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Given the rapidly increasing drought and temperature stresses associated with cli-

mate change, innovative approaches for food security are imperative. One understu-

died opportunity is using feral crops—plants that have escaped and persisted without

cultivation—as a source of genetic diversity, which could build resilience in domesti-

cated conspecifics. In some cases, however, feral plants vigorously compete with

crops as weeds, challenging food security. By bridging historically siloed ecological,

agronomic, and evolutionary lines of inquiry into feral crops, there is the opportunity

to improve food security and understand this relatively understudied anthropogenic

phenomenon.

Summary

The phenomenon of feral crops, that is, free-living populations that have established

outside cultivation, is understudied. Some researchers focus on the negative conse-

quences of domestication, whereas others assert that feral populations may serve as

useful pools of genetic diversity for future crop improvement. Although research on

feral crops and the process of feralization has advanced rapidly in the last two

decades, generalizable insights have been limited by a lack of comparative research

across crop species and other factors. To improve international coordination of

research on this topic, we summarize the current state of feralization research and

chart a course for future study by consolidating outstanding questions in the field.

These questions, which emerged from the colloquium “Darwins' reversals: What we

now know about Feralization and Crop Wild Relatives” at the BOTANY 2021 confer-

ence, fall into seven categories that span both basic and applied research:
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(1) definitions and drivers of ferality, (2) genetic architecture and pathway, (3) evolu-

tionary history and biogeography, (4) agronomy and breeding, (5) fundamental and

applied ecology, (6) collecting and conservation, and (7) taxonomy and best practices.

These questions serve as a basis for ferality researchers to coordinate research in

these areas, potentially resulting in major contributions to food security in the face of

climate change.
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1 | INTRODUCTION

Feral or de-domesticated plants, that is, free-living populations of

domesticated crops that have escaped cultivation, are often consid-

ered negative consequences of domestication in that they can pose

wide-ranging undesirable challenges to crop production and wild eco-

systems (Qiu et al., 2020). Feral rice, for example, is estimated to

reduce cultivated rice yield in the United States by up to 5.7 million

metric tons annually, a greater impact than either of the two leading

rice pathogens (Durand-Morat et al., 2018). Feral crops are also

thought to serve as vectors for unintended transgene spread into cul-

tivated and wild relatives, as in the case of turnip rape (Brassica rapa)

in Japan and Argentina (Hecht et al., 2014; Pandolfo et al., 2018; Saji

et al., 2005). However, feral plant populations have also been pro-

posed as a genetic resource to improve crops, as well as unique study

systems for understanding general evolutionary processes (Mabry,

Turner-Hissong, et al., 2021; Razifard et al., 2020; Wu et al., 2021).

For example, feral rice populations have been used to identify poten-

tially useful genetic variation for stress tolerance (Guan et al., 2019; Li

et al., 2017; Wang et al., 2019). Despite this potential, feral popula-

tions are underrepresented in global germplasm collections and are

often misidentified as wild (McAlvay, 2018).

Past and current research on feral plants ranges from uncover-

ing the evolutionary processes involved and the genetic basis of

feral traits to the control of invasive and agriculturally problematic

feral plants and the ecology of feral populations. For example,

advances have been made in understanding the pathways to ferality,

with feralization occurring either through introgression from wild rel-

atives (exoferality) or without such introgression (endoferality)

(Cronin et al., 2020; Gressel, 2005). Many of our insights into the

genetic and phenotypic changes involved in ferality are derived from

research on feral rice, which has identified key loci, traits, and evolu-

tionary pathways associated with feralization (Li et al., 2022;

Wedger & Olsen, 2018; Zhou et al., 2021). Recently, ferality has

also become a topic of interest in the study of domestication, as

wild–weedy–domesticated complexes were likely frequent in the

early stages of domestication for many plants (Allaby et al., 2021;

Purugganan, 2019, 2022).

There have been several calls to examine ferality in a more sys-

tematic and comparative manner. Gering et al. (2019) argue for a

concerted effort to compare feral plants with their domesticated

relatives and wild populations, as well as feral plants across popula-

tions or species. Little is known, for example, about how the effects

of artificial selection on crops continue to influence descendent feral

populations. Mabry, Turner-Hissong, et al. (2021) highlight the power

of leveraging genomic resources designed for studying agriculturally

important domesticated counterparts. With these resources, we can

begin to understand the genomic architecture involved not only in

feralization but also in domestication, natural selection, and local

adaptation, especially in cases where feralization has occurred in the

same domesticated species independently in different parts of the

world. To support a more coordinated and systematic approach to

feral crops that bridges the work of researchers spanning different

disciplinary and organismal foci, we present a series of outstanding

questions in the field generated from a colloquium at the 2021

BOTANY conference.

