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Homodyne measurement with a Schrodinger cat state as a local oscillator
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Homodyne measurements are a widely used quantum measurement. Using a coherent state of large amplitude
as the local oscillator, it can be shown that the quantum homodyne measurement limits to a field quadrature
measurement. In this work, we give an example of a general idea: injecting nonclassical states as a local oscillator
can lead to nonclassical measurements. Specifically, we consider injecting a superposition of coherent states,
a Schrodinger cat state, as a local oscillator. We derive the Kraus operators and the positive operator-valued

measure in this situation.
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I. INTRODUCTION

Homodyne measurement is a low noise, high sensitivity
technique to detect a quadrature of the electromagnetic field.
This is achieved by the mixing of a high-power, phase-stable
local oscillator with an input signal and detecting the resulting
low-frequency components. In practice, homodyne detection
can operate very close to the noise limits imposed by quantum
mechanics [1]. Hence, homodyne measurements have become
a vital component of optical and microwave quantum optics,
communication, and computation.

Balanced homodyne detection is performed by mixing an
arbitrary input signal state | W), with a prepared reference state
or local oscillator (LO) on a 50 : 50 beam splitter, see Fig. 1.
The two outputs of this beam splitter are then measured by
detectors that produce currents that are proportional to the
intensity of the field. The difference between the two currents
is the output signal and effectively measures a quadrature
of electromagnetic field [2]. The output is considered to
be destructively measured, that is, all energy contained within
the field is fully absorbed in the act of measurement.

In the quantum analysis of homodyne measurements all
elements of the scheme (fields, beam splitters, and detectors)
must be treated as quantum objects. The goal of the analysis
is to predict the statistics of the measurement. Many quantum
treatments of homodyne detection [3—10] calculate moments
of the detectors (or output signal) and show this limits to
moments of a quadrature variable. Another approach, taken
by Tyc and Sanders [11,12], is to calculate the Kraus operators
and positive operator valued measure (POVM) and show that
these limit to the POVM for an ideal quadrature measurement.

Little consideration to date has been given to states of
the LO that are not effectively classical (or non-Gaussian).
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FIG. 1. Balanced homodyne setup. An arbitrary signal state
|signal) is mixed on a 50 : 50 beam splitter with a local oscillator.
The two outputs are measured by detectors (D, D,) that produce
currents /; proportional to the intensity of the field. The homodyne
measurement result is proportional to the difference of these currents,
i.e., I, — I} and the sum current /, + /; does not contain useful infor-
mation. In standard quantum homodyne detection the local oscillator
is a large-amplitude coherent state, i.e., [LO) = |8). The phase of the
coherent state, 6 in 8 = |B|e”, determines the measured quadrature.
In this work we consider local oscillators prepared in superpositions
of coherent states, i.e., [LO) o |8) £ |—8).

However there has been related work that has considered vari-
ations of standard homodyne measurement. In Refs. [13,14]
Sanders et al. considered homodyne detection using a
squeezed LO. Recent work by Thekkadath er al. [15] shows
that using the setup in Fig. 1 one can project onto an
even-parity state by using a “reversed” quantum interfer-
ence argument, a control state and postselecting on an equal
number of quanta at the output detectors. The control state
determines the even-parity state detected and does not neces-
sarily play a role like a local oscillator. Another recent work
by Thekkadath et al. [16] shows a calculation of the properties
of homodyne detection with local oscillators that are coherent
states with strengths down to zero, i.e., a weak-field local
oscillator [17]. This shows that one can smoothly transition
from photon counting style detections to field quadrature
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variables. Related issues have been examined by Olivares
et al. in Refs. [18,19]. However, in all these cases, the local
oscillator here is always a coherent state which is generally
considered to have classical properties.

In this work we consider using superpositions of coherent
states as local oscillators and derive the corresponding Kraus
operators and POVM elements in the strong-LO limit. In
Sec. II we give an alternative derivation of the results of Tyc
and Sanders [11,12]. We show through application of the al-
gebra of creation and annihilation operators for bosonic fields
that a coherent-state LO |8), where 8 = |8|e®, results in the
measurement of an arbitrary quadrature projector |xy){(xy| in
the limit where |8| — oo. In Sec. III we use this alternative
derivation to consider a LO that is proportional to |8) & |—f).
For this local oscillator there are two interesting cases: one
where we look at both the sum and difference photocurrent
and one where we only look at the difference photocur-
rent. In the first case the POVM is o |xg) (xg| £ |—xg) {xg| £
|xg)(—xg| + |—xg)(—xg|. Here the quadrature is set by 6 of
the LO and the quadrature outcome is readout via the differ-
ence current. The parity &+ is determined by the sum current.
In the second case, the POVM is the reflection-symmetric
measurement of an arbitrary quadrature, i.e., o|xg){xg| +
| — x9)(—xg|. In Sec. IV we give numerical examples of the
statistics of these measurements in the moderate local oscil-
lator limit. Then in Sec. V we show how the nonclassical
measurements can be used to prepare a nonclassical state of a
remote system using only an Einstein-Podolsky-Rosen (EPR)
state. Finally we conclude in Sec. VI.

II. HOMODYNE MEASUREMENT WITH COHERENT
STATE LOCAL OSCILLATOR

In this section, we rederive the Kraus operators and POVM
elements for a standard homodyne measurement. Our method
is inspired by the work of Tyc and Sanders [11,12] and later
Puentes et al. [20]. However, we use different techniques and
variables that are better suited for the later consideration of
nonclassical local oscillator states.

A. Exact Kraus operator

We now construct the Kraus operator for Fig. 1 by working
backwards from the detectors towards the states.

A departure from the usual treatment of homodyne mea-
sure in the method of Tyc and Sanders is to model the
measurement of intensity by ideal photon number resolving
detection at detectors 1 and 2,' whereas a balanced homodyne
measurement typically involves the light impinging on detec-
tors that respond to intensity. Both treatments consider the
photocurrents I produced by the detectors to be proportional
to the number operator, e.g., [ « (aTa) and the measurement
result is the difference of the photocurrents, i.e., I} — I,
(a'a) — (b'D).

Typically, the number-resolving measurements are mod-
eled by Kraus operators that are projectors onto a Fock state

'This idea has seen further investigation; see, e.g.,
Refs. [15,18,20,21]. Moreover intensity measurements can be
seen as a coarse-graining of number resolved measurements.

basis, e.g., I1,, = |n)(n|, which might represent a quantum
nondemolition detection of photon number. In virtually all
cases, optical detectors completely absorb the field and hence
the field state after the measurement is mapped to vacuum for
any measurement outcomes. We could introduce operators to
denote this case P, = |0)(n|. However, we are never going
to be interested in this conditional state and hence consider
this detection to be a “partial projection” P, = (n|, which
effectively traces out the postmeasurement state.

The object that precedes the detectors is a 50 : 50 beam
splitter and we denote the unitary representing this object as
Ugs. The Heisenberg evolution of the annihilation operators
due to Ugs is

1

ﬁ(ain +bin)s (13)

. i
Aout = UBSainUBS =

bou = UpsbinUps = — bin), (1b)

1
ﬁ (@in
where aj, is an annihilator operator for the signal mode and
by, is an annihilation operator for the LO mode.
The next step is to include the input states. By introducing
the input states we may define a Kraus operator Mf} that acts
on the input Hilbert space of mode a:

M) |signal) = (P, ® P,,)Ugs([signal) ® |LO)),  (2)

the superscript g is in anticipation of taking a “large local
oscillator limit” using a parameter 8. By itself the Kraus
operator is

MP) = (n| (m| Ugs |LO) = P, ® P,Ups(I ® [LO)). ~ (3)

This equation represents the Kraus operator for measuring the
detection event for n and m photons. The Fock basis dual
vectors within the Kraus operator M%! of Eq. (3) can be
written in terms of annihilation operators acting on a vacuum
tensor product space to give

(@ou)" (bou)™
Vnl o m!

It is not yet apparent that this is an operator on the input
Hilbert space so we perform further manipulations to eluci-
date this fact.

