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1. Introduction
In 1950, Erdos [1] introduced the concept of a covering system of the integers, which is defined as follows.

Definition 1.1. A covering system of the integers is a finite collection of congruences such that every integer satisfies at least
one of the congruences in the collection.

Since their introduction, the existence of certain types of covering systems and their applications has been the investi-
gation of many articles [2-7,11,13-15]. Of particular interest to the investigation of this paper is the speculative existence
of an odd covering. The following is a well known question, originally asked by Erdés.

Question 1.2 (The Odd Covering Problem). Does there exist a covering system of the integers whose moduli are all odd, distinct,
and greater than 1?

If the answer to this question is yes, then such a covering system would be called an odd covering system of the integers.
Hough and Nielsen [12] showed in 2019 that if the moduli of a covering system are distinct and greater than 1, then at
least one of the moduli of the system must be divisible by either 2 or 3.

If an odd covering exists such that all moduli of the system are square-free, then we refer to this as a square-free
odd covering system of the integers. In 2005, Guo and Sun [8] showed that the lowest common multiple of all moduli in a
square-free odd covering system (if it exists) must have at least 22 distinct prime factors.

In 2015, Harrington [10] posed the following question related to the odd covering problem.
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Question 1.3. Given an odd integer n > 3, does there exist a covering system of the integers that has n as a modulus at
most twice, such that all other moduli are odd, distinct, and greater than 1?

Harrington answered this question in the affirmative when n = 3 in the same paper. The following more general question
was later asked by Hammer, Harrington, and Marotta [9] in 2018.

Question 1.4. For any odd prime p, let t, be the smallest nonnegative integer for which there exists a covering system of
the integers that has p as a modulus exactly t}, times, such that all other moduli are odd, distinct, and greater than 1. Given
a fixed odd prime p, what is t,?

If an odd covering system of the integers exists, then the answer to Question 1.4 is that t, <1 for all odd primes p.
Harrington’s result yields t3 <2 and Hammer, Harrington, and Marotta showed that t5 < 3. One may further ask a similar
question regarding square-free odd coverings.

Question 1.5. For any odd prime p, let T, be the smallest nonnegative integer for which there exists a covering system of
the integers that has p as a modulus exactly 7, times, such that all other moduli are odd, distinct, square-free, and greater
than 1. Given a fixed odd prime p, what is 7,7?

In Theorem 3.2 of Section 3, we establish that if 7, <2 for some odd prime p, then there exists an odd covering of the
integers. We also show in Section 3 that 77 < 6. In Section 4, we show that t; <4, t11 <7, and t, < p — 5 for all primes
p > 23. We conclude our investigation in Section 5 by introducing a lemma that allows us to generalize the main results in
Sections 3 and 4.

2. Condensed tree diagram and notation

We will adopt the notation used in [5]. Given lists [rq,12,...,1¢] and [mq,my,...,mg] with mq,my..., my pairwise
relatively prime positive integers, we let

([r1, 72, ..., 1), My, ma, ... my])

denote the congruence system x =r; (mod mj), 1 < j <k. By the Chinese Remainder Theorem, this congruence system is
equivalent to the congruence x =r (mod m), where m =mymy---my and r € {0,1,...,m — 1}. Hence, we sometimes also
refer to this congruence system as simply a congruence. With this notation, we provide the following example of a covering
system.

(11, 12D, (10,11, [2,3D, ([0, 2], [2,3D, ([0, 3],[2, 9D,
(10,0,01,12,9, 5], ([0,0,1],12,9, 5D, (0,0, 2],[2,9, 5D, (I0,0,3],12,9,5D, ([0,0,4],[2,9,5]), (1)
([0,6,0],[2,9, 5], ([0,6,1],[2,9, 5], (10,6,2],[2,9,5]), (10,6,3],[2,9, 5], ([0,6,4],[2,9,5]).