2 | THE STATE OF FERALIZATION
RESEARCH

To better understand the landscape of feral research, we performed a

bibliometric analysis to visualize the citation relationships between

individual articles on feral plants and the institutions where the

authors of these articles were based (Methods S1). We found that

cross-citation, and therefore likely scholarly communication, appears

to be limited based on focal species (Figure 1) and terminology

(e.g., “weedy,” “volunteer,” and “feral”). Among the factors that may

play a role in this isolation are the distinct emphases on applied

research such as weed control studied by agronomists and on funda-

mental evolutionary research by evolutionary biologists. Alternatively,

or additionally, this pattern may be driven by a tendency to use

single-species model systems for specific research questions rather

than multispecies comparative studies. For example, the genetic

mechanisms underpinning ferality in rice have been extensively stud-

ied but rarely addressed in other species (Gering et al., 2019; Qiu

et al., 2020). Similarly, feral Brassica napus has been the target of

numerous studies investigating the potential for transgene spread

(Pandolfo et al., 2016) but less thoroughly addressed in most other

feral organisms.

This lack of communication has likely hampered the full potential

for progress on a cohesive, multidisciplinary global effort to address
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fundamental questions about feral plants and feralization. Despite

being internally connected, in several cases, clusters of articles

focused on individual species are not closely associated with other

species in the same family, for example, radish (Raphanus) and Brassica

are both members of the Brassicaceae, but their clusters are not

closely associated, nor are rye (Secale) and Sorghum (Poaceae). There

is a lack of research that leverages the potential power of comparisons

among feral cereals like wheat, rye, rice, sorghum, and maize and of

feral Brassicaceae crops like field mustard (B. rapa), oilseed rape

(B. napus), and radish. There is also untapped potential to compare

similar types of crops across families, for example, comparing feral oil-

seed crops like oilseed rape and sunflower. Although clusters of arti-

cles that focus on particular species are to be expected to some

degree, the limited citations of studies on other species that are

shared between species-focused publications indicate that there may

be limited integration at a generalizable and theoretical level.

3 | CHARTING A COURSE FOR THE
FUTURE FERALIZATION RESEARCH

In an attempt to build more bridges across clusters of researchers

focused on feral crops, a colloquium on crop feralization was orga-

nized at the 2021 Botanical Society of America Conference (BOTANY

2021). Presenters and attendees were brought together in discussion

to develop a list of open questions in feralization research (Methods

S2). These questions were then combined with results from a survey

that was sent to additional researchers in the field and organized into

seven categories, which are discussed below.

3.1 | Definitions and drivers of ferality

The first set of questions highlight the need for research to under-

stand how feral populations form and persist (or do not persist) over

time. Asking these questions, especially across multiple crop species,

would enable researchers to better define ferality and provide insights

into their use to further crop improvement.

1. How do we define ferality?

2. How do we differentiate between domestic, feral, and inva-

sive plants?

3. How frequently does feralization occur, both within and

across species?

4. How common are endoferality, crop-to-crop exoferality, and

crop-to-wild exoferality?

5. Are there climatic conditions associated with a greater fre-

quency of feralization?

6. Are there plant traits that make feralization more liable to

happen?

7. Are any taxonomic groups more prone to giving rise to feral

plants?

8. How does the degree of domestication affect the likelihood

of becoming feral?

9. What determines the short- or long-term persistence of fera-

lized populations?

A baseline need in feralization research is a more comprehensive

understanding of how many species feralization has occurred in. To

date, feral populations have been identified across several species and

F IGURE 1 Citation network analysis of research articles focused on feral crops. Each circle represents a separate publication. The size of the

circle is proportional to the number of connections it has to other publications. Circle colors correspond to the topic species. Importantly, this
does not include all possible publications on feralization, just those available on Web of Science retrieved with the search terms used.
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families (Table 1). Additional species likely have feral populations, but

genetic and/or phenotypic research has not been conducted to distin-

guish them from wild relatives. Additionally, there is still a lack of con-

sistency and consensus on the definition of ferality, possibly due to

researchers approaching feral crops from different fields. Some

authors define feral organisms as populations derived from crops that

have at least one wild type or “weedy” trait not typically present in

crop forms, which allow the line to exist outside of cultivation on a

multiyear basis (Gressel, 2005). Others define feral organisms more

broadly as populations that have persisted outside of human propaga-

tion, regardless of trait changes (Gering et al., 2019). Wu et al. (2021)

suggest that when diagnosing ferality, the ecological role should be

considered in addition to the genetic donor (domesticate or wild rela-

tive) and origin (endoferal, exoferal, or exo-endoferal). Definitions of

ferality are further complicated by ambiguity surrounding terminology.

