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Abstract
This paper derives statistical models for predicting wintertime sub-seasonal temperature over the western US.
The statistical models are based on Least Absolute Shrinkage and Selection Operator (lasso) and trained on two
separate datasets, namely observations and dynamical model simulations. Surprisingly, statistical models trained
on dynamical model simulations can predict observations better than observation-trained models. The reason for
this is that dynamical models, though imperfect, can produce training sets that are orders of magnitude longer than
observations.

Impact Statement
In this study we show that a statistical prediction model for observed western US wintertime temperature
trained on long dynamical model simulations outperforms a statistical model trained on observations alone.
This encouraging result suggests that statistical sub-seasonal prediction models can be further improved by
training on both dynamical model simulations and observations.

1

1. Introduction2

Medium range weather (up to 10 days) and long range climate forecasts (months-to-seasons) have been3

used operationally for decades. While the performance of forecast systems targeting these timescales4

have steadily improved, until recently, relatively little effort has been dedicated to the advancing pre-5

diction capabilities at the intermediate sub-seasonal (2-week-to-1 month) timescales (e.g., National6

Academy of Sciences, 2016). Nevertheless, there is evidence that forecasts are skillful on sub-seasonal7

timescales (Newman et al., 2003; Pegion and Sardeshmukh, 2011). In particular, state-of-the art numer-8

ical forecast models demonstrate skill in sub-seasonal prediction, including regional precipitation and9

temperature, extreme events (heat waves, cold waves, likelihood of hurricane formation), as well as10

tornado and hail activity (DelSole et al., 2017; Vitart and Robertson, 2018).11

Tremendous societal need have driven improvements in sub-seasonal forecast capabilities. Warn-12

ings of weather-hazards such as drought or cold temperature extremes 2-to-4 weeks in advance have13

the potential to save lives and mitigate changing demands on energy supplies, water resources, the14
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agriculture sector, and fisheries (White et al., 2017). Given the far-reaching societal benefits, numeri-15

cal modeling projects within the United States (SubX) and internationally (S2S) have been established16

with the goal of improving sub-seasonal forecast skill (Vitart et al., 2017; Pegion et al., 2019). Par-17

allel to the establishment of numerical modeling initiatives, in 2016 the U.S. Bureau of Reclamation18

and the National Oceanic and Atmospheric Administration (NOAA) established a Sub-seasonal Cli-19

mate Forecast Rodeo, a one-year forecast competition where participants were tasked with developing20

statistical models for realtime prediction of western United States (US) temperature and precipitation.21

The inaugural winners, Hwang et al. (2019), developed a forecast system of non-linear statistical mod-22

els trained on a diverse set of observational predictors (i.e., soil moisture, geo-potential heights). Their23

statistical forecast system was found to be more accurate than operational US Climate Forecasting Sys-24

tem (CFSv2). The success of the Hwang et al. (2019) forecast system, demonstrated unequivocally the25

utility of statistical methods for sub-seasonal prediction.26

It is plausible that statistical models could be improved still further if they were trained on longer27

data sets. Unfortunately, observational data sets for sub-seasonal prediction are limited to 50 years or28

less. Moreover, the effective sample size is smaller than this because predictability mechanisms differ29

across seasons, suggesting that models need to be trained for each season separately, and daily temper-30

ature is serially correlated. One approach to obtaining longer training sets is to use dynamical models31

to generate them. Of course, dynamical models are imperfect and may be less skillful than some sta-32

tistical models. Nevertheless, dynamical models are based on the laws of physics and simulate many33

of the complex physical processes that impact sub-seasonal predictability, so it makes sense to try to34

use both observational and dynamical models to constrain the statistical fit. In this paper, we train sta-35

tistical models on dynamical model simulations and then use the resulting statistical models to predict36

observational data. To mitigate the impact of model errors, particularly those in the sub-grid param-37

eterizations that often differ between dynamical models, we pursue a multi-model approach in which38

the output of several dynamical models are pooled together for training data. This leads to sample sizes39

orders of magnitude longer than observational data sets. Note that in this approach, observations are40

not used to estimate empirical coefficients, so any predictive skill arising from the resulting statistical41

models clearly comes from the dynamical models and demonstrates that the dynamical models simu-42

late statistical relations relevant to sub-seasonal predictability. In this paper, we use dynamical models43

to estimate the regression coefficients of the statistical models, and then use observations to select the44

tuning parameter in the statistical model. The resulting prediction model is then compared to those45

trained on observations.46

The design of our forecast problem is similar to that of the Forecast Rodeo. Specifically, we predict47

the week 3-4 local temperature at a set of grid points over the western US. Each forecast model is esti-48

mated from the Least Absolute Shrinkage and Selection Operator (lasso) method, which is a standard49

method in machine learning (Hastie et al., 2017). Our approach is similar to that of DelSole and Baner-50

jee (2017) and Buchmann and DelSole (2021), except that here we predict many grid points, instead of51

just one local region (as in the former paper) or just one large-scale pattern (as in the latter paper). We52

find that statistical models trained on dynamical model data perform better than those trained on obser-53

vations, suggesting that sample size is indeed a limiting factor in statistical prediction of sub-seasonal54

temperature.55

We clarify that our goal is not to derive a statistical forecast system that outperforms that of Hwang56

et al. (2019). Rather, our goal is to show the potential of improving skill of statistical models by incorpo-57

rating information from dynamical model simulations. Several studies suggest that the strongest source58

of sub-seasonal predictability comes from sea surface temperatures (SSTs) in the tropical Pacific (Del-59

