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Abstract
This paper proposes an approach to diagnosing the skill of a machine learning prediction model based on finding
combinations of variables that minimize the normalized mean square error. This technique is attractive because
it compresses the positive skill of a forecast model into the smallest number of components. The resulting com-
ponents can then be analyzed much like principal components, including the construction of regression maps for
investigating sources of skill. The technique is illustrated with a machine learning model of week 3-4 predictions of
western US wintertime surface temperatures. The technique reveals at least two patterns of large-scale temperature
variations that are skillfully predicted. The predictability of these patterns are generally consistent between climate
model simulations and observations. Not surprisingly, the predictability is determined largely by sea surface tem-
perature variations in the Pacific, particularly the region associated with the El Nino-Southern Oscillation. This
technique provides a tool for understanding what processes contribute to predictability and how these processes
differ between dynamical models and observations.

Impact Statement
Machine learning has emerged as a powerful tool for making climate predictions, but the associated models
often are too complex to interpret. Methods for extracting useful scientific knowledge from machine learning
models have been developed (e.g., explainable artificial intelligence), but most of these methods apply only to
relatively simple outputs. In contrast, many climate applications require predicting a spatial field of variables.
This paper proposes an approach to reducing the dimension of the prediction field by finding components that
are predicted with the most skill. This technique is illustrated by training separate machine learning models at
hundreds of spatial locations, and then using this technique to show that only a few patterns are predicted with
significant skill. Individual patterns can then be analyzed using regression techniques to diagnose the source
of the skill.

1

1. Introduction2

Machine-learning techniques can produce climate forecasts that outperform predictions made by state-3

of-the-art numerical forecast models (Hwang et al., 2019). Nevertheless, machine learning models are4

criticized because they are not based on physics and are often difficult to interpret. Regardless of these5

criticisms, if a machine learning model consistently outperforms the best physics-based model, then it6
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has the potential to lead to deeper scientific understanding of processes driving predictable variations7

in the climate system. The question arises as to how to extract scientifically meaningful information8

from machine learning models. Methods for extracting such information are often called explainable9

Artificial Intelligence, or explainable AI.10

A variety of approaches have been proposed in explainable AI. One approach is to examine the11

sensitivity of a machine learning model to changes in the training set. For instance, if certain predictors12

are critical to the skill of a model, then removing them ought to reduce the skill of the model. Various13

methods for ranking predictor importance involve sequential forward and backward selection methods14

and permutation methods (McGovern et al., 2019). Unfortunately, such methods are computationally15

ineffective to implement in deep learning models (McGovern et al., 2019; Toms et al., 2020). Also, it is16

well known that forward and backward selection lead to misleading interpretations in linear regression17

(see Harrell, 2001, page 56), and these problems will certainly be amplified in machine learning where18

thousands of predictors are common. Moreover, predictor importance typically varies with predictand,19

which complicates interpretability in multivariate prediction.20

Another approach to explainable AI is backward propagation. This method determines the input21

pattern that most closely reproduces a given output from a trained neural network (e.g., McGovern22

et al., 2019; Toms et al., 2020). This approach may provide clues as to which features in the input23

of a neural network are important for producing a given output. Though, the result may be difficult24

to interpret if multiple modes of variability contribute to the output, in which case the input pattern25

represents a mixture of modes. A related technique is layer-wise relevance propagation, which produces26

a heat map in the dimensions of the original input that identifies the input features most relevant for the27

network output (Toms et al., 2020). Both methods are often used in classification problems with few28

output categories (Gange et al., 2019; McGovern et al., 2019; Toms et al., 2020). However, for climate29

predictions targeting large geographical area, there are a large number of outputs, in which case it is30

unclear how effective these methods would be in aiding in interpretation.31

In this paper, we are concerned with diagnosing and interpreting the skill of a model that predicts an32

entire spatial field, such as surface temperature over a geographic region. We are particularly interested33

in sub-seasonal predictions, for instance, predicting week 3-4 temperature, where the skill is low when34

measured with respect to local measures of normalized mean square error (NMSE) or correlation. The35

low skill locally does not preclude the existence of predictable large-scale patterns, since a significant36

source of sub-seasonal predictability comes from large-scale atmospheric teleconnections (National37

