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Email: amcalvay@nybg.org mate change, innovative approaches for food security are imperative. One understu-

Given the rapidly increasing drought and temperature stresses associated with cli-

died opportunity is using feral crops—plants that have escaped and persisted without
Funding information

National Science Foundation, Grant/Award cultivation—as a source of genetic diversity, which could build resilience in domesti-
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cated conspecifics. In some cases, however, feral plants vigorously compete with
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crops as weeds, challenging food security. By bridging historically siloed ecological,
agronomic, and evolutionary lines of inquiry into feral crops, there is the opportunity
to improve food security and understand this relatively understudied anthropogenic
phenomenon.

Summary

The phenomenon of feral crops, that is, free-living populations that have established
outside cultivation, is understudied. Some researchers focus on the negative conse-
quences of domestication, whereas others assert that feral populations may serve as
useful pools of genetic diversity for future crop improvement. Although research on
feral crops and the process of feralization has advanced rapidly in the last two
decades, generalizable insights have been limited by a lack of comparative research
across crop species and other factors. To improve international coordination of
research on this topic, we summarize the current state of feralization research and
chart a course for future study by consolidating outstanding questions in the field.
These questions, which emerged from the colloquium “Darwins' reversals: What we
now know about Feralization and Crop Wild Relatives” at the BOTANY 2021 confer-

ence, fall into seven categories that span both basic and applied research:
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climate change.
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1 | INTRODUCTION

Feral or de-domesticated plants, that is, free-living populations of
domesticated crops that have escaped cultivation, are often consid-
ered negative consequences of domestication in that they can pose
wide-ranging undesirable challenges to crop production and wild eco-
systems (Qiu et al., 2020). Feral rice, for example, is estimated to
reduce cultivated rice yield in the United States by up to 5.7 million
metric tons annually, a greater impact than either of the two leading
rice pathogens (Durand-Morat et al, 2018). Feral crops are also
thought to serve as vectors for unintended transgene spread into cul-
tivated and wild relatives, as in the case of turnip rape (Brassica rapa)
in Japan and Argentina (Hecht et al., 2014; Pandolfo et al., 2018; Saji
et al., 2005). However, feral plant populations have also been pro-
posed as a genetic resource to improve crops, as well as unique study
systems for understanding general evolutionary processes (Mabry,
Turner-Hissong, et al., 2021; Razifard et al., 2020; Wu et al., 2021).
For example, feral rice populations have been used to identify poten-
tially useful genetic variation for stress tolerance (Guan et al., 2019; Li
et al., 2017; Wang et al., 2019). Despite this potential, feral popula-
tions are underrepresented in global germplasm collections and are
often misidentified as wild (McAlvay, 2018).

Past and current research on feral plants ranges from uncover-
ing the evolutionary processes involved and the genetic basis of
feral traits to the control of invasive and agriculturally problematic
feral plants and the ecology of feral populations. For example,
advances have been made in understanding the pathways to ferality,
with feralization occurring either through introgression from wild rel-
atives (exoferality) or without such introgression (endoferality)
(Cronin et al., 2020; Gressel, 2005). Many of our insights into the
genetic and phenotypic changes involved in ferality are derived from
research on feral rice, which has identified key loci, traits, and evolu-
tionary pathways associated with feralization (Li et al., 2022;
Wedger & Olsen, 2018; Zhou et al.,, 2021). Recently, ferality has
also become a topic of interest in the study of domestication, as
wild-weedy-domesticated complexes were likely frequent in the
early stages of domestication for many plants (Allaby et al., 2021;
Purugganan, 2019, 2022).

There have been several calls to examine ferality in a more sys-
tematic and comparative manner. Gering et al. (2019) argue for a
concerted effort to compare feral plants with their domesticated

(1) definitions and drivers of ferality, (2) genetic architecture and pathway, (3) evolu-
tionary history and biogeography, (4) agronomy and breeding, (5) fundamental and
applied ecology, (6) collecting and conservation, and (7) taxonomy and best practices.
These questions serve as a basis for ferality researchers to coordinate research in

these areas, potentially resulting in major contributions to food security in the face of

crops, cultivation, domestication, feralization, genetic resources, plant breeding, weedy

relatives and wild populations, as well as feral plants across popula-
tions or species. Little is known, for example, about how the effects
of artificial selection on crops continue to influence descendent feral
populations. Mabry, Turner-Hissong, et al. (2021) highlight the power
of leveraging genomic resources designed for studying agriculturally
important domesticated counterparts. With these resources, we can
begin to understand the genomic architecture involved not only in
feralization but also in domestication, natural selection, and local
adaptation, especially in cases where feralization has occurred in the
same domesticated species independently in different parts of the
world. To support a more coordinated and systematic approach to
feral crops that bridges the work of researchers spanning different
disciplinary and organismal foci, we present a series of outstanding
questions in the field generated from a colloquium at the 2021
BOTANY conference.