For example, “weedy” can be applied to plants adapted to disturbance

and/or growing in undesirable areas in competition with cultivated

plants. Finally, several of the questions highlight the need to investi-

gate characteristics of crop species that make them more susceptible

to ferality. For example, diploid crops may be more likely to become

feral than polyploid crops (Wu et al., 2021), but it is not clear whether

certain families, traits, life history, or environmental conditions predis-

pose crops to become feral.

3.2 | Genetic architecture and pathway

The second set of questions deal with the process of ferality at a

genetic level. Several recent studies have determined that feralization

is not exclusively the “undoing” of domestication, where genes are

being returned to an original undomesticated state, but may involve

changes that occur at loci unrelated to domestication (Gering

et al., 2019; Qiu et al., 2020; Wu et al., 2021). Additional research is

needed to further understand the genomic signature of each case of

feralization.

1. Are there unifying genetic mechanisms underlying crop

ferality?

2. Does adaptation to the natural environment after cultivation

occur through fixation of standing variation or through newly

emerged mutations during feralization?

3. Is feralization achieved primarily through few changes of

large effect or small effect changes across many loci?

4. Can feralization accompany adaptation in the form of

increased plasticity?

5. What are the roles of potentially adaptive genomic features

in genetic compatibility/incompatibility between crops and

wild relatives?

6. What is the relationship between when a crop was domesti-

cated and the tendency toward feralization?

7. Are certain domestication traits more reversible than others?

8. Do feral crops tend to have more or less genetic diversity

than their cultivated relatives?T
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Most of our understanding of feralization genetics comes from work

in rice (Oryza spp.). Researchers found adaptation to the natural envi-

ronment after cultivation can occur through mutations in pre-existing

alleles, or as found in O. sativa ssp. indica and O. sativa ssp. japonica

feral rice, some of the selected alleles were derived from new muta-

tions (Li et al., 2022; Scossa & Fernie, 2021). Also in rice, researchers

have found that, in some cases, independently evolving feral popula-

tions have several shared “de-domestication” genomic blocks (Qiu

et al., 2020). These blocks include genes with known functions related

to protecting seeds against pathogens (Guo et al., 2013), indicating

that there are at least some shared genomic targets of selection in

parallel feralization events in rice (Qiu et al., 2020). Yet, other

research has found that although most de-domesticated rice acces-

sions carry the domesticated allele at the sh4 gene (which deter-

mines delayed shattering in a domesticated background), these

plants still effectively disperse their seeds at maturity (Thurber

et al., 2010). The shattering phenotype in these feral accessions

was thus fixed through different mutations at other loci. Therefore,

weediness adaptation appears to be occurring largely through dif-

ferent genetic mechanisms in some feral rice populations (Li

et al., 2017; Qi et al., 2015). Beyond rice, recent research on sun-

flowers has found that a feral population exhibited rapid adaptation

of increased seed dormancy, but not increased competitive ability

or herbicide resistance (Hernández et al., 2022). In general, it is the

assumption that genome-wide nucleotide diversity will be lower in

feral populations than in their respective inferred crop wild rela-

tives but higher than that of cultivated populations (Hernández

et al., 2022; Qiu et al., 2020). However, research that compares

wild, feral, and domesticated populations has yet to determine if

this is true across all crop complexes, especially when comparing

exo- and endoferals.

3.3 | Evolutionary history and biogeography

The third set of questions relates to the evolutionary origins and bio-

geography of feral crops. Feralization likely has a history that is as long

as domestication. Humans have long altered wild plants through culti-

vation and selection (unintentional or intentional); similarly, domesti-

cated plants escape cultivation and evolve further through selection

and hybridization. The process of feralization can proceed in a variety

of different ways (Gressel, 2005). Below we discuss a few questions

concerning the evolutionary history of feralization:

1. How often are feral lineages in a single species polyphyletic?

2. What is the role of human and non-human transportation of

plants in ferality?

3. How does ancient feralization differ from recent or contem-

porary feralization events?

4. Is there introgression between wild-feral-domesticated forms

from the beginning of most domestication processes?