We transform ayy, and by, to a linear combination of the
input operators by inserting the identity Ugs U];fs many times
between the powers of the annihilation operators and substi-
tuting Eq. (1); we also use the fact that (0[(0| Ugs = (0[(0].
Doing so gives a Kraus operator

M'P) = (0] (0|

n,m

Ugs ILO) . €]

[B] 1 T n T om
Mn,m = <0| <0| —UBSUBSa UBSUBSb UBS |LO>

out out
v nlm!

1 ain+bin " ain_bin "
LO).
\/n!m!( V2 )( V2 >| >
(5)

At this point the quantum state of the local oscillator |LO) is
arbitrary and could be replaced with any quantum state. If we
now use the fact that, in homodyne measurement, the LO is a
coherent state, i.e., |LO) = |8), on mode b;,. Then we arrive
at the Kraus operator, with no approximations [see Eq. (2) in

= (01 (0]
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Ref. [20] ]:
(@ + B)"(am — B)" e‘|ﬂ\2/2
2m+m)/2. [\ '

This expression is now an operator acting only on the input
signal mode aj,, and is valid for all values of 8, including
small values. From now on we drop the subscript “in” on the
operator to reduce notational clutter, i.e., aj, — a.

The positive operator valued measure (POVM) corre-
sponding to Eq. (6) is

M) = (0] (6)

Ef) = (M) ML), @

that this is a valid POVM is evident because E#} > 0 and
X Bl =1,

B. Kraus operator approximations

In the Kraus operators and POVM above have not yet seen
the emergence of a quadrature-like measurement result. To
proceed towards our goal of deriving a quadrature measure-
ment from the Kraus operator (6), we need to make some
assumptions and approximations. Specifically, we repeatedly
take the large-amplitude local oscillator (LO), i.e., || — oo.
Naively one would expect that implies the LO intensity is
much larger than the signal, i.e., |8|> > (V|7 |¥), however,
the approximate condition [11, Sec. 4.4]is |B]> > (V| A% | ).

At this point we assume n > m. This assumption is not
actually a significant restriction due to the symmetry between
n and m. With this assumption Eq. (6) can be factored as

AN\ N—m A2\ —|BI?/4 n
M — o1 ﬁ) <1_“_> e_<ﬁ>
=1+ 7)) T \Vz

e PP g\
X ——| — ®)
Vm! \V2
because n — m is positive.

Following Tyc and Sanders’ logic (see Appendix A) we
change variables representing the measurement output to the
difference of the counts

6 n—m n—m ©)
x=e "% = — = ,
V2|Ble® V28
which is essentially an estimator for the quadrature compo-
nent (hence the use of the variable x). Using this new variable
we can write as’

a\"" g V23|81 e
1+ - =(1+ — V¥ TH (10
(+5) =(+) e

In Appendix A we show that the distribution of outcomes
m and n will be peaked around |B|?/2 due to the Poisson
statistics of the LO overwhelming the signal mode. Thus we
replace the random variable m with its mean |8|%/2. Using
this approximation on the second bracketed operator term in

2Regarding the change of variables; alternatively one can take ' =
V/2xp, then substitute into the middle equation to get the standard
exponential limit. If x = 0 it also works.

Eq. (8) we arrive at

1812
—2if 52 —2i0 5272 1
e “a e Ya 1 i
|:1——:| %I:l——i| — e_ZQM“. (11
|BI? 1812 1Bl—00

The leading-order correction to the above approximation is
O(1/|B]?), as shown in Appendix B, which tends to zero in
the large-LO limit.

So far we have assumed that n > m. In Appendix C 1
we show that, when m > n, a cancellation of signs occurs
in the expressions equivalent to Egs. (10) and (11), which
results in the same asymptotic limit. So finally we can approx-
imate the Kraus operator in the strong-oscillator limit for all
cases as

MB ~

—if=n _—2i0 52
R (Ol e e

e 1BIP/4 ( B )"e—|ﬂ|2/4 (_5>m
X — — ) . (12)
Vil \V2 Vm! \V2
This Kraus operator is the basic result we use for our remain-
ing analysis.

The exponentials of & acting on vacuum in the Kraus oper-
ator M,[,ﬁ,ll in the limit of large |B| are a good approximation
of a quadrature eigenstate [22]. To see this, we can write,
with the choice of units used here, eigenstates of an arbitrary
quadrature Q(¢) = (e "%a + e"ﬁaT)/ﬁ as

2
ex/2

Xp) = ———¢€
| <"> Tl/4

— 00

ﬁxxa*e—xzaﬂ/Z |O> , (13)

with x = e and |0) is the vacuum state. [In Appendix D
we show that |x,) is an eigenstate of Q(¢) using techniques
adapted from Ref. [22].] This means the approximation of the
Kraus operator can be written as

—1BI/4 n
MPL ~ (g e (et — <ﬂ>

gl o0 !l \V2

o w)m
2, 14
Tt (ﬁ (1

with some slight mixing of notation because x is used to
represent a quantity proportional to the difference of n and
m, as defined above. The final two terms are the square root
of a Poisson distribution. They can be approximated in the
strong local oscillator limit, || — oo using the continuous
approximation for the Poisson distribution, that is

1

n 2
e 1B1/272 |ﬁ|2 2 ~ e~ =1B1/2/2IBP)
n! 2 (B4

Notice we have introduced the square root of the probability
measure of n. This is because the continuous approximation
smooths the differences between the values of n which were
implicitly 1 in the discrete distribution. This argument on the
differential dn applies to the probability, but this expression
involves the probability amplitude which is why the square
root of this measure is required [23]. Using this approximation
on the final two terms in Eq. (14) gives two independent
normal distributions for n and m with mean and variance
| ,3|2/2. However, we wish to resolve the results into scaled

Vdn.  (15)
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sum and differences of n and m. Specifically the exponent of
the combined distribution for n and m is

557 [("‘ @Y " (’" - @ﬂ

1
= gl tm= 1B + (n—m)*].  (16)

This equation shows that the sum of n and m is normal
distribution with mean |S8|?> and variance |8|> and the dif-
ference of n and m is a normal distribution with mean zero
and variance |B)?. The difference of n and m can be scaled
to be written in terms of x and the distribution in x will be
normal with mean zero and variance 1/2. The distribution in
the scaled x cancels the exponential factor of /2 in Eq. (14)
leaving

MBI dndm W 0 (x| (= 1)

n,m Bl—oc

21/4 e—(n+l71—|ﬂ\2)2/(4|,3\2)

X B @mppyA v andm:

a7)

where this equation has included the probability measure due
to the continuum limit, as explained above. Moreover we
have pulled out one of the global phase factors e?”+™ in
anticipation of similar factors in the cat state local oscillator
examined in Sec. III.

The change of variables can be simplified by introducing
w defined as

n+m

G,

which will be distributed normally with mean |8|/+/2 and
variance 1/2. To complete the change of variables, the prob-
ability measure must be changed, so we need the determinant
of the Jacobian

(18)

d(n, m) 1BI?

With these changes of variables the final approximation for the
Kraus operator which can be written as (including changing
the m and n subscripts to x and w because there are no more
uses of m and n)

M)[({ﬂu]) /dwdx ~ eiﬁlﬁlw@ (x0| eiﬂﬁm‘(w—x)

|Bl—00

dxdw = ‘

1 e—w-IBI/V2R/2

From the original definitions of V2|B|x and /2| B|w in terms
of the discrete variables, these values are actually integers.
This means that the first phase factor is either 1 or —1
(though these phase factors disappear in the next step of our
derivation). In Sec. III this phase has an important role to
play.

The Kraus operator is important for determining the post-
measurement state, however the measurement statistics are

entirely determined by the POVM. The POVM for a scaled
difference measurement of x will then be

dxdwE)Efju]) = dxdw (MJE’SJ,)TM)[C’SIL
o~ w—1B1/7/2)?

— |xa) (xal .

which agrees with Eq. (19) in Ref. [11] when differing nota-
tion is taken into account.

