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Lindblad Master Equations for Quantum Systems Coupled to Dissipative Bosonic Modes
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We present a general approach to derive Lindblad master equations for a subsystem whose dynamics is
coupled to dissipative bosonic modes. The derivation relies on a Schrieffer-Wolff transformation which
allows us to eliminate the bosonic degrees of freedom after self-consistently determining their state as a
function of the coupled quantum system. We apply this formalism to the dissipative Dicke model and derive
a Lindblad master equation for the atomic spins, which includes the coherent and dissipative interactions
mediated by the bosonic mode. This master equation accurately predicts the Dicke phase transition and
gives the correct steady state. In addition, we compare the dynamics using exact diagonalization and
numerical integration of the master equation with the predictions of semiclassical trajectories. We finally
test the performance of our formalism by studying the relaxation of a NOON state and show that the

dynamics captures quantum metastability.
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Introduction.—The description of open many-body quan-
tum systems dynamics is a formidable challenge for modern
physics. Typical out-of-equilibrium scenarios are a quantum
system (QS) interacting with an environment of bosonic
modes (BM) [1] [see Fig. 1(a)]. This is the common setup of
quantum electrodynamics, where the BM are the electro-
magnetic field [2,3]. Furthermore, it is the basis of prominent
implementations of quantum simulators because it allows us
to tailor the interactions between the constituents of the QS
[4-7]. Examples include quantum gases in optical cavities
[7-11], optomechanical arrays [12], phonon-mediated inter-
actions of trapped ions [4-6,13], polaritons or nitrogen-
vacancy centers in diamond coupled to microcavities or
mechanical elements [14—16], and photonic crystals [17].

A powerful tool to analyze open many-body QS is the
Keldysh approach [18,19], which employs methods of
quantum field theory and is very successful in predicting
their asymptotic behavior. The dynamics and metastability
are instead accessed by full simulations or so-called
effective master equations. The latter dispose of a large
part of the Hilbert space by eliminating the BM [20-23]
and include interactions, noise, and dissipation they medi-
ate. The derivation of effective master equations is an active
field [24,25] with various emphases, such as high-precision
metrology [26,27], exact solutions, and validity [28-31],
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multimode configurations [32-35], and coherent many-
body QS [21-23].

Recently, in cavity quantum electrodynamics, effective
Redfield master equations were derived [21,22]. While
describing the correct low-frequency behavior, they are not
necessarily positive. Attempts to make them positive, e.g.,
by bringing them into Lindblad form, resulted in incorrect
predictions of the asymptotics. Other effective descriptions
add fluctuations around a mean-field treatment of the BM
[23]. Here, the problem of positiveness was resolved by
assuming a thermalization of the QS, which is questionable
regarding the existence of nonthermal metastable states
[36]. This highlights the need to identify general effective
descriptions that preserve positivity. With such, one could
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FIG. 1. (a) The general model includes coupled dissipative

bosonic modes &, interacting with a quantum system described

by H 5. (b) Example: a dissipative optical cavity mode couples to a
cloud of driven atoms.
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determine the spectrum of the open system or simulate the
master equation using quantum state diffusion models [37].
This can then be used to analyze critical properties of
driven-dissipative QS [38—40], study prethermalization and
metastability [36,41,42], and shed light on aspects that
cannot be accessed easily otherwise, including measure-
ment-induced phase transitions [43-45].

In this Letter, we identify a general procedure which
allows derivation of effective master equations for an
arbitrary QS that is coupled to dissipative BM. We use a
specific type of Schrieffer-Wolff transformation [46] to
reduce the coupling between the QS and the BM such
that we can eliminate the latter. This transformation is a
displacement that depends, in general, on the eigenstates
and eigenenergies of the decoupled QS. The resulting
master equation has the Lindblad form and the specific
procedure allows us to systematically include retardation
effects between the QS and BM. As an example, we derive
an effective master equation for the dissipative Dicke model
and benchmark our results by comparing the spectrum and
dynamics with the one of the composite system.