2 | THE STATE OF FERALIZATION
RESEARCH

To better understand the landscape of feral research, we performed a
bibliometric analysis to visualize the citation relationships between
individual articles on feral plants and the institutions where the
authors of these articles were based (Methods S1). We found that
cross-citation, and therefore likely scholarly communication, appears
to be limited based on focal species (Figure 1) and terminology

<,

(e.g., “weedy,” “volunteer,” and “feral”). Among the factors that may
play a role in this isolation are the distinct emphases on applied
research such as weed control studied by agronomists and on funda-
mental evolutionary research by evolutionary biologists. Alternatively,
or additionally, this pattern may be driven by a tendency to use
single-species model systems for specific research questions rather
than multispecies comparative studies. For example, the genetic
mechanisms underpinning ferality in rice have been extensively stud-
ied but rarely addressed in other species (Gering et al., 2019; Qiu
et al., 2020). Similarly, feral Brassica napus has been the target of
numerous studies investigating the potential for transgene spread
(Pandolfo et al., 2016) but less thoroughly addressed in most other
feral organisms.

This lack of communication has likely hampered the full potential

for progress on a cohesive, multidisciplinary global effort to address
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Citation network analysis of research articles focused on feral crops. Each circle represents a separate publication. The size of the

circle is proportional to the number of connections it has to other publications. Circle colors correspond to the topic species. Importantly, this
does not include all possible publications on feralization, just those available on Web of Science retrieved with the search terms used.

fundamental questions about feral plants and feralization. Despite
being internally connected, in several cases, clusters of articles
focused on individual species are not closely associated with other
species in the same family, for example, radish (Raphanus) and Brassica
are both members of the Brassicaceae, but their clusters are not
closely associated, nor are rye (Secale) and Sorghum (Poaceae). There
is a lack of research that leverages the potential power of comparisons
among feral cereals like wheat, rye, rice, sorghum, and maize and of
feral Brassicaceae crops like field mustard (B. rapa), oilseed rape
(B. napus), and radish. There is also untapped potential to compare
similar types of crops across families, for example, comparing feral oil-
seed crops like oilseed rape and sunflower. Although clusters of arti-
cles that focus on particular species are to be expected to some
degree, the limited citations of studies on other species that are
shared between species-focused publications indicate that there may

be limited integration at a generalizable and theoretical level.

3 | CHARTING A COURSE FOR THE
FUTURE FERALIZATION RESEARCH

In an attempt to build more bridges across clusters of researchers
focused on feral crops, a colloquium on crop feralization was orga-
nized at the 2021 Botanical Society of America Conference (BOTANY
2021). Presenters and attendees were brought together in discussion
to develop a list of open questions in feralization research (Methods
S2). These questions were then combined with results from a survey
that was sent to additional researchers in the field and organized into

seven categories, which are discussed below.

3.1 | Definitions and drivers of ferality

The first set of questions highlight the need for research to under-
stand how feral populations form and persist (or do not persist) over
time. Asking these questions, especially across multiple crop species,
would enable researchers to better define ferality and provide insights
into their use to further crop improvement.

How do we define ferality?
How do we differentiate between domestic, feral, and inva-
sive plants?

3. How frequently does feralization occur, both within and
across species?

4. How common are endoferality, crop-to-crop exoferality, and
crop-to-wild exoferality?

5. Are there climatic conditions associated with a greater fre-
quency of feralization?

6. Are there plant traits that make feralization more liable to
happen?

7. Are any taxonomic groups more prone to giving rise to feral
plants?

8. How does the degree of domestication affect the likelihood
of becoming feral?

9. What determines the short- or long-term persistence of fera-
lized populations?

A baseline need in feralization research is a more comprehensive
understanding of how many species feralization has occurred in. To

date, feral populations have been identified across several species and

QSUIIT SUOWWO)) dANEAI)) d]qeorjdde o) Aq POUIIA0S oIk SIOIIE Y aSN JO AN 10J ATRIqIT SUIUQ AJ[IAN UO (SUOHIPUOD-PUB-SULID)/WOI" K[IM’ATRIqI[aul[uo//:sd)y) suonipuo)) pue swia ], oy 998 "[£207/L0/60] uo Areiqry auruQ Loip ‘2901 ¢ddd/z001°01/10p/woo Koqim-Areiqiauruo yduy/:sdny woiy papeojumod ‘0 ‘11927LST



25722611, 0, Downloaded from https://nph.onlinelibrary.wiley.com/doi/10.1002/ppp3.10367, Wiley Online Library on [09/07/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

MABRY ET AL

(cTOC “lB 3
Adeyoz :810T “le 19 U9qO
‘9T0C “[e 32 piezeyyjeg-soio)

(STOZ “le 32 0g)
(TZ0T “|e 32 zanely)
(z10C “le 30

pInogAey ‘9T0Z “aYdsed)