Sole et al., 2017; McKinnon et al., 2016; Vitart, 2013). Accordingly, we use a set of predictors that60

capture variations in SSTs. It is quite likely that the performance could be improved further by increas-61

ing our predictor set to include other variables like precipitation, sea ice concentration, and indices of62

the Madden-Julian Oscillation, as in Hwang et al. (2019), but the dynamical models do not simulate63

these variables well. Moreover, SSTs are the dominant source of predictability (Vitart, 2013). For these64

reasons, only SSTs are included as predictors.65
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This paper is presented as follows. In Section 2, we describe the data sets and statistical models used66

to predict observed wintertime sub-seasonal temperature over the western US. The statistical models67

are trained either on observations or pre-industrial control runs from Climate Model Inter-comparison68

project phase 6 (CMIP6) archive. In Section 3, we present the results. The paper concludes with a69

summary of our major results.70

2. Data and Methods71

2.1. Observations72

The target data for our study is observed 2-week mean temperature, obtained by averaging daily mini-73

mum and maximum 2-meter temperatures from the NOAA-Climate Prediction Center Global Gridded74

Temperature dataset ( https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html). The data are avail-75

able from 1979 to present, but we focus our analysis on the years 1982-2019 to avoid the large number76

of missing data at the start of the record. Daily sea surface temperature (SST) data are obtained from the77

NOAA Optimum Interpolation Sea Surface Temperature dataset for the period 1982-2019 (Reynolds78

et al., 2007). All data are re-gridded to a 1x1 degree resolution.79

2.2. CMIP680

We also use climate model simulations for training. The particular model simulations we use are from81

the CMIP6 archive. To avoid the confounding effects of external forcings (i.e., greenhouse gases,82

anthropogenic aerosols, etc.) on predictability, we limit our selection to pre-industrial control simu-83

lations. A collection of 13 models with a total of 6889 years of daily data are selected for analysis (see84

Table 1). These models were selected because they provide daily surface temperature data. Consistent85

with observations, the target data are 2-week mean temperatures, estimated by averaging the minimum86

and maximum of daily 2-meter temperature. Model SST data are also used. All data are re-gridded to a87

1x1 degree resolution. A description of the CMIP6 experiments can be found in Eyring et al. (2016).88

2.3. Data processing89

The statistical forecast models are fit at the 499 grid-points shown in fig. 1, using 2-week averages90

for target and predictor variables. The predictions target the winter months December to February91

and the forecast year for a given winter corresponds to December. To illustrate, a forecast for winter92

2000, targets 2-week averages during December 2000 through February 2001. Averages for surface93

temperature are estimated for every start day in the winter months December-February. For instance,94

the 2-week average for December 1st is given by the average over the period December 1st -14th , and95

the corresponding predictors are averaged for the dates November 4th-17th .96

We estimate the climatology as a 5th order polynomial fit across all 2-week means between97

December-February (e.g., DelSole et al., 2017). This order of polynomial is selected to ensure that98

the climatological signals are accurately estimated at the different geographical locations. We tested99

whether the statistical models performance are sensitive to polynomial order and found no impact on100

skill (not shown). Also, Pegion et al. (2019) demonstrated that other methods for estimating daily cli-101

matology, such as local regression and polynomial or harmonic regression, produce nearly identical102

climatologies. Anomalies are estimated with respect to climatology. In a previous study by Johnson103

et al. (2014), it was shown that the climate change signal (trend in temperature) can inflate the skill of104

week 3-4 temperature predictions. For this reason, we de-trend the observed data.105

We select predictors from the Pacific and Atlantic Oceans, where fluctuations in SSTs are known106

to impact global climate through teleconnections (Horel and Wallace, 1981). The respective domains107

of the predictors are shown in fig. 2 as the black and blue regions. Climatically relevant variations of108

SST are large-scale and characterized by distinct patterns (e.g., Deser et al., 2010). No single pattern of109

https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html


4 Trenary and DelSole

SST variability drives all predictable variations in climate. For this reason, we use multiple patterns to110

represent large-scale variations of SSTs. Typically, these large-scale patterns of variability are estimated111

using empirical orthogonal function (EOF) analysis. A drawback to EOF analysis is that the patterns112

recovered are data dependent. This means that the leading patterns of variability that represents one113

data set may not be the same pattern recovered for a different data set. Ultimately, when comparisons114

between data sets are desirable, it is preferable to use a common basis set to describe all data. For this115

reason, we will isolate the large scale variations by projecting the daily SST data onto the eigenvectors116

of the Laplacian operator (DelSole and Tippett, 2015). The laplacian eigenvectors form a basis that117

depends only on the domain geometry and are orthogonal in space, with the first pattern associated118

with the spatial mean, the second a dipole, the third a tripole, and so forth. Projecting the data onto each119

