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1. Introduction

The well-known Fibonacci polynomials are defined by letting Fy(x) = 1, Fa(z) = z,
and F,,(z) = Fj,_1(z) -2+ F,_2(z) for all integers n > 3. In 1969, Webb and Parberry [6]
showed that F,(z) is irreducible in Z[z] if and only if n is prime. The following definition
was first introduced by Levy [4] in 2001.

Definition 1.1. Let n > 2 be an integer. The n-th fibotomic polynomial, written as ¥, (z),
is the product of the monic irreducible factors of Fj,(xz) which are not factors of Fy(x)
for any k < n. For consistency, we define ¥ (z) = 1. Hence,

Fo(z) = H Va(z)
d|

for all positive integers n.

It follows from Webb and Parberry’s result that for any prime p, V,(z) = Fp(z) is
irreducible in Z[z]. It was further shown by Levy that ¥, (x) is irreducible in Z[z] for
every integer n > 2. However, Kitayama and Shiomi [2] showed that ¥, (x) is often
reducible in finite fields. More recently, Sagan and Tirrell [5] studied the bivariate Lucas
polynomials and their factorization using Lucas atoms. The bivariate Lucas polynomials
are defined such that Ly (s,t) = 1, La(s,t) = s, and L, (s,t) = Ly—1(s,t)- s+ Lp_a(s,t)-t
for all integers n > 3.

It seems that the bivariate Lucas polynomials are more general than the Fibonacci
polynomials. However, a simple homogenization of the Fibonacci polynomials together
with a substitution allows us to transform a Fibonacci polynomial back to a bivariate
Lucas polynomial. Define F,,(z,y) = y" 1 F, (5) for all positive integers n. Then F,(x,y)
is a homogeneous polynomial since the degree of F},(x) is n — 1. Substituting F,(}) =
y%an(x, y) into the recurrence definition of the Fibonacci polynomials, we have

1
yn—l

1 1
: FFn—l(xvy) + FFn—ﬂzvy)-

Fn(it,y) =

< |8

Multiplying ™~! to both sides of the equation, we get F,(z,y) = xF,_1(z,y) +
y?F,_o(x,y), which we call the n-th homogenized Fibonacci polynomial. Together with
the observation that Fy(z,y) = yOFl(g) =1 and Fy(z,y) = yng(i) = x, we can easily
see that a substitution of x = s and y* = t yields the n-th bivariate Lucas polynomial.

Define ¥4 (z,y) = 1, and for all integers n > 2, define ¥, (z,y) = y*"(”)\Iln(i) as the
n-th homogenized fibotomic polynomial. It is easy to see that

Fu(x,y) = [ Yale,v)
d|n

for all positive integers n. The main results of this article are the following theorems
regarding homogenized fibotomic polynomials.
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Theorem 1.2. Let n > 2 be an integer. Then the discriminant of U, (xz,y) with respect to
x is given by

(—1)Le(m/2] (9p) @ (n) e (M) (e(n)—1)
pp® T +1

if n = p® for some prime p

and some positive integer «;

(—1)®(M)/2(2p)e(n) ye (M) (e(n)—1) )
[ p?(7G—D otherwise.

pln

Motivated by Lehmer [3] who determined the resultant of two cyclotomic polynomials,
we obtain the following theorem.

Theorem 1.3. Let 2 < m < n be integers. Then the resultant of U,,(x,y) and ¥, (x,y)
with respect to x is given by

pemyemen) f n/m = p® for some prime p and some positive integer «;
y#(m)e(n) otherwise.
Parallel to Guerrier’s work [1] on completely determining the factorization form of
®,,(x) in Zp[z], we obtain the following theorem, which expands the study of Kitayama
and Shiomi.

Theorem 1.4. Let m be a positive integer such that gecd(p,m) = 1, and let n = pFm,
where k is a nonnegative integer.
o)
e Ifm=1, then ¥,,(x,y) factors in Zy[z] as (z* + 4y?) ?

o Ifm =2, then U, (z,y) factors in Zy[x] as 2 ("),

o Ifm >3 andp > 2, then let 6 be defined as in Theorem 5.5. In this case, VU, (z,y)
factors in Zy[x,y] as a product of p(m)/é distinct irreducible monic polynomials of
degree §, each raised to the p(p*)-th power.

o Ifm >3 and p =2, then let 6 be defined as in Theorem 5.7. In this case, U, (x,y)
factors in Zylz,y] as a product of ¢(m)/(25) distinct irreducible monic polynomials
of degree &, each raised to the 2p(p*)-th power.

