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1. Introduction

The well-known Fibonacci polynomials are defined by letting F1(x) = 1, F2(x) = x, 
and Fn(x) = Fn−1(x) ·x +Fn−2(x) for all integers n ≥ 3. In 1969, Webb and Parberry [6]
showed that Fn(x) is irreducible in Z[x] if and only if n is prime. The following definition 
was first introduced by Levy [4] in 2001.

Definition 1.1. Let n ≥ 2 be an integer. The n-th fibotomic polynomial, written as Ψn(x), 
is the product of the monic irreducible factors of Fn(x) which are not factors of Fk(x)
for any k < n. For consistency, we define Ψ1(x) = 1. Hence,

Fn(x) =
∏

d|n

Ψd(x)

for all positive integers n.

It follows from Webb and Parberry’s result that for any prime p, Ψp(x) = Fp(x) is 
irreducible in Z[x]. It was further shown by Levy that Ψn(x) is irreducible in Z[x] for 
every integer n ≥ 2. However, Kitayama and Shiomi [2] showed that Ψn(x) is often 
reducible in finite fields. More recently, Sagan and Tirrell [5] studied the bivariate Lucas 
polynomials and their factorization using Lucas atoms. The bivariate Lucas polynomials 
are defined such that L1(s, t) = 1, L2(s, t) = s, and Ln(s, t) = Ln−1(s, t) ·s +Ln−2(s, t) ·t
for all integers n ≥ 3.

It seems that the bivariate Lucas polynomials are more general than the Fibonacci 
polynomials. However, a simple homogenization of the Fibonacci polynomials together 
with a substitution allows us to transform a Fibonacci polynomial back to a bivariate 
Lucas polynomial. Define Fn(x, y) = yn−1Fn

(
x
y

)
for all positive integers n. Then Fn(x, y)

is a homogeneous polynomial since the degree of Fn(x) is n − 1. Substituting Fn

(
x
y

)
=

1
yn−1Fn(x, y) into the recurrence definition of the Fibonacci polynomials, we have

1
yn−1Fn(x, y) = x

y
· 1
yn−2Fn−1(x, y) + 1

yn−3Fn−2(x, y).

Multiplying yn−1 to both sides of the equation, we get Fn(x, y) = xFn−1(x, y) +
y2Fn−2(x, y), which we call the n-th homogenized Fibonacci polynomial. Together with 
the observation that F1(x, y) = y0F1

(
x
y

)
= 1 and F2(x, y) = y1F2

(
x
y

)
= x, we can easily 

see that a substitution of x = s and y2 = t yields the n-th bivariate Lucas polynomial.
Define Ψ1(x, y) = 1, and for all integers n ≥ 2, define Ψn(x, y) = yϕ(n)Ψn

(
x
y

)
as the 

n-th homogenized fibotomic polynomial. It is easy to see that

Fn(x, y) =
∏

d|n

Ψd(x, y)

for all positive integers n. The main results of this article are the following theorems 
regarding homogenized fibotomic polynomials.
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Theorem 1.2. Let n ≥ 2 be an integer. Then the discriminant of Ψn(x, y) with respect to 
x is given by






(−1)"ϕ(n)/2#(2n)ϕ(n)yϕ(n)(ϕ(n)−1)

ppα−1+1 if n = pα for some prime p

and some positive integer α;
(−1)ϕ(n)/2(2n)ϕ(n)yϕ(n)(ϕ(n)−1)

∏
p|n

pϕ(n)/(p−1) otherwise.

Motivated by Lehmer [3] who determined the resultant of two cyclotomic polynomials, 
we obtain the following theorem.

Theorem 1.3. Let 2 ≤ m < n be integers. Then the resultant of Ψm(x, y) and Ψn(x, y)
with respect to x is given by

{
pϕ(m)yϕ(m)ϕ(n) if n/m = pα for some prime p and some positive integer α;
yϕ(m)ϕ(n) otherwise.

Parallel to Guerrier’s work [1] on completely determining the factorization form of 
Φn(x) in Zp[x], we obtain the following theorem, which expands the study of Kitayama 
and Shiomi.

Theorem 1.4. Let m be a positive integer such that gcd(p, m) = 1, and let n = pkm, 
where k is a nonnegative integer.

• If m = 1, then Ψn(x, y) factors in Zp[x] as 
(
x2 + 4y2)ϕ(pk)

2 .
• If m = 2, then Ψn(x, y) factors in Zp[x] as xϕ(pk).
• If m ≥ 3 and p > 2, then let δ be defined as in Theorem 5.5. In this case, Ψn(x, y)

factors in Zp[x, y] as a product of ϕ(m)/δ distinct irreducible monic polynomials of 
degree δ, each raised to the ϕ(pk)-th power.

• If m ≥ 3 and p = 2, then let δ be defined as in Theorem 5.7. In this case, Ψn(x, y)
factors in Zp[x, y] as a product of ϕ(m)/(2δ) distinct irreducible monic polynomials 
of degree δ, each raised to the 2ϕ(pk)-th power.

