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T
he laws of quantum mechanics capture the be-
havior of physical systems at the smallest observ-
able spatiotemporal scales. By pushing systems to 
the very edge of physical limits, quantum tech-
nology has the potential to revolutionize the state 

of the art in a variety of domains, including metrology [1], 
[2], [3], [4], communication [5], [6], [7], and computing [8], 
[9], [10]. As the field continues its transition from a scientific 
curiosity to an engineering endeavor, experimental proto-
types found in physics laboratories must be converted into 
reliable hardware platforms that operate in less sheltered 
contexts. This step (from quantum science to quantum en-
gineering) represents a unique opportunity for the IEEE 
Control Systems Society to provide meaningful insights 
on how to systematically steer these systems to the desired 
operating point. 

The aim of this article is to familiarize the reader with 
quantum control by describing a physically relevant 
application [transitioning a Bose–Einstein condensate 
(BEC) from its lowest energy state to its first excited state] 
from the perspective of a classical control engineer. The 
article makes no assumptions on the audience beyond a 

basic knowledge of linear algebra, complex numbers, and 
differential equations. See also “Summary.” Specifically, 
we will 1) provide a step-by-step derivation of the dynamic 
model, 2) analyze the autonomous system to identify 
meaningful control objectives, 3) introduce a selection of 
quantum control strategies for achieving said objectives, 
and 4) compare the closed-loop behavior obtained with 
each strategy. This application-driven tutorial comple-
ments existing literature surveys [11], [12], [13] that feature 
a more comprehensive overview of quantum control 
theory in the general setting. For the reader’s convenience, 
“An Introduction to Dirac Notation” briefly introduces 
the conventional notation used in quantum literature, 
whereas “An Introduction to Quantum Mechanics” pro-
vides an overview of the fundamental mathematical pos-
tulates that describe quantum physics.
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A DYNAMIC MODEL OF TRAPPED 
ULTRACOLD ATOMS
When a gas of identical atoms is cooled close to 0 K, the 
atoms “condense” into a spatially localized region and 

collectively behave as a new entity called a BEC, which is a 
fifth phase of matter. An interesting property of BECs (also 
known as ultracold atoms) is that they exhibit quantum 
mechanical behaviors at a macroscopic scale ( ) .200 m. n  To 

Summary

This article is the product of a three-year multidisciplinary 

collaboration between a team of control engineers and a 

team of quantum scientists. In the author’s experience, the 

greatest challenge one faces when entering the field of quan-

tum control is the language barrier between the two communi-

ties. The aim of this article is to lower this barrier by showing 

how familiar control strategies (that is, Lyapunov, optimal con-

trol, and learning) can be applied in the unfamiliar setting of a 

quantum system (that is, a cloud of trapped ultracold atoms). 

Particular emphasis is given to the derivation of the model and 

the description of its structural properties. Sidebars throughout 

the article prove a brief overview of the essential notions/nota-

tion required to establish an effective communication channel 

with quantum physicists and quantum engineers. In essence, 

this article is a collection of everything that our control team 

wished they had known at the beginning of the project. It is our 

hope that it may be of assistance to members of this commu-

nity wanting to embark on their first quantum control project.

An Introduction to Dirac Notation

The Dirac (or “bra–ket”) notation [S1] is pervasive to modern 

physics literature and is used to denote linear algebraic op-

erations in Hilbert space, which is a complete vector space that 

admits an inner product operator .$ $  Although this sidebar 

focuses on finite-dimensional spaces for ease of exposition, 

the general intuition can be readily extended to infinite-dimen-

sional spaces, as detailed in [S2] and [S3]. Elements of a Hil-

bert space H  are identified using the “ket” operator .H!}  

Conversely, the “bra” operator H!} @  identifies elements 

of the inner product-induced dual space H@ . Thus, the inner 

product $ $  can be reduced to a simple multiplication be-

tween a bra $  and a ket .$  If we consider the space of com-

plex column vectors, for example, the inner product is defined 

as ,z } z }= @  where z@  is the complex conjugate transpose 

of .z  In Dirac notation, H!}  is a complex column vector, 

and H!z @  is a complex row vector satisfying .z z= @  If 

H  is finite dimensional, the ket can be expressed as

	 en n
n

N

1

H} }=
=

/ � (S1)

where }n are complex numbers, and en  are elements 

of an orthonormal basis of H, meaning that they satisfy 

| ,e e n1n n 6G H= , and | ,e e m n0m n 6 !G H= . Similarly, the bra 

can be expressed as

	 e*
n

n

N

n
1

; ;G Gz z=
=

/ � (S2)

where *
nz  is the complex conjugate of .nz  Following from (S1) 

and (S2) and the properties of an orthonormal basis, the in-

ner product reduces to ,*
n nn

N
1z } z }R= =  which satisfies the 

noncommutative property *
} z z }= ^ h . Finally, H!}  

is unitary if .1} } =  Elements in Hilbert space can be ma-

nipulated by operators in the form : .H HA "  Operators A and 

B are linear if and only if

  •  , H;A A 6; ; ; !H H H} } }=

  •  ( ) , ;HA B A B  6; ; ; ; !H H H H} } } }+ = +

  •  ( ) , , , .H,A A A C6 6; ; ; ; ; ! !H H H H H Ha } b z a } b z } z a b+ = +

Given a linear operator A, C!mo  and H; !Ho  are, respec-

tively, an eigenvalue and an eigenvector of A if they satisfy the 

property .A ; ;H Ho m o= o  Given a linear operator A, its Hermi-

tian adjoint A@  is such that A A; ;G G} }= @ . Combined with the 

noncommutative property of the inner product, the Hermitian 

adjoint satisfies | | ( | | )A A *G H G H} z z }= @ . An operator A is 

Hermitian, that is, it satisfies ,A A= @  only if all of its eigenvalues 

are real. Operators can be constructed as the outer product of 

a bra and a ket, that is, · · ;G . Notable examples include the 

identity operator I e en
N

n n1 ;GR= =  and the projection operator

	 } }P =} � (S3)

which can be used to compute the following:

