91 and 45.08 Bolivian
currency, given the evidence provided by the contingent valuation
survey. This is another argument in favor of modeling the high
uncertainty of individual preferences for environmental goods.

7 DISCUSSION OF IMPACT, LIMITATIONS,
AND FUTURE WORK

Considerations of using deep learning for contingent valuation.
Leveraging Bayesian deep learning to obtain the distribution of the
willingness to pay (WTP) for environmental goods promises to have
a positive impact on policy-makers because they can make better
decisions related to environmental conservation. Yet, unfortunately,
to date, deep learning has not been implemented widely in envi-
ronmental economics. A possible explanation is the computational
barrier; some knowledge of computer science is required and the
GPU hardware required for model training is expensive. Addition-
ally, lack of deep learning model interpretability has been used as
an argument against the use of deep learning. On the flip side, the
most famous deep learning frameworks, such as Pytorch [25] and
TensorFlow [34], now allow for the training of deep learning model
with only a couple of line of code. Further, there is research focused
on making deep learning models interpretable [10] and explainable
[4, 14]. While outside the scope of this research, future work could
apply such interpretability to contingent valuation (CV) models.

Accuracy considerations. In this research, we propose a method-
ology to learn the distribution of WTP for environmental goods in
the context of CV. Traditional machine learning methods, like logis-
tic regression, typically used in CV do not reveal the distribution
of WTP. However, both synthetic and real datasets do not show a
big improvement in the accuracy for the classification task. The
reason could be the complex preferences needing to be modeled for
multi-class problems, unlike binary classification problems. Future
work could thus include experimenting with other distributions
that may yield higher accuracies. For instance, a binomial distri-
bution could be used instead of a Bernoulli distribution within the
Bayesian deep learning models.

Extension to other stated preference methods. CV is a stated pref-
erence method to get the WTP for a non-market good. However,
this method just provides the mean or median of WTP, while our
approach now allows us to also reveal the actual distribution of
the WTP. Nonetheless, the CV method has some disadvantages
related to the validity of the results and biases and errors because
of the survey format [41]. We can however extend the Bayesian
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deep learning model to other stated preferences methods, such as
contingent behavior [36], contingent ranking [40], and Choice ex-
periments [1]. Notably, choice experiments have become a popular
stated preference method in health economics [13] and environ-
mental economics [23], because of the inclusion of more scenarios
in the survey design that better capture individual preferences.

8 CONCLUSION

In this research, we present a framework to use Bayesian Deep
Learning models with the contingent valuation method to measure
the uncertainty of the probability of paying for an environmental
good. From this framework, we estimate the empirical distribution
of the willingness to pay (WTP) for environmental goods. Our
evaluation study using several synthetic datasets demonstrates
that our methodology captures the Gaussian and right-skewed
distributions for the simulated willingness to pay. In addition, we
also leverage real data, namely, a contingent valuation survey about
forest conservation in Bolivia, that exhibits a high uncertainty in
the preferences for forest conservation with a 95% Bayesian credible
interval for the WTP of 0.91 and 45.08. The results thus suggest
that the amount of money the population is willing to pay for forest
conservation varies greatly. Therefore, our research can be used to
provide more information to environmental policy-makers for the
conservation of environmental goods.
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