5. What type of insights can feral populations provide in under-

standing the history of domestication?

6. How does the direction of introgression relate to phenotype

(e.g., are feral crops that have wild traits introgressed differ-

ent from wild individuals that have crop traits introgressed)?

7. How much gene flow from feral crops to conspecifics occurs

(for both incipient feral plants and those that evolved

further)?

8. What is the role of landraces versus breeders' varieties in fer-

alization? How does gene flow from feral crops impact land-

races and breeders' varieties differently?

Recent studies on Brassica oleracea (Mabry, Rowan, et al., 2021),

B. rapa (McAlvay et al., 2021), and rice (Londo & Schaal, 2007) have

found evidence for multiple independent feralization events at vary-

ing timescales and paths to ferality (exoferal or endoferal). Feral and

cultivated plants often coexist with the potential for extensive back-

crossing. This complicates the interpretation of the phylogeny, espe-

cially when trying to clarify the biogeographic patterns of feral plants

transported across different regions, especially when subsequent

backcrossing homogenizes their genomic background with local culti-

vars. One study on rice revealed that extensive gene flow from

domesticated to wild populations has eroded or replaced a substan-

tial portion of the genetic diversity of wild rice (Wang et al., 2017).

Recent work suggests that domestication evolved as a landscape pro-

cess in which disconnected populations of plants were sustained by

human contact and gene flow (Allaby et al., 2022; Spengler, 2020).

Although not specifically stated that some of these coexisting popu-

lations could be feral, descriptions of these plants—wild populations

with low levels of domestication syndrome alleles—certainly fit the

description, indicating that feral crops may have always played a role

in domestication. We know that feral populations have been of inter-

est to researchers for over 100 years. In 1850, at least four different

“weedy” rice types were documented (Craigmiles, 1978). Two

decades later, Charles Darwin (Darwin, 1868) also described the pro-

cess of feralization.

In our turnip and carrot beds a few plants often

“break” — that is, flower too soon; and their roots are

generally found to be hard and stringy, as in the parent

species. By the aid of a little selection, carried on dur-

ing a few generations, most of our cultivated plants

could probably be brought back, without any great

change in their conditions of life, to a wild or nearly

wild condition.

3.4 | Agronomy and breeding

Feral crop populations can serve as important germplasm resources

for improving crops with a range of agronomic traits, including adapta-

tion to biotic and abiotic stress factors. However, gene flow involving

feral crop populations in agricultural landscapes may have negative

consequences for maintaining crop genetic uniformity and achieving

novel trait confinement. Here, the following questions highlight
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the beneficial and detrimental impacts of feral crops, as well as poten-

tial management avenues to thwart the establishment of feral

populations.

1. Can feral crops be used as genetic resources for crop

improvement to make cultivated crops more locally adapted

or provide useful traits already embedded in a more favorable

genetic background? What specific traits from feral crops

could be of value? Are there opportunities to introgress genes

from feral plants to endow tolerance to biotic and abiotic

stress factors?

2. Is there an opportunity to redomesticate feral crops using

classical breeding or genome editing?

3. Do sympatric feral populations unintentionally impart adap-

tive variation into crops via gene flow?

4. Can we intentionally conduct breeding that produces crops

with less ferality potential?

5. How does the use of certified weed-free seed help prevent

the dispersal of feral plants?

6. What agronomic management practices influence the forma-

tion of feral crop populations and how can they be modified

to prevent their establishment?

7. Do feral crops act as refuges for pollinators or pests?

8. Are there any ecosystem services offered by feral populations

in agricultural landscapes?

9. Can feral populations serve as a component of a metapopula-

tion for specific plant species in agricultural landscapes?

Recently, Pisias et al. (2022) reviewed the possibility of utilizing feral

crops, which have a more similar genomic background to crops than

their wild relatives, for crop improvement using de novo domestication,

especially through genome-editing techniques (Curtin et al., 2022;

Fernie & Yan, 2019; Lemmon et al., 2018; Shan et al., 2020; Wu

et al., 2021; Zsögön et al., 2018). Depending on the species, this process

could still require extensive baseline research to establish transforma-

tion and tissue culture regeneration systems. However, feral popula-

tions could be integrated into crop improvement methods using

traditional breeding techniques, such as marker-assisted backcrossing,

as well. Because feral populations likely harbor genes related to toler-

ance to biotic and abiotic stress, these plants could play important roles

in creating locally adapted crops (Bohra et al., 2022; Burgarella

et al., 2019; Gutaker et al., 2022; Van Tassel et al., 2020; Zsögön

et al., 2022). Additionally, it has been suggested that feral crops could

be redomesticated into completely new crops. Although few documen-

ted examples have been confirmed genetically in crops, such as B. rapa,

(McAlvay, 2018), there are potential candidates, such as cultivated red

rice, which might have been redomesticated from feral red rice in some

places (Wu et al., 2021). However, a large majority of research to

date on feral crops has been centered around the negative effects of

competition with crops, or transgene spread (Al-Ahmad et al., 2006;