(€T0Z “Ie 39 Ateyoz)
18¥5/IU

‘sejjes3ulplaidsionMmm//:sdiy

00582/s3122ds/31

‘puejauIA)SIaAIpolg sdew //:sdy

(0zoz “le3e
193U “020C “|e 33 luoiS3e|
T20T “|e 39 ‘uemoy ‘Augein)

(€102 “Ie 39 Aeyoz)

(ozoz “le e
J98UBM ‘Z20T “Ie 10 esng)

(600€ ‘vewipleH 9 A3||nD)

(¢TOTZ “|e 32 Bassoq)
(£00T “le 32 311S)
(eT0OT “IE 32 Ateyoz)

(810C "l 32
3uaz ‘1Z0T “|e 38 UeAD)

(8T0C “le 30
ueAed :€T0Z “|e 19 euen-yea)

(#TOT “Ie 32 AoE|Npesy)

(TZ0C “le 30
XosIM ‘0Z0Z “|e 38 uluoiD)

(0TOZ “Ie 39 Ueuuelyieeseg)

suoe}d JuadY

uleds dA33
‘elqesy N ‘eleyes 3N ‘elsv MS

BUlyD MS

02IX3|N

2doung |esjua) ‘odIX3N

uiseq UeauelIapaN
elulojiel ysn pue
‘puejeaz MaN ‘9IyD ‘[eSnpod
‘uteds ‘eoueuq Sewusg

‘AueuiIan ‘spuepiayiaN
3yl ‘YN ‘pueja4 jo saduel |e3seod

snseane)
‘Aaspn] N ‘UeauespaIN N
BXSEIGON PUB BJOSBUUIIA VSN

vsn

S93€31S payuN IN
3IyD ‘eluewoy

323319 pue eisy MS

/gl

e[nsuluad ueaq|

uejsadeq

adoun3 ‘epeue)

VSN ‘epeued

(s)uonedo| jesa4

Hni4

El[s[AEF-EYN

1eq14
El[e[SEEEIN

pue ujeis

93eu04

3|qe1asan

jnu aaJ ]

pue Jaq14

|ejusweulQ

Hni4
Hni4

ulels

ulels

Ells[aEY-EYN

N

aniy

ures3
pue a8eJo

asn dou)

|eluuatad

[enuuy
leluuasad

/lenuuy

[enuuy

[enuuy

|eluuaiq
/lenuuy

snonpipaQ

[enuuy

snonpaq

|eluuaiad
|eluualad

[enuuy

[enuuy

Jeluualad

snonpiaQ

snonpiaQ

|eluualad

Aioysiy o417

|eJ940X3/|elaj0pu]

|eJ240pUa-0X3

|eJ240pUa-0X3

;|esajopua
/|e1240x3

|e4a40pul

adA} |eaaq

Qeadedaly

2e30€31gINdND)

SeadeAleN

oe3de0d

seadeqe4

Seaoedisselg

aeaoede

oeadeqeuue)

9E32eS0Y

9E32eS0Y
9832esS0y

seadeqe

oeadeod

oeadelalsy

9E32es0Y

2E32eS0Y

aeadeqe

Ajjwey

wnaubjuods
wnapioH

sweu |eJa4

‘UO[JEULIOJUI UMOUYUN 93edIpul Saysep
UHM S[|9D "SWeu uowwod 3y} 03 3X3U (¢) Jew uollssnb e Aq pajedipul aJe suoleindod |esa) pswijuodun yim sdou) "sdoud jednyndiioy/[ednyjndtide [ea) pawdijuod pue pajdadsng

(p1afyA1o0p
X|uaoyd) wied 93eq

(snaizps
siwnon)) Jaquunon?

(wninsay
wnidAsso9) uoy0)

(sAbw paz) uio)

(bAIIDS
DIDIA) Y2I9A UOWIWIOD)

(paopJ3j0
paIsspig) sdotd 3]0

(pApS
DauUDISL)) INUISAYD

(pA1IDS Sigbuub))
dwaH/siqeuue)

(bupAJa||pd
sniAd) Jead Aus|jed

(sijpauapiod0
sngny) Auaqdsed yoe|g

("dds sngny) Auiagydelg

(D1jIAI2 DIDIA) YDIA J33NG

(24pBInA winap.aoH) Asjieg
(snjpunp.apd

DIDUAD) SYOYDIY
(papiuawiip

snun.d) y0oLdy

(pan1sawiop snjby) a|ddy

(oA1IDS 08D2IPIN) el

aAneas doad

T 31avl


https://maps.biodiversityireland.ie/Species/28500
https://maps.biodiversityireland.ie/Species/28500
https://www.verspreidingsatlas.nl/5481
https://www.verspreidingsatlas.nl/5481

wn (ssnunuo))
(0T0CZ “le 3
ZalIsINg (£T0TZ “|e 3@ o4anbse))
(so0z ‘n7)
(8T0C “le 1