Academy of Sciences, 2016). Despite the low skill as measured by these metrics, it is possible that a38

large-scale pattern is predictable, but this predictability is obscured locally by unpredictable weather39

variability that dominates at each grid point. The question arises as to whether this predictable large-40

scale pattern, if it exists, can be extracted from the forecast data. Renwick and Wallace (1995) review41

various approaches to extracting such patterns. Here, we focus on a method due to Déqué (1988),42

which we call Skill Component Analysis (SCA), following DelSole and Tippett (2022), who review43

this method. SCA finds linear combinations of data that minimizes the NMSE. This methodology is44

analogous to Predictable Component Analysis (PrCA), except PrCA yields eigenvectors that maximize45

predictability, which is distinct from skill (DelSole and Chang, 2003; DelSole and Tippett, 2022).46

One of the limitations of SCA is that it requires a relatively large amount of data. Recently, Trenary47

and DelSole (2022) derived a machine learning model by training it on thousands of years of daily48

data from a multi-model set of physics-based simulations. The resulting machine learning model could49

skillfully predict observed week 3-4 temperature over the western US during winter, despite never50

being trained on observations. The large training set provides an opportunity to test the ability of SCA51

to extract low-dimensional predictable components of a machine learning model.52

The purpose of this paper is to apply SCA to a machine learning model for sub-seasonal prediction.53

The SCA is used to diagnose the components of temperature that are most skillfully predicted by54

a machine learning model and to infer the source(s) of predictability associated with these patterns.55

In Section 2, we describe the data sets and statistical model for predicting observed wintertime sub-56

seasonal temperature over the western US. In Section 3 we describe SCA, and in Section 4 we use57
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the technique to identify the most skillfully predicted large-scale temperature patterns in the statistical58

forecast system of Trenary and DelSole (2022). The paper concludes with a summary of our major59

results.60

2. Data and Methods61

2.1. Statistical Forecast System62

We examine predictability in the statistical forecast system developed in Trenary and DelSole (2022).63

Their forecast system targets week 3-4 wintertime temperature anomalies over the western United64

States and is comprised of 499 grid-point lasso regression models. The predictors for this forecast sys-65

tem are large scale SST anomalies in the Pacific and Atlantic Oceans, which are represented by 5066

laplacian time series for each basin, giving a total of 100 SST predictors. Each grid-point model is67

trained on pre-industrial control simulations from 13 models from the Climate Model Inter-comparison68

Project phase 6 (CMIP6) archive (see for model details, Eyring et al., 2016), comprising a total of69

6889 years of daily data. The target and predictors are 2-week means, and predictions target December-70

February. Anomalies are defined with respect to a climatology estimated as a 5th order polynomial fit71

in time across all 2-week means between December and February. Further details of the models and72

observations, as well as justifications for the particular choices in the model and analysis, can be found73

in Trenary and DelSole (2022).74

3. Skill Component Analysis75

Among the statistical models examined in Trenary and DelSole (2022), here we examine only the76

CMIP6-single-task model, which was the best performing model in that study. Since this is the only77

model examined in the present paper, this model will be referred to as simply the statistical model.78

The skill of this statistical model was measured by spatially averaged correlation, which was less than79

0.1, and spatially averaged NMSE, which was indistinguishable from 1. This low skill for sub-seasonal80

prediction is consistent with previous studies (e.g., He. et al., 2021; Hwang et al., 2019; DelSole et al.,81

2017; Pegion et al., 2019). As discussed in the introduction, the apparent low skill might be an artifact82

of the choice of skill measure. Here, we attempt to diagnose skill in this forecast by finding the linear83

combination of variables that minimize the NMSE. Let t and s denote the temporal and spatial indices,84

where t = 1, . . . ,T and s = 1, . . . , S. Let F (s, t) and V (s, t) denote the anomaly forecast and target85

variables, respectively. Then, the linear combinations are86

rV (t) =
S∑
s=1

q(s)V (s, t) and rE (t) =
S∑
s=1

q(s) (F (s, t) − V (s, t)) , (1)87

where q(s) contains the linear coefficients. The N MSE associated with this component can be written88

as89

N MSE =
qTΣEq
qTΣVq

, (2)90

where ΣE and ΣV are the sample covariance matrices of (F (s, t) − V (s, t)) and V (s, t), respectively. In91