Derivation of the effective master equation.—We start by
considering a set of BM, described by the annihilation
(creation) operators & (&Z), with eigenenergies @y, that
exchange energy at the finite rate x; with an external
thermal bath at temperature 1/f#. The dynamics for the
density matrix p is described by L;p = > {xi(ng + 1)
Dlap + knDlaj]p}, where we introduced D[0]p =
200 0" = 0"0p—pOT0. In this Letter, we consider the
case where n;, = [exp(fwy) — 1]7! 2 0, which is valid if the
;. are optical frequencies. On a timescale that is longer
than the typical relaxation time 1/k;, the BM couple
coherently to a QS described by the Hamiltonian (A = 1)

= hg+ 0 (Sal 08 - s+ S ). (1)
k K

The Hamiltonian in the absence of the BM is denoted by

Hj. The term proportional to Q%* = (Q%¥)* denotes the
frequencies and mode-mode couphng that may depend on
the QS’s degrees of freedom. The last term in Eq. (1)
represents the coupling of the BM to QS operators ;. The
dynamics of the density matrix p is then described by the
master equation

op .
p EA [

o P+ Lap. (2)

We want to eliminate the BM degrees of freedom and
derive an effective master equation describing the dynamics
of the QS. The steps for the derivation are as follows:
(i) We derive the master equation for p = D'pD
where D = exp[>, (& — & ;)] is a displacement oper-
ator that correlates the BM to the QS by establishing an

effective-field operator a;. We assume ||&|| ~€ < 1 and
apply a perturbation theory where we discard all terms that
are of third order in € or higher. (ii) In the displaced picture,
we project the BM onto the thermal state. Here, we assume
that the displaced BM are to good approximation in a
thermal state, whereas they are not necessarily thermal in
the original picture due to the interaction with the QS. For
the parameter regime considered here the thermal state is
essentially the vacuum state |vac) and we can define
Psys = (vac|p|vac). We systematically include the coupling
of Py to higher Fock states in the displaced BM and
optimize the operators &, such that pgy is decoupled up to
third order in €. This decoupling procedure is reminiscent to
a Schrieffer-Wolf transformation. In Supplemental Material
(SM) [47] we show that these steps result in solving

a&k A A k k/ A

— =—ilHg, 0| — i)y Q¢ oy —iS; —xa;. (3
5 = ~ilfs.a zk;Sk c= R (3)
With the solution @, of the above equation, we obtain a
master equation for the density matrix pg that reads

0/3 sys
ot

= ‘Ccffﬁsys = _i[ﬁeff’ f)sys] + ZKkD[&k]/A)SyS (4)
k

and the effective Hamiltonian

Ay = Hs + 5 Z &8+ Siay). (5)

This master equation is the main result of this Letter that
we now discuss in greater depth. We first observe that Eq. (4)
is of the Lindblad form, thereby it describes a completely
positive divisible quantum process if the &; are bounded
operators. This is usually fulfilled since we require
lax |l < 1, which is physically the case if k; exceeds the
coupling || S, ||. In the discussion below, we will focus on the
single-mode case [52] but we provide a multimode example
in the SM [47]. The terms proportional to x and Qg in Eq. (3)
describe the relaxation of the BM to the thermal state in the
absence of S. During this relaxation, the QS evolves
according to H such that the BM sees a retardation effect
determined by [Hg,a]. This term is a principal finding
because it shows that the BM carries information about the
evolution of the QS. In fact, solving Eq. (3) for the steady
state, assuming that [I:I s, @] can be ignored, results in the
adiabatic elimination [53-55] given by & = —iS/(iQ + k)
and includes quantum noise due to k, visible by the
proportional incoherent part in Eq. (4). For ||Qg]| > «, it
also recovers the dispersive limit, where the QS evolves
coherently with H.;. Using Eqs. (3) and (4), we can
systematically take retardation and noise effects into account
by treating [H, & and « either in arbitrary order, or as a
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perturbation. We remark that first-order perturbation in
retardation effects has been studied in semiclassical descrip-
tions, giving rise to collective cavity cooling and dissipation-
assisted prethermalization [20,34-36,56,57]. However, the
effective master equation (4) is a full quantum description
and therefore complementary to the results of Refs. [21-23]
that derive effective quantum descriptions. Similar to
Ref. [23], we use a displacement operation to eliminate
the BM, however, our “displacement” is not based on a
mean-field assumption. Instead, “&” is an operator that
intrinsically includes fluctuations. Our approach requires
thermalization of the displaced BM, but no thermalization of
the QS, allowing Eq. (4) to describe metastable dynamics.
To show the potential of Eq. (4) we will analyze an example,
namely the dissipative Dicke model.

Application to the dissipative Dicke model.—The dis-
sipative Dicke model describes a single mode coupled
to N two-level atoms. It can be realized with driven
atoms interacting with an optical cavity [8,58] [see
Fig. 1(b)]. We therefore denote the QS by atoms and the
BM by cavity mode. With our definitions in Eq. (1) we use
Hg = 0,57, the cavity frequency Qg = w,, and coupling
S =2¢8//N. We have introduced the spin operators
8¢ = YY1 89/2 with a € {x,y,z}, where & denote the
Pauli matrices of the jth atom. The dissipative Dicke
model exhibits a phase transition in the thermodynamic
limit N - o from a normal (g <g.,) to a super-
radiant phase (g > g.) [18,58-60], with a critical value
@2 = wy(w? + %)/ (4w, ). In contrast to the quantum phase
transition of the Dicke model [59,60], the dissipative Dicke
model exhibits different critical exponents and a damping
rate at steady state [18,48,49].