•	 Projection: ; HzP}  denotes the projection of ; Hz  onto the 

unit vector .; H}  Note that ( | ) | | ( | )G H H H G H} z } } } z= =

.< ;G H H} } z zP= }

•	 Inner product, squared: ; ;G Hz zP}  denotes the mod-

ulus square of the inner product .;G H} z  Note that 

( ) .*2; ; ; ; ; ; ; ; ;G H G H G H G H G H G H} z } z } z z} }z z zP= = = }

•	 Hilbert–Schmidt distance, squared: ( )I; ;G Hz zP- }  de-

notes the squared distance between the unit vectors ; Hz  

and .; H}  Note that 1 2; ; ; ; ; ;G H G H G H} z z z z zP- = - =}

( )I; ;G Hz zP- } .
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manipulate BECs, it is convenient to “trap” them in a spa-
tially confined region using two counterpropagating laser 
beams that create a standing wave known as an optical lat-
tice. An experimental process for obtaining trapped BECs 
is described in “Obtaining a Bose–Einstein Condensate.” 
The trapped BEC can then be controlled by changing the 
phase of (that is, shaking) the optical lattice. The ability to 
make BECs has enabled a variety of quantum science and 
technology applications, such as interferometry [14], [15], 
[16], [17], vortex production [18], [19], black hole simulation 
[20], [21], [22], and lithography [23], [24]. The dynamical 
model of a BEC can be obtained by specializing the 
Schrödinger equation [(S6) in “An Introduction to Quan-
tum Mechanics”] to a cloud of trapped ultracold atoms. 
This is achieved by finding a suitable expression for the 
kinetic and potential energy operators. For simplicity, 
this article addresses a 1D model. As detailed in [25], the 
kinetic energy operator for a system expressed in a 1D 
position space x R!  is

	 K m x2
2

2

2'
2
2=- � (1)

where m is the mass of the particle and . J s1 055 10 34$'. -  is 
the reduced Planck constant. To obtain the potential energy 
operator, consider two counterpropagating laser beams of 
wavelength m  and phase .i  Their combined electromag-
netic field is

	 ( )E x E e E e( ) ( )i kx i kx
1 2= +i i+ - + � (2)

where /k 2r m=  is the wavenumber of the laser beams, and 
E1 and E2 are the amplitudes of each beam. The resulting 
electromagnetic intensity is

	 ( ) ( ) .cosI x E E E E E E kx2 2 21
2

2
2

1 2 i= = + + +) � (3)

Since the laser is usually tuned so that atoms are attracted 
to the regions of highest intensity, the minimum potential 
energy corresponds to x such that ( ) ,cos kx2 2 1i+ =  whereas 
the maximal potential energy is where (cos kx2 + ) .2 1i =-  
Based on this intuition, the potential energy operator asso-
ciated with the optical lattice is

	 ( )cosU U kx u2 20=- + � (4)

where U0 is the optical depth (that is, the difference between 
the maximum and minimum potential), and u 2i=  is the 
phase of the optical lattice (which acts as a control input for 
the system). In practice, the optical depth U0 can be mea-
sured experimentally using the procedure detailed in [26]. 
Thus, the Schrödinger equation [(S6) in “An Introduction to 
Quantum Mechanics”] specializes to

	 ( , ) ( , ) ( ) ( , )cosi t x t m x
x t U kx u x t2 2 2

2

2

2
0'

2
2 '

2
2W W W=- - + � (5)

where ( , ) |x t x/G HW W  is a time-varying wave function rep-
resented in a 1D position space. “Momentum Basis Decom-
position” details how this partial differential equation can 
be approximated as the ordinary differential equation (ODE)

An Introduction to Quantum Mechanics

Quantum theory describes the behavior and experimental 

observation of objects that are both very small and well 

isolated (for example, particles). Such objects are said to be 

“quantized” if one or more of their observable properties (for 

example, energy) are fundamentally discrete. The complete 

framework of quantum theory emerges from a few mathemati-

cal postulates:

1)	 Wave function: The state of an isolated quantum object is 

fully described by a wave function ,H; !HW  with .1;G HW W =

2)	 Observables: All observable properties of the object are as-

sociated to a Hermitian operator. Notable examples include 

position, momentum, kinetic energy, and potential energy.

3)	 Measurements: When measuring an observable A, the 

measurement outcome can only be one of its eigenvalues 

.nm  The probability of obtaining a specific outcome nm  is

	 ( )P n n; ;G Hm W P W= � (S4)

where n nn ; ;HGP =  is the projection onto the eigenvector n; H  

associated to .nm  In other words, the likelihood of measur-

ing a given eigenvalue of the observable is proportional 

to how much the wave function is aligned with the corre-

sponding eigenvector. Moreover, the state after the mea-

surement becomes

	
( )

.
P n

n
;

;H H
m

W
P W

=l � (S5)

This phenomenon is known as “wave function collapse.”

4)	 Schrödinger equation: The dynamic behavior of the wave func-

tion is governed by the complex partial differential equation

	 i t H'
2
2 ; ;H HW W= � (S6)

where H K U= +  is the Hamiltonian operator, K is the ki-

netic energy operator, U is the potential energy operator, i 

is the imaginary unit, and .1 055 10 Js34$'. -  is the reduced 

Planck constant.

Although this prescription of quantum theory is sufficient for 

the purpose of this article, it should be noted that each postu-

late admits a more general formulation. Readers interested in 

a more thorough description of quantum theory are referred to 

[25] and [S2].

Authorized licensed use limited to: UNIVERSITY OF COLORADO. Downloaded on July 12,2023 at 15:57:58 UTC from IEEE Xplore.  Restrictions apply. 



FEBRUARY 2023 «  IEEE CONTROL SYSTEMS  31

Obtaining a Bose–Einstein Condensate
hat is observed as “ temperature” is a physical quan-

tity related to the amount of energy stored in degrees of 

freedom, such as rotation, vibration, and speed of atoms. At 

0 K (that is, absolute zero), the atoms would have no energy. 

To condense a cloud of atoms into a Bose–Einstein conden-

sate (BEC), the ensemble must typically be cooled down to a 

critical temperature of around 100 nK so that their motional 

velocity is in the millimeter/second range. This multistage 

process is performed in a glass cell held under ultrahigh 

vacuum, as illustrated in Figure S1.

