ChemComm

COMMUNICATION

Cite this: Chem. Commun., 2022, **58**, 11579

Received 4th August 2022, Accepted 20th September 2022

DOI: 10.1039/d2cc04361k

rsc.li/chemcomm

Nitrile regio-synthesis by Ni centers on a siliceous surface: implications in prebiotic chemistry†

Marco Fioroni * and Nathan J. DeYonker * *

By means of quantum chemistry (PBE0/def2-TZVPP; DLPNO-CCSD(T)/cc-pVTZ) and small, but reliable models of Polyhedral Oligomeric Silsesquioxanes (POSS), an array of astrochemicallyrelevant catalysis products, related to prebiotic and origin of life chemistry, has been theoretically explored. In this work, the heterogeneous phase hydrocyanation reaction of an unsaturated C=C bond (propene) catalyzed by a Ni center complexed to a silica surface is analyzed. Of the two possible regioisomers, the branched iso-propyl-cyanide is thermodynamically and kinetically preferred over the linear n-propyl-cyanide (T = 200 K). The formation of nitriles based on a regioselective process has profound implications on prebiotic and origin of life chemistry, as well as deep connections to terrestrial surface chemistry and geochemistry.

Unraveling heterogeneous phase astrochemistry and catalysis (solid-gas/solid-solid) starting with the "dirty ice" hypothesis of van Hulst, 1 is of crucial importance in the formation of complex organic molecules (COM).²⁻⁶ The composition of the heterogeneous phase spans from pure H₂O or CO ices and their mixtures,7 to inorganic compounds such as SiC,8 TiO2,4 olivine, forsterite, on the enstatite and aluminosilicates. 12,13 The presence of organic material in astrophysical objects¹⁴ as well as in the Solar System, 15 is well established. In the Solar System, data acquired by direct spectroscopic analysis via interplanetary probes or terrestrial-based observations reveal a complex organic chemistry. 15 In particular, the chemical complexity of meteoric samples shows an elegant CHNOS organic chemistry.16 To enrich our understanding of heterogeneous phase astrochemistry, we have developed an interest in the role of transition metals (TM) such as Fe and Ni. 17

"Chemical defects" such as atoms on a mineral surface displaying free valences were shown to develop a fascinating that Ni atoms can be present also on minerals not correlated to the Ni mineral class. This hypothesis has a long standing tradition, where rare elements are ubiquitously present on rock forming minerals (10 to 1000s parts-per-million) and possibly responsible for the origin of Life and metabolism due to their catalytic activity.22 The astrochemical model here proposed benefits from the catalytic properties of a Ni atom bound to a silica surface performing a hydrocyanation reaction on a propene molecule. In this study, propene is the minimally-sized substrate needed to form two regioisomers, linear n-propylcyanide (l) and branched iso-propyl-cyanide (b) (see Fig. 1). The importance of nitriles in synthetic and prebiotic chemistry is well known, being fundamental building blocks for the synthesis of carboxylic acids, amines, amides and as intermediates in

catalytic chemistry with the formation of organic molecules and/or polymers starting from simple molecules/atoms (HCN,

CO, H). 18,19 Of particular interest are regio/enantio-selective

chemical processes due to their direct involvement in prebiotic

chemistry with the regioselective processes attracting less

scientific attention. An efficient way to get a regioselective

chemistry is the use of organometallic catalysts based on early and late transition metals, as is well known in industrial and

laboratory chemistry.20 The aim of the present study is to

understand if and how a Ni atom complexed to a silica surface

is catalytically active with organic substrates inducing regiose-

lective reactions. The selection of Ni is based on its cosmic abundance (after Fe the most abundant TM in space) and on its

known ability to perform regioselective hydrocyanation of unsaturated double carbon bonds.21 It should be mentioned

= + H + CN → _____C≡N + >

the Strecker reaction (amino acid synthesis). For example, simple

Fig. 1 Non-stoichiometric reaction scheme of propene hydrocyanation displaying the two regio-products: linear (l); n-propyl-cyanide and branched (b); iso-propyl-cyanide.

