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he laws of quantum mechanics capture the be-

havior of physical systems at the smallest observ-

able spatiotemporal scales. By pushing systems to

the very edge of physical limits, quantum tech-

nology has the potential to revolutionize the state
of the art in a variety of domains, including metrology [1],
[2], [3], [4], communication [5], [6], [7], and computing [8],
[9], [10]. As the field continues its transition from a scientific
curiosity to an engineering endeavor, experimental proto-
types found in physics laboratories must be converted into
reliable hardware platforms that operate in less sheltered
contexts. This step (from quantum science to quantum en-
gineering) represents a unique opportunity for the IEEE
Control Systems Society to provide meaningful insights
on how to systematically steer these systems to the desired
operating point.

The aim of this article is to familiarize the reader with
quantum control by describing a physically relevant
application [transitioning a Bose—Einstein condensate
(BEC) from its lowest energy state to its first excited state]
from the perspective of a classical control engineer. The
article makes no assumptions on the audience beyond a
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basic knowledge of linear algebra, complex numbers, and
differential equations. See also “Summary.” Specifically,
we will 1) provide a step-by-step derivation of the dynamic
model, 2) analyze the autonomous system to identify
meaningful control objectives, 3) introduce a selection of
quantum control strategies for achieving said objectives,
and 4) compare the closed-loop behavior obtained with
each strategy. This application-driven tutorial comple-
ments existing literature surveys [11], [12], [13] that feature
a more comprehensive overview of quantum control
theory in the general setting. For the reader’s convenience,
“An Introduction to Dirac Notation” briefly introduces
the conventional notation used in quantum literature,
whereas “An Introduction to Quantum Mechanics” pro-
vides an overview of the fundamental mathematical pos-
tulates that describe quantum physics.
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A DYNAMIC MODEL OF TRAPPED

ULTRACOLD ATOMS

When a gas of identical atoms is cooled close to 0 K, the
atoms “condense” into a spatially localized region and

Summary
This article is the product of a three-year multidisciplinary
collaboration between a team of control engineers and a
team of quantum scientists. In the author’s experience, the
greatest challenge one faces when entering the field of quan-
tum control is the language barrier between the two communi-
ties. The aim of this article is to lower this barrier by showing
how familiar control strategies (that is, Lyapunov, optimal con-
trol, and learning) can be applied in the unfamiliar setting of a
quantum system (that is, a cloud of trapped ultracold atoms).

An Introduction to Dirac Notation

he Dirac (or “bra—ket”) notation [S1] is pervasive to modern

physics literature and is used to denote linear algebraic op-
erations in Hilbert space, which is a complete vector space that
admits an inner product operator {:|-). Although this sidebar
focuses on finite-dimensional spaces for ease of exposition,
the general intuition can be readily extended to infinite-dimen-
sional spaces, as detailed in [S2] and [S3]. Elements of a Hil-
bert space # are identified using the “ket” operator |y) € H.
Conversely, the “bra” operator (y|e#' identifies elements
of the inner product-induced dual space . Thus, the inner
product {:|-) can be reduced to a simple multiplication be-
tween a bra (‘| and a ket | ). If we consider the space of com-
plex column vectors, for example, the inner product is defined
as (¢|w)=¢"y, where ¢ is the complex conjugate transpose
of ¢. In Dirac notation, |y) e is a complex column vector,
and (¢|eH' is a complex row vector satisfying (¢ |=|¢)'". If
‘H is finite dimensional, the ket can be expressed as

N
|w>=§v/n|en> (S1)

where y, are complex numbers, and len) are elements
of an orthonormal basis of 7, meaning that they satisfy
(enlen)=1,vn, and (emle,)=0,Vvm #n. Similarly, the bra
can be expressed as

(pl= §¢;<en\ (s2)

where ¢, is the complex conjugate of ¢,. Following from (S1)
and (S2) and the properties of an orthonormal basis, the in-
ner product reduces to (¢ |y )= Z)-1¢nwn, which satisfies the
noncommutative property {y |¢)=(¢|y)) . Finally, |y)eH
is unitary if (y|y)=1. Elements in Hilbert space can be ma-
nipulated by operators in the form A:H —#. Operators A and
B are linear if and only if
c Aly)=|Ay), Viy)eH;

collectively behave as a new entity called a BEC, which is a
fifth phase of matter. An interesting property of BECs (also
known as ultracold atoms) is that they exhibit quantum
mechanical behaviors at a macroscopic scale (= 200 ym). To

Particular emphasis is given to the derivation of the model and
the description of its structural properties. Sidebars throughout
the article prove a brief overview of the essential notions/nota-
tion required to establish an effective communication channel
with quantum physicists and quantum engineers. In essence,
this article is a collection of everything that our control team
wished they had known at the beginning of the project. It is our
hope that it may be of assistance to members of this commu-
nity wanting to embark on their first quantum control project.

* A+B)|y)=Aly)+Bly), VIy)eH;
o Alaly)+Bip))=cAly)+BAI), Viy),|¢)EH, Va,BeC.
Given a linear operator A, A, €C and | v ) eH are, respec-
tively, an eigenvalue and an eigenvector of A if they satisfy the
property A|v)=A,|v ). Given a linear operator A, its Hermi-
tian adjoint A" is such that (Ay |=(w | A". Combined with the
noncommutative property of the inner product, the Hermitian
adjoint satisfies (y|Al¢)=((¢1A"Iy))". An operator A is
Hermitian, that is, it satisfies A= A", only if all of its eigenvalues
are real. Operators can be constructed as the outer product of
a bra and a ket, that is, |- )( - |. Notable examples include the
identity operator | = X)_1|en)( en | and the projection operator

I, =y Xw| (S3)

which can be used to compute the following:

e Projection: T1, | ¢ ) denotes the projection of | ¢ ) onto the
unit vector | v ). Note that (w1 ¢ )y )=ly ) ((wl¢d))=
lyXwig)=Tyl¢).