DOPPLER COOLING 

The initial cooling step consists in irradiating the atomic gas 

with three pairs of mutually perpendicular counterpropagating 

laser beams of properly selected polarization and frequency. 

Here, the laser frequency is slightly detuned below atomic 

resonance (that is, the frequency at which the atoms would 

absorb photons from the laser beam). Due to the Doppler ef-

fect, illustrated in Figure S2, atoms moving toward an incom-

ing laser beam experience a slight frequency shift that triggers 

photon absorption. By shining in light from all six directions, 

a laser force always opposes the direction of the atom’s mo-

tion, causing a reduction of the atom’s speed and, therefore, 

its temperature. Trapping is then accomplished via magnetic 

fields whose gradients, combined with the applied laser, intro-

duce the necessary forces to contain atoms in the center of the 

cell. This is known as a magneto-optical trap (MOT), which can 

capture roughly 109 atoms at ≈ 300 µK. Figure S3 features an 

experimental picture of a MOT. 

POLARIZATION GRADIENT COOLING 

Atoms are further cooled by spatially compressing the MOT 

and detuning the laser light frequency to perform polarization 

gradient cooling. This reduces the temperature of the trapped 

atoms to ≈ 20 µK. 

EVAPORATION COOLING 

To cool down to the nanokelvin regime where a BEC is formed, 

the atoms must undergo a final stage known as evaporative 

FIGURE S3 A close-up of a cloud of atoms contained in the 
magneto-optical trap. The size of the cloud is ≈ 4 mm.

FIGURE S1 The experimental setup used to obtain the Bose–
Einstein condensate.

F

F

(a)

(b)

FIGURE S2 An illustration of the Doppler cooling effect for atoms 
moving (a) to the right and (b) to the left. Because of the Dop-
pler effect, atoms experience a blue-shifted frequency in the 
direction they are traveling toward. Since the laser frequency is 
only slightly detuned with respect to atomic resonance, this 
Doppler shift is sufficient to trigger the absorption of photons 
from the blue-shifted laser beam. Because of the conservation 
of momentum, the absorption of a photon causes the atom to 
slow down, thereby resulting in a damping force F that always 
opposes movement. (Continued)

W
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cooling. This consists of transferring the atoms into a poten-

tial well—either magnetic or optical—and slowly lowering the 

walls of the trap potential, as illustrated in Figure S4. As the 

walls are lowered, hotter atoms are allowed to escape, and the 

remaining atoms rethermalize to colder temperatures. This is 

repeated until a BEC is achieved at ≈ 300 nK, with the forma-

tion of the condensate being quite sudden (like supercooled 

water turning to ice). Figure S5 features experimental data of a 

BEC measurement.

BEC
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FIGURE S4 Once atoms are loaded into a potential well, the well 
depth is slowly ramped down over time. As this occurs, the 
hotter atoms leave the trap, and the remaining atoms rether-
malize and become colder (the same way hot coffee is cooled 
down by the evaporation of steam). Eventually, when the trap 
is shallow enough, some of the remaining atoms will become 
cold enough to condense into a Bose–Einstein condensate 
(BEC). These atoms are shown in cyan.
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FIGURE S5 An absorption image of a typical Bose–Einstein con-
densate containing approximately 70k atoms. Absorption imaging 
is done by shining resonant light on the atoms, which is absorbed, 
and taking the natural log of the difference between that and a 
background image containing no atoms. The optical density 
(OD) is a measure of the number of atoms in the image. Both the 
x- and y-axes depict the pixel number in camera coordinates.

Obtaining a Bose–Einstein Condensate (Continued)

	 | | ( ) | ( ( ) ) |sin cosi H u H u H10 1 2H H H H} } } }= + + -o � (6)

where | H}  is a quantum state, which can be represented as 
a time-varying complex column vector, and H0, H1, and H2 
are the Hermitian matrices given in (S10) of “Momentum 
Basis Decomposition.” To further simplify the system, it is 
customary to introduce the small-angle approximation 
(that is, sinu u.  and )cosu 1.  and reduce (6) to the bilin-
ear model

	 | | | .i H uH0 1H H H} } }= +o � (7)

“Eigenstates of the Hamiltonian” addresses, among 
other things, the validity of the ODE approximation (6). The 
validity of the bilinear approximation (7) is instead dis-
cussed in the section “Optimal Control.”

SYSTEM ANALYSIS
This section analyzes the structural properties of (6) and 
(7) to identify what can and cannot be achieved through 
the use of control. We first show that the wave function 
| H}  can only evolve on the unit sphere (readers familiar 
with rigid body attitude control will recognize that this 
behavior is analogous to that of unit quaternions [27]). 

We then prove that our system does not admit any equi-
librium points on the unit sphere, and that the only 
invariant sets of the system are actually periodic orbits. 
As detailed in [25], | C N2 1!H} +  is a wave function only if 

( )| ( )t tG H} } , .t1 6=  It is therefore reasonable to expect 
that the unitary sphere {|  | | }1S C N2 1!H G H} } }= =+  is an 
invariant manifold. To verify this property under the 
generalized Schrödinger equation | ( )| ,i H uH H} }=o  we 
show that

	

| | |

( ) | | ( )
| ( ( ) ( ))| .

t
iH u iH u

i H u H u

2
2 G H G H G H

G H G H
G H

} } } } } }

} } } }

} }

= +

= - + -

= -@

o o

Since |( / )t 02 2 G H} } =  if and only if ( ) ( ),  ,H u H u u6=@   
the unit sphere S  is invariant if and only if H(u) is Her-
mit ian. Given ( ) ( ) ( ( ) )sin cosH u H u H u H10 1 2= + + -  in 
the nonlinear case (6) and ( )H u H uH0 1= +  in the bilin-
ear case (7), the invariance of S  follows directly from 
(S10) (which defines H0, H1, and H2 as Hermitian matri-
ces). Having proven that | ( )t H}  evolves on the unit 
sphere, we aim to characterize the system’s behavior 
in the absence of a control input. Specifically, given 
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( ) ,u t 0=  both (6) and (7) reduce to the same autono-
mous system

	 | | .i H0H H} }=o � (8)