SCA, we seek the q that minimizes the N MSE in eqn. 2. Following DelSole and Tippett (2022), this92

minimization problem leads to the generalized eigenvalue problem93

ΣEq = λΣVq. (3)94

Typically, this eigenvalue problem has S distinct solutions, where the eigenvalue λ gives the value of95

N MSE corresponding to a given eigenvector q. Accordingly, the eigenvalues are ordered from smallest96
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to largest, λ1 < · · · < λS , and the corresponding eigenvectors are denoted q1, . . . , qS . The first eigen-97

vector has the smallest possible N MSE and is therefore the most skillful component. The associated98

time series for this component is qT
1 V, as in eqn. 1. The second eigenvector gives the smallest N MSE99

out of all combinations whose time series are uncorrelated with the first, and is therefore the second100

most skillfully predicted pattern, and so on. This methodology is analogous to Predictable Component101

Analysis, except Predictable Component Analysis, yields eigenvectors that maximize predictability,102

which is distinct from skill (DelSole and Chang, 2003; DelSole and Tippett, 2022). Note that unlike103

EOF analysis where the eigenvectors and principal component time series are separately orthogonal, in104

SCA only the time series are uncorrelated.105

Typically, dimension reduction is performed prior to SCA to avoid singular covariance matrices.106

For our problem, the CMIP6 data set is sufficiently large that the covariance matrices are non-singular.107

Nevertheless, applying SCA to CMIP6 data yields components that are skillful in CMIP6, but have no108

skill in observational data. We interpreted this result to mean that the SCA overfit toward the sample.109

To mitigate overfitting, we project the western US data onto the leading 50 Laplacian eigenvectors prior110

to performing SCA. Our main conclusions showed little sensitivity for truncations between 20-50.111

The significance of a given value of N MSE was evaluated with respect to the sampling distribution112

of the eigenvalues under the null hypothesis of no skill. To do so, we randomly sample pairs of forecasts113

and verifications in the CMIP6 data set. The forecast-verification pairs are selected for a complete114

winter, to preserve weekly serial correlations (if any), and for a complete set of laplacian series for115

predictors and predictands, to preserve the spatial correlations. We then randomly shuffle the years for116

the forecast data to misalign the forecast and verification data, and then perform SCA on this data set.117

This process is repeated 5000 times to build up an empirical distribution for the individual eigenvalues.118

An SCA component is considered significant if its N MSE falls below the 5th percentile from the119

distribution of randomly shuffled data.120

4. Results121

The rminimized NMSEs from SCA are shown in fig. 1, where the black asterisks denote the eigenvalues122

(or optimized NMSE) and the red curve is the 5th percentile from the randomized forecasts. There are123

notably a number of modes that are below the significance curve. However, only the first two modes124

are well separated. In the event of no predictability, we would expect the N MSE to be equal to or125

greater than one. Indeed, this is evident in figure 1, where we see that the eigenvalues for the first126

two modes are below 1 and the N MSE continues to increase for larger truncations. The 49th Skill127

Component deviates from the significance curve for reasons that are unknown to us, but it is an isolated128

component at the most extreme no-skill limit (its NMSE is 1.4), so it has no bearing to understanding129

sub-seasonal skill. The spatial patterns of the two leading Skill Components are shown in figure 2.130

These two patterns are estimated for CMIP6 data by regressing the 6889-year time series of the leading131

two Skill Component time series onto the multi-model CMIP6 temperature anomaly data. The pattern132

of the most skillfully predicted pattern is shown in fig. 2a and is similar to the canonical El Nino-133

Southern Oscillation (ENSO) teleconnection patterns (e.g., Trenberth et al., 1998). The second most134

skillfully predicted pattern is shown in fig. 2b and projects strongly onto the leading mode and the135