e Inner product, squared: (¢ |I1,|¢) denotes the mod-
ulus square of the inner product (y |¢ ). Note that

w12 =(wlg)) (i )=y ) (wip )=( $ITL,|¢ ) .

e Hilbert-Schmidt distance, squared: (¢ | (I—11,) | ¢ ) de-
notes the squared distance between the unit vectors | ¢ )
and|y ). Notethat 1|y | $)|*=(¢ | ¢) (¢TI, | ¢ )=
(P (-y) | ¢).
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manipulate BECs, it is convenient to “trap” them in a spa-
tially confined region using two counterpropagating laser
beams that create a standing wave known as an optical lat-
tice. An experimental process for obtaining trapped BECs
is described in “Obtaining a Bose-Einstein Condensate.”
The trapped BEC can then be controlled by changing the
phase of (that is, shaking) the optical lattice. The ability to
make BECs has enabled a variety of quantum science and
technology applications, such as interferometry [14], [15],
[16], [17], vortex production [18], [19], black hole simulation
[20], [21], [22], and lithography [23], [24]. The dynamical
model of a BEC can be obtained by specializing the
Schrédinger equation [(S6) in “An Introduction to Quan-
tum Mechanics”] to a cloud of trapped ultracold atoms.
This is achieved by finding a suitable expression for the
kinetic and potential energy operators. For simplicity,
this article addresses a 1D model. As detailed in [25], the
kinetic energy operator for a system expressed in a 1D
position space x € R is

n 9’

K== @
where m is the mass of the particle and % =~ 1.055-107* Js is
the reduced Planck constant. To obtain the potential energy
operator, consider two counterpropagating laser beams of
wavelength A and phase 6. Their combined electromag-
netic field is

E(x) — Elei(kx+6) + Eze—i(kx+0) (2)

An Introduction to Quantum Mechanics
uantum theory describes the behavior and experimental
uobservation of objects that are both very small and well
isolated (for example, particles). Such objects are said to be
“quantized” if one or more of their observable properties (for
example, energy) are fundamentally discrete. The complete
framework of quantum theory emerges from a few mathemati-
cal postulates:
1) Wave function: The state of an isolated quantum object is
fully described by a wave function |¥) € H, with (¥|¥)=1.
2) Observables: All observable properties of the object are as-
sociated to a Hermitian operator. Notable examples include
position, momentum, kinetic energy, and potential energy.
3) Measurements: When measuring an observable A, the
measurement outcome can only be one of its eigenvalues
An. The probability of obtaining a specific outcome A, is
P(An) = (Y |IL,|¥) (S4)
where I, =|n)(n| is the projection onto the eigenvector |n)
associated to A,. In other words, the likelihood of measur-
ing a given eigenvalue of the observable is proportional
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where k =27 /2 is the wavenumber of the laser beams, and
E; and E, are the amplitudes of each beam. The resulting
electromagnetic intensity is

I(x) = E'E = E1 + E3+ 2E1Excos (2kx + 26). €)

Since the laser is usually tuned so that atoms are attracted
to the regions of highest intensity, the minimum potential
energy corresponds to x such that cos (2kx + 26) =1, whereas
the maximal potential energy is where cos (2kx + 26) =—1.
Based on this intuition, the potential energy operator asso-
ciated with the optical lattice is

u=—L cos 2k + 1) @
where Ujis the optical depth (that is, the difference between
the maximum and minimum potential), and u = 26 is the
phase of the optical lattice (which acts as a control input for
the system). In practice, the optical depth U, can be mea-
sured experimentally using the procedure detailed in [26].
Thus, the Schrédinger equation [(S6) in “An Introduction to
Quantum Mechanics”] specializes to

2 2
B0y () — L cos 2k + 1) ¥ (x,1) (5)

in 0 __h 9
ih at‘P(x,t) = 9

where ¥ (x,t) =(x|¥) is a time-varying wave function rep-
resented in a 1D position space. “Momentum Basis Decom-
position” details how this partial differential equation can
be approximated as the ordinary differential equation (ODE)

to how much the wave function is aligned with the corre-
sponding eigenvector. Moreover, the state after the mea-
surement becomes

Hnl‘P>

JP(An)

This phenomenon is known as “wave function collapse.”
4) Schrédinger equation: The dynamic behavior of the wave func-
tion is governed by the complex partial differential equation

|¥) = (S9)

m% 1¥) = H|¥) (S6)
where H=K + U is the Hamiltonian operator, K is the ki-
netic energy operator, U is the potential energy operator, i
is the imaginary unit, and i =~ 1.055-107** Js is the reduced
Planck constant.

Although this prescription of quantum theory is sufficient for
the purpose of this article, it should be noted that each postu-
late admits a more general formulation. Readers interested in
a more thorough description of quantum theory are referred to
[25] and [S2].
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Obtaining a Bose-Einstein Condensate

hatis observed as “temperature” is a physical quan-
Wtity related to the amount of energy stored in degrees of
freedom, such as rotation, vibration, and speed of atoms. At
0 K (that is, absolute zero), the atoms would have no energy.
To condense a cloud of atoms into a Bose—Einstein conden-
sate (BEC), the ensemble must typically be cooled down to a
critical temperature of around 100 nK so that their motional
velocity is in the millimeter/second range. This multistage
process is performed in a glass cell held under ultrahigh
vacuum, as illustrated in Figure S1.

DOPPLER COOLING

The initial cooling step consists in irradiating the atomic gas
with three pairs of mutually perpendicular counterpropagating
laser beams of properly selected polarization and frequency.

e W e e & W

LS e

v w @O elmwtasygiieine ¢ O
FIGURE S1 The experimental setup used to obtain the Bose—
Einstein condensate.