Laplacian eigenvector yields a time series for each eigenvector. An example of the leading laplacians are120

shown in figure 3. In this study we will represent large-scale SST variations in the Pacific and Atlantic121

using 50 Laplacians for each basin. The inclusion of more Laplacians time series did not impact the122

performance of the lasso models.123

2.4. Building the Statistical Forecast Systems124

Our objective is to determine if training on dynamical models can produce skillful prediction models.125

There is no unique configuration for statistical models, so we consider a range of reasonable choices.126

Specifically, we construct five distinct statistical forecast systems to predict observed western US sub-127

seasonal winter temperatures. Each forecast system is comprised of a set of statistical models, that128

predict each grid-point in the target region (see fig. 1), yielding a total of 499-statistical models per129

forecast system. The forecast systems differ in terms of how they are fit and the data sets used for130

training. A description of each statistical forecast systems is provided below and summarized in Table131

2.132

In the description below, n and s denote the temporal and spatial indices, where n = 1, . . . , N and133

s = 1, . . . , S. In addition, let Yns denote the target variable, zn denotes the Nino3.4 index, and Xnp134

denotes the predictors for p = 1, . . . , P.135

2.4.1. Benchmark136

ENSO is the greatest contributor to seasonal predictability over the US, and hence it is anticipated to be137

a strong contributor to sub-seasonal predictability (National Academy of Sciences, 2016). Accordingly,138

we construct a benchmark forecast where 2-week average surface winter temperature anomalies are139

predicted at each grid-point from the 2-week lagged Nino3.4 index, a commonly used measure of ENSO140

variability. The Nino3.4 index is the spatial average of sea surface temperature anomalies between141

5◦S-5◦N over longitudes 120-170◦W.142

The prediction based on Nino3.4 index is a linear regression model, where the regression coefficients
βs = (β0,s, β1,s) are obtained by minimizing the cost function

β̂Nino3.4
s = arg min

βs




N∑
n=1

(
Yns − β0,s − β1,s zn

)2


. (1)

Note that the regression coefficients are chosen to minimize the prediction error at each spatial location143

separately. These regression models are fit using a leave-one-out approach, such that the regression144

coefficients β0,s and β1,s for a given winter are estimated from all other winters.145

2.4.2. Lasso146

The performance of the benchmark models will be compared to predictions made by a suite of statistical147

models based on Least Absolute Shrinkage and Selection Operator (lasso). The different lasso models148

have the same set of target and predictor variables. That is, the target variables are 2-week mean surface149
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temperatures anomalies and the predictors are large scale SST anomalies in the Pacific and Atlantic150

Oceans, which are represented by 50 laplacian time series for each basin, giving a total of 100 SST151

predictors. We estimate the lasso coefficients by either minimizing the cost function locally or across152

all grid-points. This distinction between lasso and OLS is discussed in more detail below.153

Lasso is similar to OLS, except that the mean square error is minimized subject to a constraint on154

the norm of the regression coefficients (Tibshirani, 1996). More precisely, the lasso coefficients βp,s155

are obtained by minimizing the cost function156

β̂
single-task
s = arg min

βs




1
2N

N∑
n=1

*.
,
Yns − β0,s −

P∑
p=1

Xn,p βp,s
+/
-

2

+ λ

P∑
p=1

���βp,s
���


, (2)

where | · | denotes the absolute value and λ is a tuning parameter that determines the strength of the157

penalty term. As λ is increased, the lasso coefficients are shrunk toward zero. Conversely, as λ goes to158

zero, the penalty term has less weight and the cost function approaches the traditional OLS form.159

There is no closed form solution to equation 2 and the minimization problem must be solved iter-160

atively. We use the glmnet package to find lasso solutions as λ is varied (Friedman et al., 2010).161

Examples of how λ is selected for different lasso models are provided in Section 2.4.3.162

The above formulation predicts each target variable separately. We call this formulation ”single-163

task” lasso. We derive two single-task lasso models: one trained on observations and one trained on164

CMIP6 data. These lasso models are called OBS-single-task and CMIP6-single-task, respectively.165

Temperature fields are spatially correlated, so making use of information between neighboring grid166

points during the training stage may yield a better prediction model. One approach to doing this is167

”multi-task lasso”, which was used by Hwang et al. (2019). The cost function for multi-task lasso is168

β̂multi-task = arg min
β




1
2N

S∑
s=1

N∑
n=1

*.
,
Yns − β0,s −

P∑
p=1

Xn,p βp,s
+/
-

2

+ λ

P∑
p=1

√√√
S∑
s=1

β2
p,s



. (3)

In multi-task lasso, squared errors are summed over all targets and the penalty term now applies to the169

whole group of predictors and a given predictor is either included in the statistical model for all targets,170

or excluded for all targets.171

We selected lasso regression because it has a good track record of producing models with out-172

of-sample skill, and because it sets some regression coefficients identically to zero, thus performing173

predictor selection and aiding in the interpretability of the statistical models.174

