
Massively Parallel Algorithms for Small Subgraph
Counting
Amartya Shankha Biswas #

CSAIL, MIT, Cambridge, MA, USA

Talya Eden #

CSAIL, MIT, Cambridge MA, USA
Boston University, MA, USA

Quanquan C. Liu #

Northwestern University, Evanston, IL, USA

Ronitt Rubinfeld #

CSAIL, MIT, Cambridge, MA, USA

Slobodan Mitrović #

University of California Davis, CA, USA

Abstract
Over the last two decades, frameworks for distributed-memory parallel computation, such as
MapReduce, Hadoop, Spark and Dryad, have gained significant popularity with the growing
prevalence of large network datasets. The Massively Parallel Computation (MPC) model is the de-
facto standard for studying graph algorithms in these frameworks theoretically. Subgraph counting
is one such fundamental problem in analyzing massive graphs, with the main algorithmic challenges
centering on designing methods which are both scalable and accurate.

Given a graph G = (V, E) with n vertices, m edges and T triangles, our first result is an
algorithm that outputs a (1 + ε)-approximation to T , with asymptotically optimal round and total
space complexity provided any S ≥ max (

√
m, n2/m) space per machine and assuming T = Ω(

√
m/n).

Our result gives a quadratic improvement on the bound on T over previous works. We also provide
a simple extension of our result to counting any subgraph of k size for constant k ≥ 1. Our second
result is an Oδ(log log n)-round algorithm for exactly counting the number of triangles, whose total
space usage is parametrized by the arboricity α of the input graph. We extend this result to exactly
counting k-cliques for any constant k. Finally, we prove that a recent result of Bera, Pashanasangi
and Seshadhri (ITCS 2020) for exactly counting all subgraphs of size at most 5 can be implemented
in the MPC model in Õδ(

√
log n) rounds, O(nδ) space per machine and O(mα3) total space.

In addition to our theoretical results, we simulate our triangle counting algorithms in real-world
graphs obtained from the Stanford Network Analysis Project (SNAP) database. Our results show
that both our approximate and exact counting algorithms exhibit improvements in terms of round
complexity and approximation ratio, respectively, compared to two previous widely used algorithms
for these problems.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Computing
methodologies → Massively parallel algorithms

Keywords and phrases triangle counting, massively parallel computation, clique counting, approx-
imation algorithms, subgraph counting

Digital Object Identifier 10.4230/LIPIcs.APPROX/RANDOM.2022.39

Category APPROX

Related Version Full Version: https://arxiv.org/abs/2002.08299

Funding Slobodan Mitrović : S. Mitrović was supported by the Swiss NSF grant No. P400P2_191122/1
and FinTech@CSAIL.

© Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Ronitt Rubinfeld, and Slobodan Mitrović;
licensed under Creative Commons License CC-BY 4.0

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2022).
Editors: Amit Chakrabarti and Chaitanya Swamy; Article No. 39; pp. 39:1–39:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:asbiswas@mit.edu
mailto:teden@mit.edu
mailto:quanquan@northwestern.edu
mailto:ronitt@csail.mit.edu
mailto:smitrovic@ucdavis.edu
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.39
https://arxiv.org/abs/2002.08299
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 Massively Parallel Algorithms for Small Subgraph Counting

1 Introduction

Estimating the number of small subgraphs, cliques in particular, is a fundamental problem
in computer science, and has been extensively studied both theoretically and from an applied
perspective. Given its importance, the task of counting subgraphs has been explored in various
computational settings, e.g., sequential [7, 91, 28], distributed and parallel [89, 78, 68, 80, 72],
streaming [16, 66, 24, 76], and sublinear-time [44, 5, 13, 45]. There are usually two perspectives
from which subgraph counting is studied: first, optimizing the running time (especially
relevant in the sequential and sublinear-time settings) and, second, optimizing the space or
query requirement (relevant in the streaming, parallel, and distributed settings). In each
of these perspectives, there are two, somewhat orthogonal, directions that one can take.
The first is exact counting. However, in most scenarios, algorithms that perform exact
counting are prohibitive, e.g., they require too much space or too many parallel rounds to be
implementable in practice.

Hence, the second direction of obtaining an estimate/approximation on the number of
small subgraphs is both an interesting theoretical problem and of practical importance.
If H# is the number of subgraphs isomorphic to H, the main question in approximate
counting is whether we can design algorithms that, under given resource constraints, provide
approximations that concentrate well. This concentration is usually parametrized by H#
(and potentially some other parameters). In particular, most known results do not provide a
strong approximation guarantee when H# is very small, e.g., |H#| = O(1). So, the main
attempts in this line of work is to provide an estimation that concentrates well while imposing
as small a lower bound on H# as possible.

Due to ever increasing sizes of data stores, there has been an increasing interest in designing
scalable algorithms. The Massively Parallel Computation (MPC) model is a theoretical
abstraction of popular frameworks for large-scale computation such as MapReduce [41],
Hadoop [93], Spark [95] and Dryad [62]. MPC gained significant interest recently, most
prominently in building algorithmic toolkits for graph processing [57, 74, 17, 8, 18, 59, 4, 83,
61, 38, 11, 12, 51, 58, 30, 14, 29, 21, 19, 23, 9, 15, 53, 50, 55, 71, 63, 34, 52, 54]. Efficiency of
an algorithm in MPC is characterized by three parameters: round complexity, the space per
machine in the system, and the number of machines/total memory used. Our work aims to
design efficient algorithms with respect to all three parameters and is guided by the following
question:

How does one design efficient massively parallel algorithms for small subgraph counting?

1.1 The MPC Model
In this paper, we are working in the Massively Parallel Computation (MPC) model introduced
by [67, 57, 17]. The model operates as follows. There exist M machines that communicate
with each other in synchronous rounds. The graph input is initially distributed across
the machines in some organized way such that machines know how to access the relevant
information via communication with other machines. During each round, the machines first
perform computation locally without communicating with other machines. The computation
done locally can be unbounded (although the machines have limited space so any reasonable
program will not do an absurdly large amount of computation). At the end of the round,
the machines exchange messages to inform the computation for the next round. The total
size of all messages that can be received by a machine is upper bounded by the size of its
local memory, and each machine outputs messages of sufficiently small size that can fit into

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:3

its memory. If N is the total size of the data and each machine has S words of space, we are
interested in the settings when S is sublinear in N . We use total space to refer to M · S,
which is the total space that is available across all the machines.

1.2 Our Contributions

Table 1 Summary of our main MPC triangle counting results compared to previous work. Our
results are bolded. “ALB” refers to the approximation lower bound on the number of triangles
required to obtain a (1 + ε)-approximation, with high probability. α is the arboricity of the input
graph and is generally small (logarithmic) in real-world networks. Parameter δ > 0 is any constant.

Problem Work MPC Rounds Space Per Machine Total Space ALB

Exact
Triangle
Counting

[89]
[89]
[36]

folklore
Ours

2
1

O(n)
O(log n)

Oδ(log log n)

O(
√

m)
o(m)
O(n)
Ω(α2)
O(nδ)

O(m3/2)
ω(m)
O(m)

O(mα)
O(mα)

-
-
-
-
-

Approximate
Triangle
Counting

[78]
[85]

Ours

O(1)
O(1)
O(1)

Ω(m)
O(nδ)
Õ(n)

O(m)
O(m)
Õ(m)

Ω(davg)
Ω

(∑
v∈V

deg(v)2)
Ω(

√
davg)

1.2.1 Triangle Counting
We provide a number of results for triangle counting in both the approximate and exact
settings. Let G = (V, E) be a graph with n vertices, m edges and T triangles. First we study
the question of approximately counting the number of triangles under the restriction that
the round and total space complexities are essentially optimal, i.e., O(1) and Õ(m), where Õ

hides O(poly log n) factors, respectively. Here and throughout, we use Oδ and Oε to hide
factors of δ and ε, respectively, where we consider constant factors of δ, ε > 0 in this paper.

Our algorithm is surprisingly simple with a more complicated analysis, but improves on
the previous best-known result by giving a (1 + ε)-approximation, with high probability,
while achieving a quadratic improvement on the number of triangles required to ensure this
approximation. The specific bounds are given in Table 1.

▶ Theorem 1. Let G = (V, E) be a graph with n vertices, m edges, and let T be the number
of triangles in G. Assuming

(i) T = Ω̃
(√

m
S

)
, (ii) S = Ω̃

(
max

{ √
m
ε , n2

m

})
,

there exists an MPC algorithm, using M machines, each with local space S, and total
space MS = Õε(m), that outputs a (1± ε)-approximation of T , with high probability, in O(1)
rounds.

For S = Θ(n log n) (specifically, S > 100n log n) in Theorem 1, we derive the following
corollary.

▶ Corollary 2. Let G be a graph and T be the number of triangles it contains. If T ≥
√

davg,
then there exists an MPC algorithm that in O(1) rounds with high probability outputs a
(1 + ε)-approximation of T . This algorithm uses a total space of Õ(m) and space Õ(n) per
machine. davg is the average degree of the vertices in the graph.

APPROX/RANDOM 2022

39:4 Massively Parallel Algorithms for Small Subgraph Counting

There is a long line of work on computing approximate triangle counting in parallel
computation [37, 90, 89, 94, 78, 69, 79, 85, 10, 80, 68, 64, 42] and references therein. Despite
this progress, and to the best of our knowledge, on one hand, each MPC algorithm for
exact triangle counting either requires strictly super-polynomial in m total space, or the
number of rounds is super-constant (as seen in Table 1). On the other hand, the best-known,
classic algorithm for approximate triangle counting by Pagh and Tsourakakis [78] requires
T ≥ davg even when the space per machine is Θ(n). We design an algorithm that has
essentially optimal total space and round complexity, while at least quadratically improving
the requirement on T .

Furthermore, since the amount of messages sent and received by each machine is bounded
by O(n), by [20], our algorithm directly implies an O(1)-rounds algorithm in the Congested-
Clique model1 under the same restriction T = Ω(

√
m/n). The best known (to our know-

ledge) triangle approximation algorithm for general graphs in this model, is an O(n1/3/T 2/3)-
rounds algorithm by [43]. The best-known previous bound only results in constant round
complexity when T = Ω(

√
n).

▶ Corollary 3. Given a graph G = (V, E) with T triangles, if T = Ω(
√

m/n), then there exists
a O(1)-rounds algorithm in the Congested-Clique model that gives a (1+ε)-approximation
of T with high probability.

The second question we consider is the question of exact counting, for which we present an
algorithm whose total space depends on the arboricity of the input graph. The arboricity of
a graph (roughly) equals the average degree of its densest subgraph. The class of graphs with
bounded arboricity includes many important graph families such as planar graphs, bounded
degree graphs and randomly generated preferential attachment graphs. In addition, many
real-world graphs exhibit bounded arboricity [56, 48, 87], making this property important
also in practical settings. For many problems, a bound on the arboricity of the graph allows
for much more efficient algorithms and/or better approximation ratios [6, 48].