(a)

(b)

FIGURE S2 An illustration of the Doppler cooling effect for atoms
moving (a) to the right and (b) to the left. Because of the Dop-
pler effect, atoms experience a blue-shifted frequency in the
direction they are traveling toward. Since the laser frequency is
only slightly detuned with respect to atomic resonance, this
Doppler shift is sufficient to trigger the absorption of photons
from the blue-shifted laser beam. Because of the conservation
of momentum, the absorption of a photon causes the atom to
slow down, thereby resulting in a damping force F that always
opposes movement.

Here, the laser frequency is slightly detuned below atomic
resonance (that is, the frequency at which the atoms would
absorb photons from the laser beam). Due to the Doppler ef-
fect, illustrated in Figure S2, atoms moving toward an incom-
ing laser beam experience a slight frequency shift that triggers
photon absorption. By shining in light from all six directions,
a laser force always opposes the direction of the atom’s mo-
tion, causing a reduction of the atom’s speed and, therefore,
its temperature. Trapping is then accomplished via magnetic
fields whose gradients, combined with the applied laser, intro-
duce the necessary forces to contain atoms in the center of the
cell. This is known as a magneto-optical trap (MOT), which can
capture roughly 10° atoms at = 300 uK. Figure S3 features an
experimental picture of a MOT.

POLARIZATION GRADIENT COOLING

Atoms are further cooled by spatially compressing the MOT
and detuning the laser light frequency to perform polarization
gradient cooling. This reduces the temperature of the trapped
atoms to = 20 uK.

EVAPORATION COOLING
To cool down to the nanokelvin regime where a BEC is formed,
the atoms must undergo a final stage known as evaporative

FIGURE S3 A close-up of a cloud of atoms contained in the
magneto-optical trap. The size of the cloud is = 4 mm.

(Continued)
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Obtaining a Bose-Einstein Condensate (continued)

cooling. This consists of transferring the atoms into a poten-
tial well—either magnetic or optical—and slowly lowering the
walls of the trap potential, as illustrated in Figure S4. As the
walls are lowered, hotter atoms are allowed to escape, and the
remaining atoms rethermalize to colder temperatures. This is
repeated until a BEC is achieved at ~ 300 nK, with the forma-

o

° °
°
°o°ao

-
JlBEC

Potential Well Depth

Time (s)

FIGURE $4 Once atoms are loaded into a potential well, the well
depth is slowly ramped down over time. As this occurs, the
hotter atoms leave the trap, and the remaining atoms rether-
malize and become colder (the same way hot coffee is cooled
down by the evaporation of steam). Eventually, when the trap
is shallow enough, some of the remaining atoms will become
cold enough to condense into a Bose—Einstein condensate
(BEC). These atoms are shown in cyan.

ily)=Ho|y) +sin(u)Hi|y)+(cos(u) =) Ha|y) ~ (6)

where |y ) is a quantum state, which can be represented as
a time-varying complex column vector, and Hy, H;, and H,
are the Hermitian matrices given in (S10) of “Momentum
Basis Decomposition.” To further simplify the system, it is
customary to introduce the small-angle approximation
(that is, sinu ~ u and cosu =~ 1) and reduce (6) to the bilin-
ear model

ilyr) = Holy)+uH:|y). )

“Eigenstates of the Hamiltonian” addresses, among
other things, the validity of the ODE approximation (6). The
validity of the bilinear approximation (7) is instead dis-
cussed in the section “Optimal Control.”

SYSTEM ANALYSIS

This section analyzes the structural properties of (6) and
(7) to identify what can and cannot be achieved through
the use of control. We first show that the wave function
|y) can only evolve on the unit sphere (readers familiar
with rigid body attitude control will recognize that this
behavior is analogous to that of unit quaternions [27]).
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tion of the condensate being quite sudden (like supercooled
water turning to ice). Figure S5 features experimental data of a
BEC measurement.
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FIGURE S5 An absorption image of a typical Bose—Einstein con-
densate containing approximately 70k atoms. Absorption imaging
is done by shining resonant light on the atoms, which is absorbed,
and taking the natural log of the difference between that and a
background image containing no atoms. The optical density
(OD) is a measure of the number of atoms in the image. Both the
x- and y-axes depict the pixel number in camera coordinates.

We then prove that our system does not admit any equi-
librium points on the unit sphere, and that the only
invariant sets of the system are actually periodic orbits.
As detailed in [25], |y)€ C*™*! is a wave function only if
(w )|y (t))=1,vt. It is therefore reasonable to expect
that the unitary sphere S={ly)e C*"*'|(y|y)=1} is an
invariant manifold. To verify this property under the
generalized Schrédinger equation i|y)=H(u)|y), we
show that

2 Culy) = ylw) +Cwly)

=(—iHw)y|y) +(y|—iHW)y)
=(yli(Hu)" = H(w))|y).

Since (3/3t) (y|y)=0 if and only if H(u)'= H(u), Vu,
the unit sphere S is invariant if and only if H(u) is Her-
mitian. Given H(u) = Ho+sin(u)H1+ (cos(u) —1)H2 in
the nonlinear case (6) and H(u) = Ho+ uH: in the bilin-
ear case (7), the invariance of S follows directly from
(510) (which defines Hy, H;, and H, as Hermitian matri-
ces). Having proven that |y ()) evolves on the unit
sphere, we aim to characterize the system’s behavior
in the absence of a control input. Specifically, given
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u(t) =0, both (6) and (7) reduce to the same autono- Whenever null(Ho) = 0 [which is the case for (S10)], the
mous system system does not admit any equilibrium points in S. As
such, the traditional control objective “Design u(t) such that

ily)=Hol|y). (8) X is a globally asymptotically stable equilibrium point” may not