2.4.3. Selecting the lasso Tuning Parameter175

For lasso models trained on observations, the first 18 years (1982-1999) of observational data are used176

to fit the regression model and select λ using a 10-fold cross-validation. When CMIP6 data are used177

for training, the λ selected minimizes the Normalized Mean-Square-Error (NMSE) with respect to the178

same 18 years of observations; namely 1982-1999. A summary of how the statistical models are trained179

and tuning parameter λ selected is presented in Table 2.180

To illustrate the λ selection process, figs. 4a-c. show curves of NMSE versus λ at three different loca-181

tions for predictions made by the CMIP6-single-task model. The regression coefficients are estimated182

from CMIP6 simulations, yielding βs (λ), then, based on these coefficients, NMSEs (λ) is evaluated at183

each location s using observations for predictors and target variable. The λ that minimizes NMSE is184

denoted by a red asterisk. Two extremes cases are shown in figs. 4a and c, where the λ that minimizes185

NMSE is small (near zero) and large, respectively. For the case where λ ≈ 0 (fig. 4a), the cost function186

approaches the traditional OLS form and all the predictors are included. Alternatively, when λ is large187

(fig. 4c), the regression coefficients are set to zero. The NMSE-λ curve shown in fig. 4b represents an188

intermediate scenario, where only some regression coefficients are set to zero.189
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2.5. Skill Metrics190

Statistical model performance will be evaluated in terms of temporal correlation, spatial correlation and191

Mean Square Error (MSE), (Coelho et al., 2019; Jolliffee and Stephenson, 2012).192

Temporal correlation is estimated at each grid-point as:193

ρ(s) =
∑T

t=1 (F ′(s, t) · V ′(s, t))2√(∑T
t=1 F ′(s, t)2

)
·
(∑T

t=1 V ′(s, t)2
) , (4)

where F ′(s, t) and V ′(s, t) are the matched pairs of centered forecast and verification data at location s.194

Spatial similarity in the predicted and observed spatial patterns will be measured using the anomaly195

correlation or cosine similarity (Jolliffee and Stephenson, 2012). To avoid confusion, we will refer196

to this metric as the spatial correlation. Note, this is the only metric used in evaluating the machine197

learning forecast models of Hwang et al. (2019). Formally, the spatial correlation is198

γ(t) =
∑S

s=1 (F ′(s, t) · V ′(s, t))2√(∑S
s=1 F ′(s, t)2

)
·
(∑S

s=1 V ′(s, t)2
) . (5)

Note that this expression is similar in for to the standard correlation in the spatial domain, with the199

exception that the spatial mean is not removed. Importantly, the spatial correlation can be computed for200

each two-week period; i.e., it is a time series.201

Forecast accuracy is often measured by MSE and is formally expressed as:202

MSE(s) =
∑T

t=1(F ′(s, t) − V ′(s, t))2

T
, (6)

A standard approach is to compare MSE to some reference forecast (Fre f ), typically the climatological203

mean corresponding to F̄re f (s) = 0, which yields the N MSE(s)204

N MSE(s) =
∑T

t=1(F ′(s, t) − V ′(s, t))2∑T
t=1(V ′(s, t))2

. (7)

A forecast with NMSE > 1 has no skill, since its MSE is greater than that of the reference forecast. The205

NMSE can be decomposed into its constituent parts when expressed as the Mean-Square-Error Skill206

Score (MSESS). Following Murphy (1988), MSESS can be expanded as follows:207

MSESS(s) = 1 − N MSE(s) = ρ(s)2 −

(
ρ(s) −

σF′ (s)
σV ′ (s)

)2
−

(
F̄ ′(s) − V̄ ′(s)

σV ′ (s)

)2

, (8)

where ρ(s) is the temporal correlation (see eqn. 4), and σF′ (s) and σV ′ (s) are the standard deviations208

for the forecast and verfication anomalies at location s, respectively. The first term on the far righthand209

side is the square of the temporal correlation (ρ(s)2) and gives the maximum value of MSESSs. The210

next two terms reduce the skill score and represent the amplitude and the mean biases, respectively. For211

this study, the forecast and verification data are centered, consequently the mean bias term is zero. We212

perform a decomposition of MSESS to evaluate the trade-off between correlation and amplitude bias213

impacts on statistical model performance.214

The above measures are either time dependent or spatially dependent. To identify a single best215

forecast, we use either the average NMSE216

[N MSE] =
∑S

s=1
∑N

t=1(F ′(s, t) − V ′(s, t))2∑S
s=1

∑N
t=1 V ′(s, t)2

, (9)

or the spatial average temporal correlation217

[ρ] =
∑S

s=1 ρ(s)
S

. (10)
The averaging procedure in eqn. 9 is standard practice and follows that of Wilks (2011).218
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2.6. Statistical Significance of Metrics219

The data in our study are serially correlated, so standard methods of estimating uncertainty and statisti-220

cal significance for performance metrics are not applicable. Accordingly, resampling methods are used221

to evaluate the uncertainty and statistical significance of the performance metrics. Details are given in222

appendix A.223

3. Results224

3.1. Statistical Model Selection225

First, we evaluate the overall performance of the statistical models in terms of the spatially averaged226