In the standard approach to homodyne detection, the w
variable, the exact sum of the photons counted, is unobserved.
We integrate over it and take the final large-oscillator limit,
ie.,

(21a)

= dxdw (21b)

oo
dxE, ~ dx / dwEP (22)
|Bl—o00 0 ’
where x is the measurement outcome. Thus POVM with out-
come x in homodyne detection of an arbitrary quadrature 6

1S

o p—(w—IBI?
dxE, =~ dx/ dw————|xg) (xg]
0

JT

1
o~ 5%&(%) + 1}dx bl (23a)

= dx|xg)(xel, (23b)

which is a well-defined POVM because all elements are posi-
tive (projectors) and

/dex = /dx Ixg) (xg| = T. 4)

III. HOMODYNE MEASUREMENT WITH A CAT STATE
LOCAL OSCILLATOR

In this section we derive the Kraus operators and POVM
for the case of a local oscillator state that is a superposition
of two coherent states, i.e., a cat state. Broadly, the derivation
here follows the procedures developed Sec. 11, i.e., switching
to sum and difference variables and taking a large local oscil-
lator limit.

The measurement we describe here is inspired by the
homodyne measurement paradigm but deviates from it in a
number of ways that we now detail so the reader can follow
along with this knowledge. First, a large-LO limit might ac-
tually be undesirable for a number of reasons. It turns out
that, in the large-LO limit, quantum coherence is removed
from the measurement outcomes and it is practically hard to
make a large cat state and do number-resolved detection for
many photons. Second, integrating over the sum variable also
washes out quantum coherence in the measurement described
below. Third, number-resolved detection seems to play a vital
role in the measurement below and in particular the parity of
the sum variable w. In spite of these issues, we proceed so that
we may arrive at an analytical expression for the measurement
operators.

We consider a LO that is a superposition of coherent states
of the form

He(B) 1B £ 1-B)), (25)
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where A4 (B) = [2(1 & e~ 2#")]1/2, Note that, as |B| — oo,
the normalization limits to 4% (8) — /2. The plus superpo-
sition consists of only even Fock basis terms because the odd
amplitudes follow the sign of the 8 amplitude and cancel to
zero. A similar argument follow for the minus superposition
but only odd terms survive. Therefore we say that the plus su-
perposition is an even-parity state and the minus superposition
an odd-parity state.

The exact Kraus operator, substituting Eq. (25) into Eq. (5)
instead of |B8), for the oscillator in a superposition of coherent
states, is

o 1B1/2
MP= = (0
n,m 2(n+m)/2 WL/V;‘: B)

x[(@+p)'@—p)y"+@-pya+prl (26

where the subscript £ on [8]+ denotes the plus or minus su-
perposition. We assume n > m, as we did in deriving Eq. (8),
and get

[B]
M, nl,gmi

= (0]

1812 a?\"
1_ J—
2(n+m)/2\/m</@(,3)( ’32)

4 n—m a n—m
ng_ p\m 1 _ 4+ (— nopm 1 — — .
X[ﬁ(ﬂ)<+ﬁ> (ﬂ)ﬂ( ﬂ) }
(27

As shown in Appendix C2, the expression for m > n is the
same as this expression but with the sign of the superposi-
tion possibly changed depending on the parity of m — n. The
upshot is that Eq. (27) covers the case of m > n if the infor-
mation to which superposition phase applies is incorporated.

It turns out in the large-LO limit that m is distributed as a
Poisson distribution with parameter A = |8|?/2 as before; see
Appendix E for details. Thus the reasoning around Eq. (11)
also applies to Eq. (27). We also perform the change of vari-
ables given in Eq. (9) and take the limits given in Egs. (10)
and (11) and make the replacement from the large-|§| limit,
ie., S(B) > V2.

Using these approximations we have

MPE A

~

(O (e "S- i

n,m
[Bl—00

1

V2

e IBP/A 1 g N\ e IBR/A £ g\ ™
_(_) _(_) e
Vot \V2/)  Jml \V2
At this point we recognize a quadrature eigenstate and a “z”

rotated quadrature eigenstate, as per Eq. (13), and use that to
further simplify the operator to

Zl: (_ l)neiﬁe—lﬁxaeie—ZiG&Z/z]

M A 7.[1/48562/264/3‘2/4 <ﬂ>ne|ﬂ2/4 <ﬂ>m
Mgl 00 vl \V2/) m!' \V2
16 (n+m)
X NG [(xo] (=1)" £ (=xp] (=1)"].  (29)

Next we approximate the square root of Poisson distributions
by normal distributions. The mean and variance of the sum

and differences scale in the same way as the previous section,
giving

21/4 o= (ntm—|BY/41B)

MYPledndm =~ dnd
n,m nam 1Bl— 00 |‘3|1/2 (2ﬂ|'3|2)1/4 hdam
ei@(rH—m)
X 7 [(xa| (=1)" £ (=x0] (=1)"],

(30)

which should be compared with Eq. (17). Notice there is an
overall phase of €™ as there was in Eq. (17). However
now we have a relative phase between quadrature eigenstates
which is evident in the terms (—1)™ and (—1)".

Let us pause to consider the implications of these phase
factors. For the “4” cat LO, the Kraus operator is M,[,’,3 ,}1* X
(xg] (—1)™ &£ (—xp| (—1)" with m and n taking integer values
and the phase factors reflect whether m and n are odd or
even. Thus the four possible combinations of the m and n and
dependant phases result in two distinct Kraus operators (up to
a global phase), namely,

i o {<x9| + (3],

n,m
(xo| — (—xpl,

n+ m even

31
n+ m odd. G

These measurement operators will project onto states of def-
inite parity. To see this fact we specialize to the position
quadrature (6 = 0) and recall the parity operator can be rep-
resented as

P=(—1)"= / dx’' |—x') (x| . (32)
One can show that
Plxs) = (£1) Ixs), (33)
where these eigenstates of the parity operator are
lx+) o lx) £+ [—x), (34)

and the proportionality is due to the fact that |x) is non-
normalizable. A similar argument can be made for a LO using
the “—” cat state but with the signs of the plus and minus on
the right-hand side of Eq. (31) exchanged. That is to say, in
this situation, the measurement is a parity measurement.

Returning to the derivation, we now complete the change of
variables using the previously defined variable w, see Eq. (18).
From Eq. (30) we can see that w is still distributed normally
with mean |B8|/ /2 and variance 1 /2. This is because both n
and m are approximately Poisson distributed with parameter
A = |B|?/2 as detailed in Appendix E. This gives the Kraus
operator

ML=/ ~
v Vdwdx Padiany

+ (—xp] einﬁlﬁl(x+w)/2]

i/2|Blwo
é w [(x0|e[n«/§|ﬂ\(x7w)/2

e~ W=1Bl/VD /2

X ————/dwdx. 35)

1/
For the detection process, we care primarily about the POVM,
which is

dwd)cE)Ef"u])i A

Bl—o0

dwdx(MP))" MP)-. (36)
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Substituting our expressions in we find
e~ w=1BI/V2 |

TE[W))(XM

V2ir|Blw

dwabcE)E’ﬂu]Ji ~ dwdx

|Bl—00
=+ [xp)(—xgle

£ | —xg) gl e V2T ) (—xg .
37)

At this point we can still observe a coherence between the +
and — outcomes of the measurement, see the terms with the
=+ coefficients above. So if knowledge of both the sum and
difference variables is retained, Eq. (37) is the final result.