In this article, we will first focus on the fibotomic polynomials, and with a simple 
homogenization process, the results in Corollary 4.2, Corollary 4.4, and Theorem 5.8
can be generalized to Theorems 1.2, 1.3, and 1.4, respectively. For instance, note that 
all the roots of Ψn(x, y) with respect to x are the same as the roots of Ψn(x) except 
that they have an extra factor y. Thus, the discriminant of Ψn(x, y) with respect to x is 
yϕ(n)(ϕ(n)−1)∆(Ψn(x)), and the resultant of Ψm(x, y) and Ψn(x, y) with respect to x is 
yϕ(m)ϕ(n)res(Ψm(x), Ψn(x)).
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2. Notation and preliminary results

Let Φn(x) denote the n-th cyclotomic polynomial, and recall that the roots of Φn(x)
are the primitive n-th roots of unity. We denote an arbitrary primitive k-th root of unity 
by ζk. Then

Φn(x) =
∏

1≤s≤n
gcd(n,s)=1

(
x− e2πis/n

)
=

∏

1≤s≤n
gcd(n,s)=1

(x− ζsn).

Levy provided the root form for Ψn(x) when n ≥ 2:

Ψn(x) =
∏

1≤s≤n
gcd(s,n)=1

(
x− 2i cos πs

n

)
=

∏

1≤s≤n
gcd(s,n)=1

(
x− ζ4(ζs2n + ζ−s

2n )
)
,

where the second equality follows from 2i cos sπ
n = i(eπis/n + e−πis/n).

The following well-known theorems for cyclotomic polynomials will be useful in our 
study.

Theorem 2.1. Let n ≥ 2 be an integer. Then

Φn(1) =
{
p if n = pα for some prime p and some positive integer α;
1 otherwise.

Theorem 2.2. Let m ≥ 3 be an odd integer. Then

Φ2m(x) = Φm(−x).

Theorem 2.3. Let p be a prime and m be a positive integer. Then

Φpm(x) = Φm(xp) if p | m (1)

and

Φpm(x) = Φm(xp)
Φm(x) if p ! m.

Let ∆(f(x)) denote the discriminant of a polynomial f , and let res(f(x), g(x)) denote 
the resultant of polynomials f(x) and g(x).

Theorem 2.4. Let n be a positive integer. Then

∆(Φn(x)) = (−1)#ϕ(n)/2$nϕ(n)
∏

p|n

pϕ(n)/(p−1)
.
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Theorem 2.5 ([3]). Let m < n be positive integers. Then

res(Φm(x),Φn(x)) =






pϕ(m) if n/m = pα for some prime p

and some positive integer α;

1 otherwise.

3. Identities involving Ψn(x)

For the remainder of this paper, let ω = x+
√
x2+4
2 . Levy gave a brief explanation for 

the following theorem. We provide a detailed proof here for completion.

Theorem 3.1. Let n ≥ 2 be an integer. Then

Ψn(x) =





−Φn(−ω2)

ωϕ(n) if n = 2;
Φn(−ω2)
ωϕ(n) if n ≥ 3.

Proof. If n = 2, then the statement holds since Ψ2(x) = x and

−Φ2(−ω2)
ωϕ(2) = −−ω2 + 1

ω
= ω − ω−1 = x +

√
x2 + 4
2 − −x +

√
x2 + 4

2 = x.

Now, assume that n ≥ 3. It is well-known that 
∑

d|n µ 
(
n
d

)
= 0 for all integers n ≥ 2

and 
∑

d|n dµ 
(
n
d

)
= ϕ(n) for all positive integers n. Hence, for every nonzero k that is 

independent of d,
∏

d|n

kµ
(
n
d

)
= 1 for all integers n ≥ 2 (2)

and
∏

d|n

(
kd

)µ(n
d

)

= kϕ(n) for all positive integers n. (3)

Since xn − 1 =
∏

d|n Φd(x), Möbius inversion yields that for all real numbers x %= 1,

Φn(x) =
∏

d|n

(xd − 1)µ
(
n
d

)
=

∏

d|n

(
xd − 1
x− 1

)µ
(
n
d

)

=
∏

d|n




d−1∑

j=0
xj




µ
(
n
d

)

, (4)

where the second equality is due to (2) by substituting k = 1
x−1 . By substituting −ω2

into (4), we have
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Φn(−ω2) =
∏

d|n




d−1∑

j=0
(−ω2)j




µ
(
n
d

)

. (5)

Similarly, since Fn(x) =
∏

d|n Ψd(x), Möbius inversion yields that for all real numbers 
x %= 0,

Ψn(x) =
∏

d|n

Fd(x)µ
(
n
d

)
. (6)

Note that ϕ(n) is even for all integers n ≥ 3. Thus, for all real numbers x %= 0, (6) gives

ωϕ(n)Ψn(x) = (−ω)ϕ(n)Ψn(x) =
∏

d|n

((−ω)dFd(x))µ
(
n
d

)
=

∏

d|n

((−ω)d−1Fd(x))µ
(
n
d

)
, (7)

where the second equality is due to (3) and the third equality is due to (2) by substituting 
k = (−ω)−1.

To prove our theorem, we first equate (5) and (7) for all real numbers x %= 0, and the 
proof will be complete by noticing that both Φn(−ω2) and ωϕ(n)Ψn(x) are continuous 
functions with respect to x. To equate (5) and (7), it suffices to show that for all positive 
integers d,

d−1∑

j=0
(−ω2)j = (−ω)d−1Fd(x), (8)

and we shall proceed by induction.
When d = 1, (8) clearly holds since F1(x) = 1. When d = 2, (8) also holds since

1 − ω2 = 1 − x2 + x2 + 4 + 2x
√
x2 + 4

4 = −x2 + x
√
x2 + 4

2 = −ωx = −ωF2(x).