In this article, we will first focus on the fibotomic polynomials, and with a simple
homogenization process, the results in Corollary 4.2, Corollary 4.4, and Theorem 5.8
can be generalized to Theorems 1.2, 1.3, and 1.4, respectively. For instance, note that
all the roots of ¥, (x,y) with respect to x are the same as the roots of ¥, (x) except
that they have an extra factor y. Thus, the discriminant of ¥, (x,y) with respect to x is
y#M =D A (W, (2)), and the resultant of ¥,,(z,y) and ¥, (x,y) with respect to x is
yPMeMres (W, (), U, ().
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2. Notation and preliminary results

Let @, (x) denote the n-th cyclotomic polynomial, and recall that the roots of ®,,(x)
are the primitive n-th roots of unity. We denote an arbitrary primitive k-th root of unity
by (i. Then

D, (z) = H (x — 627”5/") = H (x—=2¢).

1<s<n 1<s<n

ged(n,s)=1 ged(n,s)=1

Levy provided the root form for ¥, (z) when n > 2:

U, (z) = H (m — 24 cos %) = H (z— (G, + &),

1<s<n 1<s<n
ged(s,n)=1 ged(s,n)=1

where the second equality follows from 2i cos £& = i(e™/™ 4 e~ 7is/m).
The following well-known theorems for cyclotomic polynomials will be useful in our
study.

Theorem 2.1. Let n > 2 be an integer. Then

(1) = p if n=p~ for some prime p and some positive integer «;
" 1 otherwise.
Theorem 2.2. Let m > 3 be an odd integer. Then
Do () = @y (—2).

Theorem 2.3. Let p be a prime and m be a positive integer. Then

Py (2) = P (2P)  ifp|m (1)
and
Bl = G ifptm.

Let A(f(z)) denote the discriminant of a polynomial f, and let res(f(z), g(x)) denote
the resultant of polynomials f(x) and g(x).

Theorem 2.4. Let n be a positive integer. Then

(-1) Le(n)/2] pe(n)

A(On(x)) = R
pln
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Theorem 2.5 ([3]). Let m < n be positive integers. Then

p?(™) ifn/m = p® for some prime p

res(®,, (), ®p(z)) = and some positive integer o

1 otherwise.
3. Identities involving ¥, (x)

For the remainder of this paper, let w = ¥vi—+d V2I2+4. Levy gave a brief explanation for
the following theorem. We provide a detailed proof here for completion.

Theorem 3.1. Let n > 2 be an integer. Then

':I>n(7w2) ; — 9.
T e if n=2;

b, (—w?)
we(n)

U, (z) =

ifn > 3.
Proof. If n = 2, then the statement holds since ¥5(x) = 2 and

(I)Q(—UJQ)
@ T B - 2 2

—w? +1 1 TH+Va?4+4 —z+Va?+4
= w = —_ =X

Now, assume that n > 3. It is well-known that Zd‘nu (%) = 0 for all integers n > 2
and ., du (%) = ¢(n) for all positive integers n. Hence, for every nonzero k that is
independent of d,

H kP(d) =1 for all integers n > 2 (2)
d|n
and
H (kd)ﬂ(%) = k?™ for all positive integers n. (3)

d|n

Since 2" — 1 =[], ®a(x), Mobius inversion yields that for all real numbers z # 1,

4 (7,) (L‘d -1 “(%) d—1 )
o=l -0 =T (5) T -IT(X] - @
d|n d|n dln \j=0
where the second equality is due to (2) by substituting k = —1. By substituting —w?

into (4), we have
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g1 w(%)
e, (—w®) =] [ D_o(—w?) : (5)
dln \Jj=0

Similarly, since Fy,(2) = ][, Ya(z), Mobius inversion yields that for all real numbers

x # 0,
U, () = [ [ Falx)"). (6)
d|

Note that ¢(n) is even for all integers n > 3. Thus, for all real numbers x # 0, (6) gives

WP, (2) = (—w)?™ W, (2) = H((_w)dpd(x))u(%) — H((—w)dled(a:))”(’i), (7)

d|n d|n

where the second equality is due to (3) and the third equality is due to (2) by substituting
k= (—w) !

To prove our theorem, we first equate (5) and (7) for all real numbers z # 0, and the
proof will be complete by noticing that both ®, (—w?) and w?(™ W, (z) are continuous
functions with respect to z. To equate (5) and (7), it suffices to show that for all positive
integers d,

D (W = (mw) T Fa(w), (8)

and we shall proceed by induction.
When d = 1, (8) clearly holds since Fy(z) = 1. When d = 2, (8) also holds since

5 22 + 22 + 4+ 2222 + 4 2 + vz +4
l—w*=1- 1 =— 5 = —wzr = —wky(x).