This is a covering system since we first cover all integers that are congruent to 1 modulo 2 with ([1], [2]), then all
integers congruent to 0 modulo 2 are split into congruence classes 0, 1, 2 modulo 3, covered by ([0, 0], [2, 3]), ([0, 11, [2, 3]),
([0, 21,2, 3]). The congruences ([0, 1],[2,3]) and ([0, 2], [2, 3]) are explicit in (1), while integers covered by ([0, 0], [2, 3])
are further split into congruence classes 0, 3, 6 modulo 9, covered by ([0, 0], [2, 9]), ([0, 3], [2, 9]), ([0, 6], [2, 9]). Once again,
the congruence ([0, 3], [2,9]) is explicit in (1), while integers covered by each of ([0, 0], [2,9]) and ([0, 6], [2,9]) are split
into 0,1, 2, 3,4 modulo 5.

The covering system given in (1), however, has many repeated moduli. To eliminate repeated moduli, we forgo some of
the congruences inside a congruence system. For example, we forgo 0 (mod 2) in ([0, 1], [2,3]) and write it as ([1], [3]),
and we forgo 0 (mod 2) and 0 (mod 9) in ([0, 0,0],[2,9,5]) to get ([0], [5]). When we forgo some congruences inside a
congruence system, the set of integers covered by the new congruence system is a superset of the original one. Hence, the
covering system given by (1) can be modified to obtain the following covering system.

(11, (2D, ((11,13D, (0,21, (2,3D, (319D,
(0L, [5D, (10,11,12,5D, (I0,2],[3,5D), (I0,0,31,[2,3,5D, ([0,4l,[9,5D), (2)
({01, 5D, (10,11,12,5D, (0,2],(3,5D), ([0,0,3],(2,3,5D), ([0,6,4],[2,9,5D.
Notice that several congruence systems are repeated in (2), thus we can simplify the covering system as follows.
(112D, (11, 13D, (0,21,12,3D), (31,19D, (101, [5D),
(I0,11,12,5D, ([0,2],[3,5D), ([0,0,3],12,3,5]), ([0,4],19,5D), ([0,6,4],12,9,5]).
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1(mod 2)

([0,1].[2,3])

([0,6,21,[2,9,5])

([0,0,2],[2,9,5])

0(mod5) 6(mod 10) 12(mod 15) 18(mod 30) 9(mod 45) 0(mod5) 6(mod 10) 12(mod 15) 18(mod 30) 24(mod 90)

Fig. 1. A tree diagram of a covering system showing all moduli and residues.

1(mod 2)

1(mod 3) 2(mod 6)

3(mod9)

0(mod5) 6(mod 10) 12(mod 15) 18(mod 30) 9(mod 45) 0(mod5) 6(mod 10) 12(mod 15) 18(mod 30) 24(mod 90)

Fig. 2. A tree diagram of a covering system with congruences on the branches omitted.

This corresponds to the following set of congruences.

1(mod2), 1(mod3), 2(mod6), 3(mod9), 0(mod5),

3
6 (mod 10), 12 (mod 15), 18 (mod 30), 9(mod45), 24 (mod 90). 3)

To visualize the covering system given by (1), we represent the process of splitting integers into congruence classes using
a tree diagram, as illustrated in Fig. 1. We refer to the node at the top as the root, and the nodes with no further branches
below as the leaves. The congruences given at the leaves of this tree come from (3).

The branches immediately below a node in the tree diagram are called the child branches of that node. At each non-leaf
node, the number of child branches is always given by a prime number p, and we refer to such a node as a p-node. Each p-
node represents a certain subset S of the integers, and its child branches represent a partition of S into congruence classes
modulo p*m’ for some positive integers o and m’, where « is equal to the number of p-nodes along the path from the root
and p tm’. If the p-node represents the subset of integers satisfying the congruence ([r, 1], [p®~1, m’]), then we arrange the
congruences such that ([r, '], [p*,m'D), ([r+p*~ 1,71, [p*, m'D), (r+2p*~ ", 1], [p*, m'D), ..., (r+(p—Dp*~", 1’1, [p*, m'])
are placed from left to right among the child branches. In other words, the congruences on the branches are implied by the
positioning of the branches and thus can be omitted from the diagram, as illustrated in Fig. 2.