However, if we integrate Eq. (37) over w, presuming that it
is unobserved like in homodyne detection, it gives an expres-
sion of the form

dx / dwEP = dx[G(B)(1xo) (s + |~} (—x5])

x £ 1(B)(1x0) (—=x9] + |=x0) (x6 )],  (38)

where
> +24/2im ||
I(ﬁ) — / dwe 1T w
0 N

_ Lo omior [ | g LEZDIBNT
2 V2

o w-lBINV2? 18]
G(B) =/0 dwT = El:l +erf(ﬁ>i|. 39

Notice that 7(8) has an overall envelope of exp(—2m2|8|%)
which very clearly limits to zero as || — oo. Thus in the
large-LO limit these expressions limit to

Iﬁllim I(B)=0 and Iﬂllim GB)=1. (40)

e~ W=1B1/v2)

With this the limiting case in the probability is

dx
dxEy = dx / dwEL) = = (o) (xp] + |=36) (01,
(41)

which satisfies the normalization properties of a standard
probability density,

/ dxE, = 1. 42)

This also implies that Eq. (37) resolved the identity as
dwdxE, , = 1.

To summarize so far, using an odd or even cat state as a lo-
cal oscillator we derived the Kraus operators and POVM for a
homodyne-like measurement. In the limit of large amplitudes
in the cat states, the POVM for each measurement outcome
is a sum of a quadrature eigenstate, e.g., |xg) and its nega-
tive |—xp). This operator projects onto this two-dimensional
subspace and hence cannot distinguish between states which
equally project onto that subspace. For example, the states
|x0), |—xp) and |cg) = %5(|x9) + |—xp)) will all give the same
probability density. In other words, this measurement is sym-
metric about reflections through the quadrature origin. For this
reason we call it a reflection symmetric measurement.

Note that after integrating out over the sum variable w
and taking the large oscillator limit means that the coherence
of the cat state in the local oscillator is irrelevant. So one
can see such a measurement as a homodyne measurement
with randomly chosen classical phase of either O or 7, which
corresponds to a mixed state LO oc|B8) (8| + |—B){(—B].

If we instead consider the POVM before the integration
over w was performed, see Eq. (37), the coherence terms
contain phases of the form +/2i7 | 8|w. But from the definition
of the variable w, ~/2|8|w is an integer. Therefore this phase
factor can be treated as =1 but only with the knowledge of w
whereas without this knowledge and the continuum approxi-
mation leads to this phase factor tending quickly to zero. The
ability to use (or ignore) the information contained in the sum
variable seems to be a new feature with the cat state local
oscillator and provides a means to engineer a measurement.

There is hence a large number of interconnected concerns
when taking these approximations together that may be frag-
ile. In the next section we give numerical computations which
try to address these concerns with computations involving
finite-sized local oscillator states.

IV. EXAMPLE INPUT STATES

The above analysis exposes some general properties of ho-
modyne detection with these types of local oscillators, while
the case studies below give rise to some more specific infor-
mation about the details of the measurement without reliance
on numerous approximations. To do this we return to Eq. (30)
to calculate the Kraus operators, but we are guided broadly by
the properties uncovered in Sec. I11.

A. Vacuum

For the case of a vacuum input state as the signal, the exact
Kraus operator from Eq. (26) acting on a vacuum state gives

e8P/

M[ﬁ]i 0) = n+m )"+ (=1)" ,
10 = e Tt E G
(43)

where (1 +a/8)]|0) = |0) and (1 —a®/8%)|0) = |0) have
been used to form this expression. The probability of detecting
n and m photons is subsequently

—IBI*/2 2\ " ,—|BI*/2 2\ M
Pr(n, m|B. £.10)) = = <ﬂ> ‘ (ﬂ)

n! 2 m! 2
(1 + 17

— . 44
X[ AP } o

This equation shows explicitly the underlying Poisson dis-
tribution envelops with equal Poisson variables in both
detectors. The signal will be modulated by the alternating
interference in the final term in the square brackets. This
term comes entirely from the superposition state of the local
oscillator.

Now one can change variables into the x and w sum and
difference variables for this particular case. However, at this
stage, as the continuum approximation has not been made, the
expression for this is not much clearer. However, it should be
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FIG. 2. Click distributions for detecting vacuum (the signal) with a cat local oscillator where § = 5 and the expected number of photons in
the b mode is (b'h) = |B|> = 25. (Row 1) Original click distributions n and m (dimensionless), marginal distributions are depicted above and
right for both the “+” and “— cat LO. The distribution and marginals are centered around |8|?/2 = 12.5. (Row 2) Sum w = (n + m)/ (ﬁﬂ)
and difference x = (n — m)/(+/2p) variables (dimensionless) and the corresponding marginal distributions for the “+” and “—” cat LO. As
vacuum is an even-parity state the parity of the LO is evident in the marginal of the difference variable. For example the “+” cat has support

ITERL)

on x = 0 (see the marginal x distribution) while the cat does not.

noted that the final term in the square brackets only depends
on the difference variable x.

In Fig. 2 we plot the probabilities generated by both
the “+” cat (i.e., |LO)  |B) 4+ |—B)) and the “—” cat (i.e.,
ILO)  |B) — |—B)) as a LO when measuring the vacuum.
The in the original photodetection variables n, m (top row) the
clicks of each variable individually are approximately Poisson
distributed with half to LO intensity |8|?/2 due to the 50 : 50
beam splitter. The effects from the superposition of the local
oscillator are present in the full distribution of n and m where
complete interference gives zero probability from the final
term in Eq. (44). This gives rise to the “checker-board” style
pattern in the full distribution and the exact terms where the
pattern is nonzero depending on the phase of the LO cat-state
superposition.

In the sum and difference variables x, w (bottom row)
the two marginal distributions exhibit the interference more
directly as they essentially look “diagonally” across the n, m
distribution. The superposition in the local oscillator is evi-
dent in these distributions having nonzero probabilities only
on odd or even number terms depending on the sign of the
local oscillator superposition. Note that when changing to
x, w variables there exist particular combinations of variables
that are permitted for individual x and w but not necessarily
when combined together. For example, if x =0 then m = n
and hence m + n must be an even number and w is an even
multiple of 1/(v/28). Butifx = 1/(v/28) (e.g.,ifn=1,m =
Oorn=3,m=2,etc.),then n =m+ 1 and n — m is odd.
Hence x = 1/(v/28) with w = 1/(+/28) is not permitted. As,
depending on the superposition sign in the LO, particular
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FIG. 3. Click distributions for detecting a coherent-state signal with @ = 0.8 (column 1), @ = 1.6 (column 2), and o = —1.6 (column

3) with a cat local oscillators where 8 =5 and (n,) = 25. (row 1) Original click distributions and marginal distributions for n and m
(dimensionless). (row 2) Sum w = (n + m)/ (+v/2B) and difference x = (n — m) / (+v/28) variables (dimensionless) and corresponding marginal
distributions. In contrast to the previous plot the difference variables now contain little probability around x = 0. Column 2 and 3 are identical

because this measurement cannot distinguish between |o) and |—«).

parities of photon number are suppressed, this leads to stripes
in the x and w marginal distributions. These stripes are shifted
by 1/(+/28) between the 4+ and — superpositions in the LO.
This shifting occurs as the vacuum state has a definite even
parity. Therefore the parity of the sum and difference variables
needs to preserve the overall parity relationship between the
combined signal and LO.

After the information of the sum variable w is integrated
out, the stripes still remain. This is because the parity of
the sum and difference variables is determined by the parity
of the input states only. This is unlike the measurement in
the raw counts m and n where the parity is encoded be-
tween the measurement outcomes as well as the parity of
the input state. Therefore the transformation to the sum and
difference variables gives measurement outcomes that relate
the measurements of parity even after integrating out one
of the variables. However, the parity information is encoded
in outputs that are separated by 1/+/2|8| which is equiva-
lent to single integer changes in the n or m variables. Any
process that influences these numbers by a single integer,
such as photon loss, would drastically reduce the visibility of
this property.

This property of similar marginal distributions shifted by
1/(~/2B) is commonly shared with different possible input
signals. For this reason, for other input states, we only plot
the 4 superposition case of the local oscillator. With the input
state being the vacuum, the marginal distributions between n
and m or between x and w look very similar. This situation

will change as we look a measuring signals from coherent
light.

B. Coherent state

For the case of a coherent state input to the detector
with the superposition local oscillator the amplitude generated
from the Kraus operator is

o |BP/2 =10 /2

[Bl+ _
Mn 100 = et Tt A B)
X [(e + B)' (e — )" £ (a — B)'(a + B)"].