Assuming that (8) holds for some positive integers d and d + 1, we have

(—w) ™ Fyo (@) = (—w) T (@ Fara () + Fa(z))
= (~wz)(~w) Far1(2) + (~w)* (~w) " Fa()

d d—1
= (- [ 3wty | +e? [ (w?y
j=0 j=0
d
_ Z(iWZ)g o w2(7w2)d
j=0
d+1
=Y (uy
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Therefore, (8) holds for all positive integers d by induction. O

Remark 3.2. As seen in the proof of Theorem 3.1 that

the statement of Theorem 3.1 can be rewritten such that for any integer n > 2,

q:'n(_wZ) 'f — .
—— s ifn=2;
U (w—wt) = “r
s Eu(w®) >3,

wen)

The following two theorems are special cases of several results presented by Sagan and
Tirrell. We provide alternative proofs of these results using Theorem 3.1. Our version
allows direct applications in Sections 4 and 5.

Theorem 3.3. The constant term of the n-th fibotomic polynomial is given by

0 ifn=2
U,(0)=<p ifn=2p" for some prime p and some positive integer a;
1 otherwise.

Proof. Clearly, ¥1(0) = 1 and ¥5(0) = 0, so we now focus on n > 3. If z = 0, then
w = 1. By Theorem 3.1,

U,.(0) = el = D, (-1).
Suppose that n = 2m is even with m > 2. If m is odd, then ®g,,(—1) = &,,(1) by
Theorem 2.2, and if m is even, then ®,,,(—1) = ®,,((—1)?) = ®,,(1) by Theorem 2.3.
In both cases, the result follows from Theorem 2.1.
Now, suppose that n is odd and let n = p'p3? .- p@r be the prime factorization of
n. By repeated use of Theorem 2.3,

ap—1 _ag—1  ap—1
‘I)n(_l) = (I)IJIPQ"‘PT ((_1);:1 P2 Pr ) = (I)pwzmpr(_l)

_ ¢p1172"'17r71 ((_1)1%) -1 0

¢p1P2""Pr71 (_1)

The next theorem provides a number of identities that are parallel to Theorems 2.2
and 2.3.

Theorem 3.4. Let p be a prime and m > 2 be an integer.
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(a) If p=2 and p | m, then

oy (2) —i# M, (iw? — (iw?)7t) = =MW, (i(2® +2))  if m=2;
m\T) =
? M, (iw? — (iw?)7t) = i#MT,, (i(22 + 2)) if m > 3.

(d) If p=2 and ptm, then
Wy (z) = 12, (iw — (iw) ) = i#Mw,, (z 22 + 4) .
(¢) If p>2 and p | m, then
Wy () = Wy (7 = 07P) = W (20, ()

(d) If p> 2 and ptm, then

Uy (WP —w ™) Wi (2Wsp(z))
Wpm (@) = U w—wb)  Un(x)

Proof. (a) If 2 | m, then

- fbgm(—w2)

\Ifgm(];) - = (I)m(W4) — ,Ltp(m) (bm(f('l/w2)2)

we@m) T ,2¢(m) (iw2)¢(m) ’

where the first equality is due to Theorem 3.1, and the second equality is due to equa-
tion (1). By Remark 3.2, if m = 2, then

Uom(x) = —iemy, (iw2 — (iwz)_l) = —emy, (Z (w2 + w_Q))
= —i?My,, (i(a® +2)),

and if m > 3, then
o (z) = i#™T,, (iw? — (iw?) 1) =MW, (i (WP +w™?)) =i?M,, (i(2? +2)).
(b) If 24 m, then m > 3, and

_ (I>27n(_w2) _ (I)m(w2) _ s&(m) (I)m(_(iw)Q)
\112771(-7/') - w@(zm) - w@(m) =1 7(7/0‘))(‘0(1%) s

where the second equality is due to Theorem 2.2. Again by Remark 3.2, we have

o (2) = 20Ny (i = (i0) ) = 20 (i (0 + w71)) = #2000, (Va2 +4)),
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(¢) If p> 2 and p | m, then m > 3, and

Upm () = q)ﬂgp_n:j ) q>mofz(j;((:}n))p) - (I)Tw(p_)f:z,iz ) Uy (WP —wP). (10)

From Webb and Parberry [6],

for all positive integers n, so

-p _ sz(.’b) \Ijz(x)\:[/p(if)\:[fgp(flj)