Next, consider a fixed leaf in the tree diagram. Recall that the congruence is originally obtained by combining all congru-
ences along the path from the root using the Chinese Remainder Theorem. We then choose a subset of these congruences
along the path to form the congruence displayed at the leaf. Note that the residue in this congruence is implied by the
modulus of the leaf since the factors in the modulus determine which congruences along the path were used. Hence, the
residue at the leaf can also be omitted from the diagram, as illustrated in Fig. 3.

Continuing to simplify the tree diagram, if the moduli at several leaves branching from a node share the same factor
mo, then we can merge them to form a wedge, and we write {my, ms, ..., m} x mp to indicate 2X moduli, given by the
product of any subset of {mq,my, ..., my} together with mg. These congruences are arranged so that their moduli increase
in magnitude from left to right among the child branches. This allows us to obtain a condensed tree diagram in Fig. 4.
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5 10 15 30 45 5 10 15 30 90

Fig. 3. A tree diagram of a covering system showing only the moduli.

213
2 branches

{2,3}x5
4 branches

{2,3}x5
4 branches

32x5 2x32x5

Fig. 4. A condensed tree diagram of the covering system given by (3).

3)x22
2 branches

(32)x22
2 branches

33}x22
2 branches

p 3p 32p 3r-1p (3%)x22
2 branches

Fig. 5. A condensed tree diagram of a covering system whose smallest modulus is 3.

To illustrate a common technique used when building covering systems of the integers, we now turn our attention to a
different system. Let p > 3 be a prime and consider the following tree diagram.

In Fig. 5, note that the structure of the subtree given in Fig. 6 is repeated for i € {1, 2, ..., p — 1}. As we consistently split
the leftmost node to attach a repeated subtree, we call the leftmost branch from the root a “power branch” of the tree, and
condense it as in Fig. 7. To convert Fig. 7 back to Fig. 5, the i-th repeated subtree is obtained by substituting every factor of
3 in the first repeated subtree with 3! for 2 <i<p —1.

We will use tree diagrams similar to Fig. 7 throughout the rest of this paper to denote various covering systems.
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3ix2
(3)x2? {3)x22
2 branches 2 branches
Fig. 6. Repeated subtree from Fig. 5. Fig. 7. A tree diagram using a “power branch” notation.

3. Investigating Question 1.5

To begin our investigation for square-free covering systems of the integers, we first provide the following lemma, origi-
nally given by Hammer, Harrington, and Marotta [9].

Lemma 3.1. Let p be a prime and let r1 and r, be distinct integers with 0 <rq,1r2 < p — 1. Suppose C is a covering system of the
integers such that r1 (mod p) € C and r; (mod p) ¢ C. Then there exists a covering system C' with the same moduli as those of C
such that r; (mod p) e C’ and r1 (mod p) ¢ C'. Furthermore, if r (mod p) € C withr #rq (mod p), thenr (mod p) e C'.

Theorem 3.2. Let p > 3 be a prime. If there exists a covering system of the integers such that all moduli are odd, square-free, and
distinct except that p is used exactly twice as a modulus, then there exists an odd covering of the integers.

Proof. Suppose that Cp is a covering system of the integers such that all moduli are odd, square-free, and distinct except
that p is used exactly twice as a modulus. By Lemma 3.1, we may assume that 0 (mod p) and 1 (mod p) are congruences
in Cp. Let k be a nonnegative integer and let £¢ be nonnegative integers for each 2 <& < p — 1 such that

-1

U{rs,j (mod pmg j): 1< j <L},
£=2

Co={0(mod p), 1 (mod p)} U {rj(modm;): 1< j<kjU
P

where p{m; forall 1< j<k, and pfmgjand r; j=& (mod p)forall 1<j</lsand2<&<p-—1.
We claim that for each 2 <& < p — 1, the set of congruences

Ce={rj(modm;):1<j<k}U{re;j(modmg;):1<j<4Le}

forms a covering system of the integers. To see this, consider any integer r. Let
m=lem({m;:1<j<k}U{mgj:1<j<{l})

and let n be an integer that satisfies the congruence system

n=§ (mod p),
n=r (modm).
Since Cyp is a covering system of the integers, n must satisfy one of the congruences in
{rj(modm;):1<j<kjU{rej(modpme ;):1=<j=<4Le)
As a result, if n= rs (mod m;) for some 1 < ] <k, then
rEn=r; (mod m}.);

ifn =Ty 5 (mod ng,j) for some 1 < j </, then

r=n=rg; (mod mgj).