In Ref. [21], it was shown that an atom-only
Redfield master equation for this model gives the correct
low-frequency behavior. On the other hand, this cannot
be achieved by a Lindblad master equation derived
after making a large-detuning or a secularization approxi-
mation, which are obtained assuming @w,/w, = 0 or drop-
ping the corotating and off-resonant a'S* and a8~ terms
(§* = §% +i8"), respectively. Based on this, it was con-
jectured that correct, atom-only master equations for the
dissipative Dicke model require a non-Lindblad form. We
will show that the Lindblad master equation (4) goes
beyond the large-detuning and secularization approxima-
tion and is a counterexample for this conjecture.

We determine @ using Eq. (3) whose steady state is

a=a,8" +a 8, (6)

with a, = —g/[V/N(w. &+ @y — ix)]. As a result of the
commutator [H,a] the effective cavity field & has two
sidebands shifted by o, from o, corresponding to the
excitation or deexcitation of the atoms. If we impose

@y =0 in Eq. (6) we recover the large-detuning result

as in Ref. [21] where the Redfield master equation becomes
of Lindblad form and Hermitian. Using Eq. (6) in Eq. (4)

we also find corotating terms [:S'i]z, dropping the latter
results in the secularization approximation with the same
result as in Ref. [21]. This shows that Eq. (4) is of the
Lindblad form, recovers two limiting cases of the Redfield
master equation [21], and does, in general, not require the
large-detuning or secularization approximation which are
insufficient to correctly describe the dissipative Dicke
model. We now compare the spectra of Eq. (4) and the
full master equation (2) for small N by diagonalizing L.
and £ using the symmetric states |m), with 8|m) = m|m)
form=-N/2,-N/2+1,...,N/2.

In Fig. 2, we show the complex eigenvalues A of £ and
L as gray circles and red crosses, respectively. Below
threshold, g < g.., Fig. 2(a) shows an excellent agreement
of the full and effective descriptions for the eigenvalues
with the largest real parts. This emphasizes that L.g
correctly describes long timescales and discards faster
timescales with Re(1) < —«k, thereby describing the
dynamics of metastable states. Figure 2(b) shows the
spectrum in the superradiant phase g > g¢.. Again, we find
great agreement, which is remarkable since the gap
between the “correctly” described modes and Re(1) =~
—k is much smaller. This direct comparison suggests that
the effective description is valid across the phase transition.

To further support this claim, we use Eq. (4) to make
analytical predictions in the limit w,., k > @, i.e., the limit
when the cavity evolves much faster than the atoms [21].

For this case, the commutator term [Hg a] can be

(@ 3
2L
e 1
=
=0
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FIG. 2. Eigenvalues / in units of x of Eq. (2) (gray “circles”)
and Eq. (4) (red “crosses”) for the dissipative Dicke model. The
parameters are N = 10, o, =k, @y = 0.1k, and (a) g = 0.5¢g,,
(b) g = 2g..
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FIG. 3. (a) Photon number (aa) and (b) inversion (§%) as a
function of g in units of the critical coupling strength g.. Dashed
lines are the mean-field results for N — oo and solid lines are
obtained by finding the steady-state of Eq. (4) for the dissipative
Dicke model with various atom numbers N (see inset). Red
crosses are obtained by finding the steady state of the full master
equation (2) for N =40. The remaining parameters are
w. =k, g = 0.1k.

treated perturbatively and the coefficients in Eq. (6)
can be expanded according to ay = —g/[v/N(w, — ix)]+
gwo/[V/N(w, — ix)?]. In the large N limit, we can derive
mean-field equations for §¢ = (§) with a € {x,y, z} that
are reported in the SM [47]. The resulting equations are the
same as the ones given in Ref. [21]. Consequently, we find
the correct threshold, oscillation and damping rates, and
critical exponents in the thermodynamic limit (see SM
[47]). The steady-state values of I = (a'a) and S° in the
thermodynamic limit are given by I, = 0 and S = —N/2
for g < g, and Iy = Ng*(1 — g¢/¢") /(@2 + «?) and S§ =
—Ng?/(2¢?) for g > g.. In Figs. 3(a) and 3(b), we show I,
and S as functions of g as black dashed lines. Furthermore,
we present the values / and (S‘Z> by numerically finding
the steady state of Eq. (4) and then calculating (a'a) =
Tr[a'apyy,) and (5%) = Tr[$%,]. Since L. does not
include the cavity degrees of freedom, we are able to
diagonalize it for larger atom numbers. As can be seen in
Figs. 3(a) and 3(b), the analytical result and the numerical
results are in better agreement for larger atom numbers N.
For N = 40, we were able to find the steady state of L,
depicted for two values of g/g. as red crosses. This
agreement indicates that Eq. (4) is also valid for finite
atom numbers. Altogether, these results show that L.
predicts the correct steady state, low-frequency behavior,
and critical exponents.