WP — w o) = W 00) = Wy, (x).
Substituting this result into equation (10) yields
Uy (2) = b (2T, ().
(d) If p > 2 and p { m, then
V()= SmES)__En() _ nC) [ ()
welpm) @m(faﬂ)w(p 1)p(m) (wp)w(m) we(m)

which is equal to

\I’m(wp - Wﬁp) \Ijm(x\IJQp(z))

U, (w—wl) U, (x)

for bothm=2and m>3. O
4. Discriminant and resultant formulas

Our goal in this section is to provide the formulas of the discriminant A(¥,(z)) for all
integers n > 2 and the resultant res(U,, (z), ¥,,(x)) for all integers 2 < m < n. To achieve
this, we compare A(V,,(z)) and res(V,,(z), ¥, (z)) with their cyclotomic counterparts.
We begin with studying the discriminants.

Theorem 4.1. Let n > 2 be an integer. Then

@(n) . . .y, .
227 ifn = p® for some prime p and some positive integer o;

AP (z)) 2¢(n)  otherwise.
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Proof. Here are three elementary trigonometric identities that we will use in this proof:

coszfcosy:fZSinx—’_ysinx_y, (11)
2 2
sin 2z = 2sin z cos (12)
and
cosx = sin (g —x) . (13)

Another useful identity is

1<s<n—1
ged(s,n)=1

for all integers n > 2. Using this identity, we find that for all integers n > 2,

> (s+1) = > (s+1) — > (s +1)

1<s#t<n—1 1<s,t<n-—1 1<s=t<n-—1

ged(s,n)=gecd(t,n)=1 ged(s,n)=gecd(t,n)=1 ged(s,n)=gcd(t,n)=1

-y (e x) ¥

1<s<n-—1 1<t<n—1 1<t<n-—1 1<s<n-—1

ged(s,n)=1  ged(t,n)=1 ged(t,n)=1 ged(s,n)=1
(0 (0 1
npyn ny(n

= X (setm ) .
2 2

1<s<n-—1

ged(s,n)=1

ne(n ne(n

= 2 o)+ o) — mip(m)

= np(n)(p(n) - 1).

With these identities established, we now begin the proof of this theorem. By the
definition of the discriminant of a polynomial, we obtain

AT, (7)) = I1 <zz' cos % — 2icos %T)

1<s#t<n-—1
ged(s,n)=gcd(t,n)=1

_ I1 (2@' (—2 sin ;nt)” sin & 2;”)) (by (11))

1<s#t<n—1
ged(s,n)=gcd(t,n)=1
t —1
— (_1)(,0(7L)2_Lp(n) . H (22 . 9sin (S ;‘ >7T sin (S )7T>

n 2n
1<s#t<n—1
ged(s,n)=gecd(t,n)=1
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t -1
= H 2¢ - 2sin (s +)m sin (s—t)m
2n 2n
1<s#t<n-—1
ged(s,n)=gcd(t,n)=1

and

A(®,(2)) = [T (™)
1<s#t<n—1
ged(s,n)=gcd(t,n)=1

2i(s+t)m ( 2i(s—t)w _Qi(.s—t)w)
= H [ 2n [ 2n — e 2n

1<s#t<n—1
ged(s,n)=gcd(t,n)=1

2i(s4t)m 2i(s—t)m 2i(s—t)m
= H e 2n . H (e 2n —e 2n )

1<s#t<n—1 1<s#t<n—1

ged(s,n)=gcd(t,n)=1 ged(s,n)=gecd(t,n)=1
B i L 2(s—t)w
= exp (’I’L Z (5 =+ t)) . H (2Z Sin 211)
1<s#t<n-—1 1<s#t<n-—1
ged(s,n)=gcd(t,n)=1 ged(s,n)=gcd(t,n)=1
T L 2(s—t)m
—ow (gt -n) - T (2w 20 0T) oy a9

1<s#t<n-—1
ged(s,n)=gcd(t,n)=1

11 (22- 95 ;nt)” cos 5= ””) . (by (12))

2n
1<s#t<n—1
ged(s,n)=gcd(t,n)=1

Next, we compute the ratio of the discriminants to obtain

H sin 7(8 )

1<s#t<n—1 2n
A(W, (7)) ged(s;n)=ged(t,n)=1

A(D,()) H (s —t)m

Cos
2n

1<s#t<n—1
ged(s,n)=gcd(t,n)=1

C(s+t)m
[ swli0m

2n
(oo Cedm=1
ged(s,n)=gcd(t,n)=
= 1:
1 NCEDED AR

sin
2n

1<s#t<n—1
ged(s,n)=gcd(t,n)=1
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. (s+t)m C(s+t)m
H sm%/ H sm%