NMSE and correlation coefficient to help isolate the best performing statistical models. The confidence227

intervals of the two metrics are represented by the vertical bars in figs. 5a and b, where the bars capture228

the fluctuations of each metric when different segments of the observations are used in statistical model229

evaluation. Confidence intervals are computed as described in sec. A.1.230

Referring to fig. 5a, we see that the confidence intervals for the spatial averaged NMSE is near231

or above 1 for all candidate models. This illustrates the challenge of sub-seasonal forecasting: spatial232

average measures of local skill tend to be indistinguishable from values expected from no-skill models.233

Overall, the statistical models trained on CMIP6 data have lower NMSE than statistical models trained234

on observations, including the benchmark Nino3.4 model. In particular, the spatially averaged temporal235

correlation shown in fig. 5b, is low and generally negative for the statistical models trained using obser-236

vation data. Only the CMIP6-single-task model consistently produces forecasts that are characterized237

by a positive spatially averaged temporal correlation. This result shows that training statistical models238

on dynamical model simulations can yield better forecasts than models trained on observations only.239

The OBS-multi-task model shows no improvement over the OBS-single-task. Differences in skill for240

the two best performing statistical models, namely CMIP6- and OBS-single-task models, are compared241

in terms of MSESS and its decomposition (see eqn. 8) in sec. 3.3.242

3.2. Training Set Size and Statistical Model Performance243

A plausible explanation for why statistical models trained on CMIP6 simulations predict observations244

better than observation-trained models is that the size of the training data is much larger in the former245

than in the latter. To test this hypothesis, we re-train the CMIP6-single-task model using a training data246

set that varies in length from 50 to 3000 years and evaluate model performance with respect to spatially247

averaged NMSE for the verification period 2000-2018. For instance, if the length of the training set is248

specified to be 50 years, a training set of that length is found by sampling CMIP6 data with replacement,249

where each year is a set of consecutive 2-week forecasts for the target months December-February.250

The process of selecting a training set, model re-training, and evaluation is repeated 60 times for each251

specified training set size. The range of uncertainty is reported as the 5th-95th percentiles of the 60252

estimates of spatially averaged NMSE for each sample size and shown as the vertical bars in fig. 6.253

The threshold for a skillful forecast is denoted by the horizontal black line which shows a NMSE of254

1. When the training set size is 50 years, which is more than double the number of years available for255

training with observations, the CMIP6-single-task model has no skill. As the sample size is increased256

up to 3000 years, the spatially averaged NMSE systematically drops, yielding reliably skillful forecasts257

(NMSE <1) when the training set size is 2000 years or greater. These results are consistent with those258

of DelSole and Banerjee (2017), who perform a similar sensitivity analysis on training set size.259

3.3. Statistical Model Comparison260

The map of MSESS estimates from the CMIP6-single-task model, shown in fig. 7a, is characterized261

by regions of positive values along the west-coast, from northern California up through Washington262
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and extending eastward into Idaho. Forecasts in the continental interior are characterized by nega-263

tive MSESS. In contrast, we see MSESS values for the OBS-single-task model, shown in fig. 7d, are264

negative over much of forecast region.265

To diagnose the sources of these errors, we decompose the MSESS according to eqn. 8 into contri-266

butions from the squared temporal correlation coefficient and amplitude bias. To aid in interpretation,267

all subsequent analyses are based on the square-root of these two terms. Recall that since the forecasts268

and verification data are centered, the mean bias term is zero. Maps of the temporal correlation for269

the CMIP6-single-task and OBS-single-task models are shown in fig. 7b and e, respectively. For the270

CMIP6-single-task predictions, positive correlations are found over much of the western US, with the271

largest correlations along the west-coast, and weaker and sometimes negative correlation in the con-272

tinental interior. These regions of positive correlation determine the positive MSESS values along the273

west coast shown in fig. 7a. Positive temporal correlation coefficients recovered from OBS-single-task274

model are similarly concentrated in the pacific northwest. However, the OBS-single-task model have275

large areas of negative correlations in the southern portions of the forecast region. The positive cor-276

relations estimated for the OBS-single-task model correspond to regions of near zero MSESS values277

shown in fig. 7d. For both set of statistical models, the contributions of temporal correlation to forecast278

skill are reduced by the amplitude bias, shown in fig. 7c and f. This analysis indicates that both statis-279

tical forecast systems underestimate the amplitude of the predicted temperature anomalies. However,280

this amplitude bias is markedly larger for predictions made by the OBS-single-task model.281

Since the upper bound of the MSESS is determined by the temporal correlation, we quantify statis-282

tical significance of this metric as discussed in Section A.2. The percentage of grid-point forecasts that283

predict the correct sign of temperature anomalies and the corresponding p-values are listed in the title284

of figure 7b and e. For CMIP6-single-task, 78% of the grid-points are characterized by positive correla-285

tion, which has a p-value of 0.021(i.e., it is field significant). In contrast, the OBS-single-task model has286

positive correlations only over 59% of the grid points, which has p-value 0.26 (i.e., not field significant).287

The maps of temporal correlation indicate that forecasts produced by statistical models trained on288