In the remainder, we focus on out-of-equilibrium dynam-
ics, i.e., scenarios where the system is initialized “far” away
from the steady state. The dynamics and relaxation in such
situations require the correct description of high and low
frequency modes. Since it is difficult to simulate the full
master equation (2) for large N, we use a semiclassical
stochastic method to compare with simulations of Eq. (4).
The stochastic method simulates the coupled dynamics of

10! 10°
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FIG. 4. The value of ([$]) as function of time in units of 1/«
for (a) ¢ =0.5¢g, and (b) g = 2g.. The gray (black) lines are
obtained by simulating the effective master equation (4) with N =
50 (N =200). The red dashed (yellow dash-dotted) lines are
simulated with the stochastic method reported in the SM [47] and
averaged over 20000 simulations with N =50 (N = 200).
(c) Eigenvalues 4 in units of x of Eq. (4) for N = 25 (“crosses”),
N =50 (“pluses”), and N = 100 (“circles”). The red symbols
mark the eigenvalues discussed in the text. (d) Fidelity F =
(¥|psys (1)|¥) as a function of time in units of 1/k simulated using
Eq. (4) initialized with the state |¥) discussed in the text for
N = 25 (light gray dashed), N = 50 (gray dash-dotted), and N =
100 (black solid) with @, = k, wy = 0.1«.

the c-number equivalents of spin components S*, §*, and S*
coupled to the noisy real part x and imaginary part p of the
field amplitude. Details are reported in the SM [47]. In a
benchmark, we initialize the system with all atoms in the
ground state, (§°) = —N/2, and evolve it according to
Eq. (4). Figures 4(a) and 4(b) show the time evolution of
([S]?) for g=0.5g. and g=2g,, respectively. Both
simulations are in excellent agreement. Since the stochastic
simulations evolve the coupled atom-cavity dynamics on
equal footing, we conclude that Eq. (4) incorporates the
correct retarded interaction between atoms and cavity, and
is well suited for out-of-equilibrium dynamics.

Finally, we analyze a scenario with quantum features that
cannot be described by semiclassical stochastic methods
[47]. To achieve this we first analyze the spectrum of
Eq. (4) for g = 2g,, shown in Fig. 4(c). We find a mode
with a growing imaginary part for increasing N (marked
red). The underlying mode is related to the coherence
¢ = |N/2)(—N/2| that oscillates with a frequency ~Na,.
Remarkably, its frequency exceeds the cavity resonance
and linewidth while its damping is far less than «.
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Therefore, it can be seen as a metastable high-frequency
oscillation with a number of periods diverging with N. To
find this oscillation dynamically, we initialize the system in
the NOON state |¥) = (|N/2) +|—N/2))/v/2 such
that the coherence ¢ is present at ¢t = 0. We then evolve
|¥) according to Eq. (4) and calculate the fidelity
F = (P|psys(1)|'W), visible in Fig. 4(d). We find an oscil-
lation frequency that increases with N, while the damping
is nearly independent of N. This agrees with the behavior of
the red-marked modes in Fig. 4(c) and further highlights the
ability of Eq. (4) to describe out-of-equilibrium situations
with entangled quantum states.

Conclusion.—We have developed a formalism for the
derivation of effective master equations that describe the
reduced dynamics of a QS coupled to dissipative BM.
These master equations are of Lindblad form, thereby
ensuring that the positivity is preserved. Furthermore, our
approach includes the retarded interaction between the QS
and the BM. We demonstrated this by applying the
formalism to the dissipative Dicke model, where it cor-
rectly describes the steady state and dynamics for small to
large atom numbers.

The method presented here may be extended to nonzero
thermal occupation of the bosonic modes which would also
allow the study of transport [61]. We also expect that a
generalization to include higher coupling strengths is
possible by modifying the displacement transformation.
This might be interesting for systems with a vanishing gap,
e.g., atom-cavity systems with U(l) symmetry [22].
In the future, it will be interesting to apply the Lindblad
master equation to multimode systems to study many-body
cooling, the formation of coherent states in the presence of
dissipation, and reservoir engineering [62—64].
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