This completes the proof of our claim.
Let g be an odd prime such that q{ pm. For each 0<i<q—2,2<& <p—2,and 1< j </, let rz; j be an integer that
satisfies the congruence system
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P T, T3

p p T, T3

Fig. 9. The root of a tree diagram for C.

Fig. 8. The root of a tree diagram for Cgp.

7,7,7,7,7,7
6 branches

Tp1 p
% (7)x3
2 branches

(7.3}x5
4 branches

(7.3.5)x11
8 branches

{7.3,5,11}x19
16 branches

(7.3.5.11}x17
16 branches

‘%

{7,3,5,11}x19x17
16 branches

{7.3,5,11}x13
16 available moduli
to cover 13 branches

{7.3,5,11}x17x13 {7.3,5,11}x19x13 {7.3,5,11,19}x23
16 available moduli 16 available moduli 32 available moduli
to cover 13 branches to cover 13 branches to cover 23 branches

{7,3,5,11}x19%x17x13
16 available moduli
to cover 13 branches

Fig. 10. Square-free odd covering with 7 used exactly six times as a modulus.

reij=§&-p'(modp'th),
r&,i,j = Tg,j (mod mg’j).
Moreover, for each 0 <i <q —1, let s; be an integer that satisfies the congruence system

si =0 (mod p'),
si =i(mod q).
Now, we are ready to build an odd covering system based on the existence of Cy. Consider

C={p' (mod p™*"):0<i<q—2}U{si(mod p'q):0<i<qg—1)
p—1
Ufrj(modm;):1<j<kju| Jirej(mod p*img j):0<i<q—2,1<j<t).
£=2
It is easy to see that all moduli of C are odd and distinct. To show that C is a covering system of the integers, let N be
an arbitrary integer, and let ig be the maximum integer such that pi | N. If 0 < ig < q — 2, then either N = pl® (mod pio*1),
which is trivially covered by C, or N=¢& - p' (mod piot1) for some 2 < & < p — 1, which is covered by

{rj(modmj):1<j<k}U{re, j(modp®tims ;): 1< j<t)
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7,7,1,7
4 branches

3233,

(7}x3
2 branches

52,53,...,5071 {7.3}x5 52,5%,...,5071 {3)x5 T T2
4 branches 2 branches

Fig. 11. Odd covering with 7 used exactly four times as a modulus.

{7,3}x11 {7,3}x5x11

112,113,119
4 branches 4 branches

19%,193,...,1991

172,173,...,17971 {7,3,5}x17 {7,3,5}x11x17 {7,3,5}x19 {7,3,5}x11x19 T3 Ty
8 branches 8 branches 8 branches 8 branches

Fig.12. Ty in Fig. 11.
since Cg is a covering system of the integers. Lastly, if ig > q — 1, then N is covered by {s; (mod pig):0<i<q—1}. O

Remark 3.3. The proof of Theorem 3.2 can be summarized as a transformation between two tree diagrams. Consider a tree
diagram for Cp as shown in Fig. 8. In this tree diagram, the root is a p-node, and for each i € {2,3, ..., p — 1}, T; denotes
the subtree below the node that corresponds to the congruence i (mod p). If we replace the leftmost branch by a power
branch p?, p3,..., p97!, as shown in Fig. 9, then the resultant tree diagram represents a covering system C with odd and
distinct moduli that are greater than 1.

Recalling the definition of 7, from Question 1.5, we note that Theorem 3.2 can be restated as follows: if 7, <2 for some
prime p > 3, then there is an odd covering system of the integers. Hence, to investigate the existence of an odd covering
system, one possible approach is to give bounds on 7, for an odd prime p. In the following, we show that 77 <6.

Theorem 3.4. There exists a covering system of the integers such that all moduli are odd, square-free, and distinct except that 7 is used
exactly six times as a modulus.