1<s,t<n—1 1<s=t<n-—1
ged(s,n)=gcd(t,n)=1 ged(s,n)=gcd(t,n)=1
n—s)+t)mw n—s)+t)mw
H Sin(( )+ 1) H Sin(( ) +1)
2n 2n
1<s,t<n—1 1<s=t<n-—1
ged(s,n)=gcd(t,n)=1 ged(s,n)=gecd(t,n)=1

Note that the numerator of the numerator and the numerator of the denominator are
the same product, and the denominator of the denominator evaluates to 1, so we have

AW (@) | g .
A, (2) Gion 5T
H AT 1<51:£4 K
1<s=t<n-—1 xS
ged(s,n)=gcd(t,n)=1 ged(s,n)=1

Let n = p{'p3? - - p& be the unique prime factorization of n. By using the trigono-
metric identity

. ST n 2n
11 ST = 00T T on
1<s<n-—1

offered in MathWorld [7], we see for each 1 < ¢ < r that

2n

. Ssm . ST Dji PjoPi,
| I sin — = | I sin = = .
n —_n —

Dj, Pjoy P

1<s<n-1 1<5§W—1 Pj1Pjz "Pig 2791727 e
j1Pi J
Pj1Pjs Dl 1Pi2 0

By the inclusion-exclusion principle, we have

2n 2n
2_” . PjiPjs I | Pj1PjaPjzPis .
on I | 7 =
2 Pj1Piz 2Pj1Pi2PizPis

. Ssm 1<j1<jo2 <r 1<j1<ja<js<ja<r
sSin — =

| I n 2n 2n

1<s<n—1 Pjy Pj1Pj2Pjs3

ged(s,n)=1 nC ——

T 2
Pi PjiPisp P4
1< <r 291 1< <a<gs<r 279120

The number of occurrences of the factor 2n in the numerator is equal to the sum of
the positive coefficients in the binomial expansion of (x — 1)”, while the number of
occurrences of the factor 2n in the denominator is equal to the sum of the negative
coefficients in the binomial expansion of (x — 1)". Hence, they cancel out each other
completely. The number of occurrences of the factor p% in the numerator is equal to
the sum of the negative coefficients in the binomial expansion of (x — 1)"~!, while the
number of occurrences of the factor z% in the denominator is equal to the sum of the

J
positive coefficients in the binomial expansion of (z —1)"~!. Hence, they cancel out each
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other completely when r > 2, but the factor p% remains in the denominator when r = 1.
Lastly, it is easy to see that the exponent of the factor % is precisely ¢(n). Therefore,

o
H sm 25 ifr =1

sin — = P1

1<s<n—1 n ﬁ otherwise,
ged(s,n)=1

which completes our proof by substituting this last equation into (16). O

The following is a corollary of Theorems 2.4 and 4.1, which expresses A(¥,,(z)) as a
closed form in a similar manner to A(®,(x)).

Corollary 4.2. Let n > 2 be an integer. Then

e/l gpyem )
L ppa—liln) if n =p® for some prime p

AT, (2)) = and some positive integer «;
_1ye(n)/2 (n)
% otherwise.

pln

We finish this section by studying the resultants.
Theorem 4.3. Let 2 < m < n be integers. Then

res(U,, (z), Uy (x))

res(®p (2), O (2))

Proof. Using identity (14), we find that for all integers m,n > 2,

s t s t
> (p)- x (X iy
1<s<m-—1 <m n 1<s<m-—1 1<t<n-—1 m 1<t<n-—1 n
1<t<n-—1 ged(s,m)=1 gecd(t,n)=1 ged(t,n)=1
ged(s,m)=gecd(t,n)=1
B s 1 npn)
= 2 (;~s@<n>+; 2> a7
1<s<m-—1
ged(s,m)=1
_ 1 me(m) p(n)
= p(m)¢(n)

With this identity established, we now begin the proof of this theorem. By the defi-
nition of the resultant of two polynomials, we obtain
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res(Wp, (x), Uy (2))

ST . tm
= H (22 cos — — 24 cos —)
m n
1<s<m—1
1<t<n—1
ged(s,m)=gecd(t,n)=1

_ 1<31<1n_1 <2¢ (—2 sin (% + ;—2) sin (% - %))) (by (11))

1<t<n—1
ged(s,m)=gecd(t,n)=1

_ (_1)emem) osin (ST 4 T g (ST T
= (—1)¥im¥ H (22 251n<2m+2n sin | o — o

1<s<m-—1
1<t<n-—1
ged(s,m)=gecd(t,n)=1

= H 24 - 2sin Sl+ti sin sm_ i
- 2m = 2n 2m  2n

1<s<m-—1
1<t<n—1
ged(s,m)=gecd(t,n)=1

and

res(®, (), ®p(x))