45
The probability of detecting » and m photons is subsequently
e~ 1B =lal? a+ B\ [a—B\"
nlm! N (B)? < V2 > ( V2 )
=(F) (F) ]
V2 V2

These probabilities are shown in Fig. 3 for input signal
amplitudes of ¢ = 0.8, 1.6, and —1.6 and coherent-state su-
perpositions for the local oscillators with 8 =5, just like in
Fig. 2.

One of the striking things to notice in Fig. 3 are the spikes

in the sum and difference variables of the o = 0.8 signal,
which might be an artifact of using photon number resolving

P (la)) =

(46)
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FIG. 4. Click distributions for detecting a Fock state |N) with N = 1 (column 1), N = 2 (column 2), and N = 3 (column 3) with a cat
local oscillators where 8 = 5. (row 1) Original click distributions and marginal distributions for n and m (dimensionless). (row 2) Sum
w=n+m)/ (ﬁﬁ) and difference x = (n — m)/ (ﬁﬂ) variables (dimensionless) and corresponding marginal distributions.

detectors to approximate an intensity measurement. However,
similar spikes are present in the work of Sanders er al. [13]
which considered a coherent-state LO interfering with a cat
state signal and in the marginal distribution of a cat state
Wigner function. For larger intensity signals, e.g., « = 1.6,
we see that the marginal distributions have smoothed out
significantly. Importantly, in columns 2 and 3 we can see that
our measurement does not allow one to distinguish between
|a) and |—c«). In the large-LO limit the (marginal) distribution
of the x variable seems limit to

Pr(xla) = Tr[E, o) (@]] = 3(I(alx)|* + [(a|—x0) %), (47)

where (a|xp) is the inner product between a coherent state
and a rotated quadrature eigenstate. This expression also holds
when o = 0 as in the previous section. Of course this is not the
case for the first column where the interference terms are still
visible.

In Appendix F we study the effect of small LOs, relative
to the signal strength, on a coherent-state signal. We find
numerically that LO’s slightly larger than the signal might be
sufficient to enable our proposed measurement.

C. Fock state

For the case of a Fock state input state, i.e., n [N) = N |N),
as the signal, Eq. (26) acting on such a state gives

~1B1/2
Bl |N) — ¢ . Aea _ aym
M, IN) = 2Tt N (B) Olla+p)@—p)

+(@—p)y@+py1InN). (48)

In Appendix G we show how to simplify this expression.
The resulting closed form helps mainly with numerical com-
putation but offers little insight into the general functional
properties. In the large-LO limit the distribution of the x
variable should limit to

Pr(x|N) = Tr[E; IN)(N|] = 5(|(N1x6)]* + [{N[=x5) ),
(49)
where (N|xy) is the inner product between a Fock state and
a rotated quadrature eigenstate. This in itself will be propor-
tional to the square of a Hermite polynomial Hy (x) as

1
WHN(X)(X|O>-
In Fig. 4 the appearance of the square of a Hermite polynomial
is evident in the difference variable marginal distributions.
Also evident is the effect of parity on the distribution of
the difference variable x. Columns 1 and 3 have odd-parity
input states (|1),|3)), while column 2 has and even input
parity (]2)). Like in the vacuum case the even-parity states
have support on the difference variable when x = 0 and the
odd-parity states do not.

(x|N) = (50)

V. APPLICATION OF CATODYNE TO REMOTE STATE
PREPARATION

We now briefly describe an application of our measurement
to remotely preparing superposition of position eigenstates or
a “Schrodinger cat state in position.” The idea is to have two
parties share an EPR state (which is a Gaussian state) and
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then perform our non-Gaussian “catodyne” measurement, i.e.,
Eq. (35), on half of the EPR pair. Then, conditional on the
measurement result g, w, the state

leg.w) o 1g) + (=1)7 ") |—gq) (51)

is prepared remotely. In Eq. (51), |g) is an eigenstate of the
position operator x, i.e., x|g) = ¢ |q), and f(w) is a linear
function of the sum variable w. This procedure is summarized
in the circuit below.

cat
q,w

[EPR) (52)

lCqw) remote position cat

We start by considering a simplistic case using an ideal
EPR state (an infinitely squeezed, two-mode squeezed vac-
uum state) that illustrates the basic features of the protocol
and then consider, a more realistic, finitely squeezed state.
The states resulting from the finite squeezing version are
promising bosonic error correcting codes [24,25]. We also
note that this scheme is useful if the remote party only has
access to linear detectors and linear passive elements such as
beam splitters.

A. Infinite squeezing

The initial state between the remote parties is an ideal EPR
state in the position representation

|EPR) = /dx Ix) ® Ix) (53)

which is un-normalizable and unphysical; but a limit of states
that are routinely made in the optical domain using two mode
squeezing.

We choose to measure one of the systems and allow the
other to freely propagate. To compute the state of both systems
after the measurement we use the usual measurement update
rule

(M) ® 1) [EPR)

|<Dq,w) = (54)

(EPR|E})|EPR)

Since the denominator simply normalizes the postmeasure-
ment state it is instructive to consider the numerator of
Eq. (54) alone,

(M ® 1) [EPR) o ({g] + (—g)) ® 1 / dx |x) ® |x), (55)
where we have replaced the w dependence of M, ,, with a par-
ity bit & to simplify our presentation. Moreover it is clear that
the measured mode is absorbed by the detector. Performing
the integrals we arrive at

|Pg0) xlg) + (=1 |—gq), (56)

which is the Schrodinger cat state in position on the remote
system. Of course, position eigenstates are not normalizable
but are a limit of single-mode squeezed states that are nor-
malizable. In any case, we rectify this simplistic treatment

in the next section with normalizable states that limit to this
result.

B. Finite squeezing

In the position representation, a general pure two-mode
state can be expressed as

) = / dx, / dxpp o) o) @ ). (57)

where ¥ (x,, xp) is the two mode position wave function. A
two-mode (finitely) squeezed vacuum state is given by the
position wave function [see Eq. (81) in Ref. [26] ]

2 iy .
V(s Xp)Tmisy = | —e ¢ Gt 2pme a2 (sg)
T

where r is the squeezing factor. In the limit » — oo, the wave
function limits to ¥, (x,, xp) & §(x, — xp) which gives rise to
the EPR state in Eq. (53).

As before we consider an ideal “catodyne” measurement,
i.e., the Kraus operators in Eq. (35), on mode “a” which leaves
a conditional state on mode “b.” With some simplification,
detailed in Appendix H, the normalized postmeasurement
position wave function after obtaining measurement outcome
{g, £} 1is

cosh 2r ) 1/4 eqz sinh 2r tanh 2r

21 A/ @24 sinh 2rtanh 2r 4 1

— cosh 2r(x+q tanh 2r)? — cosh 2r(x—q tanh 2r)?
(x+q Y 4+ (x—q )],

¥ (xlq, &) =<

X [e
(59)

where ¢ is the position outcome, =+ is the plus or minus parity
outcome, and r is the squeezing parameter from Eq. (58).
This squeezed cat state limits to Eq. (56) as r — oo because
both terms inside the square brackets are Gaussian. To get an
intuitive idea of interplay between the amount of squeezing r
and g measurement outcome we plot i (x|g, +) in Fig. 5 for
two measurement outcomes ¢ = 1 and g = 2 for three levels
of squeezing.

The probability of obtaining the outcome ¢ is normally
distributed in g around g = 0

Zsech 2
dqPr(glr) = dg/ %ﬁfsmh o, (60)

Because the variance is proportional to sech 2r = 1/ cosh 2r
it is clear that larger squeezing will stop penalizing large g
values. In Fig. 6 we plot Pr(g|r) for several values of r.

The main take-home message from Figs. 5 and 6 is that
more than 3 dB of squeezing is likely needed for a robust
demonstration a remote state preparation protocol using our
measurement. This should not be a problem because modern
experiments have demonstrated squeezing in the 15 dB range
[27].