Momentum Basis Decomposition

Since the potential energy operator (4) is periodic, it follows  which belongs to the Hilbert space of complex column vectors
from the Bloch theorem ([S4], Chapter 7) that the position and can thus be defined as a wave function in its own right if

space representation of the wave function |¥) can be written  (w(f)|w(t)) =1, Vt. To ensure that the vector in (S9) is a good

as a linear combination of periodic functions. As a result, representation of the full wave function in (S7), it is necessary
m to introduce (and verify) the assumption yn(f)=0, Vt=0,

— — i2nkx 3
Yix,0)=(x|¥)= 2 wal)e (87) v |n|>N. Noting that e*" =1+ isin (u) + (cos (u) — 1), the trun-

n=—occ

cated version of the infinite-dimensional ODE (S8) can finally

h a(t time-d dent lex-valued scalars. Sub-
where y,(t) are time-dependent complex-valued scalars. Su be rewritten as the finite ODE (7), with

stituting (S7) into the Schrédinger equation (5) and omitting the
dependency on t to simplify the notation leads to

n=-—oco n=-—oo

= %cos(Qkx +u)yne

oD jokx _ K2 2 i2nkx
ih Z‘l//ne = Z °m ynVxe _% 4(N_1)2 _a

i2nk x

Noting that Ho=wnr _% 0o -
VieIanx:_(2nk)2ei2nkx _

and

i2kxeiu + efizkx

2

_eY iominkx . 7Y ism-tykx S10
=—F56€ A ==0E
2 2

—iu
€ " _ionkx
A=

cos(2kx + u)e'2"x = €

it is possible to rewrite the Schrédinger equation (5) as 0 i

% ) w 2 .
inY yae=3y (zh—m(an)zl//n —ig
n=-c n=—co Hi=wr
_ %(W,H e+ Yoo e—fu)>ei2nkx.

_jx

By grouping the coefficients of each basis function e’2™*, "4
the Schrédinger equation can then be reformulated in terms of 0
the individual wave function coefficients yn(t), which are sub-

a

ject to the dynamics 4 4
Ha = wn RSN (S11)

Yn—
Wn
Vn+

o
im//n=ER[—%e’" 4n? —%e”"] (S8) 4

where Eg=h%k?/2m is the recoil energy of the trapped par-
ticle, and a = Uo/Er is the normalized lattice potential. To ob-  Where @s=Eg/h is the recoil frequency of the trapped
tain a finite ordinary differential equation (ODE), consider the ~ Particle.

truncated vector of coefficients

REFERENCE
y-n(t) [S4] C. Kittel, Introduction to Solid State Physics, 7th ed. New York, NY,
wi-n(t) USA: Wiley, 1996.

i)
wo(t) (S9)
¥ (t)

wno()
wn(t)
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Eigenstates of the Hamiltonian

An interesting property of periodic potentials is that the as-
sociated eigenstates are described by alternating odd and

even functions [S4]. Given the wave function |¥) featured in the

L2}

| 6666 oooo
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A e SO W N
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(@)

original Schrédinger equation (5), in “Momentum Basis Decom-
position,” we computed an approximate wave function |y) by
collecting the 2N + 1 coefficients of (S7) into a complex column
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FIGURE S6 The first eigenstate of the Hamiltonian in (a) momentum space and (b) position space. In the momentum space represen-
tation, most of the atoms have a momentum of p =0 and are, therefore, stationary. In the position space representation, each curve
represents the real part of the wave function evaluated at a different angle along the periodic orbit, starting from 6 =0 (cyan) to 6 =7
(magenta). Most of the atoms can be found in the wells of the lattice potential.
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FIGURE S7 The second eigenstate of the Hamiltonian in (a) momentum space and (b) position space. In the momentum space represen-
tation, most of the atoms have a momentum of p = +2hk, meaning that there are actually two clouds of atoms moving in opposite direc-
tions. In the position space representation, the wave function is evaluated starting from 6 =—7/2 (cyan) to 6 = /2 (magenta). Most of
the atoms can be found where the slope of the optical lattice is at its steepest.
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FIGURE S8 The third eigenstate of the Hamiltonian in (a) momentum space and (b) position space. In the momentum space represen-
tation, most of the atoms have a momentum of p = +2fk, but there is also a sizable portion with p = 0. This describes a system with
three clouds of atoms: two of which are moving in opposite directions, whereas one is standing still. In the position space representa-
tion, the wave function is evaluated starting from 6 =0 (cyan) to 6 = z (magenta). Most of the atoms can be found at the peaks of the
optical lattice potential, whereas a smaller portion is trapped in the wells.

34 IEEE CONTROL SYSTEMS » FEBRUARY 2023
Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 12,2023 at 15:57:58 UTC from IEEE Xplore. Restrictions apply.



|Wa)
0000 0000
0O RANONPROOO—

l

b b
A G et

ok
IR
oo

¥ ok ¢ O
A et g
PN

p

(a)

1 77N 71N

0.8 .
—~ 06
¥ 03
.1? 0
B
o 0.
X 06

—0? 7 N2 AN
T —rlk —ml(2k) 0 7/2k) ik
X

| ————— Lattice Potential|

(b)

FIGURE S9 The fourth eigenstate of the Hamiltonian in (a) momentum space and (b) position space. In the momentum space
representation, most of the atoms have a momentum of p = +4nk, meaning that there are once again two clouds of atoms moving
in opposite directions, but they are separating at a faster rate than the second eigenstate. In the position space representation,
the wave function is evaluated starting from 6 = —7/2 (cyan) to 6 = /2 (magenta). The population is predominantly divided into
four lobes within a single span of the lattice potential x €[—7/2k, 7/2k].

