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In quantum logic spectroscopy (QLS), one species of trapped ion is used as a sensor to detect the state of
an otherwise inaccessible ion species. This extends precision measurements to a broader class of atomic
and molecular systems for applications like atomic clocks and tests of fundamental physics. Here, we
develop a new technique based on a Schrödinger cat interferometer to address the problem of scaling QLS
to larger ion numbers. We demonstrate the basic features of this method using various combinations of
25Mgþ logic ions and 27Alþ spectroscopy ions. We observe higher detection efficiency by increasing the
number of 25Mgþ ions. Applied to multiple 27Alþ, this method will improve the stability of high-accuracy
optical clocks and could enable Heisenberg-limited QLS.
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Experiments on quantum systems face a common
challenge of state detection, which requires amplifying
tiny quantum signals above the background noise. In the
case of atomic systems, including trapped ions, the typical
approach to state detection is to observe photons scattered
from a particular quantum state [1]. This approach works
well on a limited number of atomic species that have a
suitable internal structure; however, numerous other atomic
species are compelling targets for specific applications but
do not have suitable transitions for direct state detection.
For example, some species of molecular ions [2,3], highly
charged ions [4], and even antimatter particles [5] offer
unique opportunities for testing fundamental physics [6].
Quantum logic spectroscopy (QLS) enables state detec-

tion of otherwise inaccessible ions by introducing a
cotrapped logic ion (LI). The internal state of the spec-
troscopy ion (SI) is transferred via a shared mode of motion
to the LI where it can be detected via photon scattering. The
first demonstration of QLS was with 27Alþ [7,8], which
now serves as a frequency reference in atomic clocks [9–
12]. Variations on the QLS technique have been developed
with several aims: to demonstrate Hz-level precision
spectroscopy for atomic clocks [9–12], to perform corre-
lation spectroscopy [13], to work far off resonance from an
optical transition [2,14], or to operate in thermal motion
[15,16]. So far, QLS has only been performed on up to two
SIs [13] and the issue of scaling QLS techniques to larger
ion numbers [17] is an open experimental question.
In this Letter, we propose and experimentally de-

monstrate a new method of QLS that can be scaled to
larger ion numbers. Our protocol employs multiple LIs as

independent sensors to detect a state-dependent driving
force applied to the cotrapped SIs. This technique does not
require ground-state cooling or individual ion addressing,
both of which become more difficult with larger ion
ensembles [18,19]. We apply the technique experimentally
to ensembles of up to three LIs and three SIs. By scaling the
number of LIs, we show that technical noise in the
detection process can be suppressed.
Our protocol relies on a Schrödinger cat state [20] of the

LIs, which acts as an interferometric sensor for the state of
the SIs (see Fig. 1). Several schemes have been explored to
create the Schrödinger cat states [20–23], including the σ̂ϕ-
type interaction [22,24] employed here. To produce this, a
bichromatic laser field is applied to the LIs with frequency
components near resonance with the motional sidebands at
frequencies ω0 � ωM, where ω0 is the qubit resonance
frequency and ωM is the frequency of a shared motional
mode. In the Lamb-Dicke limit, the dynamics of a single
LI driven by the laser are described by the interaction
Hamiltonian [25],

Ĥ ¼ ℏηΩ0

2
σ̂ϕðâeiϕM þ â†e−iϕMÞ; ð1Þ

where 2πℏ is Planck’s constant, Ω0 is the Rabi frequency,
and η is the Lamb-Dicke parameter, describing the coupl-
ing strength between the laser field and the motional
mode of the ions. We use a rotated Pauli spin operator
σ̂ϕ ¼ e−iϕS σ̂þ þ eiϕS σ̂−, where σ̂�, â, and â† are ladder
operators of the spin mode and the motional mode,
respectively. The phases of the red (ϕr) and blue (ϕb)
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components of the laser field control the spin phase ϕS ¼
ðϕb þ ϕrÞ=2 and the motional phase ϕM ¼ ðϕb − ϕrÞ=2.