2ism 2itw
= H em —en

1<s<m-—1
1<t<n-—1
ged(s,m)=gecd(t,n)=1

— H 621.(237::‘+%) (622'(257"7’(17%) — 6721.(2377’27%))
1<s<m-—1

1<t<n—1
ged(s,m)=gecd(t,n)=1

= 11 2T . I1 (ezz’(;;,—;—m - e—%(;;—;—z))

1<s<m-—1 1<s<m-—1
1<t<n-—1 1<t<n-—1
ged(s,m)=gecd(t,n)=1 ged(s,m)=gecd(t,n)=1
= exp | ir S LA I1 gisin (2 (27 1T
P m on 2m  2n
1<s<m-—1 1<s<m-—1
1<t<n—1 1<t<n—1
ged(s,m)=gecd(t,n)=1 ged(s,m)=ged(t,n)=1
; .. ST tm
=exp (im - p(m)ep(n)) - H (2@ sin (2 <% - %>>) (by (17))
1<s<m-—1
1<t<n—1

ged(s,m)=ged(t,n)=1

s tm ST tm
= - 2sin | — — — 20, 1
H (21 2sin <2m 2n> cos <2m 2n>) (by (12))
1<s<m-—1
1<t<n—1

ged(s,m)=gecd(t,n)=1
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Next, we compute the ratio of the resultants to obtain

H sin ST T tm
i _ _
2m = 2n
1<s<m-—1
1<t<n-—-1

res(\Ilm(z), \IJH(I)) ged(s,m)=gecd(t,n)=1
res(®,, (z), @y (x)) smotw
H o8 2m  2n

1<s<m-—1
1<t<n—1
ged(s,m)=ged(t,n)=1

H i ST T tm
m| — -—
2m  2n
1<s<m-—1
1<t<n-—1

ged(s,m)=gecd(t,n)=1

H . (m — 8)71' + tm
sm| ————— -—
2m 2n
1<s<m-—1
1<t<n-—1

ged(s,m)=ged(t,n)=1

=1 0O

The following is a corollary of Theorems 2.5 and 4.3, which expresses res(¥,,(z),
U, (z)) as a closed form in a similar manner to res(®,,(z), ®,(x)).

Corollary 4.4. Let 2 < m < n be integers. Then

pP(m)gf n/m = p* for some prime p
res(¥,, (z), ¥, (z)) = and some positive integer a;
1 otherwise.

5. Factorization of ¥, () in Z,[z]

Throughout this section, let p be a prime and let Z, denote the prime field of size p.
Furthermore, we view (, as a solution to the congruence ®,,(z) =0 (mod p). Although
(n depends on p, we suppress the index p to simplify the notation. Our goal in this
section is to provide the factorization form of W, (z) in Z,. We begin by considering the
case n = p¥ for some positive integer k.

Theorem 5.1. Let k be a positive integer. Then

Upr(z)= (2 +4) * (mod p).

p
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Proof. If p =2 and k = 1, then the identity holds trivially. Otherwise, notice that

P, (—w?) _ q)p(( _w2)pk71) B (—wQ)pk -1 1

wr®@*) we(P*) (_ wg)p’“*1 1 Pk —pk—1

(—wp" —w P
k

(—W)p -1 _ w_pk—l I

where the first equality is due to Theorem 3.1, the second equality is due to repeated

application of equation (1), and the third equality follows from ®,(x) = :’3;:11. As a

result,

w(z) = (_w)p’“_w—pk = (_w_w—l)pk = (—w—w H*@) (mo
v ( ) (_w)pk—l _w_pk'—l - (_w_w_l)pk,l —( ) ( dp),

and the theorem follows by noticing that ¢(p*) is even and w +w™ = V22 +4. 0O
We next relate the factorization of ¥,, () to ¥,, (), where n = p¥m and ged(p, m) = 1.

Theorem 5.2. Let m > 2 be an integer such that ged(p,m) = 1, and let k be a nonnegative
integer. Then

Ui () = Uy ()7 (mod p).
Proof. This theorem holds trivially if £ = 0, so we assume for the rest of the proof that
k > 0. If p =2, then note that the only fourth root of unity over Zs is 1. Hence,

2k71

Vo (z) = Uap, (xzkﬂ) =v,, (kail) =V, (2) = \Ilm(x)“o(gk) (mod 2),
where the first equality is due to repeated application of Theorem 3.4(a), and the second
equality is due to Theorem 3.4(b).