CMIP6 data are generally skillful over large portions of the western US. This metric says nothing about289

how well the model performs for any given 2-week average. Figure 8a and b shows the distribution290

of the spatial correlation as a function of time for the CMIP6-single-task and OBS-single-task models,291

respectively. For a given winter, the vertical bar represents the 25th-75th percentile of the spatial corre-292

lation and the black asterisk gives the median value. The number of forecasts for a given winter varies293

between 90 and 91, depending upon leap year. The number listed next to each median gives the percent-294

age of forecasts that predict the correctly signed temperature anomalies. We can assess the significance295

of the spatial correlation scores by counting the winters within which the number of positive scores296

exceeds the negative scores. This count is the total number of skillful forecast winters. Under the null297

hypothesis of no skill, the forecast has equal chances of producing positive or negative scores and the298

count of skillful winters should follow a binomial distribution with p = 0.5. Although forecasts within299

a winter are serially correlated, forecasts between winters are assumed independent and therefore the300

binomial distribution can be applied to the count of skillful winters. The CMIP6-single-task model pro-301

duces forecasts where 14 of the 19 forecast winters predict the correctly signed temperature anomalies,302

while 13 of the 19 winter forecasts produce correctly signed anomalies in the OBS-single-task model.303

The overall skill of the CMIP6-single task and OBS-single-task models in predicting the spatial pat-304

tern of temperature anomalies is indistinguishable from a no-skill forecast for both statistical models.305

These results suggests that while CMIP6-single-task model performs well overall in terms of individual306

grid points, the individual statistical forecast models do not consistently predict the large-scale pattern307

of temperature anomalies. The study by Hwang et al. (2019), where forecasts are evaluated only with308

respect to spatial correlation, also found statistical prediction are characterized by a wide range in spa-309

tial correlation scores. It is worth pointing out that the performance of the statistical forecast system310

derived in Hwang et al. (2019), cannot be directly compared with the statistical model evaluated here,311

because the statistical models are trained on different datasets, target a different range of dates, and use312

a slightly different metric.313
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In terms of aggregate metrics, the CMIP6-single-task model provides the most skillful forecasts.314

Here we examine a pair of high- and low- skill forecasts made by this statistical forecast system. The315

high skill forecast, shown in fig. 10b, tends to capture the overall spatial structure of the observed316

temperature anomalies shown fig. 10a. Notably, the amplitude of the predicted anomalies are reduced317

compared to observations. Consistent with analysis presented in fig. 7, the forecast is skillful in terms of318

predicting the correct sign of temperature anomalies, but underestimates their amplitude. The low skill319

forecast, shown in fig. 10d, similarly predicts temperature anomalies that vary with latitude. However,320

the sign of the anomalies is completely opposite of the observed temperature anomalies shown in fig.321

10c. Notably, the individual CMIP6-single-task models are capturing coherent patterns, which may322

suggest a common forcing mechanism is driving predictable variations over the target region.323

3.4. Predictor Selection324

Lastly, we examine differences in the frequency of predictor selection between the CMIP6-single-task325

and OBS-single-task-models. Lasso assigns zero values to selected regression coefficients, clearly indi-326

cating that the associated predictor is less important than the other predictors with non-zero coefficients.327

Thus, we can use non-zero coefficients as a kind of predictor selection. Since lasso is fitted at each grid328

point, we can collect statistics of predictor selection across grid points. The frequency with which each329

predictor is selected using CMIP6 and observational training data is shown in fig. 9. Regardless of the330

forecast model, no predictor is selected across all grid-points. That said, a notable distinction between331

figs. 9a and b, is the larger percentage of predictor selection for lasso models fit using CMIP6 data.332

Generally, laplacians time series from the Pacific are selected by a large percentage of the individual333

CMIP6-single-task models. In contrast, the OBS-single-task model shows less agreement in predic-334

tor selection across location. The robust selection of key predictors for the CMIP6-trained models can335

likely be attributed to improved estimates of regression coefficients given the vast amount of data used336

in statistical model training.337

4. Conclusion338

This paper derives statistical models for predicting wintertime sub-seasonal temperature over the west-339

ern US. Our goal was to show that statistical models trained on dynamical model data can be skillful,340

thereby demonstrating that dynamical models provide information relevant to sub-seasonal prediction.341

As a reference benchmark, we use simple linear regression to predict 2-week mean temperature at each342

grid point based on the Nino3.4 index. This benchmark is compared to models with tens more pre-343

dictors derived from lasso. The lasso coefficients are estimated in two different ways, namely under a344

single-task or multi-task formulation. In all cases, the forecasts are validated on observational data that345

was excluded from the statistical model construction.346

With respect to spatial averages of NMSE and temporal correlation, the statistical models trained347

on CMIP6 data are more skillful than statistical models trained on observation data. Performance of348

the most skillful statistical model, CMIP6-single-task, is characterized by a spatially averaged NMSE349

<1 and a regionally average temporal correlation that is positive. This is not the case for the OBS-350

single-task model, a similarly configured set of statistical models trained on observation data, where the351

spatially averaged NMSE is greater than 1 and the spatially averaged temporal correlation is negative. A352

direct comparison of the MSESS between the CMIP6-single-task and OBS-single-task models, shows353

a greater portion of the forecast region with positive MSESS values for the CMIP6-single-task model.354

