Environmental Data Science (2021), 1-12
doi:10.1017/xxxx CAMBRIDGE
UNIVERSITY PRESS

RESEARCH ARTICLE

Skillful statistical prediction of sub-seasonal temperature by
training on dynamical model data

Laurie Trenary' ©@" and Timothy DelSole!

Department of Atmospheric, Oceanic, and Earth Science and Center for Ocean-Land-Atmosphere Studies, George Mason
University, 4400 University Drive, Virginia, Fairfax 22030, United States
*Corresponding author. E-mail: Itrenary @ gmu.edu

(Received 30 June 2021)

Keywords: subseasonal prediction; machine learning; week 3-4; lasso regression; CMIP6

Abstract

This paper derives statistical models for predicting wintertime sub-seasonal temperature over the western US.
The statistical models are based on Least Absolute Shrinkage and Selection Operator (lasso) and trained on two
separate datasets, namely observations and dynamical model simulations. Surprisingly, statistical models trained
on dynamical model simulations can predict observations better than observation-trained models. The reason for
this is that dynamical models, though imperfect, can produce training sets that are orders of magnitude longer than
observations.

Impact Statement

In this study we show that a statistical prediction model for observed western US wintertime temperature
trained on long dynamical model simulations outperforms a statistical model trained on observations alone.
This encouraging result suggests that statistical sub-seasonal prediction models can be further improved by
training on both dynamical model simulations and observations.

1. Introduction

Medium range weather (up to 10 days) and long range climate forecasts (months-to-seasons) have been
used operationally for decades. While the performance of forecast systems targeting these timescales
have steadily improved, until recently, relatively little effort has been dedicated to the advancing pre-
diction capabilities at the intermediate sub-seasonal (2-week-to-1 month) timescales (e.g., National
Academy of Sciences, 2016). Nevertheless, there is evidence that forecasts are skillful on sub-seasonal
timescales (Newman et al., 2003; Pegion and Sardeshmukh, 2011). In particular, state-of-the art numer-
ical forecast models demonstrate skill in sub-seasonal prediction, including regional precipitation and
temperature, extreme events (heat waves, cold waves, likelihood of hurricane formation), as well as
tornado and hail activity (DelSole et al., 2017; Vitart and Robertson, 2018).

Tremendous societal need have driven improvements in sub-seasonal forecast capabilities. Warn-
ings of weather-hazards such as drought or cold temperature extremes 2-to-4 weeks in advance have
the potential to save lives and mitigate changing demands on energy supplies, water resources, the
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agriculture sector, and fisheries (White et al., 2017). Given the far-reaching societal benefits, numeri-
cal modeling projects within the United States (SubX) and internationally (S2S) have been established
with the goal of improving sub-seasonal forecast skill (Vitart et al., 2017; Pegion et al., 2019). Par-
allel to the establishment of numerical modeling initiatives, in 2016 the U.S. Bureau of Reclamation
and the National Oceanic and Atmospheric Administration (NOAA) established a Sub-seasonal Cli-
mate Forecast Rodeo, a one-year forecast competition where participants were tasked with developing
statistical models for realtime prediction of western United States (US) temperature and precipitation.
The inaugural winners, Hwang et al. (2019), developed a forecast system of non-linear statistical mod-
els trained on a diverse set of observational predictors (i.e., soil moisture, geo-potential heights). Their
statistical forecast system was found to be more accurate than operational US Climate Forecasting Sys-
tem (CFSv2). The success of the Hwang et al. (2019) forecast system, demonstrated unequivocally the
utility of statistical methods for sub-seasonal prediction.

It is plausible that statistical models could be improved still further if they were trained on longer
data sets. Unfortunately, observational data sets for sub-seasonal prediction are limited to 50 years or
less. Moreover, the effective sample size is smaller than this because predictability mechanisms differ
across seasons, suggesting that models need to be trained for each season separately, and daily temper-
ature is serially correlated. One approach to obtaining longer training sets is to use dynamical models
to generate them. Of course, dynamical models are imperfect and may be less skillful than some sta-
tistical models. Nevertheless, dynamical models are based on the laws of physics and simulate many
of the complex physical processes that impact sub-seasonal predictability, so it makes sense to try to
use both observational and dynamical models to constrain the statistical fit. In this paper, we train sta-
tistical models on dynamical model simulations and then use the resulting statistical models to predict
observational data. To mitigate the impact of model errors, particularly those in the sub-grid param-
eterizations that often differ between dynamical models, we pursue a multi-model approach in which
the output of several dynamical models are pooled together for training data. This leads to sample sizes
orders of magnitude longer than observational data sets. Note that in this approach, observations are
not used to estimate empirical coefficients, so any predictive skill arising from the resulting statistical
models clearly comes from the dynamical models and demonstrates that the dynamical models simu-
late statistical relations relevant to sub-seasonal predictability. In this paper, we use dynamical models
to estimate the regression coefficients of the statistical models, and then use observations to select the
tuning parameter in the statistical model. The resulting prediction model is then compared to those
trained on observations.

