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Distributed quantum sensing with mode- 
entangled spin-squeezed atomic states

Benjamin K. Malia1,2,5, Yunfan Wu3,5, Julián Martínez-Rincón1,4 & Mark A. Kasevich1,3 ✉

Quantum sensors are used for precision timekeeping, field sensing and quantum 
communication1–3. Comparisons among a distributed network of these sensors are 
capable of, for example, synchronizing clocks at different locations4–8. The performance 
of a sensor network is limited by technical challenges as well as the inherent noise 
associated with the quantum states used to realize the network9. For networks with 
only spatially localized entanglement at each node, the noise performance of the 
network improves at best with the square root of the number of nodes10. Here we 
demonstrate that spatially distributed entanglement between network nodes offers 
better scaling with network size. A shared quantum nondemolition measurement 
entangles a clock network with up to four nodes. This network provides up to 
4.5 decibels better precision than one without spatially distributed entanglement, 
and 11.6 decibels improvement as compared to a network of sensors operating at the 
quantum projection noise limit. We demonstrate the generality of the approach with 
atomic clock and atomic interferometer protocols, in scientific and technologically 
relevant configurations optimized for intrinsically differential comparisons of sensor 
outputs.

Distributed quantum sensors detect and compare phase shifts between 
spatially distinct modes of quantum systems with high precision4–6. For 
example, the gravitational potential can induce relative phase shifts 
between spatially separated atomic clocks1 or atom interferometers11. 
Quantum systems are an attractive platform for networks as they have 
the unique ability to directly benefit from both spatially localized and 
spatially distributed entanglement. Experiments have demonstrated 
entanglement-enhanced networks in both discrete12 and continuous 
variable13 configurations. In general, quantum networks will have an 
important role in future technologies. Substantial progress has been 
made with networks of quantum systems2,7,14–18 for enhanced commu-
nication19,20 and timekeeping21,22 at the global scale.

At small length scales, optical atomic clocks have pushed precision 
to record levels. In one work10, up to six multiplexed Sr atomic clocks 
spaced over 1 cm are implemented to achieve a fractional frequency 
precision at the 10−20 level. Another work8 has measured the gravita-
tional redshift over 1 mm within a single, spatially distributed sample 
of atomic Sr. In these systems, the precision of each clock is limited by 
the quantum projection noise (QPN) limit. In these mode-separable 
systems, the absence of spin correlations between the spatial modes 
causes the total precision to scale as M1/  where M is the number of 
identical clocks being compared.

Through entanglement, a spin-squeezed clock or sensor is able to 
achieve precision beyond the QPN limit9,23. However, if a network of 
squeezed clocks is mode separable, then the total precision still scales 
as M1/ . If spatially distributed entanglement does exist, then the total 
precision of such a mode-entangled system has the potential to scale 

with the Heisenberg limit, 1/M (refs. 21,22,24–26). This scaling in a photonic 
system has been demonstrated3, and it has been measured in a system 
of two Sr+ ions connected by a photonic link27. Our work addresses a 
spin-squeezed 87Rb mode-entangled network, the noise of which scales 
better than a mode-separable network.

Several methods exist for generating spin-squeezing between spa-
tially separate modes. In a pioneering work28, two spatially separated 
Rb vapour cells were probed via a photonic quantum nondemolition 
(QND) measurement. In Bose–Einstein condensates, on the other hand, 
spin-squeezing can be generated through spatially localized collisions 
before the state is allowed to expand to several micrometers29–31. Each 
part of the cloud can then be imaged separately. More recently, another 
work separated an entangled Bose–Einstein condensate state even 
further, to 80 μm, with the application of velocity-dependent Raman 
transitions32. Not only does the spin system now occupy separate spa-
tial modes, but the modes consist of states with differing momenta. 
Finally, atom–cavity interactions can entangle two momentum states 
with different spin states33.