The MSESS for OBS-single-task is characterized by mostly negative values. The positive MSESS iden-355

tified for the CMIP6-single-task model can be attributed to the statistical model’s ability to correctly356

predict the sign of the temperature anomalies (i.e., positive and field significant temporal correlation357

coefficients) for large portions of the western US. In contrast, the OBS-single-task model skill in pre-358

dicting the correct sign of the temperature anomalies is largely limited to the pacific Northwest. The359
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greatest source of error between the two statistical models is the amplitude bias, where forecasts from360

the OBS-single-task model are characterized by negative amplitude bias over the much of the target361

region, which in turn, accounts for negative MSESS values. We demonstrate that size of the training set362

impacts skill of the statistical models and conclude from this that the increase in sample size from using363

simulated data more than compensates for the limitations due to imperfections in dynamical models.364

These results are encouraging and suggest that skill of statistical sub-seasonal prediction models can365

be further improved by using both dynamical model simulations and observations in statistical model366

training. Presumably, the best statistical models are those that combine both dynamical model simula-367

tions and observational data. Such approaches are part of an active field of research in transfer learning368

(Zhuang et al., 2021).369

In general, the single-task models performed better than multi-task models, when evaluated in terms370

of spatial averages of NMSE and temporal correlation. Even still, the skill of the single-task models371

is nearly indistinguishable from no skill, with regards to these two performance metrics. This low372

skill on a local basis does not necessarily mean there is no significant skill for large-scale patterns.373

Notably, the individual CMIP6-single-task models predict coherent large-scale temperature anomalies374

over the target region. This suggests that statistical model skill might be further improved by isolating375

predictable large-scale patterns. In future work, we develop a statistical technique that is able to identify376

predictable large-scale patterns despite the limited local predictability.377
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A. Statistical Significance of Metrics393

This appendix describes our methods for quantifying uncertainty in the skill metrics.394

A.1. Uncertainty of Spatial Averaged Metrics395

To quantify uncertainty of forecasts trained on CMIP6 data, we do not re-estimate the regression coefficients because these are396

very robust due to the large training set. However, the regression coefficients depend on λ. To quantify uncertainty associated397

with λ, we randomly select 18 distinct years from the observational record, use the corresponding matched-pairs of target and398

predictors to determine λ (see sec. 2.4.3), and then use the remaining 19-year record of observation data to evaluate the perfor-399

mance of the CMIP-single and -multi-task models. To preserve the serial correlation in the data, the paired target and predictors400

are sampled such that all sequential data for a given winter are drawn simultaneously. This process is repeated 1000 times to401

build up distributions of the spatially averaged NMSE and temporal correlation. The uncertainty is given as the 5th and 95th402

percentiles of these distributions.403

For forecasts trained on observations, both λ and the regression coefficients have uncertainties that need to be quantified. To404

do this, a bootstrap sample of 18 distinct years from the observational record is used to train the statistical models and select λ405

through 10-fold cross-validation. The remaining 19 years of paired target variables and predictors are then used to evaluate the406

newly trained models. As before, the serial correlation in the data is preserved by selecting all sequential data for a given winter.407

https://esgf-node.llnl.gov/projects/cmip6/
https://psl.noaa.gov/data/gridded/index.html
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This process is repeated 1000 times for the OBS-single-task model to build distributions of the performance metrics. We use408

only 100 permutations for the OBS-multi-task because of the excessive computational requirements needed for the re-training409

and evaluation. The uncertainty is given as the 5th and 95th percentiles of these distributions.410

Lastly, to estimate uncertainties for the benchmark Nino3.4 statistical model, we randomly select 37 years of paired forecasts411

and verification data and estimate the performance metrics for the bootstrapped samples. Again, we preserve serial correlation412

by selecting sequential data for each winter. This process is repeated 1000 times to build up distributions of the two metrics. The413

uncertainty for each metric is given as the 5th and 95th percentiles of the respective distributions.414

A.2. Statistical Significance of Similarity Metrics415

To quantify uncertainty in the grid-point estimate temporal correlation (eqn. 4) we use a permutation method (DelSole et al.,416

2017). Under the null hypothesis of no predictability, the forecasts and observations are independent. Thus, a permutation sample417

can be derived by separately permuting the year labels for forecast and observed data. The permutation sample preserves the418

mean and variance of the forecast and observations, but temporally misaligns the forecast-observation pairing. For this particular419

problem the data are permuted for winter forecasts targeting the months December-February. We permute the winter forecasts and420

verification data 5000 times to create 5000 realizations of correlation maps from the null hypothesis of no skill (or more precisely,421

the null hypothesis of exchangeability). The temporal correlation between the local forecast and verification is computed for each422

grid point separately and statistical significance is assessed locally by comparing the correlation value to the local 95th percentile423

from the permutation sample. In addition, the field significance is assessed based on the counts of positive correlations. Negative424

correlations are not considered skillful and therefore not included in the count. This process is repeated 10,000. The resulting425

cumulative distribution function is then used to determine the local p-value of the number of positive correlations.426
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Table 1. List of CMIP6 models with pre-industrial control runs analyzed in this study. Models were selected if daily data was
available.