Department of Chemistry, 213 Smith Chemistry Building, The University of Memphis, Memphis, TN, USA 38152. E-mail: mfioroni@memphis.edu, ndyonker@memphis.edu

† Electronic supplementary information (ESI) available: Computational methods, compounds Cartesian coordinates, kinetic simulations, See DOI: https://doi.org/ Communication ChemComm

Fig. 2 Ni bound to the POSS model.

organic/prebiotic building blocks can be synthesized by nitriles hydrolysis, with the formation of carboxylic acids. In the presence of low water activity, primary amides are the main products. By reduction, primary or tertiary amides are synthesized and the electrophilic carbon center can undergo a nucleophilic attack. Most importantly, the various products (carboxylic acids, amides, imino-esters) will maintain the original I (linear) or b (branched) alkyl skeleton determining a possible excess of linear or branched carboxylic acids, amides and amino-esters. The POSS model (POSS: partially condensed silsesquioxane of formula [H₇Si₇O₉(OH)₃]) used in the present work (see Fig. 2) is a small silica cluster, but was extensively used to analyze the heterogeneous phase catalytic mechanisms of silica surfaces on both the theoretical and experimental levels. 23-26

The adoption of the POSS model is due to its ability to easily model "chemical defects" on siliceous surfaces. In particular, our research focuses on the [SiO]x matrix common to all siliceous minerals of astrochemical interest where silanol (SiOH) groups are present, as suggested by the 3.2 µm band detected on the nucleus surface of comet 67P/Churyumov-Gerasimenko²⁷ and as found by H₂⁺ irradiation of the major minerals of carbonaceous chondrites.²⁸ Furthermore, SiOH groups lead to the astrochemistry of siloxyl (SiO[•])^{18,19,29} and sylil (Si[•]) radical defects or if the SiOH acid/base properties must be considered, as known in zeolites. A transition metal-containing POSS is a model of heterogeneous phase catalysts²³ and was used by us to model the formation of H₂ from atomic H on a Fe⁺ (ref. 17). Finally, the selected POSS with only 29 atoms allows a powerful synergy between DFT and high-level ab initio methods to get accurate thermodynamic and activation energy data involved in the synthesis of astro-inorganic/organic compounds. 18,19,29 The formation of reactive free metal sites such as Fe or Ni can be the result of a "space-weathering" mechanism 30-32 i.e. photon processing, solar/stellar wind, cosmic rays, magnetospheric and micrometeoroid bombardment. Furthermore, the detection of neutral atomic Fe and Ni in the coma of the comet C/1996 B2 (Hyakutake)³³ as well as on 20 other comets³⁴ raises the question not only of the associated formation mechanisms of the two TMs, but what chemistry can be developed once Fe and/or Ni remain bound to the rocky surface displaying free valences. Regarding the selected Ni ligand sphere (Fig. 2), similarly to the Fe-POSS model, ¹⁷ H can react with the siloxo groups bonded to the Ni center by the sequence:

$$(SiO)_3Ni + H \rightarrow (SiO)_2Ni-(SiOH) + H$$

 $\rightarrow (SiO)Ni-(SiOH)_2 + H \rightarrow Ni(SiOH)_3$

to give a variety of Ni atoms differently coordinated. However, the selected Ni ligand sphere anchors Ni to the silica surface while allowing geometrical flexibility to ligate molecules i.e. propene, H, CN. Ni(1) is known mainly as a catalytic intermediate, though recent research has amplified its importance. 35 The proposed Ni-based propene hydrocyanation mechanism on a silicate surface is shown in Fig. 3.

Differing from laboratory and industrial chemistry, where HCN undergoes a 2e oxidative addition to form a hydridocyanide complex,²¹ the sequential reaction of atomic H, the most abundant atom in the Universe and the *CN radical, highly abundant in the ISM (inter-stellar medium),36 cometary coma³⁷ and Titan's atmosphere,³⁸ was considered. Radical reactions are generally characterized by low activation energies opening the possibility to synthesize new compounds at relatively low temperatures. The selected T = 200 K is a lower bound for HCN polymerization to progress efficiently (see later analysis on the chemical kinetics). In Fig. 4 the computed PES is reported (see ESI†), while in Fig. 5 the minima are depicted.

To find the minima, the conformational space of all compounds was manually analyzed, together with the spin multiplicity (see ESI†). As expected, low spin compounds are the most stable. The energy difference between high-low spin $\Delta_{\rm hs-ls} \geq 26.0~{\rm kcal~mol}^{-1}$, which makes the PES spin crossing thermally forbidden at T = 200 K. In the 1st step, ligand exchange, the Ni center is bound to two propene molecules to saturate the Ni ligand sphere near to the canonical 18e-.