In the simplest case, consider a single LI prepared in a
superposition state: jψiL ¼ j↓iL ¼ ðj →iL þ j ←iLÞ=

ffiffiffi

2
p

,
where j↑iL and j↓iL are the energy eigenstates of the LI
and j ←iL and j →iL are the eigenstates of σ̂ϕ. Applying the
bichromatic laser field realizes a spin-dependent displace-
ment on the LI (LI-SDD): ÛðtÞ ¼ D̂ðþαÞj →iLh→ jLþ
D̂ð−αÞj ←iLh← jL, where D is the motional phase space
displacement amplitude and αðtÞ ¼ −iηΩ0te−iϕM=2. This is
analogous to the first “beam splitter” of an interferometer,
creating the Schrödinger cat state shown in Fig. 1(c).
Likewise, the second beam splitter in the interferometer
(LI-SDD−1) can be produced by applying the same laser
pulse, but shifting ϕM by π. If there is no additional
displacement during the interferometer, this operation
recombines the two motional components, recovering the
initial state of the LI. However, displacements that occur
between the two interferometer pulses generally produce a
geometric phase, which can be detected in the final state of
the LI. Here, we consider a state-dependent displacement
(SI-SDD) produced by another bichromatic laser field
applied to a SI coupled to the LI through their collective
motion at frequency ωM. For example, if the SI is prepared

in the state jψiS ¼ ðj↓iS þ j↑iSÞ=
ffiffiffi

2
p ¼ j →iS, it under-

goes a displacement D̂ðβÞ [marked as SI-SDD in Fig. 1(d)],
which produces a geometric phase θ ¼ 2αβ sinϕM, rotating
the state of the LI by e−2iθσ̂ϕ. Measurement of the LI
population P↓;L after the second beam splitter gives

P↓;L ¼ ½1þ cosð4αβ sinϕMÞ�=2: ð2Þ

The parameter β contains information about the inter-
action between the SI and the SI-SDD beams, which is
detected interferometrically by the LI. We use this in two
distinct ways. First, we perform spectroscopy directly on
the j↓iS ↔ j↑iS transition, where the phase, duration, and
detuning of the SI-SDD pulse itself modulates β (Fig. 2).

FIG. 1. (a) An ensemble of SIs (green dots) and LIs (yellow
dots) confined within a linear ion trap. The arrows indicate SDDs
provided by two bichromatic laser fields. (b) The energy levels
involved in these experiments. (c)–(e) Schrödinger cat interfer-
ometry sequence in motional phase space.

FIG. 2. Quantum logic spectroscopy using a Schrödinger cat
interferometer. (a) Using one 25Mgþ as a LI and one 27Alþ ion as a
SI, the ground-state probability of the LI (P↓;L) is modulated by
the geometric phase encoded in phase space when scanning the
motional phase angle ϕM. Experimental results (blue points)
match the fit of Eq. (2) (solid line). (b) The duration of LI-SDD is
scanned with ions cooled to the Doppler limit (orange points) and
after sideband cooling (blue points). Lines are the results of
numerical simulations without free parameters. (c) Spectroscopy
of the 1S0 → 3P1 transition of one, two, and three 27Alþ SIs using
equal number of 25Mgþ LIs. Insets on the top of each figure are
fluorescence images of the 25Mgþ ions (bright spots). 27Alþ ion
positions are marked in yellow circles based on theoretical
calculations. The data (blue circles) are fit by numerical simu-
lations (orange line). Error bars represent one standard deviation
of the LI quantum projection noise. Note that, for the case of six
ions, the ion chain has formed a zigzag geometry, but we still
observe a resonant response in the interferometer, although with
reduced contrast.
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Second, we detect “clock” transitions from j↓iS to the long-
lived clock state (jciS) using the fact that only the ions in
state j↓iS interact with the SI-SDD pulse. This allows for
spectroscopy on a narrow clock transition and is analogous
to the electron-shelving technique used in conventional
fluorescence measurements (Fig. 3).
Both protocols can be scaled to NL LIs and NS SIs.

Assuming that all ions have nearly equal mode amplitudes
and feel equal driving forces, all the LIs can be treated as
independent sensors. The signal observed by the LIs
increases linearly with NL [26]. In scaling NS, the force
experienced by the ions during the SI-SDD pulse increases
linearly with the number of SIs in the state j↓iS. By
appropriate choice of parameters α and ϕM this provides a
means to count the number of ions remaining in j↓iS after a
clock pulse on multiple SIs.
We demonstrate this interferometer using 25Mgþ as the

LI and 27Alþ as the SI confined in a linear Paul trap [12,27].
The trap frequencies are approximately ðωx;ωy;ωzÞ ¼
2π × ð6.7; 6.3; 2.5Þ MHz for a single 25Mgþ. The qubit
states of the 25Mgþ ions are encoded in j↓iL ≡ j2S1=2;