The design of our forecast problem is similar to that of the Forecast Rodeo. Specifically, we predict
the week 3-4 local temperature at a set of grid points over the western US. Each forecast model is esti-
mated from the Least Absolute Shrinkage and Selection Operator (lasso) method, which is a standard
method in machine learning (Hastie et al., 2017). Our approach is similar to that of DelSole and Baner-
jee (2017) and Buchmann and DelSole (2021), except that here we predict many grid points, instead of
just one local region (as in the former paper) or just one large-scale pattern (as in the latter paper). We
find that statistical models trained on dynamical model data perform better than those trained on obser-
vations, suggesting that sample size is indeed a limiting factor in statistical prediction of sub-seasonal
temperature.

We clarify that our goal is not to derive a statistical forecast system that outperforms that of Hwang
etal. (2019). Rather, our goal is to show the potential of improving skill of statistical models by incorpo-
rating information from dynamical model simulations. Several studies suggest that the strongest source
of sub-seasonal predictability comes from sea surface temperatures (SSTs) in the tropical Pacific (Del-
Sole et al., 2017; McKinnon et al., 2016; Vitart, 2013). Accordingly, we use a set of predictors that
capture variations in SSTs. It is quite likely that the performance could be improved further by increas-
ing our predictor set to include other variables like precipitation, sea ice concentration, and indices of
the Madden-Julian Oscillation, as in Hwang et al. (2019), but the dynamical models do not simulate
these variables well. Moreover, SSTs are the dominant source of predictability (Vitart, 2013). For these
reasons, only SSTs are included as predictors.
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This paper is presented as follows. In Section 2, we describe the data sets and statistical models used
to predict observed wintertime sub-seasonal temperature over the western US. The statistical models
are trained either on observations or pre-industrial control runs from Climate Model Inter-comparison
project phase 6 (CMIP6) archive. In Section 3, we present the results. The paper concludes with a
summary of our major results.

2. Data and Methods

2.1. Observations

The target data for our study is observed 2-week mean temperature, obtained by averaging daily mini-
mum and maximum 2-meter temperatures from the NOAA-Climate Prediction Center Global Gridded
Temperature dataset ( https://psl.noaa.gov/data/gridded/data.cpc.globaltemp.html). The data are avail-
able from 1979 to present, but we focus our analysis on the years 1982-2019 to avoid the large number
of missing data at the start of the record. Daily sea surface temperature (SST) data are obtained from the
NOAA Optimum Interpolation Sea Surface Temperature dataset for the period 1982-2019 (Reynolds
et al., 2007). All data are re-gridded to a 1x1 degree resolution.

2.2. CMIP6

We also use climate model simulations for training. The particular model simulations we use are from
the CMIP6 archive. To avoid the confounding effects of external forcings (i.e., greenhouse gases,
anthropogenic aerosols, etc.) on predictability, we limit our selection to pre-industrial control simu-
lations. A collection of 13 models with a total of 6889 years of daily data are selected for analysis (see
Table 1). These models were selected because they provide daily surface temperature data. Consistent
with observations, the target data are 2-week mean temperatures, estimated by averaging the minimum
and maximum of daily 2-meter temperature. Model SST data are also used. All data are re-gridded to a
1x1 degree resolution. A description of the CMIP6 experiments can be found in Eyring et al. (2016).

2.3. Data processing

The statistical forecast models are fit at the 499 grid-points shown in fig. 1, using 2-week averages
for target and predictor variables. The predictions target the winter months December to February
and the forecast year for a given winter corresponds to December. To illustrate, a forecast for winter
2000, targets 2-week averages during December 2000 through February 2001. Averages for surface
temperature are estimated for every start day in the winter months December-February. For instance,
the 2-week average for December 1% is given by the average over the period December 1%7-14" and
the corresponding predictors are averaged for the dates November 4/-17'%

We estimate the climatology as a 5th order polynomial fit across all 2-week means between
December-February (e.g., DelSole et al., 2017). This order of polynomial is selected to ensure that
the climatological signals are accurately estimated at the different geographical locations. We tested
whether the statistical models performance are sensitive to polynomial order and found no impact on
skill (not shown). Also, Pegion et al. (2019) demonstrated that other methods for estimating daily cli-
matology, such as local regression and polynomial or harmonic regression, produce nearly identical
climatologies. Anomalies are estimated with respect to climatology. In a previous study by Johnson
et al. (2014), it was shown that the climate change signal (trend in temperature) can inflate the skill of
week 3-4 temperature predictions. For this reason, we de-trend the observed data.