Specifically for the task of subgraph counting, in a seminal paper, Chiba and Nishizeki [35]
prove that triangle enumeration can be performed in O(mα) time, and assuming 3SUM-
hardness this result is optimal up to dependencies in O(poly log n) [81, 70]. Many applied
algorithms also rely on the property of having bounded arboricity in order to achieve better
space and time bounds, e.g., [84, 36, 73]. Our main theorem with respect to this question is
the following.

▶ Theorem 4. Let G = (V, E) be a graph with n vertices, m edges and arboricity α. Count-
Triangles(G) takes Oδ (log log n) rounds, O

(
nδ

)
space per machine for any δ > 0, and

O (mα) total space.

It is interesting to note that our total space complexity matches the time complexity
(both upper and conditional lower bounds) of combinatorial2 triangle counting algorithms
in the sequential model [35, 81, 70]. The best-known previous algorithm in this setting is
the folklore algorithm of placing each vertex and its out-neighbors in the same machine and
counting the incident triangles. Such an approach requires O(log n) rounds and Ω(α2) space
per machine (summarized in Table 1). We prove the above theorem in Section 4.

1 A distributed model where nodes communicate with each other over a complete network using O(log n)
bit messages [75].

2 Combinatorial algorithms, usually, refer to algorithms that do not rely on fast matrix multiplication.

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:5

1.2.2 Clique Counting
All of our above triangle counting results can be extended to k-clique counting. In our full
paper [27], we prove that our exact triangle counting result can be extended to exactly
counting k-cliques for any constant k:

▶ Theorem 5. Let G = (V, E) be a graph with n vertices, m edges and arboricity α. Count-
Cliques(G) takes Oδ (log log n) rounds, O

(
nδ

)
space per machine for any δ > 0, and

O
(
mαk−2)

total space.

We can improve on the total space usage if we are given machines where the memory
for each individual machine satisfies α < nδ′/2 where δ′ < δ. In this case, we obtain an
algorithm that counts the number of k-cliques in G using O(nα2) total space and Oδ(log log n)
communication rounds.

Furthermore, our approximate triangle counting results can be extended to counting any
subgraph of size K where K is constant. Specifically, we obtain the following result:

▶ Theorem 6. Let G = (V, E) be a graph with n vertices, m edges, and let B be the number
of occurrences of a subgraph H with K vertices in G. If B ≥ d

K/2−1
avg , then there exists an

MPC algorithm that gives a (1 + ε)-approximation of B in O(1) rounds, total space Õ(m),
and Õ(n) space per machine, with high probability. Here, davg is the average degree of the
vertices in the graph.

1.3 Other Small Subgraphs
Finally, we consider the problem of exactly counting subgraphs of size at most 5, and show
that the recent result of Bera, Pashanasangi and Seshadhri [25] for this question in the
sequential model, can be implemented in the MPC model. Ours is the first result for counting
any arbitrary subgraph of size at most 5 in poly(log n) rounds in the MPC model. Here too,
our total space complexity matches the time complexity of the sequential model algorithm. It
is an interesting open question whether our results can be extended to more general subgraphs
following the results of [32, 26]. Section 6 summarizes the difficulties of implementing these
algorithms in the MPC model and we present this question as interesting future work.

▶ Theorem 7. Let G = (V, E) be a graph with n vertices, m edges, and arboricity α. The
algorithm of BPS for counting the number of occurrences of a subgraph H over k ≤ 5
vertices in G can be implemented in the MPC model in Oδ(

√
log n log log m) rounds, with

high probability. The space requirement per machine is O(n2δ) and the total space is O(mα3).

1.4 Related Work
There has been a long line of work on small subgraph counting in massive networks in
the MapReduce model whose results translate to the MPC model. We first describe the
works for exact triangle and k-clique counting. [89] first designed an algorithm for triangle
counting, but their approach requires a super-linear total space of O(m3/2). Another work,
[2], shows how to count small subgraphs by using b3 machines, each requiring O(m/b2)
space per machine. Hence, it uses a total space of O(mb). Therefore, this approach either
requires super-linear total space or almost O(m) space per machine. [89] were the first to
achieve constant number of rounds in MPC, where they design two algorithms. The first
of those algorithms, that runs in 2 rounds, requires O(

√
m) space per machine and total

space O(m3/2). Their second algorithm requires only one round for exact triangle counting,

APPROX/RANDOM 2022

39:6 Massively Parallel Algorithms for Small Subgraph Counting

total space O(ρm) and space per machine O(m/ρ2). Therefore, for this algorithm to work
with polynomially less than space m per machine, it has to allow for a total space that is
polynomially larger than m. [36] focus on algorithms that require a total space of O(m). In
the worst case, their algorithm performs O(|E|/S) MPC rounds to output the exact count
where S is the maximum space per machine. [49] extended and provided new algorithms for
clique counting but they also require Ω(m3/2) total space.

[90, 10] designed randomized algorithms for approximate triangle counting also in the
MapReduce model (whose results, again, can be translated rather straightforwardly to the
MPC model). Their approach first sparsifies the input graph by sampling a subset of edges,
and executes some of the known algorithms for triangle counting on the sampled subgraph.
Denoting their sampling probability by p, their approach outputs a (1 + ε)-approximate
triangle count with probability at most 1− 1/(ε2p3T). 3 To contrast this result with our
approach, consider a graph G where m = Θ(n2). Let G′ be the edge-sparsified graph as
explained above. To be able to execute the first algorithm of [89] on G′ such that the total
space requirement is O(m), one can verify that it is needed to set p = Θ(n−2/3). This in turn
implies that the result in [90, 10] outputs the correct approximation with constant probability
only if T = Ω(n2). An improved lower-bound can be obtained by using the second algorithm
of [89]. By balancing out ρ and p and for S = O(n), one can show that the sparsification
results in a constant probability of success for T = Ω(n). On the other hand, for S = O(n),
our approach obtains the same guarantee even when T = Θ(

√
davg(G)) = Θ(

√
n).

The best-known algorithm of [78] is a randomized algorithm for approximate triangle
counting based on graph partitioning. The graph is partitioned into 1/p pieces, where p is at
least the ratio of the maximum number of triangles sharing an edge and T . When all the
triangles share one edge, then p ≥ 1, and hence such an approach would require the space
per machine to be Ω(m). Furthermore, this approach requires the number of triangles to be
lower bounded by T = Ω (davg). Another more recent work of [85] uses wedge sampling and
provides a (1 + ε)-approximation of the triangle count in O(1) rounds when T is a constant
fraction of the sum of squares of degrees. The comparison of our bounds with these previous
results are summarized in Table 1.

Other related work. Subgraph counting (primarily triangles) was also extensively studied in
the streaming model, see [16, 66, 31, 65, 76, 24, 13] and references therein. This culminated
in a result that requires space Õ

(
m3/2/(Tε2)

)
to estimate the number of triangles within a

(1 + ε)-factor. In the semi-streaming setting it is assumed that one has Õ(n) space at their
disposal. This result fits in this regime for T ≥ m3/2/n = davg ·m1/2. As a reminder, our
MPC result requires T ≥

√
davg when S = Õ(n).

In a celebrated result, [7] designed an algorithm for triangle counting in the sequential
settings that runs in O(m2ω/(ω+1)) time, where ω is the best-known exponent of matrix
multiplication. Since then, several important works have extended this result to k-clique
counting [46, 91]. In the work-depth (shared-memory parallel processors) model, several
results are known for this problem. There has been significant work on practical parallel
algorithms for the case of triangle counting (e.g. [10, 89, 79, 80, 88] among others). There is
even an annual competition for parallel triangle counting algorithms [1]. For counting k = 4
and k = 5 cliques, efficient practical solutions have also been developed [3, 40, 47, 60, 82].
[39] recently implemented the Chiba-Nishizeki algorithm [35] for k-cliques in the parallel
setting; although, their work does not achieve polylogarithmic depth. Even more recently, [86]

3 The actual probability is even smaller and also depends on pairs of triangles that share an edge.

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:7

enumerated k-cliques in the work-depth model in O
(
mαk−2)

expected work and O
(

logk−2 n
)

depth with high probability, using O(m) space. Among other distinctions from our setting,
the work-depth model assumes a shared, common memory.

In the CONGESTED-CLIQUE model, [33] present an Õ(n1−2/ω) = Õ(n0.158) rounds
algorithm for matrix multiplication, implying the same complexity for exact triangle counting.
[43] present an algorithm for approximate triangle counting in general graphs whose expected
running time is O(n1/3/T 2/3). They also present an O(α2/n)-rounds algorithm for bounded
arboricity graphs.

2 Preliminaries

Counting Duplicates. We make use of interval trees for certain parts of our paper to count
the number of repeating elements in a sorted list, given bounded space per machine. We use
the interval tree implementation given by [57] to obtain our count duplicates algorithm in
the MPC model. We prove the following theorem in the MPC model regarding our count
duplicates tree implementation. The proofs of the following claims are given in our full
paper [27].

▶ Theorem 8. Given a sorted list of N elements implemented on processors where the space
per processor is S and the total space among all processors is O(N), for each unique element
in the list, we can compute the number of times it repeats in O (logS N) communication
rounds.

We also use the following two new MPC primitives in proving our bounds. These
primitives may be of use in other algorithms beyond the scope of our paper.

▶ Lemma 9. Given two sets of tuples Q and C (both of which may contain duplicates), for
each tuple q ∈ Q, we return whether q ∈ C in O(|Q ∪C|) total space and Oδ(1) rounds given
machines with space O(nδ) for any δ > 0.

▶ Lemma 10. Given a machine M that has space O(n2δ) for any δ > 0 and contains data
of O(nδ) words, we can generate x copies of M , each holding the same data as M , using
O(M · x) machines with O(nδ) space each in O(lognδ x) rounds.

3 Overview of Our Techniques

3.1 Exact Triangle Counting
Let G = (V, E) be a graph with n vertices, m edges and arboricity at most α. We tackle
the task of exactly counting the number of triangles in G in Oδ(log log n) rounds using the
following ideas. In each round i, we partition the vertices into low-degree vertices Ai and
high-degree vertices, according to a degree threshold γi, which grows doubly exponentially
in the number of rounds. We then count the number of triangles incident to the set of low
degree vertices Ai. Each low-degree vertex v ∈ Ai sends a list of its neighbors to all its
neighbors. Then, any neighbor u of v that detects a common neighbor w to u and v, adds
the triangle (u, v, w) to the list of discovered triangles.

Once all triangles incident to the vertices in Ai are processed, we remove this set from
the graph and continue with the now smaller graph. This removal of the already processed
vertices allows us to handle larger and larger degrees from step to step while using a total
space of O(mα). This behavior also leads to the Oδ(log log n) round complexity, as after

APPROX/RANDOM 2022

39:8 Massively Parallel Algorithms for Small Subgraph Counting

this many rounds all vertices are processed. The key insight in our proof that we maintain
O(mα) total space even when we increase the degree threshold doubly exponentially. Such
insight allows us to obtain our improved number of rounds while maintaining the same total
space as the previous folklore algorithm. Finally, we achieve improved space per machine to
O(nδ) for any constant δ > 0 via a number of new MPC primitives. Our algorithm and its
analysis are provided in Section 4.