ENSO teleconnection pattern.136

We next perform a similar calculation using observations. Specifically, we first compute a linear137

combination as in (1) using observational data for V (s, t), which results in a time series r (t), and then138

compute regression coefficients between this time series and the observed grid point temperature data139

over the western US. The resulting pattern for the leading SCA component is shown in fig. 3a. Unlike140

the model results that are characterized by a meridional temperature dipole (fig. 2a), the most skillfully141

predicted pattern recovered from observations is a zonally oriented temperature dipole. Why are the142

patterns different? Only 19 years of observed data are used to estimate this pattern and it is possible that143

the sample size may impact the recovered pattern. To test this, a climate model is randomly selected,144
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in this case GFDL-ESM4, and the pattern of the leading Skill Component is estimated for different145

19 year periods. Some representative results, shown in figs. 3b and c, indicate that the most skillfully146

predicted pattern is sensitive to sampling. As such, we cannot conclude that the dynamical model and147

observed patterns are different, rather the difference is likely an artifact of sample size.148

With the leading two components identified (figs. 3a and b), we now quantify how well the grid-point149

based models predict these large scale patterns for observations and each CMIP6 model. The predic-150

tions and associated verification data are both projected onto the SCA eigenvectors and the correlation151

between the two time series is computed. The CMIP6 model data are sampled to have the equivalent152

number of years as observations (i.e., 19 years) when estimating the correlation.153

The results for the 1st and 2nd skill components are shown in figs. 4a and b, respectively. The dis-154

tribution of correlation coefficients found for predictions in each CMIP6 model are denoted by the155

vertical bars, which represent the 5th and 95th percentiles, and the mean correlation is denoted by the156

black asterisks. The dashed lines in figs. 4a and b, denotes the correlation for predictions of observa-157

tions. For the leading skill component, shown in fig. 4a, the distribution of correlations overlap for the158

different dynamical models, indicating that there is consistency in the predictability of this large-scale159

pattern across the dynamical models. For all but three of the dynamical models, the distribution of cor-160

relations include observations, indicating consistency in predictive skill of this pattern in observations161

and within 10 CMIP6 models. The predictive skill of this pattern differ from observations in the two162

CNRM models and the MRI model, suggesting that these particular dynamical models may be defi-163

cient in simulating the physical processes contributing to the predictability of this pattern. That said,164

it is worth noting that the skill in predicting this pattern is significantly larger than the skill based on165

the average of local correlations (see fig. 7, Trenary and DelSole, 2022). Moreover, the distributions166

of correlations in all but one of the dynamical models are distinct from zero, indicating that a robust167

source of predictable variations of western US surface temperature exists in a majority of the dynam-168

ical models and is linked to the same pattern. This analysis confirms that the grid-point lasso models169

trained on CMIP6 data are skillfully predicting a large scale pattern. Moreover, this skill associated170

with prediction of this pattern is generally consistent across dynamical models and with observations.171

The range of correlations for the 2nd skill component, shown in fig. 4b, are generally reduced relative172

to the 1st and the skill in predicting this mode remains consistent across climate model. However, there173

are several dynamical models that include zero, indicating that the skill in predicting this pattern is not174

significant.175

Lastly, to determine the source of predictability, the time series of the leading skill component recov-176

ered from multi-model CMIP6 data and observations is regressed onto their respective SST anomalies.177

The resulting regression maps are shown in figs. 5a and b. The most prominent feature of these maps178

is the Pacific ENSO pattern which is identified in both datasets. Outside of the Pacific, the SST regres-179

sions differs. The prominence of the ENSO-SST pattern is not surprising given that the SCA patterns180

resembles the traditional canonical teleconnection patterns. The regression pattern recovered for the181

2nd skill component (not shown) also projects strongly onto ENSO. The above analysis was repeated182

by regressing the leading skill component associated with the predicted western US surface tempera-183

tures onto SST and similar patterns were recovered. This analysis suggests that the skillful prediction184

is associated with ENSO. A previous study by DelSole et al. (2017), similarly found that sub-seasonal185

predictability of wintertime temperatures over the US can largely be attributed to ENSO. It is perhaps186

not surprising that ENSO is a major source of predictability for sub-seasonal forecasts, when it is the187

dominate source of predictability on seasonal timescales (National Academy of Sciences, 2016). That188

said, it is worth noting that the statistical model analyzed here outperforms a benchmark forecast where189

the Nino3.4 index is the sole predictor (see fig. 5, Trenary and DelSole, 2022). This indicates that the190