Assuming that (8) holds for some positive integers d and d + 1, we have

(−ω)d+1Fd+2(x) = (−ω)d+1(xFd+1(x) + Fd(x))
= (−ωx)(−ω)dFd+1(x) + (−ω)2(−ω)d−1Fd(x)

= (1 − ω2)




d∑

j=0
(−ω2)j



 + ω2




d−1∑

j=0
(−ω2)j





=
d∑

j=0
(−ω2)j − ω2(−ω2)d

=
d+1∑

j=0
(−ω2)j .
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Therefore, (8) holds for all positive integers d by induction. !

Remark 3.2. As seen in the proof of Theorem 3.1 that

ω − ω−1 = x, (9)

the statement of Theorem 3.1 can be rewritten such that for any integer n ≥ 2,

Ψn(ω − ω−1) =





−Φn(−ω2)

ωϕ(n) if n = 2;
Φn(−ω2)
ωϕ(n) if n ≥ 3.

The following two theorems are special cases of several results presented by Sagan and 
Tirrell. We provide alternative proofs of these results using Theorem 3.1. Our version 
allows direct applications in Sections 4 and 5.

Theorem 3.3. The constant term of the n-th fibotomic polynomial is given by

Ψn(0) =






0 if n = 2;
p if n = 2pα for some prime p and some positive integer α;
1 otherwise.

Proof. Clearly, Ψ1(0) = 1 and Ψ2(0) = 0, so we now focus on n ≥ 3. If x = 0, then 
ω = 1. By Theorem 3.1,

Ψn(0) = Φn(−1)
1ϕ(n) = Φn(−1).

Suppose that n = 2m is even with m ≥ 2. If m is odd, then Φ2m(−1) = Φm(1) by 
Theorem 2.2, and if m is even, then Φ2m(−1) = Φm((−1)2) = Φm(1) by Theorem 2.3. 
In both cases, the result follows from Theorem 2.1.

Now, suppose that n is odd and let n = pα1
1 pα2

2 · · · pαr
r be the prime factorization of 

n. By repeated use of Theorem 2.3,

Φn(−1) = Φp1p2···pr

(
(−1)p

α1−1
1 p

α2−1
2 ···pαr−1

r

)
= Φp1p2···pr (−1)

= Φp1p2···pr−1 ((−1)pr)
Φp1p2···pr−1(−1) = 1. !

The next theorem provides a number of identities that are parallel to Theorems 2.2
and 2.3.

Theorem 3.4. Let p be a prime and m ≥ 2 be an integer.
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(a) If p = 2 and p | m, then

Ψ2m(x) =
{
−iϕ(m)Ψm

(
iω2 − (iω2)−1) = −iϕ(m)Ψm(i(x2 + 2)) if m = 2;

iϕ(m)Ψm

(
iω2 − (iω2)−1) = iϕ(m)Ψm(i(x2 + 2)) if m ≥ 3.

(b) If p = 2 and p ! m, then

Ψ2m(x) = iϕ(m)Ψm

(
iω − (iω)−1) = iϕ(m)Ψm

(
i
√
x2 + 4

)
.

(c) If p > 2 and p | m, then

Ψpm(x) = Ψm

(
ωp − ω−p

)
= Ψm(xΨ2p(x)).

(d) If p > 2 and p ! m, then

Ψpm(x) = Ψm (ωp − ω−p)
Ψm (ω − ω−1) = Ψm(xΨ2p(x))

Ψm(x) .

Proof. (a) If 2 | m, then

Ψ2m(x) = Φ2m(−ω2)
ωϕ(2m) = Φm(ω4)

ω2ϕ(m) = iϕ(m) Φm(−(iω2)2)
(iω2)ϕ(m) ,

where the first equality is due to Theorem 3.1, and the second equality is due to equa-
tion (1). By Remark 3.2, if m = 2, then

Ψ2m(x) = −iϕ(m)Ψm

(
iω2 − (iω2)−1) = −iϕ(m)Ψm

(
i
(
ω2 + ω−2))

= −iϕ(m)Ψm

(
i(x2 + 2)

)
,

and if m ≥ 3, then

Ψ2m(x) = iϕ(m)Ψm

(
iω2 − (iω2)−1) = iϕ(m)Ψm

(
i
(
ω2 + ω−2)) = iϕ(m)Ψm

(
i(x2 + 2)

)
.

(b) If 2 ! m, then m ≥ 3, and

Ψ2m(x) = Φ2m(−ω2)
ωϕ(2m) = Φm(ω2)

ωϕ(m) = iϕ(m) Φm(−(iω)2)
(iω)ϕ(m) ,

where the second equality is due to Theorem 2.2. Again by Remark 3.2, we have

Ψ2m(x) = iϕ(m)Ψm

(
iω − (iω)−1) = iϕ(m)Ψm

(
i
(
ω + ω−1)) = iϕ(m)Ψm

(
i
√

x2 + 4
)
,
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(c) If p > 2 and p | m, then m ≥ 3, and

Ψpm(x) = Φpm(−ω2)
ωϕ(pm) = Φm((−ω2)p)

ωpϕ(m) = Φm(−(ωp)2)
(ωp)ϕ(m) = Ψm

(
ωp − ω−p

)
. (10)

From Webb and Parberry [6],

Fn(x) = ωn − (−ω)−n

ω + ω−1

for all positive integers n, so

ωp − ω−p = F2p(x)
Fp(x) = Ψ2(x)Ψp(x)Ψ2p(x)

Ψp(x) = xΨ2p(x).