1IPEYO :S00T “|E 32 ||DLIOIN)
(70T ‘puesss||3 3 1931ng)

(0T0T "I 3

Jaquny] {6TOT “le 39 ung

‘020C “le 32 NID *£TOT “le 32

NI 10T “le 3 NID ‘20T
‘£T0C “[e 32 17:£T0C “|e 32 3H)

(8002 “le 30
AS|py ‘0TOT “[e 32 puesss||3)

(¢661 ‘pienbiein 13 POOM)

(€T0C “IB 3
Aleyoz :£00z ‘@Aey| R adioy])

(T2Z0T 90 3 uayD)

(€102 “|e 3 Aeyoz)
(000 ‘us|Iv
R uuewauuads ‘Zoog “Ie 12
BUNM3IA 00T “|e 18 ejjesed
3p 1666T “IE 32 O|j[018UY)

dIN AQ UOIJEAISSTO [eU0SIad

(#66T HulydS
‘9TOT “|e 32 oj|opued)

(696T “13IsQY)

(T20zZ “Ie 32 uuewydsng)
(¢z0T “Ie 32 LoUIYSOA)
(600 ‘pledwog)

(#86T “12 32 39 3p)
(€TOT “|e 32 AuryoZ)

(610T “Ie 19 93ed)

suoped Juaday

MABRY ET AL

adoin3

ed1JY 3583 ‘edaWy YHoN
ejuloylied :vsn

SPIMPIOM

eunUsIY VSN
$33e35 PaNUN S

eisy M pue adoung
vsn

spuejs|
Jleajeg pue AJDIS ‘eljesysny

sexa] vsn

eunuagiy

Auewsn
ueder

eIsauopu| ‘oaulog

ey

uiseq UeaueLIa}IPa|N

elpuj

(s)uonyedoj |esa4

l[e)
'O

ulelo

utels

ulels

El[s[AEF-EYN

jnu aad ]

unig
uni4

El[s[AEY-EYN

l1o pue 34

Ells[aE-EYN

|lo
pue 9|qe3adaA

ulels

N4
Hnig
uni4

ulels

uni

Elle[=AEEEYN

asn dou)

[enuuy

[enuuy

[enuuy

[enuuy

[enuuy

[eluualq
/lenuuy

|eluualad

|eluuaiad
|eluuaiad

|eluuasad
/leluuaig

|eluualad

|eluuasad
/lenuuy

[eluualq
/lenuuy

[enuuy

|eluualad
|eluuaiad

|eluualad

[enuuy

Jeluualad

|eluualad

Aioysiy 3y

|esaj0puy

|BJ240X3/|el240pu]

|esaj0pug

|BI24OPUS-0Xd
/|edajoxa /|esaj0pul

|eJ240pU/[B43)0XT

|es2j0x3

|BJ240X3/|ela40pu]

|eJ240x3

|eJ240x3

adAy |eaa

Qeadelalsy

seadeqe4

oeadeod

2es0e0d

9e30e0d

seadedisselg

seaoepue|3nf

9E32eS0Y

2E30EeS0Y

seadeldy

2e32e9|0

SeadeAleln

oeadedisselg

oe3a0e0d

9830es0Yy
9E3JEUO|N

oeade|pJiedeuy

9e30e0d

9E3JeUo|N

Seadeue|os

Ajwey

auedsapeys

dds bzA10Q
901y Apaap

aweu [esa4

25722611, 0, Downloaded from https://nph.onlinelibrary.wiley.com/doi/10.1002/ppp3.10367, Wiley Online Library on [09/07/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

(snnuup
SnyjubIaH) Jamopuns

(xow auIA|H) ueagAos

(40j0219
wnygios) wny3ios

(a|paiad 3|p235) DAY

(pAIDS DZAIQ) 901y

(snanps snubydpy) ysipey

(stsuautouljji bAIpD) uedad

(Slunwiwiod sniAd) Jead

(parstad snunid) yoead

(pAI3DS DIDUIISDY) diusied

(pavdoina p3jQ) aAIIO

(snauajnosa
snyasowjaqy) enjo

(sndbu
p2Isspig) ades pass|iQ

(pAIIDS DUBAY) 18O

(p1DY2SOW DLIDEDIS)
Adsgmeuss dsnip

("dds sniopy) Ausaginin
(pa1pul pIdJIBUD|N) O3ue|A

(pupopI0d
auIsna|g) 13|1w Ja8ul4

(pa1p2 snat4) 814

(buaBuojaw
wnupjos) Jue|d333

aAnea4 dosd

(penupuod) T 374VL



(Continued)

TABLE 1

Recent citations

Feral type Life history Crop use Feral location(s)

Family

Feral name

Crop relative

(Sukopp et al., 2005)

Vegetable

Annual/

Exoferal/

Amaranthaceae

Sugar beet (Beta vulgaris)

biennial

endoferal

(Bemis et al., 1978; Provvidenti

North America

Vegetable

Annual/

Cucurbitaceae

Cucurbita

Squash (Cucurbita spp.)