Proof. Fig. 10 shows a tree diagram for a covering system of the integers such that all moduli are odd, square-free, and
distinct except that 7 is used exactly six times as a modulus. In the tree diagram, note that at the wedge {7, 3,5, 11} x 13,
there are 16 available moduli according to the discussions in Section 2, but there are only 13 branches since it is a 13-node.
Thus, we are going to choose the 13 smallest moduli given by the product of subsets of {7,3,5,11} with 13 among the
child branches. Similar situations occurs at a few other wedges, as indicated in the figure. O

4. Investigating Question 1.4

Recall the definition of t, from Question 1.4. In this section, we establish upper bounds for t;, for all odd primes p. We
begin by showing that t; < 4.

Theorem 4.1. There exists a covering system of the integers such that all moduli are odd and distinct except that 7 is used exactly four
times as a modulus.

Proof. A tree diagram of such a covering system is given by Fig. 11, where subtrees Ty to T are given in Figs. 12 to 17.
Here, g > 19 is a prime, and as discussed in Section 2, we note that the repeated moduli in the tree diagram give rise to
the same congruences in the covering.

Please take special note that some power branches in Fig. 11 are nested into other power branches. For instance, the
middle section of this tree contains a power branch with powers of 5, and this power branch is nested into the power
branch with powers of 3 that appears above it. We further note that in the power branch 73,74, ...,79-! in Fig. 15, the
repeated subtrees are obtained by substituting every factor of 72 (but not 7) in the first repeated subtree with 7! for
3<i<q-1. O
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172,173,..,17971 172,173,...,1791
{7,3,5)x17 {7,3,5}) {7.3,5}x17 {7.3,5}
8 branches x19x17 8 branches x11x19%17
8 branches 8 branches
Fig. 13. T3 in Fig. 12. Fig. 14. T, in Fig. 12.

73.74,..,79! (3,5} x72
4 branches

112,113,..,,11971

132,13%,...,13071 {7.3,5)x13 {3.5}x7%x13 (7.3)x11 (3,5)x72 x11 Ts T
8 branches 4 branches 4 branches 4 branches

Fig. 15. T, in Fig. 11.

132,133, 13M\ 132,133,..,,13;4\

{7,3,5}x13 {7,3}x11x13 {7,3,5}x13 {7,3}x5x11x13
8 branches 4 branches 8 branches 4 branches
Fig. 16. Ts in Fig. 15. Fig. 17. T¢ in Fig. 15.

11,11,11,11,11,11,11

~—— 7 branches

32,33,..30°1 32,33

..... 301 32,3%,.,3071 32,33,.,30°1
{11}x3 3 3 3
2 branches
52,5350} 52,5%,...,5971
52,53, 50-1 (31x5 11x5 T 3)x5 11x3x5 T, 3)x5 T3 Ts
2 branches 2 branches 2 branches

Fig. 18. Odd covering with 11 used exactly seven times as a modulus.

{3}x7 {3}x5%x7
2 branches 2 branches

132,133,..,,1307! {11,3,5}x13 {11,3}x7x13 132,133,...,139-1 {11,3,5}x13 {11,3}x5x7x13
8 branches 4 branches 8 branches 4 branches

Fig. 19. T; in Fig. 18.

Next, we show that t11 <7.

Theorem 4.2. There exists a covering system of the integers such that all moduli are odd and distinct except that 11 is used exactly
seven times as a modulus.

Proof. A tree diagram of such a covering system is given by Fig. 18, where subtrees T; to T4 are given in Figs. 19 to 22.
Here, ¢ > 19 is a prime. O

Lastly, we establish that t, < p — 5 for all primes p > 23.

Theorem 4.3. Let p > 23 be a prime. There exists a covering system of the integers such that all moduli are odd and distinct except
that p is used exactly p — 5 times as a modulus.



J. Harrington, Y. Sun and TW.H. Wong

Discrete Mathematics 345 (2022) 112936

{11,3,5,7}x19

16 branches
31x7 {3}x5x7

2 branches 2 branches

192,193
172,173,...,179! {11,3,5,7}x17
16 branches

172,173,...,17971
132,133, 1301 {11,3,5,7)x19x13 {11,3,5,7)x19%17
16 available moduli 16 branches
to cover 12 branches
Fig. 20. T, in Fig. 18.