In this work we demonstrate a spatially distributed multimode atomic 
clock network with noise below the QPN limit. Velocity-dependent 
Raman transitions create up to four spatial modes (each separated 
from an adjacent mode by approximately 20 μm) before a spatially 
distributed QND measurement is performed to entangle the spins 
of the modes. This entanglement enhances the precision of the fre-
quency comparison within networks of identical clocks, each contain-
ing 45,000 atoms per mode. A mode-entangled four-mode network 
exhibits noise roughly 4.5(0.8) dB lower than that of an equivalent 
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mode-separable network of spin-squeezed states (SSS) and 11.6(1.1) dB 
lower than a network of coherent spin states (CSS) operating at the 
QPN limit (numbers in parentheses represent one standard deviation). 
Finally, we employ an M = 2 node network to demonstrate an entangled 
differential atom interferometer.

QND measurements
The methods and apparatus used to generate and detect SSS are 
detailed in refs. 34,35. In summary, ensembles of up to 220,000 87Rb 
atoms are cooled to 25 μK and trapped in a 1,560-nm one-dimensional 
lattice within a dual wavelength optical cavity (see Extended Data Fig. 1). 
This cavity enables QND measurements via a 780-nm probe detuned 
from the D2 transition. These projective measurements detect and 
squeeze the collective spin of the ensemble, Jz = (N↑ − N↓)/2, where Ni 
are the populations of atoms in each state after the measurement. This 
spin-1/2 system is defined by the hyperfine ground states of 87Rb, |↓⟩ = 
52S1/2|F = 1, mF = 0⟩ and |↑⟩ = 52S1/2|F = 2, mF = 0⟩.

To generate spatially separate modes, velocity-dependent stimu-
lated Raman transitions couple these spin states to momentum p, 
where eigenstates are denoted as |spin, p⟩. The relevant transitions 
are driven by π pulses that take |↓, pI⟩ → |↑, pI + 2ħk⟩ and |↑, pI⟩→ 
|↓, pI − 2ħk⟩, where k is the difference between the wavevectors of 
each of the counterpropagating beams (effective wavevector) associ-
ated with the Raman transition. Without loss of generality, the initial 

momentum pI can be set to zero. A laser system drives Raman transi-
tions between ground-state hyperfine levels (see Methods). The π pulse 
time is short enough to address nearly the entire velocity distribution 
of the atom source (the linewidth of the Raman transition is larger 
than the Doppler width). The transitions occur with a Rabi frequency 
of ΩR = 2π × 500 kHz, and the maximum transition probability for a 
single Raman π pulse is 88%.

When a spin state in an equal superposition of |↓, 0⟩ and |↑, 0⟩ experi-
ences a Raman π pulse, it coherently evolves into a linear superposition of 
the two momentum modes |↑, +2ħk⟩ and |↓, −2ħk⟩ (see Fig. 1b). To deter-
mine the coherence between the two modes, we apply a second Raman π 
pulse a time T after the first Raman pulse such that the states have drifted 
apart by a distance vrelT, where vrel = 4ħ∣k∣/mRb = 2.4 cm s−1 is the relative 
velocity induced by the stimulated Raman interaction and mRb is the mass 
of an atom. A final microwave π/2 pulse is then used to probe the coher-
ence between the two modes (the microwave Rabi frequency is approxi-
mately 2π × 3 kHz here and in the work described below). As T increases, 
the coherence is observed to decay as e−T/β with a time constant β = 0.46 μs, 
owing to the velocity spread (approximately 6.9 cm s−1) of the atomic 
source (see Methods). After roughly T = 1.5 μs (36 nm of separation)  
the contrast becomes negligible, indicating mode separation.

If no effort is made to coherently recombine these momentum 
modes, the system can now be treated as a two-mode quantum net-
work, where each spatial mode m has a collective spin length of 

J CN⟨ ⟩ = /2x
m m( ) ( )  and a QPN limited variance J N(Δ ) = /4z

m m( ) 2 ( ) . Modes with 
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Fig. 1 | Atomic sensor sequence. a, Single-mode preparation: a localized 
ensemble of atoms (purple circles) is prepared in a ⟨ Jz⟩= 0 CSS. The purple 
distribution on the Bloch sphere is the Wigner function of the CSS with a 
variance of N/4. b, Two-mode preparation: counter-propagating Raman lasers 
split the ensemble into two spatially distinct modes (red and blue circles).  
Each mode’s spin is located opposite each other on their respective Bloch 
spheres (red and blue distributions). We note that because the spatial modes 
are separable here, the two distributions are not dependent on each other.  
At this stage, a π/2 microwave pulse brings both of these states to ⟨ Jz⟩ = 0.  
c, Entanglement: a probe laser performs a QND measurement to create 
spin-squeezing (represented by purple shadows). Measuring each mode 
independently does not give enhanced precision on the total measurement 
(grey shaded distribution represents the CSS of each mode). To show how 
simultaneous measurement improves precision, an example of marginal  