vector |y)=[y n...wn], under the assumption that w,=0,
Vv |n|> N. This led to the formulation of the approximate Hamilto-
nian Ho in (S10). This sidebar studies the eigenvectors of Ho to
1) verify the validity of the simplifying assumption and 2) provide
a physical interpretation of what it means to go from one eigen-
state to another. To provide some context, we introduce the no-
tion of momentum space, which is a rescaled Fourier transform
of the position space, that is,

__ 1
vip)=

in a similar way to how the frequency domain is the Fourier trans-
form of the time domain. The main difference is that (due to the
scaling factor 7)) the position and momentum pair is measured
in meters and Joule seconds/meter, respectively, as opposed to
the time and frequency pair (which is measured in seconds and 1/
seconds, respectively) Equation (S7) can thus be interpreted as a
“spatial frequency” decomposition of the wave function |¥), where
each coefficient v, represents the amplitude of a spatial sinusoid
with momentum 7 - (2nk). Figures S6—S9 illustrate the first four
eigenstates of the system in both momentum space and position
space. The momentum space representation is obtained simply
by plotting the vth eigenvector of the Hamiltonian matrix Ho. The
position space representation is then obtained by computing

[~ ®(x)e P ax (S12)

Y, (x)={(x|¥) = ﬁ: Vae!2kx (S13)
n=-N

and plotting the position representation Re (€”¥.(x)) for differ-

ent values of 6 to show how the wave function evolves along

the periodic orbit O,. Based on these figures, we note the fol-
lowing emerging behavior:

Momentum space properties

e If v is odd, the eigenvector is symmetric with respect to

p =0, andmostofthe populationisin p = +((v — 1) /2) (2hk).

e [f v is even, the eigenvector is antisymmetric with respect

to p =0, and most of the population is in p = +(v/2) (2hk).

Position space properties

e Each eigenstate features v lobes within the period x e
[—(7/2k), 7/ 2K].

e Odd-numbered eigenstates are symmetric with respect to
x =0, whereas even-numbered eigenstates are antisym-
metric with respect to x = 0.

The validity of the ordinary differential equation (6) can
therefore be verified a posteriori by checking whether or not
a given numerical simulation excited the higher order modes

0.4
0.3

0.2

0.1

0.3
0.25
0.2
0.15
0.1
0.05

(b)

FIGURE $10 Experimental measurements of the (a) first and (b)
second eigenstates of trapped ultracold atoms. These mea-
surements were taken by turning off the optical lattice, waiting
a set amount of time (that is, the time of flight), illuminating the
atoms with a short pulse of resonant light, and then using a
camera to acquire the shadows cast by the atoms. Turning off
the laser causes the Bose—Einstein condensate to split into
multiple clouds of atoms based on their momentum distribu-
tion, which enables turning a momentum measurement into a
position measurement. The population (that is, [y»[?) of each
momentum bin (that is, 2nfk) can then be computed by quan-

tifying the optical intensities of each blob.
(Continued)
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Eigenstates of the Hamiltonian (continueo)

of the system. This can be done by monitoring the value of
(w(®)|TIn|y(t)), where IIy=|N){N| is the projection onto the
Nth eigenvector, and ensuring it stays under a set tolerance.
A comparison of Figures S6 and S7 provides a physical in-
terpretation of what it means to transition from the first ei-
genstate (also known as the “ground state”) to the second
eigenstate. This transition takes a Bose—Einstein condensate
(BEC) that is essentially at rest (which is the starting condi-

be a well-posed problem for quantum systems. To formu-
late a feasible control objective, let A, € R and |v)€ S be an
eigenvalue/eigenvector pair of H,. Given the initial condi-
tion |y (0)) =¢”|v), with 6 € [0, 27), system (8) admits the
analytic solution

v (£) = e *w) &)
which belongs to the (invariant) periodic orbit

0, =(|y)=¢"|v)|0€[0, 2)). (10)

Geometrically, note that if S is a hypersphere in a
(4N+2)-dimensional space, each of the 2N+1 periodic orbits
O, is a circle lying on S. Since each periodic orbit is iso-
lated from all of the other ones, a suitable control objective
for quantum systems is “Design u(t) such that a given periodic
orbit O, C S is a globally asymptotically stable limit cycle.” To
illustrate why this control objective is physically relevant,
“Eigenstates of the Hamiltonian” analyzes the structure of
the eigenvectors |v) and explains what it means to drive
the system to an eigenstate.

CONTROL STRATEGIES

This section provides a side-by-side comparison of notable
strategies for quantum control synthesis. Readers wishing
to familiarize themselves with these methods can find a
variety of working examples to run on the Quantum Tool-
box in Python (QuTiP) open source software [28], [29], [30].
Because of the introductory nature of this article, the
numerical simulations will only consider the ideal case
where the model is perfectly known and the state vector is
fully accessible. Unfortunately, acquiring real-time mea-
surements to perform quantum feedback control is gener-
ally not a trivial task [31], [32], [33], [34], [35], [36] since the
very act of measuring the system inevitably introduces
modifications to the state [35], [36]. Nevertheless, given suf-
ficiently accurate models and/or suitable correction meth-
ods, the control strategies described in this article have
been shown to produce satisfactory results when imple-
mented in a predominantly open-loop fashion because of
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tion of a BEC obtained by bringing the atoms to a very low
energy state) and separates it into two counterpropagating
clouds of atoms with a momentum of +2rk. Similarly, the
transition from the first to the fourth eigenstate means split-
ting the BEC into two counterpropagating clouds of atoms
with a momentum of +4#k. Figure S10 features experimental
measurements of the first and second eigenstates of a BEC
trapped in an optical lattice.

the high repeatability of quantum experiments. This includes
Lyapunov-based control [37], [38], [39], [40], optimization-
based control [41], [42], [43], [44], and learning-based control
[45], [46], [47], [48].