Whenever ( )H 0null 0 =  [which is the case for (S10)], the 
system does not admit any equilibrium points in .S  As 
such, the traditional control objective “Design u(t) such that 
xr  is a globally asymptotically stable equilibrium point” may not 

Momentum Basis Decomposition

S ince the potential energy operator (4) is periodic, it follows 

from the Bloch theorem ([S4], Chapter 7) that the position 

space representation of the wave function ; HW  can be written 

as a linear combination of periodic functions. As a result,

	 ( , ) ( )x t x t en
n

i nk x2;G H }W W= =
3

3

=-

/ � (S7)

where ( )tn}  are time-dependent complex-valued scalars. Sub-

stituting (S7) into the Schrödinger equation (5) and omitting the 

dependency on t to simplify the notation leads to

( ) .cos

i e m e

U kx u e

2

2 2

n
n

i nk x

n
n x

i nk x

n
i nk x

2
2

2 2

0 2

' ' d} }

}

= -

- +

3

3

3

3

=- =-

o/ /

Noting that

( )e nk e2x
i nk x i nk x2 2 2 2d =-

and

( )cos kx u e e e e e e

e e e e

2 2

2 2
( ) ( )

i nk x
i k x iu i k x iu

i nk x

iu
i n k x

iu
i n k x

2
2 2

2

2 1 2 1

+ = +

= +

- -

+
-

-

it is possible to rewrite the Schrödinger equation (5) as

( )

.

i e m nk

U e e e

2 2

4

n
n

i nk x
n

n

n
iu

n
iu i nk x

2
2

2

0
1 1

2

' '} }

} }

=

- +

3

3

3

3

=- =-

- +
-

o c

^ mh

/ /

By grouping the coefficients of each basis function ,ei nk x2  

the Schrödinger equation can then be reformulated in terms of 

the individual wave function coefficients ( ),tn}  which are sub-

ject to the dynamics

	 i E e n e4 4 4n R
iu iu

n

n

n

2
1

1

'} a a
}

}

}

= - - -

-

+

o 8 >B H� (S8)

where /E k m2R
2 2'=  is the recoil energy of the trapped par-

ticle, and /U ER0a =  is the normalized lattice potential. To ob-

tain a finite ordinary differential equation (ODE), consider the 

truncated vector of coefficients
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which belongs to the Hilbert space of complex column vectors 

and can thus be defined as a wave function in its own right if 

( ) ( ) , .t t t1 6;G H} } =  To ensure that the vector in (S9) is a good 

representation of the full wave function in (S7), it is necessary 

to introduce (and verify) the assumption ( ) ,t 0n .}  ,  t 06 $  

.n N6 2; ;  Noting that ( ) ( ( ) ),sin cose i u u1 1iu != + -!  the trun-

cated version of the infinite-dimensional ODE (S8) can finally 

be rewritten as the finite ODE (7), with
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where /ER R '~ =  is the recoil frequency of the trapped 

particle.
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Eigenstates of the Hamiltonian
n interesting property of periodic potentials is that the as-

sociated eigenstates are described by alternating odd and 

even functions [S4]. Given the wave function ; HW  featured in the 

original Schrödinger equation (5), in “Momentum Basis Decom-

position,” we computed an approximate wave function ; H}  by 

collecting the N2 1+  coefficients of (S7) into a complex column 
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FIGURE S6 The first eigenstate of the Hamiltonian in (a) momentum space and (b) position space. In the momentum space represen-
tation, most of the atoms have a momentum of p 0=  and are, therefore, stationary. In the position space representation, each curve 
represents the real part of the wave function evaluated at a different angle along the periodic orbit, starting from 0i =  (cyan) to i r=  
(magenta). Most of the atoms can be found in the wells of the lattice potential. 
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FIGURE S8 The third eigenstate of the Hamiltonian in (a) momentum space and (b) position space. In the momentum space represen-
tation, most of the atoms have a momentum of ,p k2! '=  but there is also a sizable portion with .p 0=  This describes a system with 
three clouds of atoms: two of which are moving in opposite directions, whereas one is standing still. In the position space representa-
tion, the wave function is evaluated starting from 0i =  (cyan) to i r=  (magenta). Most of the atoms can be found at the peaks of the 
optical lattice potential, whereas a smaller portion is trapped in the wells. 
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FIGURE S7 The second eigenstate of the Hamiltonian in (a) momentum space and (b) position space. In the momentum space represen-
tation, most of the atoms have a momentum of ,p k2! '=  meaning that there are actually two clouds of atoms moving in opposite direc-
tions. In the position space representation, the wave function is evaluated starting from /2i r=-  (cyan) to /2i r=  (magenta). Most of 
the atoms can be found where the slope of the optical lattice is at its steepest. 
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vector [ ],N Nf; H} } }= -  under the assumption that ,0n} =  

.n N6 2; ;  This led to the formulation of the approximate Hamilto-

nian H0  in (S10). This sidebar studies the eigenvectors of H0  to 

1) verify the validity of the simplifying assumption and 2) provide 

a physical interpretation of what it means to go from one eigen-

state to another. To provide some context, we introduce the no-

tion of momentum space, which is a rescaled Fourier transform 

of the position space, that is,

	 ( ) ( )p x e dx
2
1 /ipx

'
}

r
W=

3

3 '

-

-# � (S12)

in a similar way to how the frequency domain is the Fourier trans-

form of the time domain. The main difference is that (due to the 

scaling factor )'  the position and momentum pair is measured 

in meters and Joule seconds/meter, respectively, as opposed to 

the time and frequency pair (which is measured in seconds and 1/

seconds, respectively) Equation (S7) can thus be interpreted as a 

“spatial frequency” decomposition of the wave function ,; HW  where 

each coefficient n}  represents the amplitude of a spatial sinusoid 

with momentum ( ).nk2$'  Figures S6–S9 illustrate the first four 

eigenstates of the system in both momentum space and position 

space. The momentum space representation is obtained simply 

by plotting the tho  eigenvector of the Hamiltonian matrix .H0  The 

position space representation is then obtained by computing

	 ( )x x en
n N

N
i nk x2;G H oW W= =o

=-

/ � (S13)

and plotting the position representation ( ( ))Re e xi Wi o  for differ-

ent values of i  to show how the wave function evolves along 

the periodic orbit .Oo  Based on these figures, we note the fol-

lowing emerging behavior: 

Momentum space properties

•	 If o  is odd, the eigenvector is symmetric with respect to 

,p 0=  and most of the population is in (( ) ) ( )./p k1 2 2! 'o= -  

•	 If o  is even, the eigenvector is antisymmetric with respect 

to ,p 0=  and most of the population is in ( ) ( )./p k2 2! 'o=

Position space properties

•	 Each eigenstate features o  lobes within the period x !  