ENSO related SST variations impacting predictability are not entirely captured by the Nino3.4 index.191

To test this, the CMIP6-single-task predictions for CMIP6 and observation data are projected onto the192

SCA eigenvectors and then correlated with the associated Nino3.4 index. The correlation is 0.86 for193

observations and 0.67 for CMIP6. This confirms that the skill in predictability is linked to ENSO in194
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both observations and CMIP6, but the Nino3.4 index only captures some fraction of the relevant SST195

variations.196

5. Conclusion197

This paper proposes an approach to diagnosing the skill of a machine learning model based on finding198

combinations of variables that minimize the NMSE. This approach was proposed by Déqué (1988) in199

the context of diagnosing weather prediction models and recently reviewed by DelSole and Tippett200

(2022). We apply the method to statistical forecasts for week 3-4 prediction of western US wintertime201

temperatures. This is an instructive example because the spatially averaged NMSE of these forecasts202

is indistinguishable from one, suggesting no skill. Despite this, the optimization technique identifies at203

least two large-scale temperature variations that are skillfully predicted by the machine learning model.204

The apparent low skill is an artifact of the skill measure, which is computed first by evaluating skill205

at each grid point and then averaging this measure across grid points. Unfortunately, unpredictable206

weather noise dominates each grid point and thereby obscures whatever predictability may exist from207

large-scale teleconnection patterns. The leading pattern resembles the canonical ENSO teleconnection208

pattern and the skill in predicting this pattern is consistent across a majority of the different CMIP6209

models and observations. Predictability of this pattern is inconsistent between three CMIP6 models and210

observations, suggesting that these dynamical models are deficient in simulating key physical processes211

that contribute to predictable variations in western US surface temperature anomalies. We further show212

that the source of predictability for this pattern is largely related to Pacific SST anomalies and ENSO213

in particular. The second most skillfully predicted component is predicted with far less skill in both214

observations and dynamical models, and some dynamical models demonstrate no skill in predicting this215

mode. As is true for the leading mode, the second mode appears to be forced by ENSO. Though these216

results confirm our expectations about the source of predictability in this particular case, the technique217

is sufficiently general that it may provide new insights into prediction problems in which the source of218

predictability is less well understood.219
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Figure 1. Multi-model NMSE (black) recovered from Skill Component Analysis and multi-model 5%
significance level (red). Significance is estimated by the Monte Carlo method using 5000 iterations.

Analysis is performed using independently sampled data (once per winter) over the entire multi-model
record. A mode is considered significant if it is less than 1.
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Figure 2. Patterns for the (a) 1st (a) and(b) 2nd leading skill components recovered from multi-model
CMIP6 data. Predictions are made by the same CMIP6-single-task model.
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Figure 3. Patterns for the 1st skill component for (a) observations and two different randomly selected
19 year segments of data from the GFDL-ESM4 model (b) and (c).
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Figure 4. Correlation between the prediction and verification data for the (a) 1st and (b) 2nd leading
skill components. These correlations are found by projecting both prediction and verfication data onto
the leading eigenvectors recovered from SCA and correlating the resulting time series. All predictions
are made by the same CMIP6-single-task model. The black vertical bars show the 5th-95th percentile
range of correlations for predictions within the specified CMIP6 model. The individual CMIP6 models
are sampled to have the same number of years as observation (19 years). The black asterisk denotes
the mean correlation. The correlation for predictions using observational data for the 2000-2018 are

shown as the dashed line. The skill component analysis was performed using 50 Laplacian time series.

CMIP6

 225 ° W  180 ° W  135 ° W   90 ° W   45 ° W    0 °
  0 °

 45 ° N

-0.2

0

0.2

OBS

 225 ° W  180 ° W  135 ° W   90 ° W   45 ° W    0 °
  0 °

 45 ° N

(a) (b)

Figure 5. Regression of the leading skill component derived from the CMIP6 single-task models onto
sea surface temperature from (a) multi-model CMIP6 data and (b) observations.
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