et al., 1978)
(Zohary et al., 2013)

perennial

foetidissima

Perennial Fruit Temperate Europe, N Turkey,

Rosaceae

Sweet Cherry (Prunus

Caucasus, Transcaucasus

avium)

(Yoshinori et al., 2022)

Japan

Qil and leaves

Theaceae Perennial

Tea (Camellia sinensis)
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19]
c
1S
T
£

South America, Mesoamerica, USA

Vegetable

Annual

Endoferal

Solanaceae

Tomato (Solanum

=
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[V}
Sl
S ©
SN
: §
T“_
s <
q,u
=

lycopersicum)

Vegetable and

Annual/

Brassicaceae

Brassica rapa ssp.

Turnip (Brassica rapa)

oil

biennial

sylvestris

MABRY ET AL

(Zohary et al., 2013)
(Guo et al., 2020)

Europe and Western Asia

Tibet

Fruit

Perennial

Exoferal

Vitaceae

Grape (Vitis vinifera)

Grain

Annual

Endoferal

Poaceae

Wheat (Triticum

aestivum)

families (Table 1). Additional species likely have feral populations, but
genetic and/or phenotypic research has not been conducted to distin-
guish them from wild relatives. Additionally, there is still a lack of con-
sistency and consensus on the definition of ferality, possibly due to
researchers approaching feral crops from different fields. Some
authors define feral organisms as populations derived from crops that
have at least one wild type or “weedy” trait not typically present in
crop forms, which allow the line to exist outside of cultivation on a
multiyear basis (Gressel, 2005). Others define feral organisms more
broadly as populations that have persisted outside of human propaga-
tion, regardless of trait changes (Gering et al., 2019). Wu et al. (2021)
suggest that when diagnosing ferality, the ecological role should be
considered in addition to the genetic donor (domesticate or wild rela-
tive) and origin (endoferal, exoferal, or exo-endoferal). Definitions of
ferality are further complicated by ambiguity surrounding terminology.
For example, “weedy” can be applied to plants adapted to disturbance
and/or growing in undesirable areas in competition with cultivated
plants. Finally, several of the questions highlight the need to investi-
gate characteristics of crop species that make them more susceptible
to ferality. For example, diploid crops may be more likely to become
feral than polyploid crops (Wu et al., 2021), but it is not clear whether
certain families, traits, life history, or environmental conditions predis-

pose crops to become feral.

3.2 | Genetic architecture and pathway

The second set of questions deal with the process of ferality at a
genetic level. Several recent studies have determined that feralization
is not exclusively the “undoing” of domestication, where genes are
being returned to an original undomesticated state, but may involve
changes that occur at loci unrelated to domestication (Gering
et al.,, 2019; Qiu et al., 2020; Wu et al., 2021). Additional research is
needed to further understand the genomic signature of each case of

feralization.

1. Are there unifying genetic mechanisms underlying crop
ferality?

2. Does adaptation to the natural environment after cultivation
occur through fixation of standing variation or through newly
emerged mutations during feralization?

3. Is feralization achieved primarily through few changes of
large effect or small effect changes across many loci?

4. Can feralization accompany adaptation in the form of
increased plasticity?

5. What are the roles of potentially adaptive genomic features
in genetic compatibility/incompatibility between crops and
wild relatives?

6. What is the relationship between when a crop was domesti-
cated and the tendency toward feralization?

7. Are certain domestication traits more reversible than others?

8. Do feral crops tend to have more or less genetic diversity

than their cultivated relatives?
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Most of our understanding of feralization genetics comes from work
in rice (Oryza spp.). Researchers found adaptation to the natural envi-
ronment after cultivation can occur through mutations in pre-existing
alleles, or as found in O. sativa ssp. indica and O. sativa ssp. japonica
feral rice, some of the selected alleles were derived from new muta-
tions (Li et al., 2022; Scossa & Fernie, 2021). Also in rice, researchers
have found that, in some cases, independently evolving feral popula-
tions have several shared “de-domestication” genomic blocks (Qiu
et al., 2020). These blocks include genes with known functions related
to protecting seeds against pathogens (Guo et al., 2013), indicating
that there are at least some shared genomic targets of selection in
parallel feralization events in rice (Qiu et al, 2020). Yet, other
research has found that although most de-domesticated rice acces-
sions carry the domesticated allele at the sh4 gene (which deter-
mines delayed shattering in a domesticated background), these
plants still effectively disperse their seeds at maturity (Thurber
et al., 2010). The shattering phenotype in these feral accessions
was thus fixed through different mutations at other loci. Therefore,
weediness adaptation appears to be occurring largely through dif-
ferent genetic mechanisms in some feral rice populations (Li
et al, 2017; Qi et al., 2015). Beyond rice, recent research on sun-
flowers has found that a feral population exhibited rapid adaptation
of increased seed dormancy, but not increased competitive ability
or herbicide resistance (Herndndez et al., 2022). In general, it is the
assumption that genome-wide nucleotide diversity will be lower in
feral populations than in their respective inferred crop wild rela-
tives but higher than that of cultivated populations (Hernandez
et al, 2022; Qiu et al, 2020). However, research that compares
wild, feral, and domesticated populations has yet to determine if
this is true across all crop complexes, especially when comparing
exo- and endoferals.