[ ( ), ]./ /k k2 2r r-

•	 Odd-numbered eigenstates are symmetric with respect to 

,x 0=  whereas even-numbered eigenstates are antisym-

metric with respect to .x 0=

The validity of the ordinary differential equation (6) can 

therefore be verified a posteriori by checking whether or not 

a given numerical simulation excited the higher order modes 
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FIGURE S9 The fourth eigenstate of the Hamiltonian in (a) momentum space and (b) position space. In the momentum space 
representation, most of the atoms have a momentum of ,p k4! '=  meaning that there are once again two clouds of atoms moving 
in opposite directions, but they are separating at a faster rate than the second eigenstate. In the position space representation, 
the wave function is evaluated starting from /2i r=-  (cyan) to /2i r=  (magenta). The population is predominantly divided into 
four lobes within a single span of the lattice potential [ , ]./ /x k k2 2! r r-  

0.4

0.3

0.3
0.25

0.15
0.1
0.05

0.2

0.2

0.1

–4'k –2'k 2'k 4'k0

(a)

(b)

FIGURE S10 Experimental measurements of the (a) first and (b) 
second eigenstates of trapped ultracold atoms. These mea-
surements were taken by turning off the optical lattice, waiting 
a set amount of time (that is, the time of flight), illuminating the 
atoms with a short pulse of resonant light, and then using a 
camera to acquire the shadows cast by the atoms. Turning off 
the laser causes the Bose–Einstein condensate to split into 
multiple clouds of atoms based on their momentum distribu-
tion, which enables turning a momentum measurement into a 
position measurement. The population (that is, )n

2; ;}  of each 
momentum bin (that is, )kn2 '  can then be computed by quan-
tifying the optical intensities of each blob.

(Continued)
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be a well-posed problem for quantum systems. To formu-
late a feasible control objective, let R!mo  and | S!Ho  be an 
eigenvalue/eigenvector pair of H0. Given the initial condi-
tion | ( ) | ,e0 iH H} o= i  with [ , ),0 2!i r  system (8) admits the 
analytic solution

	 | ( ) |t e ( )i tH H} o= i m- o � (9)

which belongs to the (invariant) periodic orbit

	 {| | | [ , )}.e 0 2O i !H H} o i r= =o
i � (10)

Geometrically, note that if S  is a hypersphere in a 
( )N4 2+ -dimensional space, each of the N2 1+  periodic orbits 
Oo  is a circle lying on .S  Since each periodic orbit is iso-
lated from all of the other ones, a suitable control objective 
for quantum systems is “Design u(t) such that a given periodic 
orbit SO 1o  is a globally asymptotically stable limit cycle.” To 
illustrate why this control objective is physically relevant, 
“Eigenstates of the Hamiltonian” analyzes the structure of 
the eigenvectors | Ho  and explains what it means to drive 
the system to an eigenstate.

CONTROL STRATEGIES
This section provides a side-by-side comparison of notable 
strategies for quantum control synthesis. Readers wishing 
to familiarize themselves with these methods can find a 
variety of working examples to run on the Quantum Tool-
box in Python (QuTiP) open source software [28], [29], [30]. 
Because of the introductory nature of this article, the 
numerical simulations will only consider the ideal case 
where the model is perfectly known and the state vector is 
fully accessible. Unfortunately, acquiring real-time mea-
surements to perform quantum feedback control is gener-
ally not a trivial task [31], [32], [33], [34], [35], [36] since the 
very act of measuring the system inevitably introduces 
modifications to the state [35], [36]. Nevertheless, given suf-
ficiently accurate models and/or suitable correction meth-
ods, the control strategies described in this article have 
been shown to produce satisfactory results when imple-
mented in a predominantly open-loop fashion because of 

the high repeatability of quantum experiments. This includes 
Lyapunov-based control [37], [38], [39], [40], optimization-
based control [41], [42], [43], [44], and learning-based control 
[45], [46], [47], [48].

Lyapunov Control
Lyapunov-based control design provides a relatively straight-
forward framework for obtaining an analytical feedback 
law [49], [50]. The principle behind this method is to 
choose an appropriate Lyapunov function candidate 
( )V }  and enforce ( )V 01}o  by defining a suitable control 

law ( ) .u }  For an overview of Lyapunov-based control of 
quantum systems, the reader is referred to [51], [52], [53], 
[54], [55], and [56], which provide several alternative 
options for ( )V }  and derive the resulting ( )u }  for the 
case of bilinear systems. This article is limited to the 
Hilbert–Schmidt distance between the state | H}  and a 
target eigenvector | ,Ho  that is,

	 ( ) | | .V 1 G H} } }P= - o � (11)

To verify that (11) is a Lyapunov candidate function, 
note that the following hold, given | S!Ho  satisfying 

| | :H0 H Ho m o= o

1)	 | | [ , ],  ;0 1 S6! !G H} } }Po

2)	 | | ,1 O+ !G H} } }P =o o  with SO 1o  satisfying (10).
Noting that | | | | ,G H G HG H} } } o o }P =o  the time derivative 

of the Lyapunov candidate function is

	
|

| |
|

.V dt
d

dt
dG H

G H G H
G H} o

o } o }
} o

=- +o c m

Given the bilinear dynamic model (7), compute

	

| | | ( )

| | | | ,

| | ( ) |

| | | | .

dt
d i H uH

i H iu H

dt
d i H uH

i H iu H

0 1

0 1

0 1

0 1

G H G H G H

G H G H

G H G H G H

G H G H

o } o } o }

o } o }

} o } o } o

} o } o

= = - +

=- -

= = - +

= +

o

o

of the system. This can be done by monitoring the value of 

( ) ( ) ,t tN; ;G H} }P  where N NN ; ;HGP =  is the projection onto the 

Nth eigenvector, and ensuring it stays under a set tolerance. 