3.2 Approximate Triangle Counting
Our work reduces approximate triangle counting to exact triangle counting in multiple
(randomly chosen) induced subgraphs of the original graph. In our work, and in contrast to
prior approaches (e.g., [78]), the induced sugraphs on different machines might overlap in
both vertices and edges. This enables us to obtain better concentration bounds compared to
prior work, but also brings many challenges. Surprisingly, our algorithm is very simple (with
a more complicated analysis), but is able to achieve a better lower bound on the number of
triangles required to achieve a (1 + ε)-approximation with high probability.

The high level idea is that each machine Mi samples a subset of vertices Vi by including
each vertex in Vi with probability p̂. Then, each machine computes the induced subgraph
G[Vi] and the number of triangles in that subgraph. The total number of triangles seen
across all the machines is used as an estimator. We repeat in parallel this sampling process
O(log n) times and return the median of the estimates. The main challenge this approach
raises is: How do we efficiently collect overlapping induced subgraphs? (Indeed, approximate
triangle counting, even when the number of triangles is O(1), can be reduced to counting the
number of edges in sparse induced subgraphs with the total size of subgraphs being Õ(m).)
We now describe how to handle this task in our case.

Computing induced overlapping subgraphs. It is unclear how to compute the induced
subgraph on each machine in O(1) rounds without exceeding the total allowed space of
Õ(m). This task becomes easier if the subgraphs are disjoint. For example, such an issue
is avoided when the graph is partitioned across machines as in the algorithm of Pagh and
Tsourakakis [78] since there is one copy of each vertex among all the machines. This is not
the case for our algorithm.

The trivial strategy of sampling vertices into the machines and querying for all possible
edges between any pair of two vertices takes total space at least

∑M
i=1 X2

i where Xi is the
number of vertices sampled to each machine i. In general, this approach requires much
larger than Õ(m) space. We tackle this challenge by using a globally known hash function
h : V × [M] → {0, 1}, to indicate whether vertex v is sampled in the ith machine. By
requiring that the hash function is known to all machines, we can efficiently compute which
edges to send to each machine, i.e., which edges belong to the subgraph G[Vi]. However, in
order for all machines to be able to compute the hash function, the hash function has to
use limited space. Hence, we cannot hope for a fully independent function, rather we can
only use an (S/ log n)-wise independent hash function. Still, we manage to show that we are
able to handle the dependencies introduced by the hash function, even if we allow as little as
O(log n)-independence.

3.3 Counting k-cliques and 5-subgraphs
We use similar techniques for both problems of exactly counting the number of k-cliques and
of exactly counting subgraphs up to size 5. Our final result is the first MPC algorithm for
counting any arbitrary subgraph H of size at most 5 in poly(log n) MPC rounds.

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:9

Let H denote the subgraph of interest. We say that a subgraph that can be mapped to a
subset of H of size i is a i-subcopy of H . Our main contribution in this section is a new MPC
procedure that in each round, tries to extend i-subcopies of H to (i + 1)-subcopies of H by
increasing the total space by a factor of at most α. This is possible by ordering the vertices
in H such that each vertex has at most O(α) outgoing neighbors so that in each iteration
only α possible extensions should be considered per each previously discovered subcopy.

Challenges. The major challenge we face here is dealing with finding and storing copies
of small (constant-sized) subgraphs in individual machines. This is a challenge due to the
fact that an entire neighborhood of a vertex v may not fit on one machine (recall that we
have no restrictions on how large the constant δ in O(nδ) machine size can be). Thus, we
cannot compute all such small subgraphs on one machine. However, if not done carefully,
computing small subgraphs across many machines could potentially result in many rounds of
computation (since we potentially have to try all combinations of vertices in a neighborhood).
We solve this issue by formulating a new MPC procedure (Lemma 10) in which we carefully
duplicate neighborhoods of vertices across machines. The detailed analysis of our algorithm
is given in our full paper [27].

4 Exact Triangle Counting in O(mα) Total Space

In this section we describe our algorithm for (exactly) counting the number of triangles in
graphs G = (V, E) of arboricity α and prove Theorem 4, restated here, in Appendix A.1. We
first provide an overview of our algorithm and its challenges.

▶ Theorem 11. Let G = (V, E) be a graph over n vertices, m edges and arboricity α.
Count-Triangles(G) takes Oδ (log log n) rounds, O

(
nδ

)
space per machine for some

constant 0 < δ < 1, and O (mα) total space.

Importantly, unlike previous methods, we do not need to assume knowledge of the
arboricity of the graph α as input into our algorithm. The arboricity only shows up in our
space bound as a property of the graph but we do not need to have knowledge of its value
as we run the algorithm. The folklore algorithm shown in Table 1 requires an assumption
of an upper bound on α since in order to achieve O(log n) rounds, we must count triangles
incident to and remove all vertices with degree less than or equal to 2α in each round. The
procedure gets stuck if we remove vertices with degree c where c < α in each round because
there exists an induced subgraph with degree at least α in a graph with arboricity α. One
can estimate the arboricity of the graph using O(log n) additional rounds or an O(log n)
additional factor in space. Our algorithm does not require this additional step.

In this section, we assume that individual machines have space Θ(nδ) where δ is some
constant 0 < δ < 1. Given this setting, there are several challenges associated with this
problem.

▶ Challenge 12. The entire subgraph neighborhood of a vertex may not fit on a single
machine. This means that all triangles incident to a particular vertex cannot be counted on
one machine. Even if we are considering vertices with degree at most α, it is possible that
α > nδ. Thus, we need to have a way to count triangles efficiently when the neighborhood of
a vertex is spread across multiple machines.

The second challenge is to avoid over-counting.

APPROX/RANDOM 2022

39:10 Massively Parallel Algorithms for Small Subgraph Counting

▶ Challenge 13. When counting triangles across different machines, over-counting the
triangles might occur, e.g., if two different machines count the same triangle. We need some
way to deal with duplicate counting of the triangles to obtain the exact count of the triangles.

We deal with the above challenges in our procedures below. We assume in our algorithm
that each vertex can access its neighbors in O(1) rounds of communication; such can be ensured
via standard MPC techniques. Let dQ(v) be the degree of v in the subgraph induced by vertex
set Q, i.e. in G[Q]. Our main algorithm consists of the following Count-Triangles(G)
procedure.

Algorithm 1 Count-Triangles(G = (V, E)).

1: Let Qi be the set of vertices not yet processed by iteration i. Initially set Q0 ← V .
2: Let T be the current count of triangles. Set T ← 0.
3: for i = 0 to i = ⌈log3/2(log2(n))⌉ do
4: γi ← 2(3/2)i .
5: Let Ai be the list of vertices v ∈ Qi where dQi

(v) ≤ γi. Set Qi+1 ← Qi \Ai.
6: parfor v ∈ Ai do
7: Retrieve the list of neighbors of v and denote it by Lv.
8: Send each of v’s neighbors a copy of Lv.
9: end parfor

10: parfor w ∈ Qi do
11: Let Lw =

⋃
v∈(N(w)∩Ai) Lv be the union of neighbor lists received by w.

12: Set T ← T + Find-Triangles(w,Lw). ▷ Algorithm 2
13: end parfor
14: Return T .

Round compression is a technique formulated by [77, 38] that randomly partitions the
vertices in a graph across machines where each machine then stores the induced subgraph
induced by the partition. Then, a problem (e.g. maximum matching) is solved locally in
each induced subgraph in each machine. The solutions in each machine allows one to remove
certain vertices, reducing the degree of the remaining graph. In each round compression
step, the maximum degree of the graph drops by a polynomial factor. This degree reduction
then allows for more aggressive sampling in the next round compression step. This leads to
O(log log ∆) round compression steps until the maximum degree is poly(log n); in this case,
the remaining graph can be placed on a single machine.

Our algorithm, although similar, is simpler than the round compression technique. We
do not require sampling since vertices are assigned to machines by degree, deterministically.
The crux of our argument is showing that allowing for total space in terms of the arboricity
α leads to a simpler and deterministic argument. Furthermore, for this specific problem, we
also do not need to place the induced subgraph on one machine. In the next section, we
show an implementation that allows us to operate in the sublinear space per machine regime.
We hope our algorithm and analysis will lead to other deterministic algorithms for bounded
arboricity graphs in sublinear space per machine and O(log log n) rounds.

4.1 MPC Implementation Details
In order to implement Count-Triangles(G) in the MPC model, we define our
Find-Triangles(w,L) procedure and provide additional details on sending and storing
neighbor lists across different machines. We define high-degree vertices to be the set of

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:11

vertices whose degree is > γ and low-degree vertices to be ones whose degree is ≤ γ (for some
γ defined in our algorithm). We now define the function Find-Triangles(w,L) used in the
above procedure:

Algorithm 2 Find-Triangles(w, Lw).

1: Sort all elements in (Lw ∪ (N(w) ∩Qi)) lexicographically, using the procedure given in
Lemma 4.3 of [57]. Let this sorted list of all elements be S.

2: Let T denote the corrected4 number of duplicates in S using Theorem 8.
3: Return T .

Allocating machines for sorting. Since each v ∈ Qi could have multiple neighbors whose
degrees are ≤ γ, the total size of all neighbor lists v receives could exceed their allowed space
Θ

(
nδ

)
. Thus, we allocate O

(
γdQi

(v)
nδ

)
machines for each vertex v ∈ Qi to store all neighbor

lists that v receives.
The complete analysis for Theorem 11 is given in Appendix A.1.
We provide two additional extensions of our triangle counting algorithm to counting

k-cliques:

▶ Theorem 14. Given a graph G = (V, E) with arboricity α, we can count all k-cliques
in O(mαk−2) total space, Oδ(log log n) rounds, on machines with O(n2δ) space for any
0 < δ < 1.

We can prove a stronger result when we have some bound on the arboricity of our input
graph. Namely, if α = O(nδ′/2) for any δ′ < δ, then we obtain the following result:

▶ Theorem 15. Given a graph G = (V, E) with arboricity α where α = O(n δ′
2) for any δ′ < δ,

we can count all k-cliques in O
(
nα2)

total space and Oδ(log log n) rounds, on machines with
O(nδ) space for any 0 < δ < 1.

The proofs of these theorems are provided in our full paper [27].

5 Approximate Triangle Counting in General Graphs

In this section we provide our algorithm for estimating the number of triangles in general
graphs (see Algorithms 3 and 6) and hence prove Theorem 1.

▶ Theorem 1. Let G = (V, E) be a graph with n vertices, m edges, and let T be the number
of triangles in G. Assuming

(i) T = Ω̃
(√

m
S

)
, (ii) S = Ω̃

(
max

{ √
m
ε , n2

m

})
,

there exists an MPC algorithm, using M machines, each with local space S, and total
space MS = Õε(m), that outputs a (1± ε)-approximation of T , with high probability, in O(1)
rounds.