Substituting this result into equation (10) yields

Ψpm(x) = Ψm(xΨ2p(x)).

(d) If p > 2 and p ! m, then

Ψpm(x) = Φpm(−ω2)
ωϕ(pm) = Φm((−ω2)p)

Φm(−ω2)ω(p−1)ϕ(m) = Φm(−(ωp)2)
(ωp)ϕ(m)

/ Φm(−ω2)
ωϕ(m) ,

which is equal to

Ψm(ωp − ω−p)
Ψm(ω − ω−1) = Ψm(xΨ2p(x))

Ψm(x)

for both m = 2 and m ≥ 3. !

4. Discriminant and resultant formulas

Our goal in this section is to provide the formulas of the discriminant ∆(Ψn(x)) for all 
integers n ≥ 2 and the resultant res(Ψm(x), Ψn(x)) for all integers 2 ≤ m < n. To achieve 
this, we compare ∆(Ψn(x)) and res(Ψm(x), Ψn(x)) with their cyclotomic counterparts. 
We begin with studying the discriminants.

Theorem 4.1. Let n ≥ 2 be an integer. Then

∆(Ψn(x))
∆(Φn(x)) =






2ϕ(n)

p if n = pα for some prime p and some positive integer α;

2ϕ(n) otherwise.
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Proof. Here are three elementary trigonometric identities that we will use in this proof:

cosx− cos y = −2 sin x + y

2 sin x− y

2 , (11)

sin 2x = 2 sin x cosx, (12)

and

cosx = sin
(π

2 − x
)
. (13)

Another useful identity is

∑

1≤s≤n−1
gcd(s,n)=1

s = nϕ(n)
2 (14)

for all integers n ≥ 2. Using this identity, we find that for all integers n ≥ 2,
∑

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

(s + t) =
∑

1≤s,t≤n−1
gcd(s,n)=gcd(t,n)=1

(s + t) −
∑

1≤s=t≤n−1
gcd(s,n)=gcd(t,n)=1

(s + t)

=
∑

1≤s≤n−1
gcd(s,n)=1

(
∑

1≤t≤n−1
gcd(t,n)=1

s +
∑

1≤t≤n−1
gcd(t,n)=1

t

)
−

∑

1≤s≤n−1
gcd(s,n)=1

2s

=
∑

1≤s≤n−1
gcd(s,n)=1

(
sϕ(n) + nϕ(n)

2

)
− 2 · nϕ(n)

2

= nϕ(n)
2 · ϕ(n) + nϕ(n)

2 · ϕ(n) − nϕ(n)

= nϕ(n)(ϕ(n) − 1).

(15)

With these identities established, we now begin the proof of this theorem. By the 
definition of the discriminant of a polynomial, we obtain

∆(Ψn(x)) =
∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

(
2i cos sπ

n
− 2i cos tπ

n

)

=
∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

(
2i

(
−2 sin (s + t)π

2n sin (s− t)π
2n

))
(by (11))

= (−1)ϕ(n)2−ϕ(n) ·
∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

(
2i · 2 sin (s + t)π

2n sin (s− t)π
2n

)
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=
∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

(
2i · 2 sin (s + t)π

2n sin (s− t)π
2n

)

and

∆(Φn(x)) =
∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

(
e

2isπ
n − e

2itπ
n

)

=
∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

e
2i(s+t)π

2n

(
e

2i(s−t)π
2n − e−

2i(s−t)π
2n

)

=
∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

e
2i(s+t)π

2n ·
∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

(
e

2i(s−t)π
2n − e−

2i(s−t)π
2n

)

= exp
(
iπ

n

∑

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

(s + t)
)

·
∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

(
2i sin 2(s− t)π

2n

)

= exp
(
iπ

n
· nϕ(n)(ϕ(n) − 1)

)
·

∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

(
2i sin 2(s− t)π

2n

)
(by (15))

=
∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

(
2i · 2 sin (s− t)π

2n cos (s− t)π
2n

)
. (by (12))

Next, we compute the ratio of the discriminants to obtain

∆(Ψn(x))
∆(Φn(x)) =

∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

sin (s + t)π
2n

∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

cos (s− t)π
2n

=

∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

sin (s + t)π
2n

∏

1≤s &=t≤n−1
gcd(s,n)=gcd(t,n)=1

sin ((n− s) + t)π
2n

(by (13))
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=

∏

1≤s,t≤n−1
gcd(s,n)=gcd(t,n)=1

sin (s + t)π
2n

/
∏

1≤s=t≤n−1
gcd(s,n)=gcd(t,n)=1

sin (s + t)π
2n

∏

1≤s,t≤n−1
gcd(s,n)=gcd(t,n)=1

sin ((n− s) + t)π
2n

/
∏

1≤s=t≤n−1
gcd(s,n)=gcd(t,n)=1

sin ((n− s) + t)π
2n

.