(light distributions) and conditional (black outlined distributions) Wigner 
functions45 are shown on the Bloch spheres. Here the red mode squeezed above 
the equator is conditional on the blue mode being found below the equator.  
d, Sensor operation: the sensor requires an initial application of a π/2 
microwave pulse, which rotates the SSS to a vertical (phase sensitive) 
orientation on the Bloch sphere. The observable that is being measured 
dictates the series of microwave and Raman pulses applied during the sensor 
sequence. The atomic interferometer sequence is pictured, with a detailed 
description of its sequence described in Extended Data Fig. 3. Mean 
trajectories of spin down (up) states are represented by solid (dotted) lines. 
(Relative times are not to scale). In the presence of a field gradient, the phases 
of the modes shift by δθ(m) (dashed arrows). e, Read-out: a π/2 microwave pulse 
then rotates the states back to a horizontal orientation and a second 
measurement (either QND or fluorescence population spectroscopy) is 
performed to measure the shift in the sum of all spin values.
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nearly equal mean atom number N can each be represented on com-
posite Bloch spheres with radii CN/2, where the contrast C = 78(3)% is 
determined by fluorescence imaging. Spin-squeezing improves the 
measurement of a linear combination of the polar angle shifts 
δθ δJ CN= /( /2)m

z
m( ) ( ) , where δJ z

m( ) are the differences in spin values 
between a first and second measurement (see Fig. 1). In the remainder 
of this work the measurable quantity θ , determined from the shift in 
the squeezed collective δJ δJ= ∑z z

m( ) value, will refer to the mean of the 
angles,

∑ ∑θ
M

δθ
CMN

δJ=
1

=
1

/2
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m

M
m

m

M

z
m

=1
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and θΔ  to the square root of its variance. The second observation of 
the collective Jz is accomplished with a second cavity QND measurement 
in the case of a clock network demonstration (following ref. 34) or a 
precision fluorescence measurement in the case of an atom interfer-
ometer demonstration (following ref. 35).

To first demonstrate the effect of phase shifts on each spatial mode, 
ensembles of 80,000 atoms are prepared in three different initial  
states: |↑, 2ħk⟩, |↓, −2ħk⟩ or a superposition of the two (the atom num-
ber differs between the modes by about 1% in the third case, owing 
to imperfections in the separating π pulse, as measured by the QND 
pulse). In the superposition case, waiting 0.9 ms separates the modes 
by roughly 20 μm, a much greater distance than the 36-nm coherence 
length identified above. The spins of the two modes now point towards 
opposite poles on their respective Bloch spheres. As shown in Fig. 1, a 
π/2 microwave pulse is then applied to the atoms. The pulse brings their 
vectors to the equator of their Bloch spheres (with radius 20,000 in the 
third case). The mode with positive momentum, for example, is now 
in a superposition of |↓, 2ħk⟩ and |↑, 2ħk⟩. Because the microwave π/2 
pulse simultaneously addresses both modes, the Bloch vectors remain 
anti-parallel. Finally, a (now spatially distributed) QND measurement 
is performed to projectively squeeze the distributed states22 (with a 
maximum variance of 9.5(0.5) dB below the QPN limit). This operation 
leads to a spatially distributed spin correlation of Jz values between the 
modes while increasing the variance of the spin distributions in the Jx–Jy 
plane, as illustrated in Fig. 1.