We select predictors from the Pacific and Atlantic Oceans, where fluctuations in SSTs are known
to impact global climate through teleconnections (Horel and Wallace, 1981). The respective domains
of the predictors are shown in fig. 2 as the black and blue regions. Climatically relevant variations of
SST are large-scale and characterized by distinct patterns (e.g., Deser et al., 2010). No single pattern of
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SST variability drives all predictable variations in climate. For this reason, we use multiple patterns to
represent large-scale variations of SSTs. Typically, these large-scale patterns of variability are estimated
using empirical orthogonal function (EOF) analysis. A drawback to EOF analysis is that the patterns
recovered are data dependent. This means that the leading patterns of variability that represents one
data set may not be the same pattern recovered for a different data set. Ultimately, when comparisons
between data sets are desirable, it is preferable to use a common basis set to describe all data. For this
reason, we will isolate the large scale variations by projecting the daily SST data onto the eigenvectors
of the Laplacian operator (DelSole and Tippett, 2015). The laplacian eigenvectors form a basis that
depends only on the domain geometry and are orthogonal in space, with the first pattern associated
with the spatial mean, the second a dipole, the third a tripole, and so forth. Projecting the data onto each
Laplacian eigenvector yields a time series for each eigenvector. An example of the leading laplacians are
shown in figure 3. In this study we will represent large-scale SST variations in the Pacific and Atlantic
using 50 Laplacians for each basin. The inclusion of more Laplacians time series did not impact the
performance of the lasso models.

2.4. Building the Statistical Forecast Systems
Our objective is to determine if training on dynamical models can produce skillful prediction models.
There is no unique configuration for statistical models, so we consider a range of reasonable choices.
Specifically, we construct five distinct statistical forecast systems to predict observed western US sub-
seasonal winter temperatures. Each forecast system is comprised of a set of statistical models, that
predict each grid-point in the target region (see fig. 1), yielding a total of 499-statistical models per
forecast system. The forecast systems differ in terms of how they are fit and the data sets used for
training. A description of each statistical forecast systems is provided below and summarized in Table
2.

In the description below, n and s denote the temporal and spatial indices, where n = 1,..., N and
s = 1,...,S. In addition, let ¥, denote the target variable, z, denotes the Nino3.4 index, and X,
denotes the predictors for p = 1,..., P.

2.4.1. Benchmark
ENSO is the greatest contributor to seasonal predictability over the US, and hence it is anticipated to be
a strong contributor to sub-seasonal predictability (National Academy of Sciences, 2016). Accordingly,
we construct a benchmark forecast where 2-week average surface winter temperature anomalies are
predicted at each grid-point from the 2-week lagged Nino3.4 index, a commonly used measure of ENSO
variability. The Nino3.4 index is the spatial average of sea surface temperature anomalies between
5°S-5°N over longitudes 120-170°W.

The prediction based on Nino3.4 index is a linear regression model, where the regression coefficients
Bs = (Bo,s. B1,s) are obtained by minimizing the cost function

N
ANino3.4 - 2
= arg min E Y.s — Bo.s — Bi.sz . 1
s g B {n=1 ( ns 0,s 1,s n) } ( )

Note that the regression coefficients are chosen to minimize the prediction error at each spatial location
separately. These regression models are fit using a leave-one-out approach, such that the regression
coefficients By s and B s for a given winter are estimated from all other winters.

2.4.2. Lasso

The performance of the benchmark models will be compared to predictions made by a suite of statistical
models based on Least Absolute Shrinkage and Selection Operator (lasso). The different lasso models
have the same set of target and predictor variables. That is, the target variables are 2-week mean surface
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temperatures anomalies and the predictors are large scale SST anomalies in the Pacific and Atlantic
Oceans, which are represented by 50 laplacian time series for each basin, giving a total of 100 SST
predictors. We estimate the lasso coefficients by either minimizing the cost function locally or across
all grid-points. This distinction between lasso and OLS is discussed in more detail below.

Lasso is similar to OLS, except that the mean square error is minimized subject to a constraint on
the norm of the regression coefficients (Tibshirani, 1996). More precisely, the lasso coefficients 5,
are obtained by minimizing the cost function

N 2

P P
psingle-task : 1
o B = arg min g 55 Z Yos — Bo,s — ’; XnpBps| +4 [; |ﬁP>S

n=1

) 2

where | - | denotes the absolute value and A is a tuning parameter that determines the strength of the
penalty term. As A is increased, the lasso coefficients are shrunk toward zero. Conversely, as A goes to
zero, the penalty term has less weight and the cost function approaches the traditional OLS form.

There is no closed form solution to equation 2 and the minimization problem must be solved iter-
atively. We use the glmnet package to find lasso solutions as A is varied (Friedman et al., 2010).
Examples of how A is selected for different lasso models are provided in Section 2.4.3.

The above formulation predicts each target variable separately. We call this formulation “single-
task” lasso. We derive two single-task lasso models: one trained on observations and one trained on
CMIP6 data. These lasso models are called OBS-single-task and CMIP6-single-task, respectively.