Lyapunov Control

Lyapunov-based control design provides a relatively straight-
forward framework for obtaining an analytical feedback
law [49], [50]. The principle behind this method is to
choose an appropriate Lyapunov function candidate
V(y) and enforce V(y) <0 by defining a suitable control
law u(y). For an overview of Lyapunov-based control of
quantum systems, the reader is referred to [51], [52], [53],
[54], [55], and [56], which provide several alternative
options for V(y) and derive the resulting u(y) for the
case of bilinear systems. This article is limited to the
Hilbert-Schmidt distance between the state |y) and a
target eigenvector |V), that is,

V() =1=(y|IL|y). 11

To verify that (11) is a Lyapunov candidate function,
note that the following hold, given |v)e S satisfying
Hol|v)=A|v):

D (y|lL|y)e[0,1], Vy €S;

2) (y|I|y)=1e y € O,, with O, C S satisfying (10).

Noting that (y|IL, |y ) = (w|v){v|y), the time derivative
of the Lyapunov candidate function is

=

LI () vy L0120,

Given the bilinear dynamic model (7), compute

o (V)= = (vl i(Ho+ uHw)
=—i(v[Holy ) —iu(v|Hily),

A ()= (yv) = (= i(Ho+ uHh) y )
= i(y|Ho|v) + iuy|Hi|v).
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Acquiring real-time measurements to perform quantum feedback control
is generally not a trivial task since the very act of measuring the system
inevitably introduces modifications to the state.

Since |n) isan eigenvector, wehave (v|Ho|y ) = Ae(v|y ),
leading to

V = i vly) + ulv | Haly )y |v) = iCv]v)
X (s Cr[v) + (| Ha|v))
= i y )P+ iuv | Hily )y [v) —idg[(v |y )
—iuv|y)(w|Hi|v).

Noting that (v|y )y|Hi|v)=(v|Hi|ly )Xy|v)) and
that i(a —a")=—2Im(a), the time derivative of the Lyapu-
nov candidate function finally becomes

V =—u2Im((v|Hi|y){y|v)) 12
which can be made negative semidefinite by choosing the
control law

u=kIm({v|Hi|y)e“ ") (13)

where k >0 is a tuning parameter and Za is the angle of the
complex number a. With some abuse of notation, it is
common to assign £0 = 0 to prevent u from being undefined

Real Vector Representation

Atypical assumption in the systems and control literature is
that the state belongs to a real vector space. Indeed, a sur-

prising number of numerical solvers and toolboxes implicitly

rely on this assumption. Thus, it may be useful to know how to

redefine a complex-valued wave function as real state vectors.

Given | y)e C", consider the bijective mapping

Re(v))
Im (| )

= W)=[lr Olx+i[0 In]x (S14)

where x € R?*" is the new state vector and /, is the identity ma-
trix of size n. With no loss of generality, it can then be shown
that the complex ordinary differential equation (ODE)

ily)=Hw) ly) (S19)

which is equivalent to | y)=—iH(u) | v ), can be rewritten as
the real ODE
x=THu)x (S16)

where

when (y|v) = 0. As detailed in [57] and [58], it would be pos-
sible to prove that O, is a globally asymptotically stable limit
cycle if (v|Hi|y) # 0, V|y) € S\O,. Unfortunately, this system
does not satisfy this requirement. Indeed, it follows from
(S11) that H; structurally ensures the following:

» If |y) is an even vector, Hi|y) is an odd vector.

» If |y) is an odd vector, Hi|y) is an even vector.

A C™*! vector is even (odd) if its ith element is equal
(opposite) toits 2(N +1) — i-th elementforie{1,..., N +1}.
As discussed in “Eigenstates of the Hamiltonian,” the
target eigenvector |v) is either odd or even. Given that
the inner product between odd and even vectors is
always zero, we note that (v|Hi|y) =0, V|y) € Q, where
Q is the set of all odd (or even) unit vectors if |v) is odd
(or even). Due to the fact that 0,CQ, the proposed
Lyapunov control law is formally unable to achieve the
desired objectives. As shown in Figure 1, however, it is
nevertheless possible to achieve a satisfactory transition
from an even eigenstate to an odd eigenstate (and vice
versa) given a properly chosen control gain k> 0. Fur-
ther improvements to the overall performance can be

0 In Re(H(u)) —Im(H(u))
J:[—/n 0 ] = ) I

Im(H() Re(H ()

Likewise, the quadratic form (y|P|y) admits the real vector
equivalency

X'"Px=(y|P|y) (817)
with
Re(P) —Im(P)
P=l'imp) Re(p) | S

This bijective mapping allows us to, for example, reformu-
late the optimal control problem (15) using real-valued func-
tions as follows:

minimize:  x(T)™P x(T) +/0Tn(t)u2(t)dt
subject to: x = 7 (Ho+ sin(u(t)) H1+ (cos(u(t)) — 1) Ha) x(t),
vte[0,T] (S19)

which extends the range of numerical tools that can be used to

solve the optimization problem and/or simulate the behavior of
the closed-loop system.
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Because of the nonconvex nature of quantum optimal control problems,
it should be noted that most solutions obtained with numerical
solvers are local optima.

achieved by choosing a different Lyapunov function
and/or introducing slight modifications to (13). Inter-
ested readers can find possible alternatives in [52], [53],
[54], [55], and [56], although it should be noted that the
existence of the invariant set Q is a structural property of
the control Hamiltonian H;.