Gressel, 2015; Gressel & Al-Ahmad, 2005). Understanding the

landscape genetics of feral plants and their crop conspecifics at

multiple scales as has been done with some feral animals (Delgado-

Acevedo, 2010) could provide insights into the microevolutionary forces

involved in wild–feral–crop and feral–crop complexes, which could, in

turn, shed insight on management, domestication, and other topics.

3.5 | Fundamental and applied ecology

Feral plants offer a useful test system with which to address key eco-

logical and eco-evolutionary questions due to their relationship with

conspecific crops that have carefully studied genomes and evolution-

ary histories. On the other hand, feral plants also tend to have certain

tendencies that distinguish them from many wild plants, such as an

affinity for disturbed anthropogenic areas (Garnier et al., 2008;

Warwick & Stewart, 2005), persistent genetic/evolutionary character-

istics retained from domestication, such as differences in life history

trade-offs (Gering et al., 2019; Meyer & Purugganan, 2013), and some-

times complex genealogies deriving from populations brought

together artificially by humans. Addressing the questions below would

not only contribute to the fundamental understanding of plant ecology

but also the control of invasive or otherwise problematic feral plants.

1. How do feral crops fit into the larger ecological and evolu-

tionary footprint of humans in the Anthropocene?

2. How do feral plants adapt to novel environments? How does

this differ from local adaptation in non-feral plants? Does the

genetic heritage of feral plants facilitate their adaptation to a

changing climate?

3. What can feral plants teach us about invasion ecology?

4. What determines the success of feral crops in novel environ-

ments? Why is it rare to find feral crops in mature forests?

5. What makes some feral crops such effective competitors in

agricultural fields?

6. What ecological characteristics are typical of feral plants at

the scales of individual traits, integrated phenotypes, and

biotic interactions?

7. How often does a necessity for crop mimicry play a role in

ferality?

Anthropogenic ecological impacts over the last several tens of thou-

sands of years have gained renewed attention recently (Ellis &

Ramankutty, 2008; Otto, 2018), but a better understanding of the role

of ferals in anthropogenic biomes or “anthromes” sensu (Ellis, 2015)

could help move us toward a more comprehensive understanding of

how humans have sculpted ecosystems throughout time. Studies of

local adaptation in model or near-model organisms have been an

important source of insights in the past (Leinonen et al., 2009), as have

feral species (Franks et al., 2007), but there are abundant opportunities

for more work in this area, especially in the genomic era (Saastamoinen

et al., 2018). Feral organisms also present an opportunity to investigate

invasion ecology, including eco-evolutionary questions, as many feral

organisms are also invasive (Ellstrand et al., 2010). This work might

include predictive models to anticipate future invasion and habitat suit-

ability and characterization of the features that tend to make feral
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plants such effective competitors in certain environments. Finally, a

detailed investigation into functional ecological traits as has been pro-

posed for domestication (Meyer et al., 2012; Milla et al., 2015) would

shed further light on the ecological dimensions of feralization.

3.6 | Collecting and conservation

Conservation was a common concern among participants both in the

sense of conserving wild crop relatives and conserving native ecosys-

tems. Resolving these unknowns would facilitate the management of

ecosystems invaded by feral populations and the preservation of valu-

able crop wild relative diversity.

1. What are the impacts of feral populations on native diversity?

2. To what extent have the genomes of closely related wild rela-

tives of crops been eroded or replaced by feral crops?

3. How do feral plants become invasive?

4. What is the frequency of feral ornamentals?

5. How prevalent are transgenes in feral populations? How

often do they serve as a bridge to spread them to other

populations?

6. How will climate change affect ferality?

7. Might feral populations act as “bridgeheads” for herbivores

or pathogens that attack wild relatives?

8. Are certain feral populations a relevant target for genetic con-

servation, assuming they acquire novel genetic variation?

Comprehensive reviews have not yet been undertaken to gauge the

relative ecological impact of feral crops compared to non-feral species

on native biodiversity. Likewise, research that assesses the presence

and/or impact of gene flow and introgression with wild conspecifics/

congenerics is needed (Ellstrand et al., 2013; Gering et al., 2019).