Temperature fields are spatially correlated, so making use of information between neighboring grid
points during the training stage may yield a better prediction model. One approach to doing this is
“multi-task lasso”, which was used by Hwang et al. (2019). The cost function for multi-task lasso is

3)

S
s=1

2
N P P S
PO 1
multi-task __ : _ _ 2
B =arg mﬁln N § § Yus — Bo.s ;:1 XnpBp,s| +4 ];:l ;:1‘ Bp,s

s n=1

In multi-task lasso, squared errors are summed over all targets and the penalty term now applies to the
whole group of predictors and a given predictor is either included in the statistical model for all targets,
or excluded for all targets.

We selected lasso regression because it has a good track record of producing models with out-
of-sample skill, and because it sets some regression coefficients identically to zero, thus performing
predictor selection and aiding in the interpretability of the statistical models.

2.4.3. Selecting the lasso Tuning Parameter

For lasso models trained on observations, the first 18 years (1982-1999) of observational data are used
to fit the regression model and select A using a 10-fold cross-validation. When CMIP6 data are used
for training, the A selected minimizes the Normalized Mean-Square-Error (NMSE) with respect to the
same 18 years of observations; namely 1982-1999. A summary of how the statistical models are trained
and tuning parameter A selected is presented in Table 2.

To illustrate the A selection process, figs. 4a-c. show curves of NMSE versus A at three different loca-
tions for predictions made by the CMIP6-single-task model. The regression coefficients are estimated
from CMIP6 simulations, yielding S5(1), then, based on these coefficients, NMSE (1) is evaluated at
each location s using observations for predictors and target variable. The A that minimizes NMSE is
denoted by a red asterisk. Two extremes cases are shown in figs. 4a and c, where the A that minimizes
NMSE is small (near zero) and large, respectively. For the case where A ~ 0 (fig. 4a), the cost function
approaches the traditional OLS form and all the predictors are included. Alternatively, when A is large
(fig. 4c), the regression coefficients are set to zero. The NMSE-A curve shown in fig. 4b represents an
intermediate scenario, where only some regression coefficients are set to zero.
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2.5. Skill Metrics
Statistical model performance will be evaluated in terms of temporal correlation, spatial correlation and
Mean Square Error (MSE), (Coelho et al., 2019; Jolliffee and Stephenson, 2012).

Temporal correlation is estimated at each grid-point as:

T , ur 2
pls) = = (P50 V(s D) o

JEL Frs.02) - (S, vi(s.02)
where F’(s,t) and V' (s, t) are the matched pairs of centered forecast and verification data at location s.
Spatial similarity in the predicted and observed spatial patterns will be measured using the anomaly
correlation or cosine similarity (Jolliffee and Stephenson, 2012). To avoid confusion, we will refer
to this metric as the spatial correlation. Note, this is the only metric used in evaluating the machine
learning forecast models of Hwang et al. (2019). Formally, the spatial correlation is

S F’ ) .V 3 2
e B e Vs 0P s

J(EL Fs02) - (55, vis.n?)
Note that this expression is similar in for to the standard correlation in the spatial domain, with the
exception that the spatial mean is not removed. Importantly, the spatial correlation can be computed for
each two-week period; i.e., it is a time series.
Forecast accuracy is often measured by MSE and is formally expressed as:

T ’ R 744 2
M) = S F D =V .07 ©

A standard approach is to compare MSE to some reference forecast (Fr), typically the climatological
mean corresponding to Fref(s) = 0, which yields the NMSE(s)

= (F/(s,1) = V'(5,1)) o
S (V/(51)?
A forecast with NMSE > 1 has no skill, since its MSE is greater than that of the reference forecast. The

NMSE can be decomposed into its constituent parts when expressed as the Mean-Square-Error Skill
Score (MSESS). Following Murphy (1988), MSESS can be expanded as follows:

NMSE(s) =

o (s) )2 (F'(s> ~V'(s) )2 ®
oy (s) oy (s) ’
where p(s) is the temporal correlation (see eqn. 4), and o (s) and oy~ (s) are the standard deviations
for the forecast and verfication anomalies at location s, respectively. The first term on the far righthand
side is the square of the temporal correlation (p(s)?) and gives the maximum value of MSESSs. The
next two terms reduce the skill score and represent the amplitude and the mean biases, respectively. For
this study, the forecast and verification data are centered, consequently the mean bias term is zero. We
perform a decomposition of MSESS to evaluate the trade-off between correlation and amplitude bias
impacts on statistical model performance.

The above measures are either time dependent or spatially dependent. To identify a single best
forecast, we use either the average NMSE

MSESS(s) = 1 = NMSE(s) = p(s)* - (p(s) -

S SN (F(s,8) = V(s,1))?