Optimal Control

Optimization-based control design provides a systematic
framework for achieving high performance [59]. The prin-
ciple behind this method is to find the trajectory (y/(t), u(t))
that minimizes (or maximizes) an appropriate cost

ed 1T
= o[ PA Lo s
S 02 \‘XW\UN
-0.4 v
-0.6
0 5 10 15
t'C()R
(a)
1
0.8 \\
> 04
o L\v
00 5 10 15
t'COR

(b)
| k=002 — k=02 — k=2

x=0.02 xk=0.2 K=2
lim; .. V() | 9.2-1076 | 6.1-1075 | 9-1072
toow | 20 wz' | 1.9 wg' | 1.4 wf'

(or reward) function J(w(t), u(t)). For an overview of
optimization-based control of quantum systems, readers are
referred to [60], [61], and [62], which detail and compare exist-
ing numerical solvers (most of which are classified as either
Krotov methods [63], [64] or gradient ascent pulse engineer-
ing methods [65]). “Real Vector Representation” illustrates
how a quantum optimal control problem can be reformu-
lated as a traditional (that is, real-valued) optimal control
problem to enable the use of general-purpose trajectory opti-
mization methods, such as the ones found in [66] and [67].
Because of the nonconvex nature of quantum optimal
control problems, it should be noted that most solutions
obtained with numerical solvers are local optima. This arti-
cle considers the quantum optimal control problem

0.5\

u(t)
—
b

-1

FIGURE 1 The behavior of (a) the control input and (b) the
squared Hilbert—Schmidt distance obtained using the Lyapu-
nov-based controller for three different values of the control
gain k. The choice of K is subject to a tradeoff between two
opposing performance parameters. On the one hand, lower
gains are preferable because they lead to a smaller value of the
final Hilbert—Schmidt distance [that is, lIich(t)]. On the other
hand, higher gains are preferable because they entail a faster
convergence [that is, te%, which is the time at which V(f)
reaches 90% of its final value].
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FIGURE 2 The behavior of (a) the control input and (b) the squared
Hilbert—Schmidt distance obtained using the Lyapunov controller
(k=0.2) and the optimal controller [7(f)=0.01, and T = 2]. The
optimal controller is able to outperform the Lyapunov controller by
taking advantage of the fact that V(t) does not have to be a mono-
tonically decreasing function.
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Learning-based control is particularly effective in quantum applications
due to the fact that all local minima are often associated with
an equally satisfactory solution.

minimize: (y (T)|P|y (T))+ fo "o ud(t)dt

subject to: i|y(t)) = (Ho+u()Hi)|w(t)), vte[0,T] (14)

where P=([—1II,) is the terminal cost matrix and
n(t)>0, vte[0,T] is a tuning parameter. The optimiza-
tion problem (14) can be interpreted as: “Minimize the
squared Hilbert—Schmidt distance between |y (T)) and the
eigenvector |v), while also limiting the control effort.” In this
article, the solution is computed using the approach
detailed in [68]. For consistency with the Lyapunov-
based controller, it is worth noting that (11), coupled
with (y|y) =1, implies (y|P|y) =V (y). It is therefore pos-
sible to perform direct comparisons between the two con-
trol approaches by examining the behavior of V(y(t)).
Figure 2 compares the performance of the Lyapunov-based
controller with that of the optimization-based controller.
Unsurprisingly, the latter achieves better performance
in terms of both faster convergence and a more homoge-
neous use of the control input u(t). It should also be noted
that the optimal control framework enables dropping the
small-angle approximation and working directly on the
nonlinear dynamic model (6). This can be done by solving
the quantum optimal control problem

minimize: (y(T)|P|y(T)) + /0 " u(t)dt
subject to: i|y(t)) = (Ho + sin (u(t)) H1
+ (cos (u(t)) — 1) Ha)|w(t)), Vte[0,T].
(15)

Figure 3 compares the response of the dynamic model
(6), subject to the optimal control input obtained by solving
(14) and (15). As expected, solving the optimal control prob-
lem on the bilinear model is not sufficient to ensure the
convergence of the nonlinear model. This can be particu-
larly problematic when doing an open-loop implementa-
tion of the control input.

Learning-Based Control

Learning-based control design provides a simple frame-
work for generating model-agnostic control sequences. The
principle behind this method is to define the control input
u(6,t) as a parameterized time-dependent function and
use suitable learning strategies (for example, genetic algo-
rithms [69] or the Nelder-Mead method [70]) to identify the
parameter vector 6 that minimizes a given cost function

f(6). As detailed in [71], learning-based control is particu-
larly effective in quantum applications due to the fact that
all local minima are often associated with an equally satis-
factory solution. The most common input parameterization
u(6, t) is the chopped random basis (CRAB) method [72],
[73], which defines the control input as a sum of sinusoids.
Local minima that arise due to input constraints can be
addressed using the dressed CRAB method [74]. Inspired
by the CRAB formulation, this article defines the candidate
control function as

K
u(6,t)= u(Ty, t) Y aksin(wkt) + brcos(wit) (16)
k=1
1
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< AWa
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FIGURE 3 A solution to (a) the bilinear (14) and nonlinear (15) opti-
mal control problem and (b) the resulting behavior of the squared
Hilbert—Schmidt distance obtained by simulating the response of
the nonlinear model (6). In both cases, the optimization parame-
ters were 7(t)=0.01, vte[0,7], and T = 2. The comparison
serves as a validation of the small-angle approximation used to
obtain the bilinear model (7). Although the bilinear model (7) is
pervasive in the existing quantum control literature, this figure
shows that it can lead to performance degradation if the nonlin-
earities of the system are excited.
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The Nelder—-Mead Algorithm
he Nelder—Mead algorithm [S5] is a sampled gradient This is achieved by performing the following iteration rules:
descent method for finding local minima in an R" search 1) Reorder the simplex vertices so that E(x5) < ... < E(x})..
space. To do so, first define a simplex as the convex hull of 2) Compute the simplex centroid,
N + 1 vertices. This is the simplest possible polytope that can g a9 &
be defined in R" and reduces to a triangle in R? and a tetra- “ =W§0 - (521)

hedron in R®. Given a cost function E(x) with x €R", the idea 3) Compute the reflection of xjy with respect to the centroid,
of the Nelder—-Mead method is to evaluate E(x) in each of the

simplex vertices S’ = {xb, ...,xk} and then generate a new sim- Xr = Xg+ (Xg = Xn). (522)
plaxt 1 ey 4) IF E(xh) < E(x}) < E(xh_1):
N ) N ) A ; i+1 _ i _ _ i1 _ i
S EN)< S E(x). (S20) Assign xn"' = x» for n O,...,IY 1 .and XN ' =Xr;
n=0 n=0 * Proceed to step 1) of the next iteration.