Insights gleaned from the fast-growing field of invasion biology, which

encompasses studies of rapid evolution, invasibility, and eco-

evolutionary dynamics could be potentially translatable to feral

models. Although feral crops account for up to 14% of invasive spe-

cies in the United States, feral ornamental plants account for up to

half of invasive species in the United States but are even less well-

studied than feral crops (Culley & Hardiman, 2009; Li et al., 2004;

Reichard & Campbell, 1996). Understanding pathways to domestica-

tion and feralization in ornamentals could provide a useful parallel

study system to crops. Both feral crops and ornamentals could be use-

ful systems for studying “drivers versus passengers,” an understudied

hypothesis (Wilson & Pinno, 2013) asking if invasive drive community

change or if they are passengers following environmental change such

as disturbance. This is an unresolved area, but one, which may be very

relevant to feral species due to their origin in disturbed cropping sys-

tems. Despite questions about transgene spread mediated by feral

populations being the driver of one of the initial waves of interest in

feral plant research (Allainguillaume et al., 2006; FitzJohn et al., 2007;

Warwick et al., 2008), there are still outstanding questions about the

frequency of its occurrence. Although range expansion and rapid

evolution of many species are anticipated with climate change and

other environmental shifts (Franks et al., 2014), it is not clear whether

feral plants will be impacted differently due to their unique evolution-

ary histories and preadaptations to anthropogenic ecosystems.

Despite their widespread occurrence, feral crops are under investi-

gated compared to truly wild relatives, despite their potential to har-

bor useful alleles. Including feral populations in germplasm collection

and conservation may provide a resource for adapting crops in the

future.

3.7 | Taxonomy and best practices

To address the questions above and others, the authors also discussed

methods and best practices for moving forward collaboratively in this

field:

1. Is it possible to develop a standardized terminology around

feral crops to facilitate communication between researchers?

2. What are the best methods for understanding feralization?

3. Can we do experimental feralization?

4. How can herbarium specimens (or specimens in general) be

used to understand feralization?

5. How can we standardize our methods for compatibility across

studies?

6. What are the best practices for naming feral populations?

7. How can we address the issue of wild relatives being feral in

seed banks?

8. Can we increase the exchange of information with

researchers studying feralization in animals to inspire ques-

tions and methods for plants?

The first question relates to the importance of the wording we use to

describe feral crops. Researchers from across fields use the terms

weedy, feral, and domestication in different ways, which can hamper

communication (Ammann et al., 2005). As mentioned above, the term

“weedy” can refer to ecological strategy or competition with desirable

plants, and definitions of ferality can include or exclude trait change

as a criterion. Because feral populations are often confused with wild

populations, they are minimally sampled or left out of studies. Taxo-

nomic confusion has also hampered research. For example, feral

B. rapa has been alternatively called Brassica rapa ssp. sylvestris, Bras-

sica rapa ssp. campestris, or simply B. campestris–each also referring to

truly wild B. rapa despite separate evolutionary histories (McAlvay

et al., 2017). One option would be to give these feral populations a

new infraspecific taxonomic rank as has been done in rice (Oryza

sativa forma spontanea), but this is not widely agreed upon (Roma-

Burgos et al., 2021). By clarifying taxonomy, researchers can then

address challenges in seed banks where wild accessions are actually

feral populations. Finally, researchers should reach out beyond plants

to collaborators studying feralization in animals and other organisms

to find ways in which we can work synergically, possibly to identify

any shared patterns in becoming feral across plants and animals.
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4 | CONCLUSIONS

Although above we highlight a wide range of open research questions

in feralization research, we recognize that there are an even greater

number of questions not addressed, that will be spurred by continued

research and conversation. As hopefully demonstrated here, under-

standing feralization is interdisciplinary in nature, as it has already—

and will need to continue to—span disciplines that include both basic

and applied research. As the questions suggest, the field of ferality

research is well-positioned to enter a new phase. Rice has been estab-

lished as an evolutionary and genomic model for ferality, laying the

foundation for large-scale comparative work across species that could

build theory and generalizable knowledge. Other emerging directions

include the use of feral populations in breeding programs, reexamining

domestication in light of the role of feralization, and rapid adaptation

of feral populations. Working as a global community and using shared

terminology and methods will allow for more efficient and concerted

work in this field, with potentially important implications for food

security, conservation, plant breeding, and understanding of evolu-

tionary processes.
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