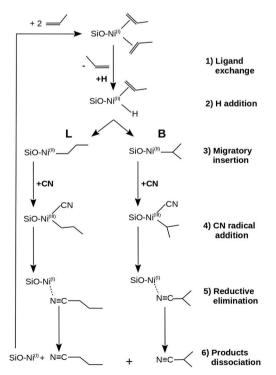


Fig. 3 The proposed six elementary steps of propene hydrocyanation on a Ni atom bond to a silica surface.

1) Ligand exchange 2) H addition 3) Migratory insertion 4) CN radical addition 5) Reductive elimination 6) Product dissociation (L) n-propyl-cyanide H₃C-CH₂CH₂CN₃CH₃CCH₃CH₃CCH₃

ChemComm

Fig. 4 Calculated PES (ΔG , kcal mol⁻¹, T=200 K) of propene hydrocyanation calculated by the ORCA program. ³⁹ Geometry optimizations/entropy corrections: PBE0/def2-TZVPP; ⁴⁰⁻⁴² single point corrections: DLPNO-CCSD(T)/cc-pVTZ. ⁴³⁻⁴⁶ Only DLPNO-CCSD(T) corrected energies are reported (see ESI†). All compounds are in the lower spin state (see ESI†).

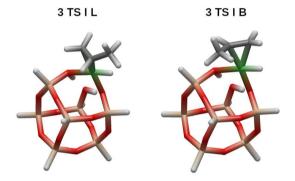


Fig. 5 All atom models of the two important TSs: **3TSIB** and **3TSIL**, determining the splitting into two reaction channels L and B, as reported in Fig. 3 and 4. For a detailed view of all the elementary steps see ESI.†

Obviously, the Ni ligand sphere depends on which organic (COM, CH₃ OH, C₂H₅ OH) or inorganic (H₂ O, CO, NH₃) phase covers the mineral surface. Here, we have hypothesized an environment relatively rich in H, CN, CO and unsaturated organic substrates as observed in patches on 67P/Churyumov-Gerasimenko and other comets. 47-49 In the 2nd reaction step, H addition, one propene molecule must be replaced by an atomic H resulting in a 1e- change. The total reaction is energetically favored by $\Delta G = -39.6 \text{ kcal mol}^{-1}$ with a barrierless addition of H to the Ni center (see ESI†). Most importantly, the H addition is the splitting point determining two pathways for the formation of the linear *n*-propyl-cyanide (l) or branched iso-propyl-cyanide (b) (see Fig. 5). The propene ligand can rotate around the Ni-(C=C) axis, leading to two conformers in which either the terminal CH or CH2 are closer to the Nihydride. This change forms the two regioisomeric transition states 3TSIB ($\Delta G^{\dagger} = 5.3 \text{ kcal mol}^{-1}$) and 3TSIL ($\Delta G^{\dagger} = 9.8 \text{ kcal mol}^{-1}$), showing a clear preference for the branched form. The migratory insertion products, 3B and 3L are both characterized by a Ni-H agostic interaction⁵⁰ with the hydrogen of the