A comparison of Figures S6 and S7 provides a physical in-

terpretation of what it means to transition from the first ei-

genstate (also known as the “ground state”) to the second 

eigenstate. This transition takes a Bose–Einstein condensate 

(BEC) that is essentially at rest (which is the starting condi-

tion of a BEC obtained by bringing the atoms to a very low 

energy state) and separates it into two counterpropagating 

clouds of atoms with a momentum of .k2! '  Similarly, the 

transition from the first to the fourth eigenstate means split-

ting the BEC into two counterpropagating clouds of atoms 

with a momentum of .k4! '  Figure S10 features experimental 

measurements of the first and second eigenstates of a BEC 

trapped in an optical lattice.

Eigenstates of the Hamiltonian (Continued)
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Since |nH  is an eigenvector, we have | | | ,H f0G H G Ho } m o }=  
leading to

	

( | | | ) | |
( | | | )
| | | | | | | | |

| | | .

V i u H i

u H

i iu H i

iu H

f

f

f f

1

1

2
1

2

1

#

G H G H G H G H
G H G H
G H G HG H G H
G HG H

m o } o } } o o }

m } o } o

m o } o } } o m o }

o } } o

= + -

+

= + -

-

o

Noting that | | | | | |H H1 1G HG H G HG Ho } } o o } } o= )^ h  and 
that ( ),Imi a a a2- =-)^ h  the time derivative of the Lyapu-
nov candidate function finally becomes

	 | | |ImV u H2 1G HG Ho } } o=-o ^ h � (12)

which can be made negative semidefinite by choosing the 
control law

	 | |Imu H e |i
1G Hl o }= + G H} o^ h� (13)

where 02l  is a tuning parameter and a+  is the angle of the 
complex number a. With some abuse of notation, it is 
common to assign 0 0+ =  to prevent u from being undefined 

when | .0G H} o =  As detailed in [57] and [58], it would be pos-
sible to prove that Oo  is a globally asymptotically stable limit 
cycle if \| | , | .H 0 S O1 6! !G H Ho } } o  Unfortunately, this system 
does not satisfy this requirement. Indeed, it follows from 
(S11) that H1 structurally ensures the following:

»» If | H}  is an even vector, |H1 H}  is an odd vector.
»» If | H}  is an odd vector, |H1 H}  is an even vector.

A C N2 1+  vector is even (odd) if its ith element is equal 
(opposite) to its N i2 1 -th+ -^ h  element for , , .i N1 1f! +" ,  
As discussed in ”Eigenstates of the Hamiltonian,” the 
target eigenvector | Ho  is either odd or even. Given that 
the inner product between odd and even vectors is 
always zero, we note that | | , | ,H 01 6 !G H Ho } } X=  where 
X  is the set of all odd (or even) unit vectors if | Ho  is odd 
(or even). Due to the fact that ,On 1X  the proposed 
Lyapunov control law is formally unable to achieve the 
desired objectives. As shown in Figure 1, however, it is 
nevertheless possible to achieve a satisfactory transition 
from an even eigenstate to an odd eigenstate (and vice 
versa) given a properly chosen control gain .02l  Fur-
ther improvements to the overall performance can be 

Real Vector Representation
typical assumption in the systems and control literature is 

that the state belongs to a real vector space. Indeed, a sur-

prising number of numerical solvers and toolboxes implicitly 

rely on this assumption. Thus, it may be useful to know how to 

redefine a complex-valued wave function as real state vectors. 

Given ,Cn; !H}  consider the bijective mapping

	
( )
( )

Re
Imx I x i I x0 0n n

;

;
;

H
H H

}

}
}= = += 6 6G @ @ � (S14)

where x R n2!  is the new state vector and In is the identity ma-

trix of size n. With no loss of generality, it can then be shown 

that the complex ordinary differential equation (ODE)

	 ( )i H u; ;H H} }=o � (S15)

which is equivalent to ( )iH u; ;H H} }=-o , can be rewritten as 

the real ODE

	 )JH(x u x=o � (S16)

where 

, ( )
( ( ))
( ( ))

( ( ))  
( ( ))  

.J H
Re
Im

Im
ReI

I
u

H u
H u

H u
H u

0
0

  
 

 
   n

n
=

-
=

-; ;E E

Likewise, the quadratic form P; ;G H} }  admits the real vector 

equivalency

	 Px x PT ; ;G H} }= � (S17)

with

	
( )
( )

( )  
( )  

.P
Re
Im

Im
Re

P
P

P
P   

=
-; E � (S18)

This bijective mapping allows us to, for example, reformu-

late the optimal control problem (15) using real-valued func-

tions as follows:

imize:

subject to:

( )

( ( ( )) ( ( ( )) ) ) ( ),
,

( ) ( ) ( )

J H H H

Pmin

sin cos
t T

x T x T t u t dt

x u t u t x t1
0

T T

0 1 2

0

2

6 !

h

= + + -

+

o

6 @

#

� (S19)

which extends the range of numerical tools that can be used to 

solve the optimization problem and/or simulate the behavior of 

the closed-loop system.

Acquiring real-time measurements to perform quantum feedback control 

is generally not a trivial task since the very act of measuring the system 

inevitably introduces modifications to the state.

A
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achieved by choosing a different Lyapunov function 
and/or introducing slight modifications to (13). Inter-
ested readers can find possible alternatives in [52], [53], 
[54], [55], and [56], although it should be noted that the 
existence of the invariant set X  is a structural property of 
the control Hamiltonian .H1

Optimal Control
Optimization-based control design provides a systematic 
framework for achieving high performance [59]. The prin-
ciple behind this method is to find the trajectory ( ( ), ( ))t u t}  
that minimizes (or maximizes) an appropriate cost 