Once the mode-entangled state has been prepared, a microwave 
π/2–π–π/2 spin echo sequence with Tint = 110 μs between each pulse is 
performed. The phases of the microwave pulses are adjusted to accom-
modate the a.c. Stark shift (approximately 1 rad) induced by the entan-
gling QND pulse so that the Jz distributions are in metrologically 
sensitive configurations, as illustrated in Fig. 1. This is accomplished 
through observation of Jz for the independently prepared momentum 
modes |↑, 2ħk⟩ and |↓, 2ħk⟩. A second QND measurement determines 
the phase shift applied to the last microwave pulse. The two single-mode 
cases, θ δθ= (1), experience nearly equal and opposite responses owing 
to their anti-parallel spins (see Fig. 2a,b). θ  in the mode-entangled case 
is consistent with the mean of the single-mode cases, indicating that 
each mode reacts oppositely to the applied shift. Therefore, a sensor 
utilizing this method will suppress phase noise associated with the 
pulses used for coherent spin manipulation. This property is useful for 
suppressing oscillator noise in clock comparisons and optical phase 
noise in light-pulse atom interferometry applications (as demonstrated 
below).

On the other hand, this type of sensor will measure a differential 
phase shift between the two spatial modes due to, for example, 
position-dependent fields36. We demonstrate a nonzero differential 
measurement via the application of a magnetic field gradient across 
the 20-μm separation between the two modes. To introduce a clock 
frequency imbalance between the two modes, the magnetic field coils 
of the magneto-optical trap (MOT) are pulsed on during the second 
half of the echo sequence. As the magnetic field gradient (determined 
by the MOT coil current) increases, θ  is observed to shift away from 
zero (see Fig. 2c). The measured shift of 1.7(0.3) mrad A−1 corresponds 
to an average clock frequency shift of δω θ T= / = 2π × 15.7(2.8) Hz Aint

−1. 
Second-order Zeeman shifts of this magnitude require 4.0(0.8) G cm−1  
A−1 while the 87Rb atoms are in the presence of the 600-mG bias field. 
This value is consistent with the gradient estimated from the geometry 
of the MOT coils. We observed no substantial increase in the width of 
the detection histograms (as shown in Fig. 2b) for the relatively small 
(approximately 1 mrad) differential phase shifts used in this work  
(we can explore larger shift angles in future work). These data demon-
strate that this protocol can be used to measure the frequency differ-
ence between two distant entangled clocks through the observed 
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Fig. 2 | Differential phase shift detection. a, For the two-mode case depicted 
in the space–time diagram, the expected value of θ  is measured after the final 
microwave pulse is phase shifted. Solid lines are linear fits to the expected 
values for the N = 80,000 positive momentum mode (blue), N = 80,000 
negative mode (red), and N = 40,000 mode-entangled (green) cases. θ  in the 
single-mode cases are offset by 1 and −1 mrad, respectively, for visual clarity. 
The enlarged region contains the average of the single momentum modes, that 
is, mode-separable states (purple), which are offset by −0.4 mrad for visual 
clarity. In all subfigures, error bars represent the standard error of the mean 
(SEM) for a set of 200 samples and shaded areas represent 68% confidence 

intervals of the fits. b, Distributions of 200 sample measurements for the 
two-mode sensor with coherent states (black), single-mode states (blue and 
red), mode-separable states (purple) and mode-entangled states (green). 
Corresponding curves are Gaussian fits. c, Response of a two-mode, mode- 
entangled sensor to a magnetic field gradient applied in the second half of the 
echo sequence (green circles). For reference, when the sensor sequence’s 
microwave pulses are not performed (black circles), there is negligible change 
in θ  as the applied field increased. The relative magnetic field strength was 
determined by the relative voltage applied to the MOT coils.
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(conditional) shift in Jz. Additional spatial modes can be added, as 
described below, to detect higher-order spin correlations between 
modes.

Next we evaluate the noise performance of entangled, multimode 
clock networks with N = 45,000 atoms per spatial mode. The metro-
logical improvement, relative to their respective M-mode network of 
N-atom coherent states, can be quantified by a parameter ξ net

2  derived 
from the generalized version37 of the Wineland squeezing parameter38. 
For example, when M = 2,

ξ
C

δJ δJ

δJ δJ
≡

1 Var( + )

Var( ) + Var( )
, (2)z z

z z
net
2

2

(1) (2)

(1),CSS (2),CSS

where the CSS variances are N/4 (see Methods). This parameter 
accounts for both the spatially localized and spatially distributed entan-
glement since δJ δJVar ( + )z z

(2) (1)  is the sum of both individual variances 
and the covariance between the two modes.