transferred hydride. The agostic interaction is underlined by a slight uphill thermodynamics of $\Delta G = 1.2$ kcal mol⁻¹ (isoenergetic at the DLPNO-CCSD(T) level of theory) compared to the initial compound 2. The isomerization reaction connecting the branch 3B to the linear 3L, was also analyzed. However, a ΔG^{\dagger} value of 29.3 kcal mol⁻¹ at the considered T forbids the isomerization. The 4th reaction step, CN radical addition (similarly to the H oxidative addition is a 1e⁻ change) is barrierless (see ESI†) with favorable thermodynamics of $\Delta G = -74.3$ kcal mol⁻¹ for the linear 4L and $\Delta G = -78.0 \text{ kcal mol}^{-1}$ for the branched 4B, determining a slight thermodynamic preference of the b over the l isomer of $\Delta\Delta G = -3.7$ kcal mol⁻¹. The 5th reaction step, reductive elimination, involves cyanide transfer to the substrate and is characterized by the two TSs 5TSIIB and 5TSIIL and the two b and l products, 5B and 5L, respectively. In both pathways, the thermodynamics are downhill for reaction products **5L**, $(\Delta G = -35.2 \text{ kcal mol}^{-1})$ and **5B** $(\Delta G = -37.5 \text{ kcal mol}^{-1})$. However, 5TSIIL is characterized by an activation energy of $\Delta G^{\dagger} = 9.5 \text{ kcal mol}^{-1} \text{ while 5TSIIB has an activation energy of}$ ΔG^{\dagger} = 12.0 kcal mol⁻¹. Finally, the dissociation steps for both products are near thermoneutral (at the DLPNO-CCSD level of theory). It should be underlined that compound 5B, with the cyanide nitrogen coordinated to Ni, ($\Delta G = 25.3 \text{ kcal mol}^{-1}$) can be an interesting reactive intermediate. In fact, in presence of organics such as aldehydes (R-CHO) or ketones (R₁R₂CO), cyanohydrins can be formed. By kinetic modeling 51,52 at T =200 K,‡ the estimated reaction time (step 1 to 5) is $t \approx 20$ seconds while by increasing the temperature tote T =300 K, $t \approx 10^{-3}$ seconds (see ESI†). The total reaction time is determined by the formation of the final product 5B surmounting 5TSIIB, while due to the low energy barrier of 3TSIB, intermediate 3B is formed within 10^{-3} s. The considered range of temperatures can be experienced, for example, by astronomical objects, especially comets, where temperature rises periodically by surface heating due to strong orbital eccentricity while approaching the central star, or by dust particles and greater bodies (asteroids, planetoids) in the stable as well as turbulent phase of a proto-planetary disc and planetary system evolution. Finally, the resulting regioexcess re% = 0.99 of the b isomer (see ESI†) defines the POSS-Ni system as an efficient catalyst in the synthesis of branched alkylnitriles, rationalized by the free energy diagrams in Fig. 4. In fact, the b isomer is always thermodynamically preferred and the rate determining step can be associated to the 3TSIL and 3TSIB pairs, where the $\Delta G_{l-b}^{\dagger} = 4.5 \text{ kcal mol}^{-1} \text{ implies a } \approx 10^5 \text{ faster reactivity of the}$ 3TSIB compared to 3TSIL.§ The second TS pair 5TSIIL and **5TSIIB**, though shows a $\Delta G_{l-b}^{\dagger} = -2.5$ kcal mol⁻¹, resulting in a ≈ 500 times faster reactivity of **5TSIIL**, due to the extremely low population of 4L compared to 4B, which causes the b isomer to be the main product. A comparison with the same reaction (propene + *CN + H) conducted without the help of the Ni catalyst, was analyzed (see ESI†). No barriers have been found and $\Delta G_{l-b} = 0.7 \text{ kcal mol}^{-1}$ at T = 200 K gives a 14.5%population of the linear isomer, which is $\approx 10^4$ higher compared to the Ni catalyzed reaction (Markovnkov addition). In conclusion, the proposed Ni based C=C hydrocyanation is

Communication ChemComm

able to stabilize highly reactive radical species, such as H and *CN, coordinated to the Ni atom in a regio-selective hydrocyanation in the heterogeneous phase, while maintaining and enhancing the regio-character of the corresponding homogeneous gas-phase reaction.

The potential implications of the reported findings are beyond the regioexcess of nitriles, affecting prebiotic, origin of life, and terrestrial geochemistry by opening, conceptually, new possible synthetic pathways. For example, the proposed Ni catalyzed [-C=C-] hydrocyanation can be involved in the excess of branched fatty acids (mono- and di carboxylic) or amines, as found in some meteorites, 53-55 being both carboxyl acids and amines easily obtained by nitriles. Finally, astroregiochemistry can result in a wide chemical variety of products with the regioexcess dependent on the physico-chemical conditions in both heterogeneous and homogeneous phases.⁵⁶

We thank the Department of Chemistry at the University of Memphis, the University of Memphis High Performance Computing Facility, and CROMIUM (Computational Research on Materials Institute at the University of Memphis) for support. This material is also based upon work supported by the National Science Foundation (NSF CAREER BIO-1846408).

Conflicts of interest

There are no conflicts to declare.