3.3 | Evolutionary history and biogeography

The third set of questions relates to the evolutionary origins and bio-
geography of feral crops. Feralization likely has a history that is as long
as domestication. Humans have long altered wild plants through culti-
vation and selection (unintentional or intentional); similarly, domesti-
cated plants escape cultivation and evolve further through selection
and hybridization. The process of feralization can proceed in a variety
of different ways (Gressel, 2005). Below we discuss a few questions

concerning the evolutionary history of feralization:

1. How often are feral lineages in a single species polyphyletic?

2. What is the role of human and non-human transportation of
plants in ferality?

3. How does ancient feralization differ from recent or contem-
porary feralization events?

4. Is there introgression between wild-feral-domesticated forms
from the beginning of most domestication processes?

5. What type of insights can feral populations provide in under-

standing the history of domestication?

People P

6. How does the direction of introgression relate to phenotype
(e.g., are feral crops that have wild traits introgressed differ-
ent from wild individuals that have crop traits introgressed)?

7. How much gene flow from feral crops to conspecifics occurs
(for both incipient feral plants and those that evolved
further)?

8. What is the role of landraces versus breeders' varieties in fer-
alization? How does gene flow from feral crops impact land-

races and breeders' varieties differently?

Recent studies on Brassica oleracea (Mabry, Rowan, et al., 2021),
B. rapa (McAlvay et al., 2021), and rice (Londo & Schaal, 2007) have
found evidence for multiple independent feralization events at vary-
ing timescales and paths to ferality (exoferal or endoferal). Feral and
cultivated plants often coexist with the potential for extensive back-
crossing. This complicates the interpretation of the phylogeny, espe-
cially when trying to clarify the biogeographic patterns of feral plants
transported across different regions, especially when subsequent
backcrossing homogenizes their genomic background with local culti-
vars. One study on rice revealed that extensive gene flow from
domesticated to wild populations has eroded or replaced a substan-
tial portion of the genetic diversity of wild rice (Wang et al., 2017).
Recent work suggests that domestication evolved as a landscape pro-
cess in which disconnected populations of plants were sustained by
human contact and gene flow (Allaby et al., 2022; Spengler, 2020).
Although not specifically stated that some of these coexisting popu-
lations could be feral, descriptions of these plants—wild populations
with low levels of domestication syndrome alleles—certainly fit the
description, indicating that feral crops may have always played a role
in domestication. We know that feral populations have been of inter-
est to researchers for over 100 years. In 1850, at least four different
“weedy” rice types were documented (Craigmiles, 1978). Two
decades later, Charles Darwin (Darwin, 1868) also described the pro-

cess of feralization.

In our turnip and carrot beds a few plants often
“break” — that is, flower too soon; and their roots are
generally found to be hard and stringy, as in the parent
species. By the aid of a little selection, carried on dur-
ing a few generations, most of our cultivated plants
could probably be brought back, without any great
change in their conditions of life, to a wild or nearly

wild condition.

3.4 | Agronomy and breeding

Feral crop populations can serve as important germplasm resources
for improving crops with a range of agronomic traits, including adapta-
tion to biotic and abiotic stress factors. However, gene flow involving
feral crop populations in agricultural landscapes may have negative
consequences for maintaining crop genetic uniformity and achieving

novel trait confinement. Here, the following questions highlight
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the beneficial and detrimental impacts of feral crops, as well as poten-
tial management avenues to thwart the establishment of feral

populations.

1. Can feral crops be used as genetic resources for crop
improvement to make cultivated crops more locally adapted
or provide useful traits already embedded in a more favorable
genetic background? What specific traits from feral crops
could be of value? Are there opportunities to introgress genes
from feral plants to endow tolerance to biotic and abiotic
stress factors?

2. Is there an opportunity to redomesticate feral crops using
classical breeding or genome editing?

3. Do sympatric feral populations unintentionally impart adap-
tive variation into crops via gene flow?

4. Can we intentionally conduct breeding that produces crops
with less ferality potential?

5. How does the use of certified weed-free seed help prevent
the dispersal of feral plants?

6. What agronomic management practices influence the forma-
tion of feral crop populations and how can they be modified
to prevent their establishment?

7. Do feral crops act as refuges for pollinators or pests?

8. Are there any ecosystem services offered by feral populations
in agricultural landscapes?

9. Can feral populations serve as a component of a metapopula-

tion for specific plant species in agricultural landscapes?