Note that the numerator of the numerator and the numerator of the denominator are 
the same product, and the denominator of the denominator evaluates to 1, so we have

∆(Ψn(x))
∆(Φn(x)) = 1

∏

1≤s=t≤n−1
gcd(s,n)=gcd(t,n)=1

sin (s + t)π
2n

= 1
∏

1≤s≤n−1
gcd(s,n)=1

sin sπ

n

. (16)

Let n = pα1
1 pα2

2 · · · pαr
r be the unique prime factorization of n. By using the trigono-

metric identity

∏

1≤s≤n−1
sin sπ

n
= n

2n−1 = 2n
2n

offered in MathWorld [7], we see for each 1 ≤ ' ≤ r that

∏

1≤s≤n−1
pj1pj2 ···pj$

|s

sin sπ

n
=

∏

1≤s≤ n
pj1pj2 ···pj$

−1
sin sπ

n
pj1pj2 ···pj$

=
2n

pj1pj2 ···pj$

2
n

pj1pj2 ···pj$

.

By the inclusion-exclusion principle, we have

∏

1≤s≤n−1
gcd(s,n)=1

sin sπ

n
=

2n
2n ·

∏

1≤j1<j2≤r

2n
pj1pj2

2
n

pj1pj2
·

∏

1≤j1<j2<j3<j4≤r

2n
pj1pj2pj3pj4

2
n

pj1pj2pj3pj4
· · ·

∏

1≤j1≤r

2n
pj1

2
n

pj1
·

∏

1≤j1<j2<j3≤r

2n
pj1pj2pj3

2
n

pj1pj2pj3
· · ·

.

The number of occurrences of the factor 2n in the numerator is equal to the sum of 
the positive coefficients in the binomial expansion of (x − 1)r, while the number of 
occurrences of the factor 2n in the denominator is equal to the sum of the negative 
coefficients in the binomial expansion of (x − 1)r. Hence, they cancel out each other 
completely. The number of occurrences of the factor 1

pj
in the numerator is equal to 

the sum of the negative coefficients in the binomial expansion of (x − 1)r−1, while the 
number of occurrences of the factor 1

pj
in the denominator is equal to the sum of the 

positive coefficients in the binomial expansion of (x −1)r−1. Hence, they cancel out each 
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other completely when r ≥ 2, but the factor 1
p1

remains in the denominator when r = 1. 
Lastly, it is easy to see that the exponent of the factor 1

2 is precisely ϕ(n). Therefore,

∏

1≤s≤n−1
gcd(s,n)=1

sin sπ

n
=






1
2ϕ(n)

1
p1

if r = 1;
1

2ϕ(n) otherwise,

which completes our proof by substituting this last equation into (16). !

The following is a corollary of Theorems 2.4 and 4.1, which expresses ∆(Ψn(x)) as a 
closed form in a similar manner to ∆(Φn(x)).

Corollary 4.2. Let n ≥ 2 be an integer. Then

∆(Ψn(x)) =






(−1)"ϕ(n)/2#(2n)ϕ(n)

ppα−1+1 if n = pα for some prime p

and some positive integer α;
(−1)ϕ(n)/2(2n)ϕ(n)

∏
p|n

pϕ(n)/(p−1) otherwise.

We finish this section by studying the resultants.

Theorem 4.3. Let 2 ≤ m < n be integers. Then

res(Ψm(x),Ψn(x))
res(Φm(x),Φn(x)) = 1.

Proof. Using identity (14), we find that for all integers m, n ≥ 2,

∑

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

(
s

m
+ t

n

)
=

∑

1≤s≤m−1
gcd(s,m)=1

(
∑

1≤t≤n−1
gcd(t,n)=1

s

m
+

∑

1≤t≤n−1
gcd(t,n)=1

t

n

)

=
∑

1≤s≤m−1
gcd(s,m)=1

(
s

m
· ϕ(n) + 1

n
· nϕ(n)

2

)

= 1
m

· mϕ(m)
2 · ϕ(n) + ϕ(m) · ϕ(n)

2
= ϕ(m)ϕ(n).

(17)

With this identity established, we now begin the proof of this theorem. By the defi-
nition of the resultant of two polynomials, we obtain
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res(Ψm(x),Ψn(x))

=
∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

(
2i cos sπ

m
− 2i cos tπ

n

)

=
∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

(
2i

(
−2 sin

(
sπ

2m + tπ

2n

)
sin

(
sπ

2m − tπ

2n

)))
(by (11))

= (−1)ϕ(m)ϕ(n) ·
∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

(
2i · 2 sin

(
sπ

2m + tπ

2n

)
sin

(
sπ

2m − tπ

2n

))

=
∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

(
2i · 2 sin

(
sπ

2m + tπ

2n

)
sin

(
sπ

2m − tπ

2n

))

and

res(Φm(x),Φn(x))

=
∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

(
e

2isπ
m − e

2itπ
n

)

=
∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

e2i
(

sπ
2m+ tπ

2n
) (

e2i
(

sπ
2m− tπ

2n
)
− e−2i

(
sπ
2m− tπ

2n
))

=
∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

e2i
(

sπ
2m+ tπ

2n
)
·

∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

(
e2i

(
sπ
2m− tπ

2n
)
− e−2i

(
sπ
2m− tπ

2n
))