Finally, we should point out that our analysis did not take
into account a finite-strength LO or imperfections in number-
resolved detection, which is a good topic for future work
to study. Nevertheless, preliminary results, see Appendix F,
indicate that LOs that are moderately larger than signal may
be adequate for realizing our scheme. The resulting POVM
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FIG. 5. Position wave function ¥ (x|q, +), i.e., Eq. (59), of re-
mote state given measurement results ¢ = 1 or ¢ = 2. (top) At 3 dB
of squeezing, i.e., r & 0.345, the remote state is barely a cat state in
position for ¢ = 2 measurement result. (middle) 6 dB of squeezing
or r =~ 0.691. Now we can see the emergence of a superposition for
both outcomes. (bottom) 12 dB of squeezing or r ~ 1.382. Now we
have clear cat states for both outcomes and the Gaussian distributions
are centered on ¢ = 1 or 2. Indeed as » — oo we limit to Eq. (56).
Note that we are using dimensionless versions of the quadrature
operators so x is dimensionless and to convert to squeezing in dB
we use rgg = 101og,, €.

would not be a projection onto superpositions of quadra-
ture eigenstates but (likely) a projection onto superpositions
squeezed states.

100
0.6 1 6dB
10*1 4

0.4 1

Pr(q|r)

[ 1072 4
0.2 1 \

10-3 4

0.0 %

FIG. 6. The probability Pr(g|r) of obtaining a measurement out-
come ¢ for different amounts of squeezing, i.e., Eq. (60). (left) A
linear plot of Pr(g|r). (right) A linear-log plot of Pr(g|r) for g > 0.
Evidently, the probability for postselecting on g =2 for 3 dB of
squeezing is around 1073, making this an unlikely event. At 12 dB of
squeezing many values of ¢ have a reasonable chance of occurring.

VI. CONCLUSION

Using a nonclassical local oscillator we have constructed
a new non-Gaussian measurement. Two new features that
arose relative to standard homodyne measurements were the
importance of number-resolved detection and the importance
of information contained in the sum variable. Using the
number-resolved information from the sum variable led to a
measurement that had coherence between outcomes (a rank-1
POVM), while integrating out the sum variable led to a loss
of coherence (a rank-2 POVM), which could be achieved by a
mixed-state local oscillator.

We have shown that these measurements can be used to
remotely prepare a non-Gaussian state. While we did not get
non-Gaussianity for free, we injected a LO that was non-
Gaussian and the number resolving measurements are non-
Gaussian. Nevertheless, the ability to prepare non-Gaussian
states via measurement in a teleportation scheme might find
applications in quantum computation and communications.
The utility of these measurements outside its usefulness in re-
mote state preparation is unknown. However it is heartening to
note that ordinary homodyne (or heterodyne) measurements
can be used to measure nonlinear properties such as correla-
tion functions [28]. Thus it is possible that the measurements
described herein may find useful and exotic applications.

So far, we have not discussed the experimental feasibility
of our scheme; let us separate the discussion into the mi-
crowave and optical domains. In the microwave domain, it
seems likely that our scheme could be realized now because
generation of nonclassical states [29,30] and photon number
detection [31] inside a cavity are routine. One realization
would be to prepare the signal state in one microwave cavity
and the LO in another and interfere them (via a beam-splitter
interaction) and then do number-resolved detection on both.
A microwave frequency traveling wave demonstration of our
protocol would be significantly harder. In the optical do-
main, small cat states have been experimentally demonstrated
[32,33] and protocols for turning small cats in to larger cats
(aka “breeding”) have been explored for a number of years
[34-36] and photon number resolving detectors can resolve
more than 15 photons with reasonable efficiency [37]. More-
over, having small cat states may be desirable, and not a
limitation, as alluded to in the main text. Nevertheless, demon-
strating all components together appears to be technologically
challenging at present.

There are many possible extensions of this work; for ex-
ample, one could consider other nonclassical states where
you can take a large-LO limit. Moreover, we have not nu-
merically or analytically studied the convergence of the full
measurement operators to the strong local oscillator limit
[6,11]. An important open question is how large does the
local oscillator have to be to be a reasonable approximation
to the limiting measurement operators. A second and equally
important question is the extension of our single-mode anal-
ysis to the inefficient detection of multimode fields [4,5,38—
41] which would enable the study of mode-matching effects.
Some stepping stones to this end have been made by, e.g.,
Gough et al. [42] and Dabrowska [43], where a quantum
trajectory formulation of fields in superpositions of coherent
states was derived. These effects will play a central role in any
experimental realization of our scheme.

063706-11



JOSHUA COMBES AND AUSTIN P. LUND

PHYSICAL REVIEW A 106, 063706 (2022)

Some of the artifacts we saw in the numerics were due to
the fact we considered an idealized situation where we had
number-resolving detectors. In practice, homodyne detection
is achieved by intensity detectors. An approximation of an
intensity measurement would be to use the finite-efficiency
photon number POVM. Given an efficiency n € [0, 1] the
measurement operator representing report # clicks is

EP =" (" + m)n"(l — )" I+ myn+ml. (61)

m=0

Using this operator in the analysis should remove the spurious
issues with parity of the w variable we noted in Sec. III and
be closer in spirit to true homodyne detection. However, it is
unclear if this will result in a rank 1 or rank 2 POVM.
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APPENDIX A: COHERENT-STATE SIGNALS
FOR REGULAR HOMODYNE

In this section we use a coherent state |«) as a proxy for an
arbitrary signal states with (ngena) < (nL0), i.€., loe|? < |82
This lets us reason about properties of the click distribution
that are due, largely, to the LO.

If the input signal is a coherent state |«) then

(@ +B)'(ax—B)"

M o) — —~(BR+Hal)/2
n,m |O(> 2(n+m)/2\/w ¢ |0>
_let /3) o—latp2 @ = BN ﬁ) o~ (a=p17/2 )
o2t /2 Sim ’
(AD

which gives probabilities proportional to separate Poisson dis-
tributions,

o + B> o—(atp? 1% — P la — BI*"
2n! 2"m!

PP (0, m) = o—(la=B1?

(A2)
In the case of a strong local oscillator relative to the input
signal, i.e., B > «, then the distributions of n and m are indi-
vidually peaked nearby a mean value of |S|?/2 with standard
deviation B//2.

The mean difference between n and m (normalized by
V2 |B]) can be computed using the statistical moments of the

Poisson distribution
Emn—m) Ja+pB> la—pBPF e "a+ela*
V2181 2V2181 22181 V2

where E(n — m) is the expectation of the difference variable
and 6 is the complex angle of 8 = |B|e”. This recovers the
quadrature component and shows how the signal output is
converted into the quadrature signal. The variance is then

. (A3)

Var(n —m) o+ B2 L e — B> o+ B
2082 4B 4181 2IBP
L (A4)
2 2IB2

because the variances add. In the strong local oscillator limit
the second term tends to zero and this variance approaches the
variance of the input coherent state.

APPENDIX B: ERROR ESTIMATE OF APPROXIMATION

We wish to expand a function f of a random variable X
about the mean of X, i.e., E[X]. The expansion is [44]

E[f(X)] ~ f(E[X]) + %Var[X]f”(E[X]) +---. (Bl
The function of the random variable m we care about is
e—2i9a2 m
=(1= . B2
Jm ( B2 ) ®2

Recall that m is the number of clicks in one of the detec-
tors. Because the LO overwhelms the signal, the number
of clicks is approximately Poisson distributed, and that
means that E[m] = Var[m] = {(m) = | 8]?/2. Furthermore, the
second derivative of (1 —x)™ with respect to m is (1 —
x)" In?(1 — x). Combined this gives us

E[f(m)] “(1 — ﬁ)wﬁ n l|,3|2< a26—219>|ﬂ2/2
IBI? 4 IBI?

a2e_2i0
x ln2<1— T > (B3)

Now we approximate In?(1 —x) ~ x> + O(x%) for x < 1,
thus
o202 1BI?/2
14
1812 ) [

which shows the leading-order correction is O(1/|B8]%),
as claimed. Thus the large-LO limit must ensure that
(signal|a*|signal) < 4|B|%, which agrees with the results in
Sec. 4.4. of Ref. [11]; readers interested in a further discussion
should consult Ref. [11].