A two-mode SSS is prepared and a pair of π/2 microwave pulses sep-
arated by a time Tint = 100 μs constitute a standard Ramsey sequence 
(for simplicity, no magnetic field gradients or artificial phase shifts are 
present, although they could be added in principle). Squeezing reduces 
the variance of the joint measurement to θΔ = 1.3(0.1) mrad (as shown 
in Fig. 3), which corresponds to ξ = − 8.6(1.0) dBnet

2 . This precision is 
near that of a two-mode SSS in the absence of the Ramsey sequence 
( θΔ = 1.2(0.1) mrad without technical noise from the sensor sequence). 
A single-mode clock, on the other hand, has 3.6(0.6) mrad of technical 
noise. In this differential clock configuration, low measurement variance 
can be achieved without the need for high-performance local oscillators, 

thus circumventing a limit of previous SSS sensor demonstrations34. 
This configuration will also suppress environmental noise common to 
both modes, such as a time-varying bias magnetic field. This suppres-
sion is achieved with a single collective read-out measurement.

This method can be extended to M = 2P clocks by further dividing 
the atomic ensemble with P Raman π pulses. For example, we demon-
strate a four-mode system by inserting an additional Raman π pulse, 
followed by a microwave π/2 pulse, before the first QND measurement 
to generate spatially distinct modes. In this case, we adjust the total 
initial number of atoms to maintain N = 45,000 atoms per mode. With 
four modes, the metrological enhancement is ξ = 11.6(1.1) dBnet

2   
(see Methods). For comparison, this is a 4.5(0.8)-dB relative improve-
ment over the projected mode-separable limit (see Fig. 3). Here the 
network gain is driven by the improved squeezing efficiency for larger 
numbers of atoms, because the total number of atoms initially entan-
gled is MN. The observed network gain is consistent with the measured 
atom-number dependence of squeezing efficacy observed in ref. 34 for 
this system (approximately 14 dB for N = 100,000). This four-mode 
network could be used to search, for example, for spatially periodic 
clock frequency shifts.

Finally, we apply this method to an atom interferometer configura-
tion, as illustrated in Fig. 1 and Extended Data Fig. 3. In this case, two 
atomic spatial modes are initially spin-squeezed in an optical lattice 
as described above. Atoms are then released from the lattice and sub-
ject to an atom interferometer pulse sequence after an interval of 
approximately 7 ms, after which they have separated by about 0.16 mm. 
Specifically, a Raman π pulse acts as a beamsplitter by simultaneously 
imparting opposite momentum to the spin states in each branch (result-
ing in a relative momentum between interfering wavepackets of 4ħk, 
as depicted in Fig. 1 and Extended Data Fig. 3). Tint = 50 μs later, a 
sequence of a Raman π pulse, microwave π pulse and Raman π pulse 
act as a mirror, and a final Raman π pulse recombines the states. The 
duration of the interferometer pulse sequence is 270 μs, dominated 
by the approximately 160-μs microwave π pulse time. Each mode of 
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N = 110,000 atoms accumulates a phase proportional to its local accel-
eration (see Methods). Fluorescence imaging35 detects of the sum of 
the final J z

m( ) (the modes are too closely spaced to resolve individually 
on the camera). This differential method suppresses large common 
mode optical phase fluctuations associated with the optical stimulated 
Raman transitions (measured to be 10 mrad, or roughly 15 dB above 
the projection noise limit, see Fig. 4a).

The smallest observed single-shot phase uncertainty with a 
mode-entangled interferometer is 4.9(0.4) mrad (Fig. 4b), which cor-
responds to an inferred differential acceleration sensitivity of 1.4(0.1) × 
10−2 m s−2 (see Methods). This sensitivity is limited by the relatively 
poor contrast (40%, see Fig. 4c) associated with the interferometer 
pulse sequence. Entanglement-enhanced noise performance can be 
characterized by comparing the observed mode-entangled sensor 
noise to the noise observed for the same sensor sequence implemented 
without the entangling probe, as shown in Fig. 4a,b. With respect to the 
sequence that does not employ entanglement, we observe an average 
metrological improvement of 1.6(0.9) dB. The average absolute noise is 
0.1(0.7) dB above the QPN limit for the non-entangled sensor, which we 
speculate is due to imperfect suppression of Raman laser phase noise. 
This configuration extrapolates directly to high performance, single 
source, differential gravity sensors (for example, ref. 11).