= exp
(
iπ ·

∑

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

(
s

m
+ t

n

))
·

∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

(
2i sin

(
2
(

sπ

2m − tπ

2n

)))

= exp (iπ · ϕ(m)ϕ(n)) ·
∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

(
2i sin

(
2
(

sπ

2m − tπ

2n

)))
(by (17))

=
∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

(
2i · 2 sin

(
sπ

2m − tπ

2n

)
cos

(
sπ

2m − tπ

2n

))
. (by (12))
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Next, we compute the ratio of the resultants to obtain

res(Ψm(x),Ψn(x))
res(Φm(x),Φn(x)) =

∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

sin
(

sπ

2m + tπ

2n

)

∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

cos
(

sπ

2m − tπ

2n

)

=

∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

sin
(

sπ

2m + tπ

2n

)

∏

1≤s≤m−1
1≤t≤n−1

gcd(s,m)=gcd(t,n)=1

sin
( (m− s)π

2m + tπ

2n

) (by (13))

= 1. !

The following is a corollary of Theorems 2.5 and 4.3, which expresses res(Ψm(x),
Ψn(x)) as a closed form in a similar manner to res(Φm(x), Φn(x)).

Corollary 4.4. Let 2 ≤ m < n be integers. Then

res(Ψm(x),Ψn(x)) =






pϕ(m) if n/m = pα for some prime p

and some positive integer α;

1 otherwise.

5. Factorization of Ψn(x) in Zp[x]

Throughout this section, let p be a prime and let Zp denote the prime field of size p. 
Furthermore, we view ζn as a solution to the congruence Φn(x) ≡ 0 (mod p). Although 
ζn depends on p, we suppress the index p to simplify the notation. Our goal in this 
section is to provide the factorization form of Ψn(x) in Zp. We begin by considering the 
case n = pk for some positive integer k.

Theorem 5.1. Let k be a positive integer. Then

Ψpk(x) ≡
(
x2 + 4

)ϕ(pk)
2 (mod p).
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Proof. If p = 2 and k = 1, then the identity holds trivially. Otherwise, notice that

Ψpk(x) = Φpk(−ω2)
ωϕ(pk) =

Φp

((
− ω2)pk−1)

ωϕ(pk) =
(
− ω2)pk

− 1
(
− ω2

)pk−1
− 1

· 1
ωpk−pk−1

= (−ω)pk − ω−pk

(−ω)pk−1 − ω−pk−1 ,

where the first equality is due to Theorem 3.1, the second equality is due to repeated 
application of equation (1), and the third equality follows from Φp(x) = xp−1

x−1 . As a 
result,

Ψpk(x) = (−ω)pk − ω−pk

(−ω)pk−1 − ω−pk−1 ≡ (−ω − ω−1)pk

(−ω − ω−1)pk−1 ≡ (−ω − ω−1)ϕ(pk) (mod p),

and the theorem follows by noticing that ϕ(pk) is even and ω + ω−1 =
√
x2 + 4. !

We next relate the factorization of Ψn(x) to Ψm(x), where n = pkm and gcd(p, m) = 1.

Theorem 5.2. Let m ≥ 2 be an integer such that gcd(p, m) = 1, and let k be a nonnegative 
integer. Then

Ψpkm(x) ≡ Ψm(x)ϕ(pk) (mod p).

Proof. This theorem holds trivially if k = 0, so we assume for the rest of the proof that 
k > 0. If p = 2, then note that the only fourth root of unity over Z2 is 1. Hence,

Ψ2km(x) ≡ Ψ2m
(
x2k−1

)
≡ Ψm

(
x2k−1

)
≡ Ψm(x)2k−1

≡ Ψm(x)ϕ(2k) (mod 2),

where the first equality is due to repeated application of Theorem 3.4(a), and the second 
equality is due to Theorem 3.4(b).

If p > 2, then

Ψpkm(x) = Ψpm

(
ωpk−1

− ω−pk−1
)

=
Ψm

(
ωpk − ω−pk

)

Ψm

(
ωpk−1 − ω−pk−1)

≡
Ψm

(
ω − ω−1)pk

Ψm (ω − ω−1)pk−1

≡ Ψm(x)pk

Ψm(x)pk−1 ≡ Ψm(x)ϕ(pk) (mod p),
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where the first equality is due to repeated application of Theorem 3.4(c), the second 
equality is due to Theorem 3.4(d), and the second congruence is by (9). !

Theorem 5.2 allows us to focus our attention on the factorization of Ψm(x) in Zp[x]
when gcd(p, m) = 1. To move in this direction, we first present the following two lemmas.

Lemma 5.3. Let α be algebraic (and thus separable) over Zp. Then the degree of the 
minimal polynomial of α over Zp is the smallest positive integer δ such that αpδ = α.

Proof. Since the Frobenius map x '→ xp is a generator of the Galois group of 
Zp(α)/Zp and δ is the smallest positive integer such that αpδ = α, we know that {
αpj : 0 ≤ j ≤ δ − 1

}
is the smallest subset of Zp(α) that contains α and is fixed by 

the Galois group. As a result,

δ−1∏

j=0

(
x− αpj

)

is the minimal polynomial of α over Zp. !