S vN 2
s=1 2= V(1)

[NMSE] = ©))

or the spatial average temporal correlation

o] Sy P(5)

The averaging procedure in eqn. 9 is standard practice and follows that of Wilks (2011).

(10)
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2.6. Statistical Significance of Metrics

The data in our study are serially correlated, so standard methods of estimating uncertainty and statisti-
cal significance for performance metrics are not applicable. Accordingly, resampling methods are used
to evaluate the uncertainty and statistical significance of the performance metrics. Details are given in
appendix A.

3. Results

3.1. Statistical Model Selection

First, we evaluate the overall performance of the statistical models in terms of the spatially averaged
NMSE and correlation coefficient to help isolate the best performing statistical models. The confidence
intervals of the two metrics are represented by the vertical bars in figs. 5a and b, where the bars capture
the fluctuations of each metric when different segments of the observations are used in statistical model
evaluation. Confidence intervals are computed as described in sec. A.1.

Referring to fig. 5a, we see that the confidence intervals for the spatial averaged NMSE is near
or above 1 for all candidate models. This illustrates the challenge of sub-seasonal forecasting: spatial
average measures of local skill tend to be indistinguishable from values expected from no-skill models.
Overall, the statistical models trained on CMIP6 data have lower NMSE than statistical models trained
on observations, including the benchmark Nino3.4 model. In particular, the spatially averaged temporal
correlation shown in fig. 5b, is low and generally negative for the statistical models trained using obser-
vation data. Only the CMIP6-single-task model consistently produces forecasts that are characterized
by a positive spatially averaged temporal correlation. This result shows that training statistical models
on dynamical model simulations can yield better forecasts than models trained on observations only.
The OBS-multi-task model shows no improvement over the OBS-single-task. Differences in skill for
the two best performing statistical models, namely CMIP6- and OBS-single-task models, are compared
in terms of MSESS and its decomposition (see eqn. 8) in sec. 3.3.

3.2. Training Set Size and Statistical Model Performance

A plausible explanation for why statistical models trained on CMIP6 simulations predict observations
better than observation-trained models is that the size of the training data is much larger in the former
than in the latter. To test this hypothesis, we re-train the CMIP6-single-task model using a training data
set that varies in length from 50 to 3000 years and evaluate model performance with respect to spatially
averaged NMSE for the verification period 2000-2018. For instance, if the length of the training set is
specified to be 50 years, a training set of that length is found by sampling CMIP6 data with replacement,
where each year is a set of consecutive 2-week forecasts for the target months December-February.
The process of selecting a training set, model re-training, and evaluation is repeated 60 times for each
specified training set size. The range of uncertainty is reported as the 5/7-95"" percentiles of the 60
estimates of spatially averaged NMSE for each sample size and shown as the vertical bars in fig. 6.
The threshold for a skillful forecast is denoted by the horizontal black line which shows a NMSE of
1. When the training set size is 50 years, which is more than double the number of years available for
training with observations, the CMIP6-single-task model has no skill. As the sample size is increased
up to 3000 years, the spatially averaged NMSE systematically drops, yielding reliably skillful forecasts
(NMSE <1) when the training set size is 2000 years or greater. These results are consistent with those
of DelSole and Banerjee (2017), who perform a similar sensitivity analysis on training set size.

3.3. Statistical Model Comparison
The map of MSESS estimates from the CMIP6-single-task model, shown in fig. 7a, is characterized
by regions of positive values along the west-coast, from northern California up through Washington
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and extending eastward into Idaho. Forecasts in the continental interior are characterized by nega-
tive MSESS. In contrast, we see MSESS values for the OBS-single-task model, shown in fig. 7d, are
negative over much of forecast region.

To diagnose the sources of these errors, we decompose the MSESS according to eqn. 8 into contri-
butions from the squared temporal correlation coefficient and amplitude bias. To aid in interpretation,
all subsequent analyses are based on the square-root of these two terms. Recall that since the forecasts
and verification data are centered, the mean bias term is zero. Maps of the temporal correlation for
the CMIP6-single-task and OBS-single-task models are shown in fig. 7b and e, respectively. For the
CMIP6-single-task predictions, positive correlations are found over much of the western US, with the
largest correlations along the west-coast, and weaker and sometimes negative correlation in the con-
tinental interior. These regions of positive correlation determine the positive MSESS values along the
west coast shown in fig. 7a. Positive temporal correlation coefficients recovered from OBS-single-task
model are similarly concentrated in the pacific northwest. However, the OBS-single-task model have
large areas of negative correlations in the southern portions of the forecast region. The positive cor-
relations estimated for the OBS-single-task model correspond to regions of near zero MSESS values
shown in fig. 7d. For both set of statistical models, the contributions of temporal correlation to forecast
skill are reduced by the amplitude bias, shown in fig. 7c and f. This analysis indicates that both statis-
tical forecast systems underestimate the amplitude of the predicted temperature anomalies. However,
this amplitude bias is markedly larger for predictions made by the OBS-single-task model.