1
(d)

FIGURE $11 The Nelder—Mead algorithm is a sampled-data gradient descent method that iteratively generates a new simplex (green)
with an average cost that is always lower than the previous simplex (red). Each subfigure represents a different operation of the
algorithm given the cost function E =|x|?, which is represented using contour lines. (a) Reflect: The point x, = xq + (Xg — X») satisfies
E (x0) < E(x;) < E(x1). Therefore, it is used as the vertex of the new simplex. (b) Expand: The point x, satisfies E(x;) < E(xo). Thus,
the search is extended in the descent direction by computing xe = xg + v (xg — X2), with ¥ > 1. (c) Contract: Since E(x;) = E(xz2), a
point is sought that is closer to the center of mass by computing x. = xq + p(xg — x2), with p €(0,1). However, it is only accepted if
E(xc) < E(x4). (d) Shrink: If all other conditions are not met, the simplex is too big to provide an accurate estimate of the gradient.
Thus, the size is shrunk by fixing X, and computing X1s, X2s along the connectors with x4, x,.
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5) IF E(x}) < E(x)):
e Compute the expansion

Xo=xh+y (X5 —xh), y>1 (S23)
e Assign xi"'=x, for n=0,...,N—1and xi'=argmin
{E(x7), E(xe)};
* Proceed to step 1) of the next iteration.
6) IF E(x})>E(xi):
e Compute the contraction
Xt = x5+ p(xh—xhk), 0<p<1 (S24)

e AND IF E(x{) < E (Xj-1):

o Assign X W

=xh forn=0,...,N—1and xy
* Proceed to step 1) of the next iteration.

= 548

7) ELSE: Shrink the entire simplex by computing

where 1(Ty, t) is an envelope function, and the parameters are
0 =[Ty, ax, by, wi], k€[1,..., K]. Clearly, the number of sinu-
soids K must be selected based on a tradeoff between com-
putational complexity and the desired accuracy of the final
solution. Fortunately, the model addressed in this article is
such that the transition from the first eigenstate to the
second can be achieved with only K =1. Thus, the control
input is

u(6, t) = u(Ty, t)(asin(wt) + bcos(wt)) (17)
and the envelope function is
20T .
—t) iftel0, T
;mrﬂg={““(rf> if+el0. 7 (18)
0 otherwise,

which leads to a 4D parameter space 6 =[T, a, b, w]. Each
control input estimate (9, t) is evaluated by integrating the
system dynamics (6) to obtain |y(6, t)) and evaluating the
Hilbert-Schmidt distance

£(6)=(y (6, T)|P|w (6, T)) 19
where P =(I —II,) and T is the time at which the measure-
ment is taken (typically T =Ty since the target is an eigen-
state). “The Nelder-Mead Algorithm” details a systematic
data-driven approach for finding a (locally) optimal set of
parameters. Figure 4 compares the behavior obtained with
the learning-based controller and the optimal controller
obtained by solving (15). Note that the optimal controller
used in this example features a time-varying input cost 7(t)
chosen to mimic the behavior of the envelope function (18).
Both laws were chosen to ensure a shaking function u(t)
with a smooth start and finish.

x5'=xo+ o (Xh—x0), 0<o<1. (S25)

The iterative process ends when Zh_+ | x5 —x5 | 2 <€, where
€ >0 is a tolerance value. Intuitively, steps 4) through 6) seek to
relocate the vertex with the highest cost (meaning xi) somewhere
along the line that connects X/ to the centroid xj. If no suitable
update is found, the simplex may be too large to provide a local
estimate of the descent direction, which is why point 7) shrinks
the simplex to improve the accuracy. The process ends when the
maximum distance between all of the vertices is smaller than a
given threshold, which signifies that the simplex has shrunk to a
local minimum. Conceptual realizations of the Nelder—Mead algo-
rithm applied in R? are illustrated in Figure S11.
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FIGURE 4 The behavior of (a) the control input and (b) the squared
Hilbert—Schmidt distance obtained using the optimal controller
obtained by solving (15) (optimization parameters:

0.01-100™" vt [0, T1)
n(t)=10.01 vte [Ty, Tl
0.01-100" ™ Vte (T, T]

T1=1,T2=3, and T = 4) and the learning-based controller (17)
(learned parameters: Tr=4.7621, a = 0.1842, b = 0.3966, and
w =5.6762).The two strategies perform similarly, with the optimal
controller achieving a slightly better response (in terms of both
faster settling time and lower control effort) and the learning-
based controller having the advantage of being model agnostic.
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CONCLUSIONS

This article offers a window onto a new and exciting
field of control engineering. After introducing the fun-
damental postulates of quantum physics, the dynamic
model of a BEC (that is, a cloud of ultracold atoms)
trapped in an optical lattice is derived, and its dynamic
behavior when the lattice is in its nominal configuration
is analyzed. Using eigenvector decomposition, the phys-
ical interpretation of each eigenstate and what it means
to transition from one eigenstate to another is discussed.
Finally three different control strategies (Lyapunov
based, optimization based, and learning based) for
achieving said state-to-state transitions are introduced
and compared. The article also serves as an invitation to
all members of the IEEE Control Systems Society to not
be discouraged by the perceived complexity of quantum
physics and realize that this community has much to
offer in terms of enabling the future directions of quan-
tum technology.
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