Notes and references

- ‡ Kinetic constants were obtained by the computational data and deduced by the Eyring relation.
- § At T = 200 K for a ten-fold increase in the kinetics, the term $RT \times \ln 10 = 0.91 \text{ kcal mol}^{-1}$.
- 1 H. C. van de Hulst, Res. Astr. Obs. Utrecht., 1949, 11, 1-50, part 2.
- 2 H. M. Cuppen, C. Walsh, T. Lamberts, D. Semenov, R. T. Garrod, E. M. Penteado and S. Ioppolo, Space Sci. Rev., 2017, 212, 1-58.
- 3 M. dIschia, P. Manini, M. Moracci, R. Saladino, V. Ball, H. Thissen, R. A. Evans, C. Puzzarini and V. Barone, Int. J. Mol. Sci., 2019, 20, 4079.
- 4 G. A. Cruz-Diaz, A. Ricca and A. L. Mattioda, ACS Earth Space Chem., 2020, 4, 1730-1742.
- 5 A. Rimola, S. Ferrero, A. Germain, M. Corno and P. Ugliengo, Minerals, 2021, 11, 26.
- $\,\,$ 6 J. Lasne, ACS Earth Space Chem., 2021, 5, 149–162.
- C. K. Materese, P. A. Gerakines and R. L. Hudson, Acc. Chem. Res., 2021, 54, 280-290.
- 8 T. Q. Zhao, Q. Li, B. S. Liu, R. K. E. Gover, P. J. Sarre and A. S.-C. Cheung, Phys. Chem. Chem. Phys., 2016, 18, 3489-3496.
- 9 Q. Li, B. S. Liu, P. J. Sarre and A. S.-C. Cheung, Proc. Int. Astron. Union, 2017, 13, 320-325.
- 10 Q. Li, W. Dai, B. S. Liu, P. J. Sarre, M. H. Xie and A. S.-C. Cheung, Mol. Astrophys., 2018, 13, 22-29.
- 11 E. M. Valencia, C. J. Worth and R. C. Fortenberry, Mon. Not. R. Astron. Soc., 2019, 492, 276-282.
- 12 E. S. Doerksen and R. C. Fortenberry, ACS Earth Space Chem., 2020, 4, 812-817.
- 13 R. C. Fortenberry, Mol. Astrophys., 2020, 18, 100062.
- 14 M. Guélin and J. Cernicharo, Front. Astron. Space Sci., 2022, 9, 1–16.
- 15 Z. Martins, Q. H. S. Chan, L. Bonal, A. King and H. Yabuta, Space Sci. Rev., 2020, 216, 54.
- 16 S. Islam and M. W. Powner, Chem, 2017, 2, 470-501.
- 17 M. Fioroni and N. J. DeYonker, *Chem. Phys. Chem.*, 2016, 17, 3390–3394.
- 18 M. Fioroni and N. J. DeYonker, Front. Chem., 2021, 8, 621898.
- 19 M. Fioroni and N. J. DeYonker, Mon. Not. R. Astron. Soc., 2022, 512, 1629-1638.