So we can be completely comfortable with the approx-
imation we investigate the variance of f(X) as well. The
expansion is [44] Var[f(X)] = (f/(E[X]))zVar[X]. It turns
out that it scales as 1/|8|? so in the limit |8| — oo the vari-
ance becomes zero.

E[f(m)] ~ (1 - (aze”")z}

(B4)

41817
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APPENDIX C: WHEN m > n

1. Coherent-state local oscillator

Consider m > n and pull a factor of (1 —a/B)" out of
Eq. (6) to arrive at

® _ _a\" _&_z)n_elﬁlz/4<£)n
Mnin <O'<l ﬂ) (1 #) Jm \2

e B4 g\
X7ﬁ(ﬁ)' b

Using the same definition of x from the main text means that
the exponent will have a minus sign which, in the 8 — oo
limit, results in the same expression. The second operator term
has the exponent changed to n which has the same peak in its
distribution and so again results in the same asymptotic limit.

2. Superposition-state local oscillator

Had we chosen that m > n after equation (26), then this
would change equation (27) to

o IB122

a2\"
1— =
2(”+’")/2«/n!m!</1/i(/3)< ﬁ2>

am—n
n_ fnl _
X[ﬁ( ﬂ)(+ﬂ>

MBl= — (0]

n,m

a m—n
+ (—/3)"/3'"(1 - E) } (C2)
If now variables are relabelled to swap n and m,

o182 2\
M = (0 (-5)
’ 20+m)/2 S m\ N5 (B) B

_lnm+n1 2)"’"
X[( )'B <+ﬂ

i(—l)”’ﬂ’"*”(l - ﬁ) ) } (C3)
B

This equation, up to a global phase factor, differs from
Eq. (27) only in the superposition phase depending on the
parity of n — m. Therefore, as the analysis presented in the
main text incorporates both superposition phases, it actually
also covers the case of m > n if the information as to which
superposition phase applies is incorporated.

APPENDIX D: QUADRATURE EIGENSTATES

This Appendix has two parts. In Appendix D 1 we show
that

e_xz/2 V2xyad —y2ail)2
o) = e X4 X /20y (D1)
with y = e~ [for consistency with the LO in the main text
in Eq. (9)], is an eigenstate of
Q(p) = (e ¥a+e¥a")/V2, (D2)
with eigenvalue x, that is,
Q@) Ixy) = x |xp) . (D3)

Then in Appendix D 2 we show that

(x;)|x¢) =8(x—x"). (D4)

1. Eigenstates
Our method is inspired by Ref. [22]. We start by consider-
ing the operator Q(¢) acting on |x,),
e 12 79 q  oi0gT

o)) = —

e 1a 2V Pa |y

Note that two operator exponentials commute and so their
order does not matter. Left multiply the above equation using
a resolution of the identity

2 42 + + 2 42
—x2a™ )2 _N2xxa' —2xxa a’/2
] = e~ X747 /2 oV 2xx xa' px /7

e (DS)

which we will then try to remove the quadrature operator
by evaluating the conjugations that surround it. We use the
commutation relation [a, f(a")] = % f(a") for any smooth

i ) = o—x'a’/2
function f.If f(a') = e , then

o2 242 o2
ae X @2 _ gx7a /zaz—xzaTe x7a/2,

(D6)

Defining an operator G which is a conjugated version of the
quadrature operator using only the first part of the identity
resolution, and using the above equation, gives

G= e’(z"Tz/zQ(W)e"‘z‘fz/2

. —ip ip o1 2
= eXza’z/z(—e a\;ge a )eX“ar /2 D7)
e e i
- %a* + ﬁ(a — x%ad") (D8)
a . e i
= 72(&0 — x%e )+ Wil (DY)

Next, using the same derivative commutation relation, but
with the choice f(a’) = eVZixa

+ il
eV g x/ixxeﬁ”” ,

the G operator can be conjugated again to give the operator H,

aeV¥rd' (D10)

H = ei\/ixxa%GeﬁxXaT
. ¥ —ip
_ Vaxdt [ @ ip 2 —ip € V2xxat
=e — (Y —xe")+ —a)e
(ﬁ V2
(D11)

a’ . . e i
= (" — x%7 ) + —(a + V2xx).
V2 V2
Now we set @ = —¢ or x = €' [which gives consistency with
Eq. (13)] which sets the a' term to zero, and recall that a |0) =
0:

(D12)

0(p) Ix,) = e eV 1 (o)

= xe X' 2V 0) = x|y, (D13)

which shows that the state in (D1) is an eigenstate of the
quadrature operator. All that remains is to normalize this state
to give the desired result.
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2. Inner product

In this Appendix we compute the normalization of two squeezed states |x,) and |x§’0), see Eq. (13). We show that

e—(x'2+x2)/2
() xy) = ———=—
(et ﬁ

where x and x’ are quadrature eigenstates. Note that the normalization of an x eigenstate is very different from any squeezed
state. So we should not expect |1/) = S(r) |0), with length (| (y|v)|?)!/? = 1, to have any relationship to |x) which is unbounded
and behaves like a é function.

To simplify this expression we insert the identity operator in the coherent-state basis twice, i.e.,

(0] e X2V X agV2id o= x2a 12 0 = 5(x — ') = (X'|x), (D14)

1 2
—/d ola) (x| =1. (D15)
g

If we define N = /2 /74 and N/ = ¢=*"/2/1/4 and N2 := NN, then the inner product becomes
() ) = N (0] X 022X a /2ol g2 )
N2 2 2 - *2a2/2 V2xX' x*a N 2xxat - 201.2/2
= d ad”B (0] e™* o) ] e X e B) (Bl e 0} .
Next we re-order (in normal order) or commute exponentials of ¢ and a', i.e.,
VP agVIixat _ o Y 2ixat 2y e (D16)
where x = e, Doing so and simplifying gives

N? 2 2 2 , ¢ e
(xfp|x¢,) — —2/d2ad2,36_|°’| /26—;( az/ze—m\z/ze—xzﬁ /2e2xx (aleﬁ"x" eﬁxx a 1B)
T

e

N2
2

w2 2,2 _1g812 _,2p8%2 , * ryrg L2 2%
dPad? Be 12X 2B 12X 220 N Bixar oI 1B g s (P +BR 2 )

zew’/\_fj / dae ol o= /2 gV 2xxa / d?Be I8P o= 1B /2 (V2N +a )P
T

2xx

_ "/\Lzz/dzae—Otze—x*zazﬂe\/ixxa*ﬂe—xzz(«/EX*X’-&-a*)Z’ (D17)
T

where we used the integral [ d>ye !f’ e~ ¢%f = e~ to arrive at the last line. Further manipulations give

2 N?

T

_ 2xx' —X

1ol =202 2042 Nk
(x(’plx(p) =eYe /dzoze ol g=x*20/2 =20 /2 g 2x—x )y

)
2N
et —

T

— erx

/ d2ae? (x*a-s-xa*)ze«/i(X—x’)xot*

2
_ ezxx/e_xlze%(x_x/)z ./\g /dIm{X*a}e—iﬁ(x—x’)lm{x*a}
A LTT

2
— W o pr ) N / dice—ka—=x)
2 7

— eZ)cx’e—x’Ze%(x—x’)2 e—x’z/Ze—xz/Z ﬁa(x — )C/). (D18)
JT
As the last part is §(x — x), only the value at x = x” matters. Hence this final expression is equivalent to
(x(’plx(p) =8(x—x). (D19)

By multiplying the state by the square-root of the inverse of the prefactor before the & function, gives the standard normalization
for position eigenstates.
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APPENDIX E: CAT-STATE HOMODYNE

In this section we use coherent states as a proxy for an arbitrary signal states with (nggna1) << (nLo). This lets us reason about
properties of the click distribution that are due, largely, to the LO:

e~ UBP+lal?)/2

M[ﬂli a+B)'(a—B)"+(—pB)'(a+B8)" El
) = S e @ @ B E @ = Bt B (E1)
_ ! ((0‘ B twrprn @ = BV apry @B e (@ B —Ia+ﬁ2/2) (E2)
</Vi(,3) 2n/2\/_ 2m/2. /m! 2"/2f 2m/2/m ?
which is an amplitude. The detection probabilities are
_ 1 o+ BI™ _iarpe o = B i gp
Pr(n.ml. f.o) =57 j:e—zh“z)[ T Tl
L @B =B e @ B LB
2p! 2"m!
* *\1n n * *\m m 2n 2m
+ (a@* + B*)'(a — B) e_|0,+/3|2 (@ = B*)"(a + B) e_|0,_ﬁ|2 + |l — B e_(|a_/f3|)2 |l + Bl e_(|a+ﬁ|)2 7
21! 2mm) 2mp! 2mm)
(E3)

which gives probabilities proportional to separate Poisson distributions.