F ¼ 3; mF ¼ −3i and j↑iL ≡ j2S1=2; F ¼ 2; mF ¼ −2i.
Doppler cooling and state detection of 25Mgþ relies on
resonance fluorescence from the j↓iL ↔ j2P3=2; F ¼ 4;
mF ¼ −4i cycling transition driven by a circularly polar-
ized 280.4 nm laser beam.
A pair of perpendicular 279.6 nm laser beams, referred to

here as red Raman and blue Raman (BR), respectively, with
wave vector difference Δk along the trap z axis are used to
generate Raman sideband pulses [27] and the LI-SDD. The
BR beam consists of two frequency components, which are
separated by 2ωM. For the 27Alþ ions, the qubit states are
encoded in j↓iS ≡ j1S0; mF ¼ −5=2i and j↑iS ≡ j3P1;
mF ¼ −7=2i. A circular-polarized, bichromatic 266.9 nm
beam line is applied at a 45° angle with the trap z axis for
the qubit manipulation and the SI-SDD. Both the 266.9 and
279.6 nm laser beams are intensity stabilized using photo-
diodes before entering the trap to generate carrier Rabi rates
of approximately 300 kHz. When trapping one 25Mgþ ion
and one 27Alþ ion, the Lamb-Dicke parameters of the
2.5 MHz c.m. mode along the z axis are ηL ¼ 0.18 for the
LI and ηS ¼ 0.10 for the SI, respectively. We use this mode
to drive both the LI-SDD and the SI-SDD, as the mode
amplitudes z0 are nearly the same for ions in different
positions. In addition, the motional phases of both SDDs
need to be equal for all the ions and controllable between
species, which can be satisfied using a bichromatic laser
field [26]. When scaling to a multiple number of ions, those
Lamb-Dicke parameters decrease since the ground-state
wave function size z0 ∝ ðMωMÞ−1=2, where M is the total
mass of the ion chain.
We first prepare a pair of 25Mgþ and 27Alþ to demonstrate

features of the interferometer. The 25Mgþ ion is optically
pumped to the j↓iL state, while the 27Alþ ion is rotated to
j →iS ¼ ðj↓iS þ j↑iSÞ=2 using a π=2 carrier pulse. In order
to control the geometric phase enclosed in the interferom-
eter, it is necessary to maintain the relative phases between
the LI-SDD on the 25Mgþ ions and SI-SDD on the 27Alþ

ions. To accomplish this, we produce the red and blue tones
for the two bichromatic laser beams by mixing radio-
frequency signals that are used to drive two acousto-optic
modulators from a single source [26]. The long-term phase
coherence can be observed between these two pairs of laser
beams by scanning their relative phase ϕM [Fig. 2(a)]. In
this experiment, we have calibrated 4αβ ¼ π and the solid
line is a fit based on Eq. (3). In the following experiments,
we set ϕM ¼ π=2 to maximize the geometric phase.
By scanning the duration of the SI-SDD (Fig. 2) we

observe how the detection signal varies as a function of β.
We include experimental results when the ions are cooled
close to the Doppler limit and with 1.25 ms of additional
sideband cooling (SBC). Both cases are affected by higher-
order terms in the Hamiltonian beyond the Lamb-Dicke
limit, which appears as a loss in contrast of the detection
signal as a function of the SI-SDD pulse time. Because of

FIG. 3. Scaling the number of LIs to improve the detection
efficiency of a single SI. (a) Transitions between j↓iS and jciS
control the output of the interferometer resulting in quantum
jumps in the fluorescence of the LIs. Each of the data points is an
average of 20 measurements, where a single measurement takes
1.8 ms. The histograms on the right show the full distribution of
these data (1500 data points; Prob, probability density). (b) Ob-
served error rate estimate comes from the comparison of two
consecutive detection sequences during the detection. Error bars
are symmetric, based on the standard variance of a Poisson
distribution. The black solid line represents the lifetime-limited
error probability due to the spontaneous decay of the jciS state.
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higher temperature, this effect is more significant for the
Doppler-cooled case.
We use this interferometer to perform spectroscopy of

the 1S0 → 3P1 transition of up to three 27Alþ ions cotrapped
with the same number of 25Mgþ ions. The duration of both
LI-SDD and SI-SDD pulses are calibrated on resonance to
make the geometric phase enclosed within the interferom-
eter 2NSαβ ¼ π=2. The detuning between the 266.9 nm
laser beam and the 1S0 → 3P1 transition (δs) is scanned over
a range of 300 kHz. Additional SBC pulses are applied for
all the cases to suppress the coupling outside the Lamb-
Dicke regime. We note that when δs ≠ 0, the 27Alþ ions and
the collective motion undergo a complicated evolution,
resulting in a complex line shape shown in the simulation
results (see Supplemental Material [26]).
Now we introduce the SI clock state (jciS) encoded in the