The rationale behind the lower bound constraints in Theorem 1 will become clear when
we discuss the challenges and analysis (formally presented in the following sections).

APPROX/RANDOM 2022

39:12 Massively Parallel Algorithms for Small Subgraph Counting

5.1 Overview of the Algorithm and Challenges
Our approach is to use the collection of machines to repeat the following experiment multiple
times in parallel. Each machine Mi samples a subset of vertices Vi, and then counts the
number of triangles T̂i seen in each induced graph G[Vi]. We then use the sum T̂ of all T̂i’s
as an unbiased estimator (after appropriate scaling) for the number of triangles T in the
original graph.

Algorithm 3 Approximate-Triangle-Counting(G=(V,E)).

1: R← 0
2: parfor i← 1 . . .M do
3: Let Vi be a random subset of V ▷ See Section 5.2 for details about the sampling
4: if size of G[Vi] exceeds machine space S then
5: Ignore this sample and set T̂i ← 0
6: else
7: Let T̂i be the number of triangles in G[Vi]
8: R← R + 1
9: end parfor

10: Let T̂ =
∑M

i=1 T̂i

11: return 1
p̂3R T̂

Moving forwards, for the most part, we will focus on a specific machine Mi containing Vi

(a single experiment). We list the main challenges in the analysis of this algorithm, along
with the sections that describe them.
1. Section 5.2: The induced subgraph G[Vi] fits into the memory S of Mi (thus allowing

us to count the number of triangles in G[Vi] in one round).
2. Section 5.3: We can efficiently (in one round) collect all the edges in the induced

subgraph G[Vi]. This involves presenting an MPC protocol such that the number of
messages sent and received by any machine is at most the space per machine S.

3. Section 5.4 With high constant probability, the number of messages sent and received
by each machine Mi is at most S.

4. Section 5.5: With high constant probability (of at least 0.9), the sum of triangles
across all machines, T̂ , is close to its expected value. Then, repeating the algorithm
polylogarithmic number of times with only a polylogarithmic increase in total space, and
by using the median trick, allows us to get a high probability bound. The specifics are
discussed in Appendix A.1.7.

In each of the following sections, we first present a high level overview of the challenges
that we need to solve and then follow these high-level descriptions with detailed proofs.

5.2 Challenge (1): Ensuring That G[Vi] Fits on a Single Machine
Ensuring that edges fit on a machine

Our algorithm constructs Vi by including each v ∈ V with probability p̂, which implies that
the expected number of edges in G[Vi] is p̂2m. Since we have to ensure that each induced
subgraph G[Vi] fits on a single machine, we obtain the constraint p̂2m = O(S). Concretely,
we achieve this by defining:

p̂
def= 1

10 ·
√

S

mk
, (1)

where the parameter k = O(log n) will be exactly determined later (See Section 5.3).

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:13

Ensuring that vertices fit on a machine

In certain regimes of values of n and m, the expected number of vertices ending up in an
induced subgraph – p̂n, may exceed the space limit S. Avoiding this scenario introduces an
additional constraint p̂n = O(S) ⇐⇒ S = Ω(kn2/m).

Getting a high probability guarantee

As discussed above, the value of p̂ = Θ̃ε(
√

S/m) is chosen specifically so that the expected
number of edges in the induced subgraphs G[Vi] is p̂2m ≤ Θ(S), thus using all the available
space (asymptotically). In order to guarantee that this bound holds with high probability (see
Appendix A.1.4), we require additional constraints on the space per machine S = Ω̃ε(

√
m).

We remark that this lower bound S = Ω̃ε(
√

m) is essentially saying that M = Õε(
√

m),
i.e. the space per machine is much larger than the number of machines. This is a realistic
assumption as in practice we can have machines with 1011 words of local random access
memory, however, it is unlikely that we also have as many machines in our cluster.

Lower Bound on space per machine

Combining the above two constraints, we get:

S > max
{

15
√

mk

ε
,

100kn2

m

}
=⇒ S = Ω̃ε

(
max

{√
m,

n2

m

})
(2)

Note that Eq. (2) always allows linear space per machine, as long as m = Ω(n). The following
sections, Appendices A.1.4 and A.1.5 present a detailed analysis, showing that the number
of vertices and edges in each subgraph is at most S with high probability. In this high-level
overview of the challenges, we defer a detailed analysis of these bounds to the later sections
(Appendices A.1.4 and A.1.5) since the formal proof of these bounds also require a discussion
of Section 5.3.

5.3 Challenge (2): Using k-wise Independence to Compute the Induced
Subgraph G[Vi] in MPC

For each sub-sampled set of vertices Vi, we need to compute G[Vi], i.e. we need to send all
the edges in the induced subgraph G[Vi] to the machine Mi. Let Qu denote the set of all
machines containing u. Each edge (u, w) then needs to be sent to all machines that contain
both u and w, Qu ∩ Qw. Naively, one could try to send the sets Qu and Qw to the edge
e = (u, w), for all e ∈ E. However, this strategy could result in Qv being replicated d(v)
times. Since the expected size of Qv is |Qv| = p̂M the total expected memory usage of this
strategy would be

∑
v∈V |Qv| · d(v) = Θ̃ε (m · p̂M) = ω̃ε(m), since p̂ = Θ̃(1/

√
M). This

defies our goal of optimal total memory.
Instead, we address this challenge by using globally known hash functions to sample

the vertices on each machine. That is, we let h : V × [M]→ {0, 1} (formally presented in
Definition 16) be a hash function known globally to all the machines. Then we can compute
the induced subgraphs G[Vi] as follows.

▶ Definition 16. The hash function h(v, i) indicates whether vertex v is sampled in Vi or
not. Specifically, h : V × [M]→ {0, 1} such that P[h(v, i) = 1] = p̂ for all v ∈ V and i ∈ [M].
Recall that M is the number of machines, and p̂ = 1

10 ·
√

S
mk is the sampling probability set

in Eq. (1).

APPROX/RANDOM 2022

39:14 Massively Parallel Algorithms for Small Subgraph Counting

Algorithm 4 Compute-Induced-Subgraphs.

1: Qv ← {i ∈ [M] | h(v, i) = 1} .

2: Qw ← {i ∈ [M] | h(w, i) = 1} .

3: parfor i ∈ Qv ∩Qw do
4: Send e to machine Mi, containing Vi.
5: end parfor

Using limited independence. Ideally, we would want a perfect hash function, which would
allow us to sample the Vi’s i.i.d. from the uniform distribution on V . However, since the hash
function needs to be known globally, it must fit into each of the machines. This implies that
we cannot use a fully independent perfect hash function. Rather, we can use one that has a
high level of independence. Specifically, given that the space per machine is S, we can have a
globally known hash function h that is k-wise independent5 for any k < Θ(S/ log n). In fact,
we can get away with as little as (6 log n)-wise independence (i.e., k = 6 log n). Recalling
Eq. (1), this also fixes the sampling probability to be p̂ =

√
S/600m log n.

5.4 Challenge (3): Showing that, with high constant probability, the
size of the sent/received messages is bounded

We need to show that the number of edges sent and received by any machine Mi is at most
S with high constant probability. To this end, we partition the vertex set V into Vlight and
Vheavy by picking a threshold degree τ for the vertices. Following this, we define light edges as
ones that have both end-points in Vlight, and conversely, any edge with at least one end-point
in Vheavy is designated as heavy. In order for the protocol to suceed, the following must hold:
(A) The number of light edges concentrates (see Appendix A.1.4).
(B) The number of heavy edges concentrates (see Appendix A.1.5).
(C) The number of sent messages is at most S (see Appendix A.1.6).

The first two items ensure that each machine Mi receives at most S messages, and the
last item ensures that each machine sends at most S messages. Given the above, we proceed
to address the last challenge.

5.5 Challenge (4): T̂ is close to its expected value
In this section, we provide merely a brief discussion of this challenge for intuition, and we fully
analyze the approximation guarantees of our algorithm in Appendix A.1.3. That analysis
also makes clear the source of our advertised lower-bound on T for which an estimated count
concentrates well.

Lower Bound on Number of Triangles. In order to output any approximation (note that
we are ignoring all factors of ε and O(poly log n) here) to the triangle count, we must see
Ω(1) triangles amongst all of the induced subgraphs on all the machines. The expected
number of triangles in a specific induced G[Vi] is p̂3T , and therefore, the expected number of
triangles overall is p̂3TM which must be Ω(1) for some setting of T . Since we set p̂ such
that p̂2m = Θ(S), this gives that p̂2 = O(S/m) which implies p̂2 · M = p̂2 · (m/S) = Θ(1).

5 A k-wise independent hash function is one where the hashes of any k distinct keys are guaranteed to be
independent random variables (see [92]).

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:15

This then immmediately implies that to show that p̂3T is Ω(1), we need only show that
p̂ · T is Ω(1). Specifically, we show in Lemma 20 that when T > 1/p̂, we can obtain a
(1± ε)-approximation. To get some intuition for this lower bound on T , note that, in the
linear memory regime, when S = Θ(n), this translates to T >

√
davg, where davg is the

average degree of G.

T >
1
p̂

= Θ̃
(√

m

S

)
for S=Θ̃(n)===========⇒ T > Θ̃

(√
davg

)
.

6 Open Questions

There are many interesting open questions that result from our study; among these open
questions include improving the bounds presented in our algorithm: the round complexity
and total space usage in our exact algorithms and the space per machine in our approximation
algorithms. In addition to these questions, we also discussion two additional open questions
with a larger research scope.

Small subgraph counting counting for a broader class of small subgraphs

Two recent works of [32, 26] extend the result of [25] to a broader set of small subgraphs in
the sequential model. However, their results depend crucially on a DAG tree decomposition
which is non-trivial to implement in the MPC model. Furthermore, even given this DAG
tree decomposition, their approach requires iterating through the tree from the leaf level by
level up the tree. Such a procedure when implemented in the MPC model requires number
of rounds that is O(depth) where depth is the depth of the tree. The depth may not be
poly(log n). In order to obtain efficient MPC implementation of these new algorithms, we
must find novel solutions to the above two challenges.

Counting in the AMPC model

A new (stronger) model of MPC, called the adaptive MPC model, was recently introduced
by [22]. The AMPC model allows access to a shared distributed hash table at the end of
every round; additionally, the algorithms are allowed adaptive access to this hash table. Such
a model has shown to be very practical and have led to improvements in the number of
rounds over previous MPC algorithms. Such a model seems to be quite relevant to our work
since one of the main challenges in our approximation algorithms is to find the set of edges
to give to each machine. (Such a challenge may no longer exist given a shared-memory
distributed hash table.) We leave as an interesting open question to obtain better, more
round efficient approximate triangle counting algorithms in the AMPC model.