727
(31x7 (3)x11x5x7 (3)x11x7 (3)x7 (3}x5x7 (3)x11x7
2 branches 2 branches 2 branches 2 branches 2 branches 2 branches
Fig. 21. T3 in Fig. 18.

Fig. 22. T4 in Fig. 18.

2 branches
52 53 501 3}x5 px5 Tp (31x5 px3x5 T (31x5 Ts T3 (31x5 Te Ta
2 branches 2 branches 2 branches 2 branches
Fig. 23. 0dd covering with p (p > 23) used exactly p — 5 times as a modulus.
72,73,...7971 727,
(3.5)x7 px5x7 (3.5}x7 Px3x5x7
4 branches 4 branches
112,113,...,1191 {3,7}x5x11 {3,7}x11 {3)xpx5x11 112.113,...,1191 (3.7} x5x11 {3.7}x11 {3}xpx5x7x11
4 branches 4 branches 2 branches 4 branches 4 branches
Fig. 24. T, in Fig. 23.

2 branches

Fig. 25. T, in Fig. 23.

727
{3,5}x7
4 branches

{3.5)x7 px3x7
4 branches
112,113, 1191 {3.7}x5%11 3,7)x11 (3}xpx11 112,113, 1191 {3,7)x5x11 3,7)x11 (3} xpx7x11
4 branches 4 branches 2 branches 4 branches 4 branches
Fig. 26. T3 in Fig. 23.

2 branches
Fig. 27. T4 in Fig. 23.
Proof. A tree diagram of such a covering system is given by Fig. 23, where subtrees T1 to Ty are given in Figs. 24 to 34,
respectively. Here, ¢ > 19 and q # p is a prime. O

5. Extension of results and concluding remarks

We can extend Theorems 3.4 and 4.2 by using the following lemma.

Lemma 5.1. Let p be a prime and t be a positive integer such that t < p. Suppose that Cy is a covering system of the integers whose tree
diagram is given in Figure 35, where all moduli are distinct except that p is used exactly p — t times as a modulus, and no modulus of
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(31x7
2 branches

Tz

132,13%,..,,139°1

{p.3,5)x13 {3.5}x7x13 {p.3.5)x13 (3.5} xpx7x13
8 branches 4 branches 8 branches 4 branches

Fig. 28. T5 in Fig. 23.

{3}xpx11

112,113,..,,11971 2 branches

(3,7}x11

132,133, - A3 130-1 132,133,...,1397! 132,133,...,13¢7! 4branches
{p.3.5}x13 {p.3} {p.3.5}x13 {p.3} {p.3.5}x13 {p,3} {p.3,5}x13 {p.3}
8 branches x11x13 8 branches x5x11x13 8 branches x7x11x13 8 branches x5x7x11x13
4 branches 4 branches 4 branches 4 branches

Fig. 29. T; in Fig. 28.

(31x7
2 branches

Tg

192,19°,...,19971

172,173,...,1791

{p,3,5}x17
8 branches

{p.,3,5}x7x17
8 branches

{p.3,5}x19
8 branches

{p.,3,5}x7x19
8 branches

172,173,...,179! {p.3.5}x17 {p.3,5}x7x19x17
8 branches 8 branches

Fig. 30. T¢ in Fig. 23.

{$3}xpx7x11
112,113,119 \ 2 branches
. o . \ . (3.7)x11
0 o ‘\1 \90./ 4 branches
5 S R S 7
Ve e K™

{p.3.5}x17 {p.3.5} {p.3.5}x17 {p.3,5} {p.3.5}x19 {p.3.5} Ty T1o {p,3,5}x19 {p.3,5) T9 Tn
8 branches x11x17 8 branches x7x11x17 8 branches x11x19 8 branches x7x11x19
8 branches 8 branches 8 branches 8 branches

Fig. 31. Tg in Fig. 30.

172,173...., 17%\ 172,173 ..., 17%\ 172,173,179

{p.3.5}x17 {p.3.5} {p,3,51x17 {p,3,5)x17 {p.3.5}
8 branches x19x17 8 branches ><11><19><17 8 branches x7x11x19x17
8 branches 8 branches 8 branches
Fig. 32. Ty in Fig. 30 and Fig. 31. Fig. 33. Tyo in Fig. 31. Fig. 34. T11 in Fig. 31.