Recently, Pisias et al. (2022) reviewed the possibility of utilizing feral
crops, which have a more similar genomic background to crops than
their wild relatives, for crop improvement using de novo domestication,
especially through genome-editing techniques (Curtin et al, 2022;
Fernie & Yan, 2019; Lemmon et al., 2018; Shan et al., 2020; Wu
et al., 2021; Zs6gon et al., 2018). Depending on the species, this process
could still require extensive baseline research to establish transforma-
tion and tissue culture regeneration systems. However, feral popula-
tions could be integrated into crop improvement methods using
traditional breeding techniques, such as marker-assisted backcrossing,
as well. Because feral populations likely harbor genes related to toler-
ance to biotic and abiotic stress, these plants could play important roles
in creating locally adapted crops (Bohra et al, 2022; Burgarella
et al, 2019; Gutaker et al, 2022; Van Tassel et al., 2020; Zs6gon
et al., 2022). Additionally, it has been suggested that feral crops could
be redomesticated into completely new crops. Although few documen-
ted examples have been confirmed genetically in crops, such as B. rapa,
(McAlvay, 2018), there are potential candidates, such as cultivated red
rice, which might have been redomesticated from feral red rice in some
places (Wu et al, 2021). However, a large majority of research to
date on feral crops has been centered around the negative effects of
competition with crops, or transgene spread (Al-Ahmad et al., 2006;
Gressel, 2015; Gressel & Al-Ahmad, 2005). Understanding the
landscape genetics of feral plants and their crop conspecifics at

multiple scales as has been done with some feral animals (Delgado-

Acevedo, 2010) could provide insights into the microevolutionary forces
involved in wild-feral-crop and feral-crop complexes, which could, in

turn, shed insight on management, domestication, and other topics.

3.5 | Fundamental and applied ecology

Feral plants offer a useful test system with which to address key eco-
logical and eco-evolutionary questions due to their relationship with
conspecific crops that have carefully studied genomes and evolution-
ary histories. On the other hand, feral plants also tend to have certain
tendencies that distinguish them from many wild plants, such as an
affinity for disturbed anthropogenic areas (Garnier et al., 2008;
Warwick & Stewart, 2005), persistent genetic/evolutionary character-
istics retained from domestication, such as differences in life history
trade-offs (Gering et al., 2019; Meyer & Purugganan, 2013), and some-
times complex genealogies deriving from populations brought
together artificially by humans. Addressing the questions below would
not only contribute to the fundamental understanding of plant ecology

but also the control of invasive or otherwise problematic feral plants.

1. How do feral crops fit into the larger ecological and evolu-
tionary footprint of humans in the Anthropocene?

2. How do feral plants adapt to novel environments? How does
this differ from local adaptation in non-feral plants? Does the
genetic heritage of feral plants facilitate their adaptation to a
changing climate?

3. What can feral plants teach us about invasion ecology?

4. What determines the success of feral crops in novel environ-
ments? Why is it rare to find feral crops in mature forests?

5. What makes some feral crops such effective competitors in
agricultural fields?

6. What ecological characteristics are typical of feral plants at
the scales of individual traits, integrated phenotypes, and
biotic interactions?

7. How often does a necessity for crop mimicry play a role in
ferality?

Anthropogenic ecological impacts over the last several tens of thou-
sands of years have gained renewed attention recently (Ellis &
Ramankutty, 2008; Otto, 2018), but a better understanding of the role
of ferals in anthropogenic biomes or “anthromes” sensu (Ellis, 2015)
could help move us toward a more comprehensive understanding of
how humans have sculpted ecosystems throughout time. Studies of
local adaptation in model or near-model organisms have been an
important source of insights in the past (Leinonen et al., 2009), as have
feral species (Franks et al., 2007), but there are abundant opportunities
for more work in this area, especially in the genomic era (Saastamoinen
et al., 2018). Feral organisms also present an opportunity to investigate
invasion ecology, including eco-evolutionary questions, as many feral
organisms are also invasive (Ellstrand et al., 2010). This work might
include predictive models to anticipate future invasion and habitat suit-

ability and characterization of the features that tend to make feral
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plants such effective competitors in certain environments. Finally, a
detailed investigation into functional ecological traits as has been pro-
posed for domestication (Meyer et al., 2012; Milla et al., 2015) would

shed further light on the ecological dimensions of feralization.

3.6 | Collecting and conservation

Conservation was a common concern among participants both in the
sense of conserving wild crop relatives and conserving native ecosys-
tems. Resolving these unknowns would facilitate the management of
ecosystems invaded by feral populations and the preservation of valu-
able crop wild relative diversity.

1. What are the impacts of feral populations on native diversity?

2. To what extent have the genomes of closely related wild rela-
tives of crops been eroded or replaced by feral crops?

3. How do feral plants become invasive?

4. What is the frequency of feral ornamentals?

5. How prevalent are transgenes in feral populations? How
often do they serve as a bridge to spread them to other
populations?