Lemma 5.4. Let s, t, and m be positive integers. If gcd(p, 2m) = 1, then

(a) ζs2m + ζ−s
2m = ζt2m + ζ−t

2m if and only if s ≡ ±t (mod 2m); and
(b) ζs2m + ζ−s

2m = − 
(
ζt2m + ζ−t

2m
)

if and only if s ≡ m ± t (mod 2m).

Proof. Since

ζs2m + ζ−s
2m −

(
ζt2m + ζ−t

2m
)

=
(
ζs−t
2m − 1

) (
ζt2m − ζ−s

2m
)

and

ζs2m + ζ−s
2m + ζt2m + ζ−t

2m =
(
ζs−t
2m + 1

) (
ζt2m + ζ−s

2m
)
,

our conclusion follows. !

Using Lemmas 5.3 and 5.4, we establish the following theorem when p is an odd prime.

Theorem 5.5. Let p > 2 and let m ≥ 3 be an integer such that gcd(p, m) = 1. Let u be the 
order of p modulo 2m, i.e., u is the smallest positive integer such that pu ≡ 1 (mod 2m). 
Further, let δ be the degree of the minimal polynomial of ζ4

(
ζs2m + ζ−s

2m
)

over Zp, where 
gcd(s, m) = 1. Then

• δ = u
2 if

! p ≡ 1 (mod 4), u is even, and p
u
2 ≡ −1 (mod 2m);
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! p ≡ 3 (mod 4), u ≡ 0 (mod 4), and p
u
2 ≡ −1 (mod 2m); or

! p ≡ 3 (mod 4), u ≡ 2 (mod 4), and p
u
2 ≡ m ± 1 (mod 2m);

• δ = u if
! p ≡ 1 (mod 4), u is even, and p

u
2 %≡ −1 (mod 2m);

! p ≡ 1 (mod 4), u is odd;
! p ≡ 3 (mod 4), u ≡ 0 (mod 4), and p

u
2 %≡ −1 (mod 2m); or

! p ≡ 3 (mod 4), u ≡ 2 (mod 4), and p
u
2 %≡ m ± 1 (mod 2m);

• δ = 2u if p ≡ 3 (mod 4) and u is odd.

Proof. By Lemma 5.3,

ζp
δ

4

(
ζsp

δ

2m + ζ−spδ

2m

)
= ζ4

(
ζs2m + ζ−s

2m
)
.

Note that

ζp
δ

4

(
ζsp

δ

2m + ζ−spδ

2m

)
= ±ζ4

(
ζsp

δ

2m + ζ−spδ

2m

)
.

By Lemma 5.4, we have

pδ ≡ 1 (mod 4) and spδ ≡ ±s (mod 2m), or
pδ ≡ 3 (mod 4) and spδ ≡ m± s (mod 2m).

(18)

Case 1: gcd(s, 2m) = 1. The equations in (18) simplify to either pδ ≡ 1 (mod 4) and 
pδ ≡ ±1 (mod 2m), or pδ ≡ 3 (mod 4) and pδ ≡ m ± 1 (mod 2m).

Since p2u ≡ 1 (mod 4) and p2u ≡ 1 (mod 2m), we have

ζp
2u

4

(
ζsp

2u

2m + ζ−sp2u

2m

)
= ζ4

(
ζs2m + ζ−s

2m
)
,

thus δ | 2u. On the other hand, p2δ = (pδ)2 is congruent to either 1 or m2+1 modulo 2m. 
If p2δ ≡ 1 (mod 2m), then u | 2δ; if p2δ ≡ m2 + 1 (mod 2m), then note that p2δ is odd 
and 2m is even, so m2 +1 is odd. As a result, m is even and p2δ ≡ m2 +1 ≡ 1 (mod 2m), 
so we again have u | 2δ. Hence, δ ∈

{
u
2 , u, 2u

}
.

If p ≡ 1 (mod 4), then the smallest positive integer δ satisfying pδ ≡ ±1 (mod 2m)
is δ = u

2 if pu
2 ≡ −1 (mod 2m), which implicitly implies that u is even; otherwise, 

δ = u. If p ≡ 3 (mod 4) and u is odd, then pu ≡ 3 (mod 4) and pu ≡ 1 (mod 2m), 
so δ %= u. Also, u2 is not an integer, so δ = 2u. Finally, we are left with the case when 
p ≡ 3 (mod 4) and u is even. If u ≡ 0 (mod 4) and p

u
2 ≡ −1 (mod 2m) or u ≡ 2 (mod 4)

and p
u
2 ≡ m ± 1 (mod 2m), then δ = u

2 ; otherwise, δ = u.
Case 2: gcd(s, 2m) %= 1. Since gcd(s, m) = 1, we deduce that m is odd and 

gcd(s, 2m) = 2. As a result, spδ ≡ m ± s (mod 2m) in (18) will never hold since spδ

and 2m are even while m ± s is odd. Hence, (18) simplifies to pδ ≡ 1 (mod 4) and 
pδ ≡ ±1 (mod m).
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Next, we show that u is the order of p modulo m. Let u′ be the order of p modulo 
m. Since pu ≡ 1 (mod 2m) implies pu ≡ 1 (mod m), we have u′ | u. On the other hand, 
pu

′ ≡ 1 (mod 2) and pu
′ ≡ 1 (mod m) yield pu

′ ≡ 1 (mod 2m) since gcd(2, m) = 1, so 
we have u | u′.