Co is divisible by p2. Then for all primes q > p, there exists a covering system C of the integers such that all moduli are distinct except
that q is used exactly q — t times as a modulus, and no modulus of C is divisible by q°. Furthermore, if all moduli of Cy are odd, then all
moduli of C are odd; if all moduli of Cy are square-free, then all moduli of C are square-free.

ranches

To T T2 Te1

Fig. 35. The root of a tree diagram for Cy.
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To T T2 Te

Fig. 36. The root of a tree diagram for C.

Fig. 37. A g-node in the tree diagram for Co.

) T} T, T
Fig. 38. A p-node in the tree diagram for C.

Proof. In the tree diagram of Cy as shown in Fig. 35, the root is a p-node, and for each i € {0, 1,...,t — 1}, T; denotes the
subtree below the node that corresponds to the congruence i (mod p). Note that this is the only p-node in the tree since
no modulus of Cp is divisible by p2.

To obtain a tree diagram for C, we are going to replace the root of Cy by a g-node as shown in Fig. 36. The only difficulty
in this root replacement is that it may not be compatible with an existing g-node in the tree diagram for Cg. To solve this
issue, we replace every g-node in the tree diagram for Co (Fig. 37) by a p-node (Fig. 38) and keep only the subtrees T; for
ie€{0,1,...,p— 1}. Lastly, if a modulus m in Cp satisfies m = pr such that p {r, then the resultant modulus in C is gr; if a
modulus m in Cy satisfies m = q%s for some positive integer o such that q1s, then the resultant modulus in C is p“s. This
completes our construction of a tree diagram for C. O

Combining Lemma 5.1 with Theorem 3.4, we have the following result.
Corollary 5.2. For all primes p > 7, 7 <p — 1.

As for the bounds on t;, for primes p > 3, we summarize the results in the following table.

Table 1
Summary of results regarding Question 1.4.
p Upper bound on t, Sources
3 tp<2=p-1 [10]
5 tp<3=p-2 [9]
7 tp<4=p-3 Theorem 4.1
1M<p=<19 tp<p—4 Theorem 4.2 & Lemma 5.1
p>23 tp<p-—>5 Theorem 4.3

We observe from Table 1 that there exists a constant ¢ such that for all sufficiently large primes p, t, < p — c. For future
investigation, it is certainly of interest to continue improving on the constant c. Nevertheless, it is of greater interest to
investigate the following question.

Question 5.3. Does there exist a constant 0 < € < 1 such that for all sufficiently large primes p, t, <ep?

The existence of an odd covering system would imply that we can take € = 0 for all sufficiently large primes p, thus
Question 5.3 provides a progressive approach to solving the odd covering problem.
Before we end this paper, we also provide a similar lemma to Lemma 5.1, which could be useful in the future.

Lemma 5.4. Let p be a prime and t be a positive integer such that t < p. Let Cg be a covering system of the integers whose tree diagram
is given in Figure 39, where all moduli are distinct except that p is used exactly p —t times as a modulus. Let M be the least common
multiple of all moduli of Cy. Then for all odd primes q > t that satisfies q 1 M, there exists a covering system C of the integers such that

11
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p.p.....p
p—t branches

To T Tz Teq

To Ty Ty Te—1
Fig. 40. The root of a tree diagram for C.

all moduli are distinct except that q is used exactly q — t times as a modulus. Furthermore, if all moduli of Co are odd, then all moduli
of C are odd; if all moduli of Cy are square-free, then all moduli of C are square-free.

Proof. In the tree diagram of Cyp as shown in Fig. 39, the root is a p-node, and for each i € {0, 1,...,t — 1}, T; denotes the
subtree below the node that corresponds to the congruence i (mod p).

To obtain a tree diagram for C, we are going to replace the root of Cyp by a g-node as shown in Fig. 40. There are
no existing g-nodes in the tree diagram for Cp, so we do not need to perform any further replacement, and have already
obtained a tree diagram for C. Nonetheless, it is worth noting that if a modulus m in Cy satisfies m = p*r for some positive
integer o such that p{r, then the resultant modulus in C is gp®~'r. O
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