6. How will climate change affect ferality?

7. Might feral populations act as “bridgeheads” for herbivores
or pathogens that attack wild relatives?

8. Are certain feral populations a relevant target for genetic con-

servation, assuming they acquire novel genetic variation?

Comprehensive reviews have not yet been undertaken to gauge the
relative ecological impact of feral crops compared to non-feral species
on native biodiversity. Likewise, research that assesses the presence
and/or impact of gene flow and introgression with wild conspecifics/
congenerics is needed (Ellstrand et al., 2013; Gering et al., 2019).
Insights gleaned from the fast-growing field of invasion biology, which
encompasses studies of rapid evolution, invasibility, and eco-
evolutionary dynamics could be potentially translatable to feral
models. Although feral crops account for up to 14% of invasive spe-
cies in the United States, feral ornamental plants account for up to
half of invasive species in the United States but are even less well-
studied than feral crops (Culley & Hardiman, 2009; Li et al., 2004;
Reichard & Campbell, 1996). Understanding pathways to domestica-
tion and feralization in ornamentals could provide a useful parallel
study system to crops. Both feral crops and ornamentals could be use-
ful systems for studying “drivers versus passengers,” an understudied
hypothesis (Wilson & Pinno, 2013) asking if invasive drive community
change or if they are passengers following environmental change such
as disturbance. This is an unresolved area, but one, which may be very
relevant to feral species due to their origin in disturbed cropping sys-
tems. Despite questions about transgene spread mediated by feral
populations being the driver of one of the initial waves of interest in
feral plant research (Allainguillaume et al., 2006; FitzJohn et al., 2007;
Warwick et al., 2008), there are still outstanding questions about the
frequency of its occurrence. Although range expansion and rapid
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evolution of many species are anticipated with climate change and
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other environmental shifts (Franks et al., 2014), it is not clear whether
feral plants will be impacted differently due to their unique evolution-
ary histories and preadaptations to anthropogenic ecosystems.
Despite their widespread occurrence, feral crops are under investi-
gated compared to truly wild relatives, despite their potential to har-
bor useful alleles. Including feral populations in germplasm collection
and conservation may provide a resource for adapting crops in the

future.

3.7 | Taxonomy and best practices

To address the questions above and others, the authors also discussed
methods and best practices for moving forward collaboratively in this
field:

1. Is it possible to develop a standardized terminology around
feral crops to facilitate communication between researchers?

2. What are the best methods for understanding feralization?

3. Can we do experimental feralization?

4. How can herbarium specimens (or specimens in general) be
used to understand feralization?

5. How can we standardize our methods for compatibility across
studies?

6. What are the best practices for naming feral populations?

7. How can we address the issue of wild relatives being feral in
seed banks?

8. Can we increase the exchange of information with
researchers studying feralization in animals to inspire ques-

tions and methods for plants?

The first question relates to the importance of the wording we use to
describe feral crops. Researchers from across fields use the terms
weedy, feral, and domestication in different ways, which can hamper
communication (Ammann et al., 2005). As mentioned above, the term
“weedy” can refer to ecological strategy or competition with desirable
plants, and definitions of ferality can include or exclude trait change
as a criterion. Because feral populations are often confused with wild
populations, they are minimally sampled or left out of studies. Taxo-
nomic confusion has also hampered research. For example, feral
B. rapa has been alternatively called Brassica rapa ssp. sylvestris, Bras-
sica rapa ssp. campestris, or simply B. campestris-each also referring to
truly wild B. rapa despite separate evolutionary histories (McAlvay
et al., 2017). One option would be to give these feral populations a
new infraspecific taxonomic rank as has been done in rice (Oryza
sativa forma spontanea), but this is not widely agreed upon (Roma-
Burgos et al., 2021). By clarifying taxonomy, researchers can then
address challenges in seed banks where wild accessions are actually
feral populations. Finally, researchers should reach out beyond plants
to collaborators studying feralization in animals and other organisms
to find ways in which we can work synergically, possibly to identify

any shared patterns in becoming feral across plants and animals.
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4 | CONCLUSIONS

Although above we highlight a wide range of open research questions
in feralization research, we recognize that there are an even greater
number of questions not addressed, that will be spurred by continued
research and conversation. As hopefully demonstrated here, under-
standing feralization is interdisciplinary in nature, as it has already—
and will need to continue to—span disciplines that include both basic
and applied research. As the questions suggest, the field of ferality
research is well-positioned to enter a new phase. Rice has been estab-
lished as an evolutionary and genomic model for ferality, laying the
foundation for large-scale comparative work across species that could
build theory and generalizable knowledge. Other emerging directions
include the use of feral populations in breeding programs, reexamining
domestication in light of the role of feralization, and rapid adaptation
of feral populations. Working as a global community and using shared
terminology and methods will allow for more efficient and concerted
work in this field, with potentially important implications for food
security, conservation, plant breeding, and understanding of evolu-

tionary processes.
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