Triangle Counting in O(1) Rounds in Sparse Graphs

For sparse graphs where m = Õ(n), our approximation algorithm requires Ω̃(n) space per
machine which means that (almost) the entire graph can fit on one machine. This naturally
leads to an interesting open question for whether we can obtain an approximate or exact
triangle counting algorithm in O(1) rounds in sparse graphs while using sublinear space per
machine (nδ space for any constant δ > 0).

APPROX/RANDOM 2022

39:16 Massively Parallel Algorithms for Small Subgraph Counting

References

1 GraphChallenge. URL: http://graphchallenge.mit.edu/.
2 Foto N Afrati, Dimitris Fotakis, and Jeffrey D Ullman. Enumerating subgraph instances using

map-reduce. In 2013 IEEE 29th International Conference on Data Engineering (ICDE), pages
62–73. IEEE, 2013.

3 Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi, Nick G. Duffield, and Theodore L.
Willke. Graphlet decomposition: framework, algorithms, and applications. Knowl. Inf. Syst.,
50(3):689–722, 2017.

4 Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal
algorithms for maximum matching under resource constraints. In SPAA, pages 202–211, 2015.

5 Maryam Aliakbarpour, Amartya Shankha Biswas, Themis Gouleakis, John Peebles, Ronitt
Rubinfeld, and Anak Yodpinyanee. Sublinear-time algorithms for counting star subgraphs via
edge sampling. Algorithmica, 80(2):668–697, 2018.

6 Noga Alon and Shai Gutner. Linear time algorithms for finding a dominating set of fixed size
in degenerated graphs. Algorithmica, 54(4):544–556, 2009. doi:10.1007/s00453-008-9204-0.

7 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997.

8 Alexandr Andoni, Aleksandar Nikolov, Krzysztof Onak, and Grigory Yaroslavtsev. Parallel
algorithms for geometric graph problems. In STOC, pages 574–583, 2014.

9 Alexandr Andoni, Clifford Stein, and Peilin Zhong. Log diameter rounds algorithms for
2-vertex and 2-edge connectivity. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini,
and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
14:1–14:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ICALP.2019.14.

10 Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. Patric: A parallel algorithm
for counting triangles in massive networks. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, pages 529–538, 2013.

11 Sepehr Assadi. Simple round compression for parallel vertex cover. arXiv preprint, 2017.
arXiv:1709.04599.

12 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni, and Cliff Stein.
Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. In
Proceedings 30th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2019.

13 Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time algorithm
for counting arbitrary subgraphs via edge sampling. In ITCS, volume 124 of LIPIcs, pages
6:1–6:20. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.

14 Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for finding
well-connected components in sparse graphs. arXiv preprint, 2018. arXiv:1805.02974.

15 Sepehr Assadi, Xiaorui Sun, and Omri Weinstein. Massively parallel algorithms for finding
well-connected components in sparse graphs. In Peter Robinson and Faith Ellen, editors,
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing, PODC
2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 461–470. ACM, 2019. doi:
10.1145/3293611.3331596.

16 Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming algorithms, with
an application to counting triangles in graphs. In Proceedings of the thirteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 623–632. Society for Industrial and Applied
Mathematics, 2002.

17 Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel query
processing. In Proceedings of the 32Nd ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (PODS), pages 273–284, 2013.

http://graphchallenge.mit.edu/
https://doi.org/10.1007/s00453-008-9204-0
https://doi.org/10.4230/LIPIcs.ICALP.2019.14
https://doi.org/10.4230/LIPIcs.ICALP.2019.14
http://arxiv.org/abs/1709.04599
http://arxiv.org/abs/1805.02974
https://doi.org/10.1145/3293611.3331596
https://doi.org/10.1145/3293611.3331596

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:17

18 Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query processing. In Pro-
ceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS), pages 212–223, 2014.

19 Soheil Behnezhad, Sebastian Brandt, Mahsa Derakhshan, Manuela Fischer, MohammadTaghi
Hajiaghayi, Richard M. Karp, and Jara Uitto. Massively parallel computation of matching
and MIS in sparse graphs. In Peter Robinson and Faith Ellen, editors, Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON, Canada,
July 29 - August 2, 2019, pages 481–490. ACM, 2019. doi:10.1145/3293611.3331609.

20 Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Semi-mapreduce
meets congested clique. arXiv preprint, 2018. arXiv:1802.10297.

21 Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina Knittel, and
Hamed Saleh. Streaming and massively parallel algorithms for edge coloring. In Michael A.
Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium
on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching, Germany, volume 144
of LIPIcs, pages 15:1–15:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ESA.2019.15.

22 Soheil Behnezhad, Laxman Dhulipala, Hossein Esfandiari, Jakub Lacki, Vahab Mirrokni, and
Warren Schudy. Massively parallel computation via remote memory access. ACM Transactions
on Parallel Computing, 8(3):1–25, 2021.

23 Soheil Behnezhad, MohammadTaghi Hajiaghayi, and David G. Harris. Exponentially faster
massively parallel maximal matching. In David Zuckerman, editor, 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA,
November 9-12, 2019, pages 1637–1649. IEEE Computer Society, 2019. doi:10.1109/FOCS.
2019.00096.

24 Suman K Bera and Amit Chakrabarti. Towards tighter space bounds for counting triangles
and other substructures in graph streams. In 34th Symposium on Theoretical Aspects of
Computer Science, 2017.

25 Suman K. Bera, Noujan Pashanasangi, and C. Seshadhri. Linear Time Subgraph Counting,
Graph Degeneracy, and the Chasm at Size Six. In Thomas Vidick, editor, 11th Innovations in
Theoretical Computer Science Conference (ITCS 2020), volume 151 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 38:1–38:20, Dagstuhl, Germany, 2020. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ITCS.2020.38.

26 Suman K Bera, Noujan Pashanasangi, and C Seshadhri. Near-linear time homomorphism
counting in bounded degeneracy graphs: the barrier of long induced cycles. In Proceedings of
the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2315–2332. SIAM,
2021.

27 Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Slobodan Mitrovic, and Ronitt
Rubinfeld. Parallel algorithms for small subgraph counting. CoRR, abs/2002.08299, 2020.
arXiv:2002.08299.

28 Andreas Bjöklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting paths
and packings in halves. Algorithms - ESA 2009, pages 578–586, 2009. doi:10.1007/
978-3-642-04128-0_52.

29 Mahdi Boroujeni, Soheil Ehsani, Mohammad Ghodsi, MohammadTaghi HajiAghayi, and Saeed
Seddighin. Approximating edit distance in truly subquadratic time: quantum and MapReduce.
In SODA, pages 1170–1189, 2018.

30 Sebastian Brandt, Manuela Fischer, and Jara Uitto. Breaking the linear-memory barrier
in MPC: Fast MIS on trees with nϵ memory per machine. arXiv preprint, 2018. arXiv:
1802.06748.

31 Vladimir Braverman, Rafail Ostrovsky, and Dan Vilenchik. How hard is counting triangles in
the streaming model? In International Colloquium on Automata, Languages, and Programming,
pages 244–254. Springer, 2013.

APPROX/RANDOM 2022

https://doi.org/10.1145/3293611.3331609
http://arxiv.org/abs/1802.10297
https://doi.org/10.4230/LIPIcs.ESA.2019.15
https://doi.org/10.4230/LIPIcs.ESA.2019.15
https://doi.org/10.1109/FOCS.2019.00096
https://doi.org/10.1109/FOCS.2019.00096
https://doi.org/10.4230/LIPIcs.ITCS.2020.38
http://arxiv.org/abs/2002.08299
https://doi.org/10.1007/978-3-642-04128-0_52
https://doi.org/10.1007/978-3-642-04128-0_52
http://arxiv.org/abs/1802.06748
http://arxiv.org/abs/1802.06748

39:18 Massively Parallel Algorithms for Small Subgraph Counting

32 Marco Bressan. Faster subgraph counting in sparse graphs. In 14th International Symposium
on Parameterized and Exact Computation (IPEC 2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019.

33 Keren Censor-Hillel, Petteri Kaski, Janne H Korhonen, Christoph Lenzen, Ami Paz, and Jukka
Suomela. Algebraic methods in the congested clique. Distributed Computing, 32(6):461–478,
2019.

34 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The com-
plexity of (∆+1) coloring in congested clique, massively parallel computation, and centralized
local computation. In Proceedings of the 2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019, pages 471–480.
ACM, 2019. doi:10.1145/3293611.3331607.

35 Norishige Chiba and Takao Nishizeki. Arboricity and subgraph listing algorithms. SIAM
Journal on computing, 14(1):210–223, 1985.

36 Shumo Chu and James Cheng. Triangle listing in massive networks and its applications. In
Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 672–680, 2011.

37 Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in Science & Engineering,
11(4):29–41, 2009.

38 Artur Czumaj, Jakub Lacki, Aleksander Madry, Slobodan Mitrovic, Krzysztof Onak, and
Piotr Sankowski. Round compression for parallel matching algorithms. SIAM J. Comput.,
49(5), 2020. doi:10.1137/18M1197655.

39 Maximilien Danisch, Oana Balalau, and Mauro Sozio. Listing k-cliques in sparse real-world
graphs*. In Proceedings of the 2018 World Wide Web Conference, WWW ’18, pages 589–598,
Republic and Canton of Geneva, CHE, 2018. International World Wide Web Conferences
Steering Committee. doi:10.1145/3178876.3186125.

40 V. S. Dave, N. K. Ahmed, and M. Hasan. PE-CLoG: Counting edge-centric local graphlets.
In IEEE International Conference on Big Data, pages 586–595, 2017.

41 Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

42 Laxman Dhulipala, Quanquan C. Liu, Julian Shun, and Shangdi Yu. Parallel batch-dynamic
k-clique counting. In Michael Schapira, editor, 2nd Symposium on Algorithmic Principles
of Computer Systems, APOCS 2020, Virtual Conference, January 13, 2021, pages 129–143.
SIAM, 2021. doi:10.1137/1.9781611976489.10.

43 Danny Dolev, Christoph Lenzen, and Shir Peled. “Tri, Tri again”: Finding triangles and
small subgraphs in a distributed setting. Distributed Computing, pages 195–209, 2012. doi:
10.1007/978-3-642-33651-5_14.

44 Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately counting triangles in
sublinear time. SIAM Journal on Computing, 46(5):1603–1646, 2017.

45 Talya Eden, Dana Ron, and C. Seshadhri. Faster sublinear approximation of the number
of k-cliques in low-arboricity graphs. In Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages
1467–1478, 2020. doi:10.1137/1.9781611975994.89.

46 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and
dominating set. Theor. Comput. Sci., 326(1–3):57–67, October 2004. doi:10.1016/j.tcs.
2004.05.009.

47 Ethan R. Elenberg, Karthikeyan Shanmugam, Michael Borokhovich, and Alexandros G.
Dimakis. Distributed estimation of graph 4-profiles. In International Conference on World
Wide Web (WWW), pages 483–493, 2016.