Conclusion
In the future, a distributed array of cavities sharing a common QND meas-
urement22, possibly via photonic links and shared probe light27,39, would 
enable entanglement and Bell tests across long distances. Adapting this 
method to squeezed optical clocks9 would further push the limits of preci-
sion measurements of time7,10 and gravity8. Applications in secure time 
transfer and quantum communications can benefit from a distributed 
entangled state21 because an eavesdropper could not deduce the correla-
tions through observation of one clock alone. For example, information 
encoded by rotations on one network node would only be detectable 
through a collective measurement of all nodes. Finally, the atomic inter-
ferometer protocol is technologically useful for future high-performance 
gravity gradient sensors and differential configurations designed for 
gravitational wave detection40,41 and dark matter searches42–44.
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Methods

Contrast
When determining spatial mode separation, a second Raman pulse 
removes the relative momentum after time T to maintain the mode 
separation distance until detection takes place. A π/2 microwave pulse 
with varying phase addresses both modes simultaneously and the 
remaining contrast is determined by the peak-to-peak Jz values from 
fluorescence imaging (see Extended Data Fig. 2). Specifically, this is 
twice the amplitude of a sinusoidal fit to the data (as seen in Fig. 4c for 
the interferometer contrast). The coherence falls to zero after roughly one 
thermal de Broglie wavelength λ h m k T= / 2π = 36 nmth Rb B ens , where 
kB is the Boltzmann constant, Tens is the temperature of the ensemble, 
and mRb is the mass of the 87Rb atom46. This distance corresponds to 
1.5 μs, at which point the contrast has reduced to less than 1%. In the 
absence of Raman transitions, the contrast is C = 79(1)% owing to deco-
herence in the lattice both before and after the sensing times. Adding 
in the two Raman transitions with T = 0 decreases the contrast to 
C = 73(1)%. Adding the magnetic field did not change the contrast  
by more than the margin of error (1%).

To determine C for the clock measurement, a final microwave 
π/2 pulse temporarily introduced to the single-mode case resolves 
C = 78(3)%. Therefore, introducing a single Raman transition before the 
QND measurement does not considerably reduce the final coherence 
of the ensemble. The gravity gradiometer has a lower final coherence, 
roughly 40%, owing to four additional Raman pulses. This is consist-
ent with the expected C = (88% population transfer)4 × (79% contrast 
without gradiometer).

Squeezing matrix for multiparameter discrete-variable squeezing
The form of the metrological squeezing parameter ξ net

2  is derived from 
equation 13 in ref. 37. For a general multimode system, the squeezing matrix 
Ξ 2 characterizes the level of metrological improvement due to entangled 
quantum network. In other words, it compares the covariances between 
each mode to the QPN limit. The matrix elements can be defined as

Ξ
N N J J

J J
=

Cov( ˆ , ˆ )

⟨ ˆ ⟩⟨ ˆ ⟩
, (3)kl

k l
z
k

z
l

x
k

x
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2
( ) ( ) ( ) ( )

( ) ( )

where Ĵ x
m( )

 are the spin operators for each mode and the mean spins 
are in the x̂ direction.

The metrological improvement in the multiparameter estimation 
can be written as the ratio of variance of the squeezed network to that 
of a network comprised of coherent states: Σ Σ/T T2

SN
2n n n n, where Σ and 

ΣSN are the covariance matrices of the squeezed and coherent states 
respectively, and n is the vector of coefficients for the linear combina-
tion of parameters being measured. In the case of equally populated 
(N = N(m)) modes, the expected length values are J CN⟨ ˆ ⟩ = /2x

m( ) . For a 

measurement of the average angular shift (nm = 1/M), it can be shown 
that the metrological improvement reduces to n nξ M Ξ= T

net
2 2 . More 

explicitly, in terms of the measured observables, it can be written as

( )∑
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In an arbitrary network, the scaling of ξ net
2  with M and N depends on the 

distribution of resources and the linear combination of variables used47.