j3P0; mF ¼ −5=2i state which has a lifetime of approxi-
mately 20.6 s [28]. Precision measurement of the j↓iS ↔
jciS transition is the basis for Alþ optical clocks. We use a
single 27Alþ ion and vary the number of 25Mgþ ions from
1 to 3. The 27Alþ ion is driven periodically by a weak
267.4 nm laser that is close to resonance with the clock
transition resulting in infrequent state changes. These
“quantum jumps” are clearly observed [Fig. 3(a)] since
the SI-SDD, and hence the fluorescence of the 25Mgþ ions
is gated by the state of the 27Alþ ion.
We select the number of measurement repetitions via an

adaptive Bayesian process [8]. The detection error prob-
ability is determined by comparing the results of two
consecutive detection sequences [Fig. 3(b)], counting
one detection error if they disagree. This assumes that
the probability of two consecutive detection errors can be
ignored, which is true for small, uncorrelated error prob-
abilities. We expect this to be valid for shorter detection
times [the initial slopes in Fig. 3(b)], but errors due to
spontaneous decay at longer detection times will violate the
assumption of uncorrelated errors [29]. We observe that
increasing the number of 25Mgþ ions increases the meas-
urement efficiency. In addition to the improved signal-to-
noise ratio, given the same confinement conditions, the
Lamb-Dicke parameters are also reduced with more LIs,
improving the contrast by suppressing imperfections due to
higher-order processes.
In Fig. 3(b), we also compare the efficiency of detection

at the Doppler limit versus after sideband cooling the z c.m.
mode to near the motional ground state. Although the
single-shot fidelity is lower with only Doppler cooling, the
1.25 ms additional duration of the sideband cooling
sequence makes it less efficient.
We demonstrate the detection protocol with two 27Alþ

and two 25Mgþ ions (NS ¼ NL ¼ 2). We introduce the
number states jNS;↓i to represent the number of SIs
remaining in state j↓iS, where jNS;↓i ∈ fj0i; j1i; j2ig. In
Fig. 4(a), we show expected fluorescence levels for each of
these three cases as a function of the SI-SDD duration.

Choosing the SI-SDD duration to be t1 ¼ 14 μs results in
an interferometer phase of θ ¼ π=2 for the case NS;↓ ¼ 2,
corresponding to both logic ions flipping from bright to
dark. However, for NS;↓ ¼ 1 there is a 50% transition
probability for both LIs, and for NS;↓ ¼ 0 both LIs remain
bright. In Fig. 4(b), we prepare these states probabilistically
by scanning the frequency of the 267.4 nm laser over the
resonance frequency of the j↓iS → jciS transition. The
final determination of the number state uses the same
adaptive Bayesian process described earlier, yielding the
spectroscopy of the 1S0 → 3P0 transition as shown in
Fig. 4(c). We calculate projection noise limits as a function
of both NL and NS in the Supplemental Material [26].

FIG. 4. (a) 25Mgþ fluorescence when scanning the duration of
the SI-SDD pulse. The observed fluorescence for NS ¼ 2 is
plotted along with the expected signal for NS ¼ 1 and 0. All lines
come from numerical simulations using measured experimental
parameters. (b) Three-level quantum jumps using two 25Mgþ and
two 27Alþ ions. Each data point is an average of 100 measure-
ments. (c) Quantum logic spectroscopy of the 1S0 ↔ 3P0 tran-
sition of two 27Alþ SIs. All experiments in this figure are done
after 1.25 ms sideband cooling. Error bars represent one standard
deviation of the mean.
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Ideally, technical noise σNS
in determination of NS;↓ is

negligible compared to the fundamental quantum projec-
tion noise limit.
The choice of α and β allow the efficiency of the

detection sequence to be optimized and adapted to different
measurement bases. For example, if we choose αβ ¼
NSπ=2 [t ¼ t2 in Fig. 4(a)], even-parity SI states will result
in all LIs bright, whereas odd-parity SI states will result in
all LIs dark. This provides an efficient means for perform-
ing QLS at the Heisenberg limit [30].
In summary, we have demonstrated a method of per-

forming QLS based on the Schrödinger cat interferometer
that allows for scaling both the number of spectroscopy
ions and logic ions. This technique operates with ions in
thermal motion and is insensitive to the position of the ions
in the array. Technical improvements to the current experi-
ment including higher laser power to address all ions
equally and improved background gas pressure will allow
this protocol to be scaled to longer ion chains. As shown in
the Supplemental Material [26], the projection noise in a
single detection cycle using this protocol depends on the
number of logic ions in addition to the number of
spectroscopy ions. In the future, this technique could allow
quantum logic spectroscopy in even larger ion ensembles,
where some of the same capabilities used here have already
been demonstrated [31,32].
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