48 David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in large
sparse real-world graphs. ACM Journal of Experimental Algorithms, 18(3):364–375, 2013.
doi:10.1145/2543629.

https://doi.org/10.1145/3293611.3331607
https://doi.org/10.1137/18M1197655
https://doi.org/10.1145/3178876.3186125
https://doi.org/10.1137/1.9781611976489.10
https://doi.org/10.1007/978-3-642-33651-5_14
https://doi.org/10.1007/978-3-642-33651-5_14
https://doi.org/10.1137/1.9781611975994.89
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1016/j.tcs.2004.05.009
https://doi.org/10.1145/2543629

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:19

49 Irene Finocchi, Marco Finocchi, and Emanuele G Fusco. Clique counting in mapreduce:
Algorithms and experiments. Journal of Experimental Algorithmics (JEA), 20:1–20, 2015.

50 Buddhima Gamlath, Sagar Kale, Slobodan Mitrovic, and Ola Svensson. Weighted matchings
via unweighted augmentations. In Peter Robinson and Faith Ellen, editors, Proceedings of the
2019 ACM Symposium on Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pages 491–500. ACM, 2019. doi:10.1145/3293611.3331603.

51 Mohsen Ghaffari, Themis Gouleakis, Christian Konrad, Slobodan Mitrović, and Ronitt Rubin-
feld. Improved massively parallel computation algorithms for mis, matching, and vertex cover.
In PODC. arXiv:1802.08237, 2018.

52 Mohsen Ghaffari, Fabian Kuhn, and Jara Uitto. Conditional hardness results for massively
parallel computation from distributed lower bounds. In David Zuckerman, editor, 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 1650–1663. IEEE Computer Society, 2019.
doi:10.1109/FOCS.2019.00097.

53 Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. Improved parallel algorithms
for density-based network clustering. In Kamalika Chaudhuri and Ruslan Salakhutdinov,
editors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 2201–2210, Long Beach, California, USA,
09–15 June 2019. PMLR. URL: http://proceedings.mlr.press/v97/ghaffari19a.html.

54 Mohsen Ghaffari, Krzysztof Nowicki, and Mikkel Thorup. Faster algorithms for edge con-
nectivity via random 2-out contractions. In Shuchi Chawla, editor, Proceedings of the 2020
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA,
January 5-8, 2020, pages 1260–1279. SIAM, 2020. doi:10.1137/1.9781611975994.77.

55 Mohsen Ghaffari and Jara Uitto. Sparsifying distributed algorithms with ramifications
in massively parallel computation and centralized local computation. In Proceedings of
the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San
Diego, California, USA, January 6-9, 2019, pages 1636–1653. SIAM, 2019. doi:10.1137/1.
9781611975482.99.

56 Gaurav Goel and Jens Gustedt. Bounded arboricity to determine the local structure of sparse
graphs. In Graph-Theoretic Concepts in Computer Science, 32nd International Workshop,
WG 2006, Bergen, Norway, June 22-24, 2006, Revised Papers, pages 159–167, 2006. doi:
10.1007/11917496_15.

57 Michael T. Goodrich, Nodari Sitchinava, and Qin Zhang. Sorting, searching, and simulation in
the mapreduce framework. In Proceedings of the 22Nd International Conference on Algorithms
and Computation, ISAAC’11, pages 374–383, Berlin, Heidelberg, 2011. Springer-Verlag. doi:
10.1007/978-3-642-25591-5_39.

58 Nicholas J. A. Harvey, Christopher Liaw, and Paul Liu. Greedy and local ratio algorithms
in the MapReduce model. In Proceedings of the 30th on Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 43–52, New York, NY, USA, 2018. ACM. doi:
10.1145/3210377.3210386.

59 James W Hegeman and Sriram V Pemmaraju. Lessons from the congested clique applied to
MapReduce. Theoretical Computer Science, 608:268–281, 2015.

60 Tomaz Hocevar and Janez Demsar. A combinatorial approach to graphlet counting. Bioin-
formatics, pages 559–65, 2014.

61 Sungjin Im, Benjamin Moseley, and Xiaorui Sun. Efficient massively parallel methods for
dynamic programming. In STOC, pages 798–811, 2017.

62 Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed
data-parallel programs from sequential building blocks. In ACM SIGOPS operating systems
review, volume 41(3), pages 59–72. ACM, 2007.

63 Giuseppe F. Italiano, Silvio Lattanzi, Vahab S. Mirrokni, and Nikos Parotsidis. Dynamic
algorithms for the massively parallel computation model. In Christian Scheideler and Petra
Berenbrink, editors, The 31st ACM on Symposium on Parallelism in Algorithms and Ar-
chitectures, SPAA 2019, Phoenix, AZ, USA, June 22-24, 2019, pages 49–58. ACM, 2019.
doi:10.1145/3323165.3323202.

APPROX/RANDOM 2022

https://doi.org/10.1145/3293611.3331603
https://arxiv.org/abs/1802.08237
https://doi.org/10.1109/FOCS.2019.00097
http://proceedings.mlr.press/v97/ghaffari19a.html
https://doi.org/10.1137/1.9781611975994.77
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1137/1.9781611975482.99
https://doi.org/10.1007/11917496_15
https://doi.org/10.1007/11917496_15
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1007/978-3-642-25591-5_39
https://doi.org/10.1145/3210377.3210386
https://doi.org/10.1145/3210377.3210386
https://doi.org/10.1145/3323165.3323202

39:20 Massively Parallel Algorithms for Small Subgraph Counting

64 Shweta Jain and C Seshadhri. A fast and provable method for estimating clique counts using
turán’s theorem. In Proceedings of the 26th International Conference on World Wide Web,
pages 441–449, 2017.

65 Madhav Jha, Comandur Seshadhri, and Ali Pinar. A space efficient streaming algorithm
for triangle counting using the birthday paradox. In Proceedings of the 19th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 589–597, 2013.

66 Daniel M Kane, Kurt Mehlhorn, Thomas Sauerwald, and He Sun. Counting arbitrary subgraphs
in data streams. In International Colloquium on Automata, Languages, and Programming,
pages 598–609. Springer, 2012.

67 Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for MapRe-
duce. In SODA, pages 938–948, 2010.

68 Tamara G Kolda, Ali Pinar, Todd Plantenga, C Seshadhri, and Christine Task. Counting
triangles in massive graphs with mapreduce. SIAM Journal on Scientific Computing, 36(5):S48–
S77, 2014.

69 Mihail N Kolountzakis, Gary L Miller, Richard Peng, and Charalampos E Tsourakakis. Efficient
triangle counting in large graphs via degree-based vertex partitioning. Internet Mathematics,
8(1-2):161–185, 2012.

70 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.
In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms,
pages 1272–1287. SIAM, 2016.

71 Jakub Lacki, Slobodan Mitrovic, Krzysztof Onak, and Piotr Sankowski. Walking randomly,
massively, and efficiently. CoRR, abs/1907.05391, 2019. arXiv:1907.05391.

72 Longbin Lai, Lu Qin, Xuemin Lin, and Lijun Chang. Scalable subgraph enumeration in
mapreduce. Proceedings of the VLDB Endowment, 8(10):974–985, 2015.

73 Matthieu Latapy. Main-memory triangle computations for very large (sparse (power-law))
graphs. Theoretical computer science, 407(1-3):458–473, 2008.

74 Silvio Lattanzi, Benjamin Moseley, Siddharth Suri, and Sergei Vassilvitskii. Filtering: a
method for solving graph problems in MapReduce. In SPAA, pages 85–94, 2011.

75 Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning
tree construction in o (log log n) communication rounds. SIAM Journal on Computing,
35(1):120–131, 2005.

76 Andrew McGregor, Sofya Vorotnikova, and Hoa T Vu. Better algorithms for counting triangles
in data streams. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 401–411, 2016.

77 Krzysztof Onak. Round compression for parallel graph algorithms in strongly sublinear space.
CoRR, abs/1807.08745, 2018. arXiv:1807.08745.

78 Rasmus Pagh and Charalampos E Tsourakakis. Colorful triangle counting and a mapreduce
implementation. Information Processing Letters, 112(7):277–281, 2012.

79 Ha-Myung Park and Chin-Wan Chung. An efficient mapreduce algorithm for counting triangles
in a very large graph. In Proceedings of the 22nd ACM international conference on Information
& Knowledge Management, pages 539–548, 2013.

80 Ha-Myung Park, Francesco Silvestri, U Kang, and Rasmus Pagh. Mapreduce triangle enumera-
tion with guarantees. In Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, pages 1739–1748, 2014.

81 Mihai Patrascu. Towards polynomial lower bounds for dynamic problems. In Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010, pages 603–610, 2010. doi:10.1145/1806689.1806772.

82 Ali Pinar, C. Seshadhri, and Vaidyanathan Vishal. ESCAPE: Efficiently counting all 5-vertex
subgraphs. In International Conference on World Wide Web (WWW), pages 1431–1440, 2017.

83 Tim Roughgarden, Sergei Vassilvitskii, and Joshua R. Wang. Shuffles and circuits: (on lower
bounds for modern parallel computation). In SPAA, pages 1–12, 2016.

http://arxiv.org/abs/1907.05391
http://arxiv.org/abs/1807.08745
https://doi.org/10.1145/1806689.1806772

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:21

84 Thomas Schank and Dorothea Wagner. Finding, counting and listing all triangles in large
graphs, an experimental study. In Experimental and Efficient Algorithms, pages 606–609.
Springer, 2005.

85 Comandur Seshadhri, Ali Pinar, and Tamara G Kolda. Triadic measures on graphs: The
power of wedge sampling. In Proceedings of the 2013 SIAM International Conference on Data
Mining, pages 10–18. SIAM, 2013.

86 Jessica Shi, Laxman Dhulipala, and Julian Shun. Parallel clique counting and peeling algorithms.
CoRR, abs/2002.10047, 2020. arXiv:2002.10047.

87 Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Patterns and anomalies in k-cores
of real-world graphs with applications. Knowledge and Information Systems, 54(3):677–710,
2018.

88 J. Shun and K. Tangwongsan. Multicore triangle computations without tuning. In 2015
IEEE 31st International Conference on Data Engineering, pages 149–160, April 2015. doi:
10.1109/ICDE.2015.7113280.

89 Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last reducer.
In Proceedings of the 20th international conference on World wide web, pages 607–614, 2011.

90 Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. Doulion:
counting triangles in massive graphs with a coin. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 837–846, 2009.

91 Virginia Vassilevska. Efficient algorithms for clique problems. Information Processing Letters,
109(4):254–257, 2009. doi:10.1016/j.ipl.2008.10.014.

92 Mark N Wegman and J Lawrence Carter. New hash functions and their use in authentication
and set equality. Journal of computer and system sciences, 22(3):265–279, 1981.

93 Tom White. Hadoop: The definitive guide. " O’Reilly Media, Inc.", 2012.
94 Jin-Hyun Yoon and Sung-Ryul Kim. Improved sampling for triangle counting with mapreduce.

In International Conference on Hybrid Information Technology, pages 685–689. Springer, 2011.
95 Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion Stoica.

Spark: Cluster computing with working sets. HotCloud, 10(10-10):95, 2010.