If p > 2, then

(o)
B U, (w— w—l)phl
k
,, ()P ,
= () = \Ilm(x)W(pk) (mod p),
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where the first equality is due to repeated application of Theorem 3.4(c), the second
equality is due to Theorem 3.4(d), and the second congruence is by (9). O

Theorem 5.2 allows us to focus our attention on the factorization of ¥,,(x) in Z,|x]
when ged(p, m) = 1. To move in this direction, we first present the following two lemmas.

Lemma 5.3. Let o be algebraic (and thus separable) over Z,. Then the degree of the
minimal polynomial of o over Zy, is the smallest positive integer & such that o =a.

Proof. Since the Frobenius map z — 2P is a generator of the Galois group of
Z,(a)/Z, and § is the smallest positive integer such that o = a, we know that

tapj :0<j<§—1; is the smallest subset of Z,(«) that contains « and is fixed by
the Galois group. As a result,

1)

|
—

(=)

0

J
is the minimal polynomial of o over Z,. O

Lemma 5.4. Let s, t, and m be positive integers. If ged(p,2m) = 1, then

(@) €5+ Cort =G + Corly if and only if s = £t (mod 2m); and
() G+ Com =— (Cﬁm + C{nﬁ) if and only if s =m £+t (mod 2m).

Proof. Since
G+ G — (Gom + Gam) = (G = 1) (G = o)
and
Gom + Cam + Com + o = (G 1) (Gom + Cam) »
our conclusion follows. O
Using Lemmas 5.3 and 5.4, we establish the following theorem when p is an odd prime.

Theorem 5.5. Let p > 2 and let m > 3 be an integer such that ged(p, m) = 1. Let u be the
order of p modulo 2m, i.e., u is the smallest positive integer such that p* =1 (mod 2m).
Further, let § be the degree of the minimal polynomial of (4 (C;m + CQ_rZ) over Z,, where
ged(s,m) = 1. Then

if

o )=
. 1 (mod 4), u is even, and p> = —1 (mod 2m);

p

[ wl=
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¢ p=3(mod4), u=0 (mod 4), and p
¢ p=3(mod4), u=2 (mod4), and p
o« d=uif
¢ p=1(mod4),
¢ p=1(mod4), u is odd;
. p_3(mod 4), =0 (mod 4), and p> # —1 (mod 2m); or
(mod 4),
if (

= —1 (mod 2m); or
m =+ 1 (mod 2m);

o
2
o
2

u is even, and p> #Z —1 (mod 2m);
ep=3 u =2 (mod 4), and p> #m + 1 (mod 2m);
e 0 =2uif p=23 (mod4) and u is odd.
Proof. By Lemma 5.3,
P’ (rsp® | s’ _ s —s
(G + ) = (G + o)
Note that
p° [ rsp® —sp°
G <2m+<2m ) i@( + Com )
By Lemma 5.4, we have

1 (mod 4) and sp°® = +s (mod 2m), or
3 (mod 4) and sp’ = m + s (mod 2m).

(18)

Case 1: ged(s,2m) = 1. The equations in (18) simplify to either p’ = 1 (mod 4) and
p® = +1 (mod 2m), or p® =3 (mod 4) and p® = m £ 1 (mod 2m).
Since p?* =1 (mod 4) and p** =1 (mod 2m), we have

& (Gn + 6™ ) = G (Gt o)

thus ¢ | 2u. On the other hand, p?* = (p®)? is congruent to either 1 or m?+ 1 modulo 2m.
If p? =1 (mod 2m), then u | 26; if p?* = m? + 1 (mod 2m), then note that p?’ is odd
and 2m is even, so m?+1 is odd. As a result, m is even and p** = m?+1=1 (mod 2m),
so we again have u | 2. Hence, 0 € {%,uﬂu}.

If p =1 (mod 4), then the smallest positive integer § satisfying p° = +1 (mod 2m)
is 0 = g if p? = —1 (mod 2m), which implicitly implies that u is even; otherwise,
0 =wu. If p =3 (mod4) and u is odd, then p* = 3 (mod 4) and p* = 1 (mod 2m),
so 0 # u. Also, § is not an integer, so § = 2u. Finally, we are left with the case when
p =3 (mod 4) and u is even. If u = 0 (mod 4) and p> = —1 (mod 2m) or u = 2 (mod 4)
and p? =m %1 (mod 2m), then 6§ = 5; otherwise, 6 = u.