1. Marginal click distribution for « = 0

Below we assume that 8 is real, i.e., B = |B]:

—(Iﬁlz)/2 —(18*)/2
M]Eﬁyllio n_ m:l_: _ n m — € n m _lm:t _ln. E4
0 = ey P B E BB = e BB £ (1YL (B4
Thus
—I/3I2
Pr(n, m|+, B,0) = IBI*"1BIP"2[1 + (—1)"+™, (ES)

2 tmp\m! A2 (B)
where we used [(—1)" & (—1)"] = 2[1 £ (—1)""™]. The marginal over n is

Pr(ml|%, B.0) = Y Pr(n, m|%, B.0). (E6)

Lets do the + superposition case first:

e B2 11812\ PP 4 (—1)m
Pr(m|+, B,0) = Pr(n, m|+, B,0) = ( ) —_— (E7a)
nX(; ) e~ 167} olfl
e IBI/2 (ﬁ)m (P’ + (=1)ym) (E7b)
m! 2 2 cosh |B|?
=1
—1BI*/2 AN
¢ (ﬂ) , (E7¢)
m! 2

where we have used m is even for the + superposition. Thus we have a Poisson distribution with mean and variance equal to

1BI/2.

Now we do the minus superposition “—” case:
ad -8 2N LB 4 1yt
e 1BI7\ e +(=1)
Pr(m|—, 8,0) = Eio Pr(n, m|—, 8,0) = p. <T) W (E8a)

(E8b)

e 181772 ﬁ m67|ﬂ|2/2(6|ﬁ|2+(_1)m)
m! 2 2 sinh |82 '

=1

The marginals Pr(n|+£, B, 0) look identical with the role of m and n reversed.
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FIG. 7. The effect of the local oscillator size on the click distributions, in all figures the signal is a @ = 1.6 coherent state. (column 1)
B = 1.1, (column 2) 8 = 1.3, and (column 3) 8 = 1.85. (row 1) Original click distributions and marginal distributions for n and m. (row 2)
Sumw = (n + m)/(\/iﬁ) and difference x = (n — m)/(ﬁ,B) variables and corresponding marginal distributions.

APPENDIX F: SMALL AND MODERATE LOCAL OSCILLATORS

Here we give some numerical evidence that the local oscillator does not have to be very large to see the effects we describe
in the main text. In Fig. 7 we consider a fixed coherent-state signal @ = 1.6 and vary the strength of the LO . When 8 is less
than one the two peaks are not discernible (not shown). As 8 increases (left to right in the figure) the bimodal distribution of the
outcomes becomes increasingly apparent. When 8 = 1.85 the two modes of the distributions are well separated but seem to be
asymmetric about |x| & 2. For 8 > 2.6 the asymmetry seems to be consistent with the LO of § = 5 in middle column of Fig. 3.
Again we point the reader to results in Sec. 4.4. of Ref. [11] for a fuller discussion of the large-LO limit.

APPENDIX G: FOCK-STATE SIGNAL

To further simplify Eq. (48) in the main text, consider the first subterm
O@+p)'@—pyIn). (G1)

The annihilation operator is the only operator within this expression and hence all the operators commute. Therefore the standard
binomial expansion can be used,

@+x'=Y" (Z) d"H K (G2)

k=0
This gives
" (m)\ [ N!

"(a—B)"IN) = — 1y prH¥ : N—(m—k)—(n—Fk)). G3

(a+B)'(a—B)"IN) ,;,;(k)(k)( B o V(=) (@Y
where any negative values within the ket are equivalent to the zero vector. The expression closed with a (0| is then

= (m n
0l (& nea m N) = -1 k pn+m—N N', G4
O @+ B)'@— p)" IN) ;(k)(nm_l\,_k)( Jprm Ny (G4)
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provided n 4+ m > N, otherwise the expression is zero. This condition occurs because there is no loss considered in the model
and hence if N photons are injected into the detector, at the very least they must all be detected. Additional photons can arise
from the local oscillator which introduces the terms involving S. The series has the form of a ordinary hypergeometric function
evaluated at —1 and hence can be written

(,,H.Z_N) 2Fi(—m,—m —n+ N;1 —m—+N;—-1), m<N

~ nesa m — gntm—N |
Ol@+py@=prin = p Wl (," ) (=1"N Fi(—n, —N; 1 +m — N5 —1), m> N,

(GS5)

again provided that n 4+ m > N. The leading two parameters, given this inequality are always negative which corresponds to the
finite sum of terms in the defining series. The second terms, given the constraints on each branch, are always greater than or
equal to one which ensures no singular points.

APPENDIX H: DETAILS OF FINITE SQUEEZING

Let us consider the case where the Kraus operator is M, o (gq| + (—q| (positive parity), where g is the measurement
outcome. (The negative parity case where M, _  (g| — (—¢q| is similar.) Then the unnormalized postmeasurement state is
proportional to

ML] + ® H |¢>TMSV X /dxb z[e—f’z"(q-m;)z/26—62’(11—)%)2/2 + 6—872'(—q+xb)2/ze—€2r((1+Xb)2/2] |-xb) , (Hl)
’ V

where we have used (£g|x,) = §(x, = ¢) and integrated over x,. We normalize this position wave function and do some algebraic
simplification on it and find

1/4 % cosh 2r
w(xb|q, +,r)= (CO;I;Z}’) \/ = ?qhzos — [e*(qurxi)cosh 2r—2qx; sinh 2r + ef(qZerg)cosh 2r+2gxp, sinh 2r]. (H2)
e2q?sinh2rtanh2r 4
To further simplify we can complete the square on the exponents, i.e.,
—(q2 + xz) cosh 2r — 2gx;, sinh 2r = — cosh 2r(x;, + ¢ tanh 2r)* — g*sech 2r, (H3a)
—(q2 + xz) cosh 2r 4 2gx;, sinh 2r = — cosh 2r(x, — g tanh 2r)> — ¢*sech 2r, (H3b)

which gives the normalized position wave function v (x|q, 4, r) after obtaining measurement outcome ¢, + with squeezing r
given in Eq. (59).

To get an idea of the likelihood of preparing various states as a function of the measurement outcome g we need to compute
the probability for obtaining outcome g. We consider a simplified version of the full POVM in Eq. (37):

d
dqEy+ = Tq(IQ) (@l @1y £ 1—g9){ql @ I £ |g){—q| @ I, + |—q){—q| ® Ip), (H4)
where ), [dqE, + = I ® 1. The probability density for obtaining outcome g is
dqPr(qlr) = Z TMSV (V| Eqs [V ) msv (H5a)
se{+,—}
dq
=5 Wlla)al @1, + [=q)(—ql ® I [ )Tmsv (H5b)
TMSV
= dq [ ax, [ ax, [ dx, [ avp e wio Gl dae o mi © ). e

Performing the integrals and simplifying, we find dg Pr(g|r) = dg(2sech 2r/m)'/? exp[—2¢°sech 2r].
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