A Exact Triangle Counting Analysis

A.1 Detailed Analysis
In this section we give the full details and analysis of algorithm Algorithm 1 given in Section 4,
for exactly counting the number of triangles in the graph.

We first provide a detailed version of Algorithm 2 that also takes into account over
counting due to the fact that each triangle might be counted by several endpoints, and then
continue to prove the main theorem of this section, Theorem 4.

A.1.1 Details about finding duplicate elements using Theorem 8
Find-Triangles(w,Lw) finds triangles by counting the number of duplicates that occur
between elements in lists. Theorem 8 provides a MPC implementation for finding the count of
all occurrences of every element in a sorted list. Provided a sorted list of neighbors of v ∈ Qi

and neighbor lists in Lv, this function counts the number of intersections between a neighbor
list sent to v and the neighbors of v. Every intersection indicates the existence of a triangle.
As given, Find-Triangles(w,Lw) (see v Algorithm 2) returns a 6-approximation of the
number of triangles in any graph. We provide a detailed and somewhat more complicated
algorithm Find-Triangles-Exact(w,Lw) that accounts for over-counting of triangles and
returns the exact number of triangles.

APPROX/RANDOM 2022

http://arxiv.org/abs/2002.10047
https://doi.org/10.1109/ICDE.2015.7113280
https://doi.org/10.1109/ICDE.2015.7113280
https://doi.org/10.1016/j.ipl.2008.10.014

39:22 Massively Parallel Algorithms for Small Subgraph Counting

Since Theorem 8 returns the total count of each element, we subtract the value returned
by 1 to obtain the number of intersections. Finally, each triangle containing one low-degree
vertex will be counted twice, each containing two low-degree vertices will be counted 4 times,
and each containing three low-degree vertices will be counted 6 times. Thus, we need to
divide the counts by 2, 4, and 6, respectively, to obtain the exact count of unique triangles.

Algorithm 5 Find-Triangles-Exact(w, Lw).

1: Set the number of triangles Ti ← 0.
2: Sort all elements in (Lw ∪ (N(w) ∩Qi)) lexicographically using the procedure given in

Lemma 4.3 of [57]. Let this sorted list of all elements be S.
3: Count the duplicates in S using Theorem 8.
4: parfor all v ∈ N(w) do
5: Let R be the number of duplicates of v returned by Theorem 8.
6: if dQi

(v) > γi and dQi
(w) > γi then

7: Increment Ti ← Ti + R−1
2 .

8: else if (dQi
(v) > γi and dQi

(w) ≤ γi) or (dQi
(v) ≤ γi and dQi

(w) > γi) then
9: Increment Ti ← Ti + R−1

4 .
10: else
11: Increment Ti ← Ti + R−1

6 .
12: end parfor
13: Return Ti.

Substituting Find-Triangles-Exact in Count-Triangles finds the exact count of
triangles in graphs with arboricity α using O(mα) total space.

A.1.2 Proof of Theorem 4

First, all proofs below assume we start at a cutoff of γ = 4α. Because we increase the cutoff
bound doubly exponentially, we can reach such a bound in O(log log α) rounds. Thus, in
the following proofs, we ignore all rounds before we get to a round where γ ≥ 4α. Before
proving the theorem, we provide several useful lemmas stating that the number of vertices
and edges remaining at the beginning of each iteration is bounded.

▶ Lemma 17. At the beginning of iteration i of Count-Triangles, given γi = 2(3/2)i · (2α)
as stated in Algorithm 1, the number of remaining vertices Ni = |Qi| is at most n

22·((3/2)i−1) .

Proof. Let Ni be the number of vertices in Qi at the beginning of iteration i. Since the
subgraph induced by Qi must have arboricity bounded by α, we can bound the total degree
of Qi,∑

v∈Qi

dQi
(v) < 2α|Qi| = 2Niα.

At the end of the iteration, we only keep the vertices in Qi+1 = {v ∈ Qi | dQi
(v) > γi}.

If we assume that |Qi+1| > Ni

γi/(2α) , then we obtain a contradiction since this implies that

∑
v∈Qi+1

dQi(v) > |Qi+1| · γi > 2Niα >
∑

v∈Qi

dQi(v).

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:23

Then, the number of remaining vertices follows directly from the above by induction on i

with base case N1 = n,

Ni ≤
Ni−1

γi/(2α) = Ni−1

2(3/2)i−1 ≤
n

i−1∏
j=0

2(3/2)j

= n

22·((3/2)i−1) . ◀

We can show a similar statement for the number of edges that remain at the start of the
ith iteration.

▶ Lemma 18. At the beginning of iteration i of Count-Triangles, given γi, the number
of remaining edges mi is at most mi ≤ m

22·((3/2)i−1−1) .

Proof. The number of vertices remaining at the beginning of iteration i is given by |Qi|.
Thus, because the arboricity of our graph is α, we can upper bound mi by

mi ≤ |Qi|α.

Then, we can also lower bound the number of edges at the beginning of iteration i− 1
since the vertices that remain at the beginning of round i are ones which have greater than
γi−1 degree,

mi−1 ≥
1
2

∑
v∈Qi−1

dQi−1(v) ≥ 1
2 |Qi|γi−1.

Thus, we conclude that mi ≤ 2αmi−1
γi−1

. By induction on i with base case m0 = m, we
obtain,

mi ≤ 2α

(
mi−1

γi−1

)
≤ m∏i−2

j=0 2(3/2)j
= m

22·((3/2)i−1−1) . ◀

The above lemmas allows us to bound the total space used by the algorithm.

▶ Lemma 19. Count-Triangles(G) uses O(mα) total space when run on a graph G with
arboricity α.

Proof. The total space the algorithm requires is the sum of the space necessary for storing
the neighbor lists sent by all vertices with degree ≤ γi and the space necessary for all vertices
to store their own neighbor lists. The total space necessary for each vertex to store its own
neighbor list is O(m).

Now we compute the total space used by the algorithm during iteration i. The number
of vertices in Qi at the beginning of this iteration is at most Ni ≤ n

22·((3/2)i−1) by Lemma 17.
Each vertex v with dQi

(v) ≤ γi, makes dQi
(v) copies of its neighbor list (N(v) ∩ Qi) and

sends each neighbor in N(v) ∩Qi a copy of the list. Thus, the total space required by the
messages sent by v is dQi

(v)2 ≤ γ2
i . v sends at most one message of size dQi

(v) ≤ γi along
each edge (v, w) for w ∈ N(v) ∩Qi. Then, by Lemma 18 the total space required by all the
low-degree vertices in round i is at most (as at most two messages are sent along each edge):

2mi · γi <
m

22·((3/2)i−1−1) ·
[
2(3/2)i

(2α)
]

= 16mα. ◀

We are now ready to prove Theorem 4.

APPROX/RANDOM 2022

39:24 Massively Parallel Algorithms for Small Subgraph Counting

Proof of Theorem 4. By Lemma 17, the number of vertices remaining in Qi at the beginning
of iteration i is n

22·((3/2)i−1) . This means that the procedure runs for O(log log n) iterations
before there will be no vertices. For each of the O(log log n) iterations, Count-Triangles(G)
uses Oδ(1) rounds of communication for the low-degree vertices to send their neighbor lists
to their neighbors. The algorithm then calls Find-Triangles-Exact(w,Lw) on each
vertex w ∈ Qi (in parallel) to find the number of triangles incident to w and vertices in
Ai ⊆ Qi. Find-Triangles-Exact(w,Lw) requires O (lognδ (mα)) = O(1/δ) rounds by
Lemma 4.3 of [57] and Theorem 8. Therefore, the total number of rounds required by
Count-Triangles(G) is O

(
log log n

δ

)
= Oδ(log log n). ◀

A.1.3 Showing Concentration for the Triangle Count
In the subsequent proofs, we will use the following assumptions from within Theorem 1 (note
that we added specific constants).

T ≥ 10
√

mk

S
S ≥ max

{
15
√

mk

ε
,

100kn2

m

}
M = 2000mk

ε2S
(3)

Note that we set the number of machines to a specific value, instead of lower bounding it.
This is acceptable, because we can just ignore some of the machines.

Algorithm 3 outputs an estimate on the number of triangles in G (Line 11). It is not hard
to show that in expectation this output equals T even with limited independence as discussed
above. The main challenge is to show that this output also concentrates well around its
expectation. Specifically, we show the following claim.

▶ Lemma 20. Ignore Line 4 of Algorithm 3. Let T̂ be as defined on Line 10 and M = 20
ε2p̂2

be as defined in Eq. (3), and assume that T ≥ 1/p̂. Then, the following hold:
(A) E

[
T̂

]
= p̂3 ·R · T , and

(B) P
[
|T̂ − E

[
T̂

]
| > εE

[
T̂

]]
< 1

10 .

We will prove Property (B) of the claim by applying Chebyshev’s inequality, for which we
need to compute Var

[
T̂

]
. Let ∆(G) be the set of all triangles in G. For a triangle t ∈ ∆(G),

let T̂i,t = 1 if t ∈ V [Gi], and T̂i,t = 0 otherwise. Hence, T̂i =
∑

t∈∆(G) T̂i,t. We begin by

deriving E
[
T̂

]
and then proceed to showing that Var

[
T̂

]
=

∑R
i=1 Var

[
T̂i

]
. After that we

upper-bound Var
[
T̂i

]
and conclude the proof by applying Chebyshev’s inequality.

A.1.3.1 Deriving E
[
T̂

]
Let t be a triangle in G. Let T̂t be a random variable denoting the total number of times t

appears in G[Vi], for all i = 1 . . . R. Given that P [u ∈ Vi] = p̂, we have that P [t ∈ G[Vi]] = p̂3.
Therefore, E

[
T̂t

]
= R · p̂3.

Since T̂ =
∑

t∈∆(G) T̂t, we have

E
[
T̂

]
=

∑
t∈∆(G)

E
[
T̂t

]
= p̂3 ·R · T. (4)

This proves Property (A) of this claim.

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:25

A.1.3.2 Decoupling Var
[
T̂

]
To compute variance, one considers the second moment of a given random variable. So, to
compute Var

[
T̂

]
, we will consider products T̂i,t1 · T̂j,t2 . Each of those products depend on

at most 6 vertices. Now, given that we used a 6-wise independent function (see Section 5.3)
to sample vertices in each Vi, one could expect that Var

[
T̂i

]
and Var

[
T̂j

]
for i ̸= j behave

like they are independent, i.e., one could expect that it holds Var
[
T̂

]
=

∑R
i=1 Var

[
T̂i

]
. As

we show next, it is indeed the case. We have

Var
[
T̂

]
= E

[
T̂ 2

]
− E

[
T̂

]2
= E


 R∑

i=1

∑
t∈∆(G)

T̂i,t

2
−

 R∑
i=1

∑
t∈∆(G)

E
[
T̂i,t

]2

Consider now T̂i,t1 and T̂j,t2 for i ̸= j and some t1, t2 ∈ ∆(G) not necessarily distinct. In the
first summand of (5), we will have E

[
2T̂i,t1 · T̂j,t2

]
. The vertices constituting t1 and t2 are 6

distinct copies of some (not necessarily all distinct) vertices of V . Since they are chosen by
applying a 6-wise independent function, we have E

[
2T̂i,t1 · T̂j,t2

]
= 2E

[
T̂i,t1

]
· E

[
T̂j,t2

]
.