CMIP6 I.D. Experiment Label Number of years

AWI-CM-1-1-MR r1i1p1f1-gn AWI 499
CNRM-CM6-1 r1i1p1f1-gr CNRM-CM6 499

CNRM-ESM2-1 r1i1p1f1-gr CNRM-CM6 499
CanESM5 r1i1p1f1-gn CanESM5 799
EC-Earth3 r1i1p1f1-gr EC 500

EC-Earth3 -Veg r1i1p1f1-gr EC-Veg 499
GFDL-CM4 r1i1p1f1-gr1 GFDL-CM4 499

GFDL-ESM4 r1i1p1f1-gr1 GFDL-ESM4 499
HadGEM3-GC31-LL r1i1p1f1-gn HadGEM3 499

IPSL-CM6A-LR r1i1p1f1-gr IPSL 499
MRI-ESM2 r1i1p1f1-gn MRI 199

NorEMS2-LM r1i1p1f1-gn NorESM2 300
UKESM1-0-LL r1i1p1f2-gn UKESM2 1099
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Table 2. Summary of Statistical Forecast Models

Statistical Model Name βs estimation λ selection
Nino3.4 (benchmark) OLS: observation using leave-one-out (37 years) N/A

OBS-single-task Lasso: observations (18 years) 10-fold cross-validation
OBS-multi-task Lasso: observations (18 years) 10-fold cross-validation

CMIP6-single-task Lasso: CMIP6 (6889 years) observations (18 years)
CMIP6-multi-task Lasso: CMIP6 (6889 years) observations (18 years)

Forecast Region

Figure 1. Map of the forecast target region. Each red dot denotes a forecast location on a 1x1 degree
grid.

 225 ° W  180 ° W  135 ° W   90 ° W   45 ° W    0 °
  0 °

 45 ° N

Predictor Location

Figure 2. Map depicting predictor locations. Black and blue denote the domains of the Pacific and
Atlantic basins, respectively. Large-scale variations in both basins are represented by the leading 50

Laplacian eigenvectors.
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Figure 3. The 2nd (a) and 3rd(b) eigenvectors of the Laplacian operator for the Pacific basin.
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Figure 4. NMSE versus λ for forecasts locations (a) Yakima, Washington, (b) Austin, Texas, and (c)
Colorado Springs, Colorado. The NMSE curves are estimated from predictions made with the
CMIP6-single-task model and validated with respect to observations for winters (DJF) during

1982-1999. A red asterisk denotes the λ that minimizes the NMSE.
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Figure 5. Spatial averages of the (a) NMSE and (b) temporal correlation. The horizontal black line
denotes a NMSE of 1 in (a) and the zero correlation in (b). Five statistical models are compared: the
benchmark Nino3.4 regression model, two observation-trained and two CMIP6-trained lasso models.

The vertical black bars denote the 95% confidence intervals obtained from the bootstrap method
applied to observation data in the period 1982-2018. The precise bootstrap method varies across

statistical models (see appendix for details).
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Figure 6. Spatial averaged NMSE versus training set size for the CMIP6-single-task model. The bars
give the 5th-95th percentiles from randomly selecting CMIP6 data, training the single-task lasso on
this data set, then verifying the lasso model on observed winter (DJF) temperatures for the period
2000-2018. The number of years included in the training dataset is varied from 50, 100, 300, 500,

750,1000, 2000, 3000 years. The percentiles are computed from 60 repetitions.
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Figure 7. Skill performance of CMIP6 single-task (top row) and OBS-single-task (bottom row)
forecasts, using MSESS (first column) and its decomposition into temporal correlation (middle column)
and amplitude bias (last column). Each metric is evaluated with respect to observed and forecast winter

(DJF) temperature anomalies for the period 2000-2018. The percentage of forecasts that positively
correlate with verification data is listed in parentheses. Statistical significance of the correlation maps
is estimated with respect to the procedure discussed in the appendix, with the corresponding p-value

listed in the title. The + sign denotes grid-points where the correlation is locally significant.
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Figure 8. Spatial correlation between observed winter (DJF) temperature anomalies for the period
2000-2018 and predictions made with (a) CMIP6-single-task and (b) OBS-single-task models. The

vertical lines represent the 25th-75th percentiles of the 90 (or 91 if there is a leap year) spatial
correlations during the winter year (where the year corresponds to the December). The median is
denoted by the black asterisk. The percentage of forecast within a given winter that have a positive

spatial correlation score with observations is listed next to median.



Environmental Data Science 17

CMIP6 single-task

Atlantic Pacific
predictors

0

10

20

30

40

50

60

70

pe
rc

en
ta

ge
 o

f p
re

di
ct

or
s 

se
le

ct
ed

(a) (b) OBS single-task

Atlantic Pacific
predictors

0

10

20

30

40

50

60

70

80

90

pe
rc

en
ta

ge
 o

f p
re

di
ct

or
s 

se
le

ct
ed

(b)

Figure 9. Percentage of predictors selected across all 499 grid-points for the (a) CMIP6-single-task
and (b) OBS-single-task models. The horizontal black line denotes the 60% selection level.
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Figure 10. Observed 2-week average temperature anomalies (left) and CMIP6-single-task forecasts
(right) for a high-skill event on January 8th-21st 2010 (top) and low-skill event on January 11th-24th

2014 (bottom).
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