With the same argument as in Case 1, we have δ | 2u. On the other hand, p2δ = (pδ)2 ≡
1 (mod m), so u | 2δ. Hence, δ ∈

{
u
2 , u, 2u

}
. If p ≡ 1 (mod 4), then the smallest positive 

integer δ satisfying pδ ≡ ±1 (mod m) is δ = u
2 if pu

2 ≡ −1 (mod m), which implicitly 
implies that u is even; together with p

u
2 ≡ −1 (mod 2), we have p

u
2 ≡ −1 (mod 2m). 

Otherwise, δ = u. If p ≡ 3 (mod 4) and u is odd, then pu ≡ 3 (mod 4), so δ %= u. Also, 
u
2 is not an integer, so δ = 2u. Finally, if p ≡ 3 (mod 4) and u is even, then the smallest 
positive integer δ satisfying pδ ≡ ±1 (mod m) is δ = u

2 if pu
2 ≡ −1 (mod m) and u2 is 

even; together with p
u
2 ≡ −1 (mod 2), we have p

u
2 ≡ −1 (mod 2m). Otherwise, δ = u.

To complete the proof, we note that p ≡ 3 (mod 4), u ≡ 2 (mod 4), and p
u
2 ≡

m ± 1 (mod 2m) will not occur when m is odd. This is because p
u
2 is odd, while both 

m ± 1 and 2m are even. !

To consider the case p = 2, we first establish a lemma parallel to Lemma 5.4.

Lemma 5.6. Let p = 2, and let s, t, and m be positive integers. If gcd(2, m) = 1, then 
ζsm + ζ−s

m = ζtm + ζ−t
m if and only if s ≡ ±t (mod m).

Proof. Since

ζsm + ζ−s
m −

(
ζtm + ζ−t

m

)
=

(
ζs−t
m − 1

) (
ζtm − ζ−s

m

)
,

our conclusion follows. !

Note that when p = 2, then ζ4 = 1. Furthermore, (ζm2m − 1)2 = ζ2m
2m − 1 = 0, so 

ζ2m = ζm. Hence, ζ4
(
ζs2m + ζ−s

2m
)

= ζsm + ζ−s
m . With this in mind, we use Lemmas 5.3

and 5.6 to establish the next theorem.

Theorem 5.7. Let p = 2 and let m ≥ 3 be an integer such that gcd(2, m) = 1. Let u′

be the order of 2 modulo m, i.e., u′ is the smallest positive integer such that 2u′ ≡
1 (mod m). Further, let δ be the degree of the minimal polynomial of ζsm + ζ−s

m over Z2, 
where gcd(s, m) = 1. Then

δ =
{

u′

2 if u′ is even and 2u′
2 ≡ −1 (mod m);

u′ otherwise.

Proof. By Lemma 5.3,

ζs·2
δ

m + ζ−s·2δ

m = ζsm + ζ−s
m .
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By Lemma 5.6, we have

s · 2δ ≡ ±s (mod m),

which simplifies to 2δ ≡ ±1 (mod m).
Since 2u′ ≡ 1 (mod m), we have

ζs·2
u′

m + ζ−s·2u′

m = ζsm + ζ−s
m ,

thus δ | u′. On the other hand, 22δ = (2δ)2 ≡ 1 (mod m), so u′ | 2δ. Hence, δ ∈ {u′

2 , u
′}. 

Therefore, the smallest positive integer δ satisfying 2δ ≡ ±1 (mod m) is δ = u′

2 if 
2u′

2 ≡ −1 (mod m), which implicitly implies that u′ is even; otherwise, δ = u′. !

Bringing together the results so far presented allows us to establish the main theorem 
of this section.

Theorem 5.8. Let m be a positive integer such that gcd(p, m) = 1, and let n = pkm, 
where k is a nonnegative integer.

• If m = 1, then Ψn(x) factors in Zp[x] as 
(
x2 + 4

)ϕ(pk)
2 .

• If m = 2, then Ψn(x) factors in Zp[x] as xϕ(pk).
• If m ≥ 3 and p > 2, then let δ be defined as in Theorem 5.5. In this case, Ψn(x)

factors in Zp[x] as a product of ϕ(m)/δ distinct irreducible monic polynomials of 
degree δ, each raised to the ϕ(pk)-th power.

• If m ≥ 3 and p = 2, then let δ be defined as in Theorem 5.7. In this case, Ψn(x)
factors in Zp[x] as a product of ϕ(m)/(2δ) distinct irreducible monic polynomials of 
degree δ, each raised to the 2ϕ(pk)-th power.

Proof. The cases when m = 1 and m = 2 follow directly from Theorems 5.1 and 5.2, 
respectively. When m ≥ 3 and p > 2, all roots ζ4

(
ζs2m + ζ−s

2m
)

of Ψm(x) are distinct by 
Lemma 5.4, so the result follows from Theorems 5.2 and 5.5. Finally, when m ≥ 3 and 
p = 2, two roots ζsm + ζ−s

m and ζtm + ζ−t
m of Ψm(x) are equal if and only if t = m − s by 

Lemma 5.6, so the result follows from Theorems 5.2 and 5.7. !
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