On the other hand, the second summand of (5) also contains 2E
[
T̂i,t1

]
· E

[
T̂j,t2

]
, which

follows by direct expansion of the sum. Therefore, all the terms E
[
2T̂i,t1 · T̂j,t2

]
in Var

[
T̂

]
for i ̸= j cancel each other. So, we can also write Var

[
T̂

]
as

Var
[
T̂

]
=

R∑
i=1

E


 ∑

t∈∆(G)

T̂i,t

2
− R∑

i=1

 ∑
t∈∆(G)

E
[
T̂i,t

]2

=
R∑

i=1
Var

[
T̂i

]
.

Therefore, to upper-bound Var
[
T̂

]
it suffices to upper-bound Var

[
T̂i

]
.

A.1.3.3 Upper-bounding Var
[
T̂i

]
We have

Var
[
T̂i

]
= E


 ∑

t∈∆(G)

T̂i,t

2
−

 ∑
t∈∆(G)

E
[
T̂i,t

]2

≤ E


 ∑

t∈∆(G)

T̂i,t

2


= E

 ∑
t∈∆(G)

T̂ 2
i,t

 + E

 ∑
t1,t2∈∆(G);t1 ̸=t2

T̂i,t1 · T̂i,t2

 . (5)

Since each T̂i,t is a 0/1 random variables, T̂ 2
i,t = T̂i,t. Let t1 ̸= t2 be two triangles in ∆(G).

Let k be the number of distinct vertices they are consisted of, which implies 4 ≤ k ≤ 6.
Then, observe that E

[
T̂i,t1 · T̂i,t2

]
= p̂k ≤ p̂4. We now have all ingredients to upper-bound

Var
[
T̂i

]
. From (5) and our discussion it follows

Var
[
T̂i

]
≤ T p̂3 + T 2p̂4 ≤ 2T 2p̂4, (6)

where we used our assumption that T ≥ 1/p̂.

APPROX/RANDOM 2022

39:26 Massively Parallel Algorithms for Small Subgraph Counting

A.1.3.4 Finalizing the proof

From (5) and (6) we have

Var
[
T̂

]
≤ 2RT 2p̂4.

So, from Chebyshev’s inequality and (4) we derive

P
[
|T̂ − E

[
T̂

]
| > εE

[
T̂

]]
<

Var
[
T̂

]
ε2E

[
T̂

]2 ≤
2RT 2p̂4

ε2p̂6R2T 2 = 2
ε2p̂2R

.

Hence, for R ≥ 20
ε2p̂2 we get the desired bound.

A.1.4 Bounding the Number of Light Edges Received by a Machine
We will now bound the probability that any of the induced subgraphs does not fit on a
machine. To that end, we set a degree threshold τ = k

p̂ , and define the set of light vertices
Vlight to be the ones with degree less than τ . All other vertices are heavy, and we let them
comprise the set Vheavy.

Fix a machine Mi. We prove that, with probability at least 9/10, the number of edges in
G[Vi] is upper bounded by S.

We start with analyzing the contribution of the light vertices to the induced subgraphs.
We first consider the simpler case of bounding the number of edges in G[Vi] that have both
end-points in Vlight. We refer to such edges as light edges and denote them by Elight. For
every edge e ∈ Elight, we define a random variable Z

(i)
e as follows.

Z(i)
e =

{
1 if e ∈ G[Vi],
0 otherwise.

We let Z(i) be the sum over all random variables Zi
e, Zi =

∑
e∈Elight

Zi
e, and we let

mℓ denote the total number of edges with light endpoints in the original graph G, i.e.,
mℓ = |Elight|. Due to space constraints, the proof of the following lemma can be found in
our full paper [27].

We prove the following lemma.

▶ Lemma 21. With probability at least 9/10, for every i ∈ [M], G[Vi] contains at most 1
4 S

light edges.

We can now use Chebyshev’s inequality to conclude that

P
[
|Z(i) − E[Z(i)]| > S/

√
3
]
≤

Var
[
Z(i)]

S2/3

=⇒ P
[
Z(i) > 3S/4

]
≤ 3

30S
= 1

10S

Finally, we can use union bound over all M machines to upper bound the probability
that, any of the Z(i) values exceeds 3S/4 (using the the constraints descrbed in Eq. (3) to
simplify).

M
10S

= 2000mk

ε2S
· 1

10S
≤ 200mk

ε2 · 1
(15
√

mk/ε)2
= 200mk

ε2S2 ,

Therefore, with probability at least 9/10, none of the induced subgraphs G[Vi] will contain
more than 3S/4 light edges.

A. S. Biswas, T. Eden, Q. C. Liu, R. Rubinfeld, and S. Mitrović 39:27

A.1.5 Bounding the Number of Heavy Edges Received by a Machine
Next, we turn our attention to the edges that have at least one endpoint in Vheavy (we
call such edges heavy). We will show that for each v ∈ Vheavy ∩ Vi, the number of edges
contributed by v concentrates around its expectation.6 In this section, we will use 2mh to
denote the total degree of all the heavy vertices i.e. 2mh =

∑
v∈Vheavy

d(v). Due to space
constraints, we present the proofs of the following theorems in our full paper [27].

▶ Theorem 22 (Heavy edges). With high probability, the number of edges in G[Vi] that have
some endpoint with degree larger than τ is at most S/8.

Combining this result with Theorem 22, we conclude the following:

▶ Theorem 23. With probability at least 9/10, the maximum number of edges in any of
the G[Vi]s (where i ∈ [R]) does not exceed S, and hence Algorithm 3 does not terminate on
Line 4.

A.1.6 Upper-Bounding the Number of Messages Sent by any Machine
Recalling Algorithm 4, we note that the number of messages received by the machine
containing Vi, is equal to the number of edges in G[Vi]. Therefore, the last section essentially
proved that the number of messages (edges) received by a particular machine is upper-bounded
by S. Conversely, in this section, we will justify that the number of messages sent by any
machine is O(S). Since the number of edges stored in a machine is ≤ S, it suffices to to show
that for each edge e, Algorithm 4 sends only O(1) messages (each message is a copy of the
edge e). Our full proofs are included in our full paper [27].

Let Z
(e)
i be the {0, 1} indicator random variable for e ∈ G[Vi], and let Z(e) be the sum of

Z
(e)
i for all i ∈ [M]. Here, Z(e) represents the number of messages that are created by edge

e. Additionally we make r = SM/m = Oε(log n) copies of each edge e, and ensure that all
replicates reside on the same machine. We distribute the Z(e) messages evenly amongst the
replicates, so that each replica is only responsible for Z(e)/r messages.

Since all replicates are on the same machine, this last step is purely conceptual, but it
will simplify our arguemnt, by allowing us to charge the outgoing messages to each replicate
(as opposed to each edge). Our goal will be show that each replicate is responsible for only
O(1) messages, which is the same as showing that w.h.p. Z(e)/r = O(1).

Clearly µ = E[Z(e)] = p̂2 · M = SM
100mk . With δ = 100e1/3mk2

SM

P
[
Z(e) > δµ

]
≤ e−⌊k/2⌋ = 1

n3 =⇒ P
[

Z(e)

r
>

e1/3k

r

]
≤ 1

n3

Using the assumption (from Eq. (3)) that M > 2000mk/S =⇒ r > 2000k, we see that
with high probability, the number of messages sent by any replicate is bounded above by
e1/3/2000 ≤ 1. So, the number of messages sent from any machine is bounded by S with
high probability.

A.1.7 Getting the High Probability Bound
By building on Lemma 20 and Algorithm 3, we design Algorithm 6 that outputs an ap-
proximate triangle counting with high probability, as opposed with only constant success
probability. It is important to note that in the below algorithm, all O(log n) independent
iterations (Line 3) are done in parallel, simultaneously, not sequentially.

6 Intuitively, this is because v has high degree, and therefore the number of its sampled neighbors
(|N(v) ∩ Vi|) will concentrate.

APPROX/RANDOM 2022

39:28 Massively Parallel Algorithms for Small Subgraph Counting

Algorithm 6 Approximate Triangle Counting.

1: function Approx-Triangles-Main(G = (V, E))
2: Let I ← 100 · log n.
3: parfor i← 1 . . . I do ▷ Perform all I iterations in parallel simultaneously in O(1)

rounds.
4: Let Yi be the output of Algorithm 3 invoked on G. We assume that each invocation

of Algorithm 3 uses fresh randomness compared to previous runs.
5: end parfor
6: Let Y be the list of all Yi, for i = 1 . . . I.
7: Sort Y in non-decreasing order.
8: return the median of Y

We have the following guarantee for Algorithm 6.

▶ Theorem 24. Let Y be the output of Algorithm 6. Then, with high probability it holds

|Y − T | ≤ εT.

In the proof of this theorem we use the following concentration bound.

▶ Theorem 25 (Chernoff bound). Let X1, . . . , Xk be independent random variables taking
values in [0, 1]. Let X

def=
∑k

i=1 Xi and µ
def= E [X]. Then, or any δ ∈ [0, 1] it holds

P [X ≤ (1− δ)µ] ≤ exp
(
−δ2µ/2

)
.

	1 Introduction
	1.1 The MPC Model
	1.2 Our Contributions
	1.2.1 Triangle Counting
	1.2.2 Clique Counting

	1.3 Other Small Subgraphs
	1.4 Related Work

	2 Preliminaries
	3 Overview of Our Techniques
	3.1 Exact Triangle Counting
	3.2 Approximate Triangle Counting
	3.3 Counting k-cliques and 5-subgraphs

	4 Exact Triangle Counting in O(malpha) Total Space
	4.1 MPC Implementation Details

	5 Approximate Triangle Counting in General Graphs
	5.1 Overview of the Algorithm and Challenges
	5.2 Challenge (1): Ensuring That G[V_i] Fits on a Single Machine
	5.3 Challenge (2): Using k-wise Independence to Compute the Induced Subgraph G[V_i] in MPC
	5.4 Challenge (3): Showing that, with high constant probability, the size of the sent/received messages is bounded
	5.5 Challenge (4): is close to its expected value

	6 Open Questions
	A Exact Triangle Counting Analysis
	A.1 Detailed Analysis
	A.1.1 Details about finding duplicate elements using Theorem 8
	A.1.2 Proof of Theorem 4
	A.1.3 Showing Concentration for the Triangle Count
	A.1.4 Bounding the Number of Light Edges Received by a Machine
	A.1.5 Bounding the Number of Heavy Edges Received by a Machine
	A.1.6 Upper-Bounding the Number of Messages Sent by any Machine
	A.1.7 Getting the High Probability Bound