Since the upper bound of the MSESS is determined by the temporal correlation, we quantify statis-
tical significance of this metric as discussed in Section A.2. The percentage of grid-point forecasts that
predict the correct sign of temperature anomalies and the corresponding p-values are listed in the title
of figure 7b and e. For CMIP6-single-task, 78% of the grid-points are characterized by positive correla-
tion, which has a p-value of 0.021(i.e., it is field significant). In contrast, the OBS-single-task model has
positive correlations only over 59% of the grid points, which has p-value 0.26 (i.e., not field significant).

The maps of temporal correlation indicate that forecasts produced by statistical models trained on
CMIP6 data are generally skillful over large portions of the western US. This metric says nothing about
how well the model performs for any given 2-week average. Figure 8a and b shows the distribution
of the spatial correlation as a function of time for the CMIP6-single-task and OBS-single-task models,
respectively. For a given winter, the vertical bar represents the 25th-75th percentile of the spatial corre-
lation and the black asterisk gives the median value. The number of forecasts for a given winter varies
between 90 and 91, depending upon leap year. The number listed next to each median gives the percent-
age of forecasts that predict the correctly signed temperature anomalies. We can assess the significance
of the spatial correlation scores by counting the winters within which the number of positive scores
exceeds the negative scores. This count is the total number of skillful forecast winters. Under the null
hypothesis of no skill, the forecast has equal chances of producing positive or negative scores and the
count of skillful winters should follow a binomial distribution with p = 0.5. Although forecasts within
a winter are serially correlated, forecasts between winters are assumed independent and therefore the
binomial distribution can be applied to the count of skillful winters. The CMIP6-single-task model pro-
duces forecasts where 14 of the 19 forecast winters predict the correctly signed temperature anomalies,
while 13 of the 19 winter forecasts produce correctly signed anomalies in the OBS-single-task model.
The overall skill of the CMIP6-single task and OBS-single-task models in predicting the spatial pat-
tern of temperature anomalies is indistinguishable from a no-skill forecast for both statistical models.
These results suggests that while CMIP6-single-task model performs well overall in terms of individual
grid points, the individual statistical forecast models do not consistently predict the large-scale pattern
of temperature anomalies. The study by Hwang et al. (2019), where forecasts are evaluated only with
respect to spatial correlation, also found statistical prediction are characterized by a wide range in spa-
tial correlation scores. It is worth pointing out that the performance of the statistical forecast system
derived in Hwang et al. (2019), cannot be directly compared with the statistical model evaluated here,
because the statistical models are trained on different datasets, target a different range of dates, and use
a slightly different metric.
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In terms of aggregate metrics, the CMIP6-single-task model provides the most skillful forecasts.
Here we examine a pair of high- and low- skill forecasts made by this statistical forecast system. The
high skill forecast, shown in fig. 10b, tends to capture the overall spatial structure of the observed
temperature anomalies shown fig. 10a. Notably, the amplitude of the predicted anomalies are reduced
compared to observations. Consistent with analysis presented in fig. 7, the forecast is skillful in terms of
predicting the correct sign of temperature anomalies, but underestimates their amplitude. The low skill
forecast, shown in fig. 10d, similarly predicts temperature anomalies that vary with latitude. However,
the sign of the anomalies is completely opposite of the observed temperature anomalies shown in fig.
10c. Notably, the individual CMIP6-single-task models are capturing coherent patterns, which may
suggest a common forcing mechanism is driving predictable variations over the target region.

3.4. Predictor Selection

Lastly, we examine differences in the frequency of predictor selection between the CMIP6-single-task
and OBS-single-task-models. Lasso assigns zero values to selected regression coefficients, clearly indi-
cating that the associated predictor is less important than the other predictors with non-zero coefficients.
Thus, we can use non-zero coefficients as a kind of predictor selection. Since lasso is fitted at each grid
point, we can collect statistics of predictor selection across grid points. The frequency with which each
predictor is selected using CMIP6 and observational training data is shown in fig. 9. Regardless of the
forecast model, no predictor is selected across all grid-points. That said, a notable distinction between
figs. 9a and b, is the larger percentage of predictor selection for lasso models fit using CMIP6 data.
Generally, laplacians time series from the Pacific are selected by a large percentage of the individual
CMIP6-single-task models. In contrast, the OBS-single-task model shows less agreement in predic-
tor selection across location. The robust selection of key predictors for the CMIP6-trained models can
likely be attributed to improved estimates of regression coefficients given the vast amount of data used
in statistical model training.