- 20 E. P. Beaumier, A. J. Pearce, X. Y. See and I. A. Tonks, Nat. Rev. Chem., 2019, 3, 15-34.
- 21 K. Liu, S. Zhang and M. Han, Catalysts, 2020, 10, 818.
- 22 R. M. Hazen and S. M. Morrison, in Mineralogical Environments of the Hadean Eon: Rare Elements Were Ubiquitous in Surface Sites of Rock-Forming Minerals, ed. A. Neubeck and S. McMahon, Springer International Publishing, Cham, 2021, pp. 43-61.
- 23 E. A. Quadrelli and J.-M. Basset, Coord. Chem. Rev., 2010, 254, 707-728.
- 24 D. P. Estes, G. Siddiqi, F. Allouche, K. V. Kovtunov, O. V. Safonova, A. L. Trigub, I. V. Koptyug and C. Copéret, J. Am. Chem. Soc., 2016, 138, 14987-14997.
- 25 M. K. Assefa, G. Wu and T. W. Hayton, J. Am. Chem. Soc., 2020, 142, 8738-8747.
- 26 T. W. Dijkstra, R. Duchateau, R. A. van Santen, A. Meetsma and G. P. A. Yap, J. Am. Chem. Soc., 2002, 124, 9856-9864.
- 27 V. Mennella, M. Ciarniello, A. Raponi, F. Capaccioni, G. Filacchione, T. Suhasaria, C. Popa, D. Kappel, L. Moroz, V. Vinogradoff, A. Pommerol, B. Rousseau, I. Istiqomah, D. Bockelee-Morvan, R. W. Carlson and C. Pilorget, Astrophys. J., 2020, 897, L37.
- 28 Y. Nakauchi, M. Abe, M. Ohtake, T. Matsumoto, A. Tsuchiyama, K. Kitazato, K. Yasuda, K. Suzuki and Y. Nakata, Icarus, 2021, 355, 114140,
- 29 M. Fioroni, A. K. Tartera and N. J. DeYonker, J. Phys. Chem. A, 2018, 122, 9100-9106.
- 30 C. J. Bennett, C. Pirim and T. M. Orlando, Chem. Rev., 2013, 113(12), 9086-9150.
- 31 M. Murri, G. Capitani, M. Fasoli, A. Monguzzi, A. Calloni, G. Bussetti, N. Malaspina and M. Campione, ACS Earth Space Chem., 2022, 6,
- 32 M. Anand, L. A. Taylor, M. A. Nazarov, J. Shu, H.-K. Mao and R. J. Hemley, *Proc. Natl. Acad. Sci. U. S. A.*, 2004, **101**, 6847–6851.
- 33 S. J. Bromley, B. Neff, S. D. Loch, J. P. Marler, J. Országh, K. Venkataramani and D. Bodewits, Planet. Sci., 2021, 2, 228.
- 34 J. Manfroid, D. Hutsemékers and E. Jehin, Nature, 2021, 593, 372-374.
- 35 C.-Y. Lin and P. P. Power, Chem. Soc. Rev., 2017, 46, 5347-5399.
- 36 F. Borget, S. Müller, D. Grote, P. Theulé, V. Vinogradoff, T. Chiavassa and W. Sander, Astron. Astrophys., 2017, 598, A22.
- 37 N. Hänni, K. Altwegg, H. Balsiger, M. Combi, S. A. Fuselier, J. De Keyser, B. Pestoni, M. Rubin and S. F. Wampfler, Astron. Astrophys., 2021, 647, A22.
- 38 K. Willacy, M. Allen and Y. Yung, Astrophys. J., 2016, 829, 79.
- 39 F. Neese, F. Wennmohs, U. Becker and C. Riplinger, J. Chem. Phys., 2020, 152, 224108.
- 40 J. P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys., 1996, 105, 9982-9985.
- 41 F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
- 42 F. Weigend, Phys. Chem. Chem. Phys., 2006, 8, 1057-1065.
- 43 C. Riplinger and F. Neese, J. Chem. Phys., 2013, 138, 034106.
- 44 C. Riplinger, B. Sandhoefer, A. Hansen and F. Neese, J. Chem. Phys., 2013, 139, 134101.
- 45 N. B. Balabanov and K. A. Peterson, J. Chem. Phys., 2006, 125, 074110.
- 46 T. H. Dunning, J. Chem. Phys., 1989, 90, 1007-1023.
- 47 M. Läuter, T. Kramer, M. Rubin and K. Altwegg, ACS Earth Space Chem., 2022, 6, 1189-1203.
- 48 F. Goesmann, H. Rosenbauer, J. H. Bredehöft, M. Cabane, P. Ehrenfreund, T. Gautier, C. Giri, H. Krüger, L. L. Roy, A. J. MacDermott, S. McKenna-Lawlor, U. J. Meierhenrich, G. M. Munõz Caro, F. Raulin, R. Roll, A. Steele, H. Steininger, R. Sternberg, C. Szopa, W. Thiemann and S. Ulamec, Science, 2015, 349, aab0689.
- 49 A. J. McKay and N. X. Roth, Life, 2021, 11, 37.
- 50 M. Brookhart, M. L. H. Green and G. Parkin, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 6908-6914.
- 51 D. L. Bunker, B. Garrett, T. Kliendienst and G. S. Long III, Combust. Flame, 1974, 23, 373-379.
- 52 D. T. Gillespie, J. Comput. Phys., 1976, 22, 403-434.
- 53 J. C. Y. Lai, B. K. Pearce, R. E. Pudritz and D. Lee, Icarus, 2019, 319,
- 54 Meteorites and the Early Solar System II, ed. D. S. Lauretta and J. H. Y. McSween, University of Arizona Press, 2006.
- 55 S. Pizzarello, S. K. Davidowski, G. P. Holland and L. B. Williams, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 15614-15619.
- 56 D. Loffreda, F. Delbecq, F. Vigné and P. Sautet, J. Am. Chem. Soc., 2006, 128, 1316-1323.