Measurement sensitivity
Because the QND measurement addresses all modes simultaneously, 
it cannot distinguish between spin states with different momenta. The 
measured δJz is simply the sum of δJ z

m( ), with expectation value

∑ ∑δJ δJ C
N

δθ C
N

Mθ⟨ ⟩ = =
2

=
2
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The sensitivity, σ, of this measurement to changes in θ  is given by stand-
ard error propagation3:

σ
δJ

δJ θ

δJ
CMN

θ=
Var( )

∂⟨ ⟩/∂
=

Δ( )
/2

= Δ . (6)z

z

z

Laser system
A low phase noise, 1,560-nm laser is frequency doubled to 780 nm. 
This light is split and one mode passes through an electro-optic 
modulator (EOM) driven at 6.434 GHz, 400 MHz lower than the 
hyperfine transition frequency, ωHF. The driving signal is created 
by a low-phase-noise crystal oscillator mixed with a direct digital 
synthesizer, which allows for power, frequency and phase control. 
Next, both modes are amplified by semiconductor-based optical 
amplifiers to 2.8 W each.

One mode is now up-shifted by a 200-MHz acousto-optic modulator 
(AOM) and the other is down-shifted by the same amount. Both AOMs 
are driven by a common signal from a low-noise 200-MHz crystal 
oscillator. The pulsed signal controls the time the AOMs couple the 
light to optical fibres that deliver the light to the atoms. The fibres 
launch the light into 5.4-mm diameter, counter-propagating frees-
pace beams at a 45° angle to the vertical and a 45° angle to the cavity 
axis. The shifting places one sideband of the modulated beam ωHF 
away from the unmodulated beam frequency. These two frequencies 
drive the Raman transition between the two hyperfine states. The two 
participating frequencies create a transition which is red-detuned 
by 3.5 GHz from the excited state. The other sidebands are used to 
balance the a.c. Stark shift and do not considerably contribute to the 
population change.

Interferometer phase shift
The sequence provided in this work differs from a standard Mach–
Zehnder configuration48 in that both spin states receive a momentum 
kick instead of just one state. In addition, the microwave pulses are 
longer than the interrogation time so terms including pulse durations 
must be considered. The total phase shifts, δθ(m), of an interferometer 
can be derived from the sensitivity function49:

δθ a T T T T τ

T τ T τ τ τ τ

= 2 (2 + 4 + 4

+6 + 4 + 4 + 4 ),
(7)

m m

k k k k

( ) ( )
int
2

int 0 int 0

int 0 0
2

k

where a(m) is the acceleration in mode m projected along k, T0 = 1 μs is 
the time between sequential pulses, τ0 = 80 μs is the duration of a micro-
wave π/2 pulse, and τk = 2 μs is the duration of a Raman π pulse  
(see Extended Data Fig. 3). For the data of Fig. 4b, where Tint = 50 μs, we 
infer a statistical sensitivity of ∑a a MΔ = ( )/ = 1.4(0.1) × 10 m sm

M m
=1

( ) −2 −2 
for a single shot.
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Extended Data Fig. 1 | Apparatus. The atoms (black circle) are localized near 
the centre of the cavity. The Raman lasers enter the vacuum chamber at a 45° 
angle to the cavity axis. The reflected light from the probe laser is used in the 
homodyne detection.



Extended Data Fig. 2 | Mode separation. Contrast of the collective 
fluorescent measurement as a function of separation time between two 0.33 μs 
Raman π pulses. Solid curve is an exponential fit to the data with a decay rate of 
0.46 μs. Note that T = 0 corresponds to a single pulse with a total time of 2π. 
Error bars represent a 95% confidence interval.
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Extended Data Fig. 3 | Interferometer sequence timing. Space time diagram 
in the inertial frame of a single-mode interferometer. Solid (dashed) lines 
represent the trajectory of the spin down (up) state. White (grey) waves 
represent the finite time of the microwave (Raman) pulses.
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