4. Conclusion

This paper derives statistical models for predicting wintertime sub-seasonal temperature over the west-
ern US. Our goal was to show that statistical models trained on dynamical model data can be skillful,
thereby demonstrating that dynamical models provide information relevant to sub-seasonal prediction.
As a reference benchmark, we use simple linear regression to predict 2-week mean temperature at each
grid point based on the Nino3.4 index. This benchmark is compared to models with tens more pre-
dictors derived from lasso. The lasso coefficients are estimated in two different ways, namely under a
single-task or multi-task formulation. In all cases, the forecasts are validated on observational data that
was excluded from the statistical model construction.

With respect to spatial averages of NMSE and temporal correlation, the statistical models trained
on CMIP6 data are more skillful than statistical models trained on observation data. Performance of
the most skillful statistical model, CMIP6-single-task, is characterized by a spatially averaged NMSE
<1 and a regionally average temporal correlation that is positive. This is not the case for the OBS-
single-task model, a similarly configured set of statistical models trained on observation data, where the
spatially averaged NMSE is greater than 1 and the spatially averaged temporal correlation is negative. A
direct comparison of the MSESS between the CMIP6-single-task and OBS-single-task models, shows
a greater portion of the forecast region with positive MSESS values for the CMIP6-single-task model.
The MSESS for OBS-single-task is characterized by mostly negative values. The positive MSESS iden-
tified for the CMIP6-single-task model can be attributed to the statistical model’s ability to correctly
predict the sign of the temperature anomalies (i.e., positive and field significant temporal correlation
coefficients) for large portions of the western US. In contrast, the OBS-single-task model skill in pre-
dicting the correct sign of the temperature anomalies is largely limited to the pacific Northwest. The
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greatest source of error between the two statistical models is the amplitude bias, where forecasts from
the OBS-single-task model are characterized by negative amplitude bias over the much of the target
region, which in turn, accounts for negative MSESS values. We demonstrate that size of the training set
impacts skill of the statistical models and conclude from this that the increase in sample size from using
simulated data more than compensates for the limitations due to imperfections in dynamical models.
These results are encouraging and suggest that skill of statistical sub-seasonal prediction models can
be further improved by using both dynamical model simulations and observations in statistical model
training. Presumably, the best statistical models are those that combine both dynamical model simula-
tions and observational data. Such approaches are part of an active field of research in transfer learning
(Zhuang et al., 2021).

In general, the single-task models performed better than multi-task models, when evaluated in terms
of spatial averages of NMSE and temporal correlation. Even still, the skill of the single-task models
is nearly indistinguishable from no skill, with regards to these two performance metrics. This low
skill on a local basis does not necessarily mean there is no significant skill for large-scale patterns.
Notably, the individual CMIP6-single-task models predict coherent large-scale temperature anomalies
over the target region. This suggests that statistical model skill might be further improved by isolating
predictable large-scale patterns. In future work, we develop a statistical technique that is able to identify
predictable large-scale patterns despite the limited local predictability.
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A. Statistical Significance of Metrics

This appendix describes our methods for quantifying uncertainty in the skill metrics.

A.l. Uncertainty of Spatial Averaged Metrics
To quantify uncertainty of forecasts trained on CMIP6 data, we do not re-estimate the regression coefficients because these are
very robust due to the large training set. However, the regression coefficients depend on A. To quantify uncertainty associated
with A, we randomly select 18 distinct years from the observational record, use the corresponding matched-pairs of target and
predictors to determine A (see sec. 2.4.3), and then use the remaining 19-year record of observation data to evaluate the perfor-
mance of the CMIP-single and -multi-task models. To preserve the serial correlation in the data, the paired target and predictors
are sampled such that all sequential data for a given winter are drawn simultaneously. This process is repeated 1000 times to
build up distributions of the spatially averaged NMSE and temporal correlation. The uncertainty is given as the 5°/* and 95"
percentiles of these distributions.

For forecasts trained on observations, both A and the regression coefficients have uncertainties that need to be quantified. To
do this, a bootstrap sample of 18 distinct years from the observational record is used to train the statistical models and select 1
through 10-fold cross-validation. The remaining 19 years of paired target variables and predictors are then used to evaluate the
newly trained models. As before, the serial correlation in the data is preserved by selecting all sequential data for a given winter.
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This process is repeated 1000 times for the OBS-single-task model to build distributions of the performance metrics. We use
only 100 permutations for the OBS-multi-task because of the excessive computational requirements needed for the re-training
and evaluation. The uncertainty is given as the 57 and 957 percentiles of these distributions.

Lastly, to estimate uncertainties for the benchmark Nino3.4 statistical model, we randomly select 37 years of paired forecasts
and verification data and estimate the performance metrics for the bootstrapped samples. Again, we preserve serial correlation
by selecting sequential data for each winter. This process is repeated 1000 times to build up distributions of the two metrics. The
uncertainty for each metric is given as the 5°"* and 95" percentiles of the respective distributions.