(or  reward) function ( ( ), ( )).J t u t}  For an overview of 
optimization-based control of quantum systems, readers are 
referred to [60], [61], and [62], which detail and compare exist-
ing numerical solvers (most of which are classified as either 
Krotov methods [63], [64] or gradient ascent pulse engineer-
ing methods [65]). “Real Vector Representation” illustrates 
how a quantum optimal control problem can be reformu-
lated as a traditional (that is, real-valued) optimal control 
problem to enable the use of general-purpose trajectory opti-
mization methods, such as the ones found in [66] and [67]. 
Because of the nonconvex nature of quantum optimal 
control problems, it should be noted that most solutions 
obtained with numerical solvers are local optima. This arti-
cle considers the quantum optimal control problem
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FIGURE 1 The behavior of (a) the control input and (b) the 
squared Hilbert–Schmidt distance obtained using the Lyapu-
nov-based controller for three different values of the control 
gain l. The choice of l is subject to a tradeoff between two 
opposing performance parameters. On the one hand, lower 
gains are preferable because they lead to a smaller value of the 
final Hilbert–Schmidt distance [that is, ( )] .limV t

t"3
 On the other 

hand, higher gains are preferable because they entail a faster 
convergence [that is, ,t %90  which is the time at which V(t) 
reaches 90% of its final value].
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FIGURE 2 The behavior of (a) the control input and (b) the squared 
Hilbert–Schmidt distance obtained using the Lyapunov controller 

.0 2l =^ h and the optimal controller [ ( ) . ,t 0 01h =  and T = 2]. The 
optimal controller is able to outperform the Lyapunov controller by 
taking advantage of the fact that V(t) does not have to be a mono-
tonically decreasing function.

Because of the nonconvex nature of quantum optimal control problems,  

it should be noted that most solutions obtained with numerical  

solvers are local optima.
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( )| | ( ) ( ) ( )

| ( ) ( ( ) )| ( ) , [ , ]

T P T t u t dt

i t H u t H t t T0

minimize:

subject to:

T

0

2

0 1 6 !

G H

H H

} } h

} }

+

= +o

#
�

(14)

where ( )P I P= - o  is the terminal cost matrix and 
( ) ,t 02h  [ , ]t T06 !  is a tuning parameter. The optimiza-

tion problem (14) can be interpreted as: “Minimize the 
squared Hilbert–Schmidt distance between | ( )T H}  and the 
eigenvector | ,Ho  while also limiting the control effort.” In this 
article, the solution is computed using the approach 
detailed in [68]. For consistency with the Lyapunov-
based controller, it is worth noting that (11), coupled 
with | ,1G H} } =  implies | | ( ).P VG H} } }=  It is therefore pos-
sible to perform direct comparisons between the two con-
trol approaches by examining the behavior of ( ( )).V t}  
Figure 2 compares the performance of the Lyapunov-based 
controller with that of the optimization-based controller. 
Unsurprisingly, the latter achieves better performance 
in terms of both faster convergence and a more homoge-
neous use of the control input u(t). It should also be noted 
that the optimal control framework enables dropping the 
small-angle approximation and working directly on the 
nonlinear dynamic model (6). This can be done by solving 
the quantum optimal control problem

:

:

( )| | ( ) ( ) ( )

| ( ) ( ( ( ))
( ( ( )) ) )| ( ) , [ , ].

sin
cos u t H t t T

T P T t u t dt

i t H u t H
1 0

minimize

subject to

T

0

2

0 1

2 6 !

G H

H
H

} } h

}

}

+

= +

+ -

o

#

� (15)

Figure 3 compares the response of the dynamic model 
(6), subject to the optimal control input obtained by solving 
(14) and (15). As expected, solving the optimal control prob-
lem on the bilinear model is not sufficient to ensure the 
convergence of the nonlinear model. This can be particu-
larly problematic when doing an open-loop implementa-
tion of the control input.

Learning-Based Control
Learning-based control design provides a simple frame-
work for generating model-agnostic control sequences. The 
principle behind this method is to define the control input 
( , )u ti  as a parameterized time-dependent function and 

use suitable learning strategies (for example, genetic algo-
rithms [69] or the Nelder–Mead method [70]) to identify the 
parameter vector i  that minimizes a given cost function 

( ).f i  As detailed in [71], learning-based control is particu-
larly effective in quantum applications due to the fact that 
all local minima are often associated with an equally satis-
factory solution. The most common input parameterization 
( , )u ti  is the chopped random basis (CRAB) method [72], 

[73], which defines the control input as a sum of sinusoids. 
Local minima that arise due to input constraints can be 
addressed using the dressed CRAB method [74]. Inspired 
by the CRAB formulation, this article defines the candidate 
control function as

	 ( , ) ( , ) ( ) ( )sin cosu t T t a t b tf k
k

K

k k k
1

i n ~ ~= +
=

/ � (16)
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FIGURE 3 A solution to (a) the bilinear (14) and nonlinear (15) opti-
mal control problem and (b) the resulting behavior of the squared 
Hilbert–Schmidt distance obtained by simulating the response of 
the nonlinear model (6). In both cases, the optimization parame-
ters were ( ) . ,  [ , ],t t T0 01 06 !h =  and T = 2. The comparison 
serves as a validation of the small-angle approximation used to 
obtain the bilinear model (7). Although the bilinear model (7) is 
pervasive in the existing quantum control literature, this figure 
shows that it can lead to performance degradation if the nonlin-
earities of the system are excited.

Learning-based control is particularly effective in quantum applications  

due to the fact that all local minima are often associated with  

an equally satisfactory solution.
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The Nelder–Mead Algorithm

The Nelder–Mead algorithm [S5] is a sampled gradient 

descent method for finding local minima in an RN  search 

space. To do so, first define a simplex as the convex hull of  

N + 1 vertices. This is the simplest possible polytope that can 

be defined in RN  and reduces to a triangle in R2  and a tetra-

hedron in .R3  Given a cost function E(x) with ,x RN!  the idea 

of the Nelder–Mead method is to evaluate E(x) in each of the 

simplex vertices }{ , ,S x xi i
N
i

0 f=  and then generate a new sim-

plex S i 1+  such that

	 ( ) ( ) .E x E x
n

N

n
i

n

N

n
i

0

1

0

1
=

+

=

/ / � (S20)

This is achieved by performing the following iteration rules:

1)	 Reorder the simplex vertices so that ( ) ( ) .E x E xi
N
i

0 f# # .