Case 2: ged(s,2m) # 1. Since ged(s,m) = 1, we deduce that m is odd and
ged(s,2m) = 2. As a result, sp’ = m £ s (mod 2m) in (18) will never hold since sp®
and 2m are even while m + s is odd. Hence, (18) simplifies to p® = 1 (mod 4) and
p® = +1 (mod m).
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Next, we show that u is the order of p modulo m. Let u' be the order of p modulo
m. Since p* =1 (mod 2m) implies p* =1 (mod m), we have v’ | u. On the other hand,
p* =1 (mod 2) and p* =1 (mod m) yield p* =1 (mod 2m) since ged(2,m) = 1, so
we have u | u’.

With the same argument as in Case 1, we have d | 2u. On the other hand, p** = (p°)? =
1 (mod m), so u | 26. Hence, § € {%,u,2u}. If p=1 (mod 4), then the smallest positive
integer § satisfying p? = +1 (mod m) is § = g if p? = —1 (mod m), which implicitly
implies that u is even; together with p = —1 (mod 2), we have pz = —1 (mod 2m).
Otherwise, 6 = u. If p = 3 (mod 4) and u is odd, then p* = 3 (mod 4), so ¢ # u. Also,
% is not an integer, so 0 = 2u. Finally, if p = 3 (mod 4) and v is even, then the smallest
positive integer § satisfying p® = +1 (mod m) is § = % if p2 = —1 (mod m) and ¥ is
even; together with p2 = —1 (mod 2), we have p> = —1 (mod 2m). Otherwise, § = u.

To complete the proof, we note that p = 3 (mod 4), v = 2 (mod 4), and p> =
m £ 1 (mod 2m) will not occur when m is odd. This is because p? is odd, while both

m £ 1 and 2m are even. O
To consider the case p = 2, we first establish a lemma parallel to Lemma 5.4.

Lemma 5.6. Let p = 2, and let s, t, and m be positive integers. If ged(2,m) = 1, then
¢S+ CE=Ch + ¢t if and only if s = +t (mod m).

Proof. Since

G+ Cn" = (G + 6" = (Gt = 1) (G = ¢7)
our conclusion follows. O

Note that when p = 2, then ¢4 = 1. Furthermore, ({3, — 1)2 =" —-1=0,so

C2m = (m. Hence, (4 (§§m + CQ_"SL) = (5, + ¢,,°. With this in mind, we use Lemmas 5.3
and 5.6 to establish the next theorem.

Theorem 5.7. Let p = 2 and let m > 3 be an integer such that ged(2,m) = 1. Let u’
be the order of 2 modulo m, i.e., v’ is the smallest positive integer such that v =
1 (mod m). Further, let § be the degree of the minimal polynomial of (5, + (,,° over Zs,
where ged(s,m) = 1. Then

5= {% if v’ is even and 2% =1 (mod m);
u/

otherwise.

Proof. By Lemma 5.3,

529 —s:2° s —s
G+ =G+ G
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By Lemma 5.6, we have
529 = 45 (mod m),

which simplifies to 20 = £1 (mod m).
Since 2% =1 (mod m), we have

G2+ =G

thus 6 | u’. On the other hand, 22 = (2°)2 = 1 (mod m), so «’ | 26. Hence, § € {%,u'}.
Therefore, the smallest positive integer & satisfying 2° = 41 (mod m) is § = “7/ if

2% = —1 (mod m), which implicitly implies that u’ is even; otherwise, § = v’. O

Bringing together the results so far presented allows us to establish the main theorem
of this section.

Theorem 5.8. Let m be a positive integer such that ged(p,m) = 1, and let n = p*m,
where k is a nonnegative integer.

@)

o Ifm =1, then ¥, (z) factors in Zy[z] as (2> +4) 2

o Ifm =2, then ¥, (z) factors in Zp[z] as 2",

e If m >3 and p > 2, then let 0 be defined as in Theorem 5.5. In this case, ¥, (x)
factors in Z,lz] as a product of w(m)/d distinct irreducible monic polynomials of
degree §, each raised to the p(p*)-th power.

o If m >3 and p = 2, then let 0 be defined as in Theorem 5.7. In this case, VU, (x)
factors in Z,[x] as a product of (m)/(20) distinct irreducible monic polynomials of
degree §, each raised to the 2p(p*)-th power.

Proof. The cases when m = 1 and m = 2 follow directly from Theorems 5.1 and 5.2,
respectively. When m > 3 and p > 2, all roots (4 (ggm + C{n‘z) of ¥,,,(z) are distinct by
Lemma 5.4, so the result follows from Theorems 5.2 and 5.5. Finally, when m > 3 and
p = 2, two roots (¢, + ¢,,,¥ and ¢!, + ¢t of ¥,,,(z) are equal if and only if t = m — s by
Lemma 5.6, so the result follows from Theorems 5.2 and 5.7. O
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