A.2. Statistical Significance of Similarity Metrics

To quantify uncertainty in the grid-point estimate temporal correlation (eqn. 4) we use a permutation method (DelSole et al.,
2017). Under the null hypothesis of no predictability, the forecasts and observations are independent. Thus, a permutation sample
can be derived by separately permuting the year labels for forecast and observed data. The permutation sample preserves the
mean and variance of the forecast and observations, but temporally misaligns the forecast-observation pairing. For this particular
problem the data are permuted for winter forecasts targeting the months December-February. We permute the winter forecasts and
verification data 5000 times to create 5000 realizations of correlation maps from the null hypothesis of no skill (or more precisely,
the null hypothesis of exchangeability). The temporal correlation between the local forecast and verification is computed for each
grid point separately and statistical significance is assessed locally by comparing the correlation value to the local 95" percentile
from the permutation sample. In addition, the field significance is assessed based on the counts of positive correlations. Negative
correlations are not considered skillful and therefore not included in the count. This process is repeated 10,000. The resulting
cumulative distribution function is then used to determine the local p-value of the number of positive correlations.
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Table 1. List of CMIP6 models with pre-industrial control runs analyzed in this study. Models were selected if daily data was
available.

CMIP6 1.D. Experiment Label Number of years

AWI-CM-1-1-MR rlilplfl-gn AWI 499
CNRM-CM6-1 rlilplfl-gr CNRM-CM6 499
CNRM-ESM2-1 rlilplfl-gr CNRM-CM6 499
CanESM5 rlilplfl-gn CanESM5 799
EC-Earth3 rlilplfl-gr EC 500
EC-Earth3 -Veg rlilplfl-gr EC-Veg 499
GFDL-CM4 rlilplfl-grl  GFDL-CM4 499
GFDL-ESM4 rlilplfl-grl GFDL-ESM4 499
HadGEM3-GC31-LL rlilplfl-gn HadGEM3 499
IPSL-CM6A-LR rlilplfl-gr IPSL 499
MRI-ESM2 rlilplfl-gn MRI 199
NorEMS2-LM rlilplfl-gn NorESM2 300

UKESM1-0-LL rlilplf2-gn UKESM2 1099
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Table 2. Summary of Statistical Forecast Models

Statistical Model Name B estimation A selection
Nino3.4 (benchmark)  OLS: observation using leave-one-out (37 years) N/A
OBS-single-task Lasso: observations (18 years) 10-fold cross-validation
OBS-multi-task Lasso: observations (18 years) 10-fold cross-validation
CMIP6-single-task Lasso: CMIP6 (6889 years) observations (18 years)
CMIP6-multi-task Lasso: CMIP6 (6889 years) observations (18 years)

Forecast Region

120" wy 110° W 100 W

Figure 1. Map of the forecast target region. Each red dot denotes a forecast location on a 1x1 degree
grid.

Predictor Location

2

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2. Map depicting predictor locations. Black and blue denote the domains of the Pacific and
Atlantic basins, respectively. Large-scale variations in both basins are represented by the leading 50
Laplacian eigenvectors.
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Figure 3. The 2" (a) and 37 (b) eigenvectors of the Laplacian operator for the Pacific basin.
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Figure 4. NMSE versus A for forecasts locations (a) Yakima, Washington, (b) Austin, Texas, and (c)

Colorado Springs, Colorado. The NMSE curves are estimated from predictions made with the
CMIP6-single-task model and validated with respect to observations for winters (DJF) during
1982-1999. A red asterisk denotes the A that minimizes the NMSE.
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Figure 5. Spatial averages of the (a) NMSE and (b) temporal correlation. The horizontal black line
denotes a NMSE of 1 in (a) and the zero correlation in (b). Five statistical models are compared: the
benchmark Nino3.4 regression model, two observation-trained and two CMIP6-trained lasso models.

The vertical black bars denote the 95% confidence intervals obtained from the bootstrap method
applied to observation data in the period 1982-2018. The precise bootstrap method varies across
statistical models (see appendix for details).
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this data set, then verifying the lasso model on observed winter (DJF) temperatures for the period
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Figure 7. Skill performance of CMIP6 single-task (top row) and OBS-single-task (bottom row)
forecasts, using MSESS (first column) and its decomposition into temporal correlation (middle column)
and amplitude bias (last column). Each metric is evaluated with respect to observed and forecast winter

(DJF) temperature anomalies for the period 2000-2018. The percentage of forecasts that positively
correlate with verification data is listed in parentheses. Statistical significance of the correlation maps
is estimated with respect to the procedure discussed in the appendix, with the corresponding p-value
listed in the title. The + sign denotes grid-points where the correlation is locally significant.
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and (b) OBS-single-task models. The horizontal black line denotes the 60% selection level.
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Figure 10. Observed 2-week average temperature anomalies (left) and CMIP6-single-task forecasts
(right) for a high-skill event on January 8"-215" 2010 (top) and low-skill event on January 11'"-24'h
2014 (bottom).
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