2)	 Compute the simplex centroid,

	 .x N x1
1

g
i

N
i

n

N

0

=
+

=

/ � (S21)

3)	 Compute the reflection of xN
i  with respect to the centroid,

	 ( ) .x x x xr
i

g
i

g
i

n
i= + - � (S22)

4)	 IF x( ) ( ) ( ):E x E x Er
i

N
ii

10 1 # -

•	 Assign x xn
i

n
i1 =+  for , ,n N0 1f= -  and ;x xN

i
r
i1 =+

•	 Proceed to step 1) of the next iteration.

FIGURE S11 The Nelder–Mead algorithm is a sampled-data gradient descent method that iteratively generates a new simplex (green) 
with an average cost that is always lower than the previous simplex (red). Each subfigure represents a different operation of the 
algorithm given the cost function 2,E x< <=  which is represented using contour lines. (a) Reflect: The point ( )x x x xr g g 2= + -  satisfies 
( ) ( ) ( ) .E x E x E xr0 11 #  Therefore, it is used as the vertex of the new simplex. (b) Expand: The point xr satisfies ( ) ( ) .E x E xr 0#  Thus, 

the search is extended in the descent direction by computing ( ),x x x xe g g 2c= + -  with c > 1. (c) Contract: Since ( ) ( ),E x E xr 2$  a 
point is sought that is closer to the center of mass by computing ( ),x x x xc g g 2t= + -  with ( , ) .0 1!t  However, it is only accepted if 
( ) ( ) .E x E xc 11  (d) Shrink: If all other conditions are not met, the simplex is too big to provide an accurate estimate of the gradient. 

Thus, the size is shrunk by fixing x0 and computing ,x xs s1 2  along the connectors with x1, x2.
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where ( , )T tfn  is an envelope function, and the parameters are 
[ , , , ],T a bf k k ki ~=  , , ][ .k K1 f!  Clearly, the number of sinu-

soids K must be selected based on a tradeoff between com-
putational complexity and the desired accuracy of the final 
solution. Fortunately, the model addressed in this article is 
such that the transition from the first eigenstate to the 
second can be achieved with only .K 1=  Thus, the control 
input is

	 ( , ) ( , ) ( ( ) ( ))sin cosu t T t a t b tfi n ~ ~= + � (17)

and the envelope function is

	 ( , )
[ , ]sin

T t T t t T

0

0if

otherwise,
f f

f
2 !

n

r

=
c m* � (18)

which leads to a 4D parameter space [ , , , ].T a bfi ~=  Each 
control input estimate ( , )u ti  is evaluated by integrating the 
system dynamics (6) to obtain | ( , )t H} i  and evaluating the 
Hilbert–Schmidt distance

	 ( ) ( , )| | ( , )f T P TG Hi } i } i= � (19)

where ( )P I P= - o  and T is the time at which the measure-
ment is taken (typically T Tf$  since the target is an eigen-
state). “The Nelder–Mead Algorithm” details a systematic 
data-driven approach for finding a (locally) optimal set of 
parameters. Figure 4 compares the behavior obtained with 
the learning-based controller and the optimal controller 
obtained by solving (15). Note that the optimal controller 
used in this example features a time-varying input cost ( )th  
chosen to mimic the behavior of the envelope function (18). 
Both laws were chosen to ensure a shaking function u(t) 
with a smooth start and finish.
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FIGURE 4 The behavior of (a) the control input and (b) the squared 
Hilbert–Schmidt distance obtained using the optimal controller 
obtained by solving (15) (optimization parameters:
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, ,T T1 31 2= =  and T = 4) and the learning-based controller (17) 
(learned parameters: . ,T 4 7621f =  a = 0.1842, b = 0.3966, and 

. ) .5 6762~= The two strategies perform similarly, with the optimal 
controller achieving a slightly better response (in terms of both 
faster settling time and lower control effort) and the learning-
based controller having the advantage of being model agnostic.

5)	 IF ( ) ( ):E x E xr
i i

0#

•	 Compute the expansion

	 ( ),x x x x 1e
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N
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•	 Assign x xn
i

n
i1 =+  for , ,n N0 1f= -  and argminxN

i 1 =+  

{ ( ), ( )};E x E xr
i

e
i

•	 Proceed to step 1) of the next iteration.

6)	 IF ( ) ( ):E x E xr
i

N
i$

•	 Compute the contraction

	 ( ),x x x x 0 1c
i

g
i

g
i

N
i 1 1t t= + - � (S24)

•	 AND IF E ( ) ( ):x E xc
i

N
i

–11

•	 Assign x xn
i

n
i1 =+  for , ,n N0 1f= -  and ;x xN

i
c
i1 =+

•	 Proceed to step 1) of the next iteration.

7)	 ELSE: Shrink the entire simplex by computing

	 ( ), .x x x x 0 1n
i i

n
i i1

0 0 1 1v v= + -+ � (S25)

The iterative process ends when ,x xn
N

n
i i

1 0
2< < # eR -=  where 

02e  is a tolerance value. Intuitively, steps 4) through 6) seek to 

relocate the vertex with the highest cost (meaning )xN
i  somewhere 

along the line that connects xN
i  to the centroid .xg

i  If no suitable 

update is found, the simplex may be too large to provide a local 

estimate of the descent direction, which is why point 7) shrinks 

the simplex to improve the accuracy. The process ends when the 

maximum distance between all of the vertices is smaller than a 

given threshold, which signifies that the simplex has shrunk to a 

local minimum. Conceptual realizations of the Nelder–Mead algo-

rithm applied in R2  are illustrated in Figure S11.
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CONCLUSIONS
This article offers a window onto a new and exciting 
field of control engineering. After introducing the fun-
damental postulates of quantum physics, the dynamic 
model of a BEC (that is, a cloud of ultracold atoms) 
trapped in an optical lattice is derived, and its dynamic 
behavior when the lattice is in its nominal configuration 
is analyzed. Using eigenvector decomposition, the phys-
ical interpretation of each eigenstate and what it means 
to transition from one eigenstate to another is discussed. 
Finally three different control strategies (Lyapunov 
based, optimization based, and learning based) for 
achieving said state-to-state transitions are introduced 
and compared. The article also serves as an invitation to 
all members of the IEEE Control Systems Society to not 
be discouraged by the perceived complexity of quantum 
physics and realize that this community has much to 
offer in terms of enabling the future directions of quan-
tum technology.
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